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Lattice QCD simulations tend to become stuck in a single topological sector at fine lattice spacing
or when using chirally symmetric overlap quarks. In such cases physical observables differ from
their full QCD counterparts by finite volume corrections. These systematic errors need to be understood
on a quantitative level and possibly removed. In this paper we extend an existing relation from
the literature between two-point correlation functions at fixed and the corresponding hadron masses
at unfixed topology by calculating all terms proportional to 1/V? and 1/V?3, where V is the spacetime
volume. Since parity is not a symmetry at fixed topology, parity mixing is comprehensively
discussed. In the second part of this work we apply our equations to a simple model, quantum
mechanics on a circle both for a free particle and for a square-well potential, where we demonstrate
in detail, how to extract physically meaningful masses from computations or simulations at fixed

topology.
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I. INTRODUCTION

A QCD path integral includes the integration over all
possible gauge or gluonic field configurations. These
gauge field configurations can be classified according to
their topological charge, which is integer. The numerical
method to solve QCD path integrals is lattice QCD. In
lattice QCD the path integral is simulated by randomly
generating a representative set of gauge field configura-
tions using hybrid Monte Carlo (HMC) algorithms
(cf. e.g. [1]). These algorithms modify a given gauge
field configuration in a nearly continuous way. One of
the key ideas of such a process is to generate almost
exclusively gauge field configurations, which have small
Euclidean action, i.e. which have a large weight o e~Secperr
and, therefore, dominate the path integral (importance
sampling).

To simulate a QCD path integral correctly, it is essential
to sample gauge field configurations from many topologi-
cal sectors. A serious problem is, however, that topological
sectors are separated by large action barriers, which
increase, when decreasing the lattice spacing. As a conse-
quence, common HMC algorithms are not anymore able to
frequently change the topological sector for lattice spacings
a £0.05 fm [2,3], which are nowadays still fine, but
within reach.

For some lattice discretizations, e.g. for chirally sym-
metric overlap quarks, the same problem arises already at
much coarser lattice spacings. Such simulations are typi-
cally performed in a single topological sector, i.e. at fixed
topological charge [4,5], which introduces systematic

*Corresponding author.
dromard @th.physik.uni-frankfurt.de

1550-7998,/2014/90(7)/074505(23)

074505-1

PACS numbers: 11.15.Ha, 12.38.Gc¢

errors. As an example one could mention [6] where
different pion masses have been obtained for different
topological charges and spacetime volumes. Those
differences have to be quantified and, if not negligible
compared to statistical errors, be removed.

There are also applications, where one might fix top-
ology on purpose, either by sorting the generated gauge
field configurations with respect to their topological charge
or by directly employing so-called topology fixing actions
(cf. e.g. [7-9]). For example, when using a mixed action
setup with light overlap valence and Wilson sea quarks,
approximate zero modes in the valence sector are not
compensated by the sea. The consequence is an ill-behaved
continuum limit [10,11]. Since such approximate zero
modes only arise at a nonvanishing topological charge,
fixing topology to zero might be a way to circumvent the
problem.

In view of these issues it is important to study the
relation between physical quantities (i.e. quantities cor-
responding to path integrals, where gauge field configu-
rations from many topological sectors are taken into
account) and correlation functions from fixed topology
simulations.

In the literature one can find an equation describing
the behavior of two-point correlation functions (suited to
determine hadron masses) at fixed topology, derived up to
first order and in part also to second order in 1/y,V (y, is
the topological susceptibility, V is the spacetime volume)
[12], and a general discussion of higher orders for arbitrary
n-point correlation functions at fixed topology [13]. In
the first more theoretically oriented part of this work
(Secs. II-1V) we extend the calculations from [12] by
including all terms proportional to 1/(y,V)? and 1/(y,V)?.
Since y,V < 10 in many ensembles from typical nowadays
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lattice QCD simulations' (cf. e.g. [14-17]), fixed topology
corrections of order 1/(y,V)? or even 1/(y,V)? might be
sizable. Another issue we address in detail is parity mixing
in fixed topology two-point correlation functions. Since
parity is not a symmetry at fixed topology, masses of negative
and positive parity hadrons have to be extracted from the
same correlation function or matrix (in the context of the 5
meson this mixing has been observed and discussed in [13]).
We also summarize all sources of systematic error and
discuss the range of parameters (e.g. spatial and temporal
extension of spacetime, topological charge, hadron masses),
where the 1/y,V expansions of two-point correlation func-
tions at fixed topology are accurate approximations.

In the second part of this work (Sec. V) we demonstrate
how to extract hadron masses from fixed topology simu-
lations in practice. To this end we apply the previously
obtained 1/y,V expansions of two-point correlation func-
tions at fixed topology to a simple model, a quantum
mechanical particle on a circle with and without potential.
This model can be solved numerically up to arbitrary
precision (there is no need to perform any simulations, only
ordinary differential equations have to be solved) and,
therefore, provides an ideal test bed. We have generated
data points of correlation functions from many topological
sectors and volumes and fit and compare different orders
and versions of the previously derived correlator expan-
sions. The results collected in various plots and tables are
expected to provide helpful insights and guidelines for
hadron mass determinations in quantum field theories, e.g.
in QCD, at fixed topology (for related exploratory studies
in the Schwinger model and the O(2) and O(3) nonlinear
Sigma model; cf. [18-21]).

Parts of this work have been presented at recent
conferences [22,23].

II. THE PARTITION FUNCTION Z, y AT FIXED
TOPOLOGY AND FINITE SPACETIME VOLUME

In this section we calculate the dependence of the
Euclidean QCD partition function at fixed topological
charge Q on the spacetime volume V, denoted as Z v,
up to O(1/V3).

A. Calculation of the 1/V expansion of Z y

The Euclidean QCD partition function at nonvanishing 6
angle and finite spacetime volume V is defined as

Zyy = /DADWDV-,e—SE.a[AA/‘/,W] = Ze-En(ﬁ,V.x)T (2.1)

[24] with

'In particular for expensive overlap quarks as well as for very
small lattice spacings, where the problem of topology freezing is
most severe, one is often restricted to rather small volumes V,
because of limited high performance computing resources. This
in turn implies a small value of y,V.
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SE.H[A9 l/_/’ W] = SE [A7 lZ/, l//} + leQ[A}7 (22)

where T is the periodic time extension, V is the spatial
volume, V =TV, E,(0,V,) is the energy eigenvalue of
the nth eigenstate of the Hamiltonian and Sy is the
Euclidean QCD action without the 8 term. Similarly, the
Euclidean QCD partition function at fixed topological
charge Q and finite spacetime volume V is defined as

Zyy = / DADy Dy gip e~ SeA7 v, (2.3)

Using

1 + .
0.0 = 5= / d0ei(0-0l)0 (2.4)

it is easy to see that Z, , and Zy , are related by a Fourier
transform,

1 +r .
ZQ.V = 2n’/_7z deelQé)Zgﬁv. (25)
One can show that E,,(+0, V) = E, (=0, V) [12], which
implies (d/dO)E,(0,V,)|y—o, = 0. Using this together with
(2.1) and (2.2) one can express the topological susceptibility,
defined as

. (0°
xi = lim @) v ) : (2.6)
according to
(2)
: E (9’ Vs) 2
2= Jim ST =P O) (27)
s s 0=0

(throughout this paper X") denotes the nth derivative of
the quantity X with respect to 8). Moreover, we neglect
ordinary finite volume effects, i.e. finite volume effects not
associated with fixed topology. These are expected to be
suppressed exponentially with increasing spatial volume
V (cf. Sec. IV B fora discussion). In other words we assume
V, to be sufficiently large such that Ey(60, V) ~ eq(0) V4,
where e((0) is the energy density of the vacuum.

At sufficiently large T the partition function is dominated
by the vacuum, i.e.

Zyy = e BOVIT(1 4 O(e~2EOT)),  (2.8)
where AE(0) = E(0,V,) — Ey(0, V). The exponentially
suppressed correction will be omitted in the following
(cf. Sec. IV B for a discussion). To ease notation, we define

f(0)=1(0.0.V)=ey(0) ——.
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Using also (2.8) the partition function at fixed topology
(2.5) can be written according to

1 +r
Zoy = — d9e=/O)V
oV T on r ¢ ’

(2.10)

where the integral (2.10) can be approximated by means
of the saddle point method. To this end, we expand
f(0)V around its minimum 6, and replace [** by [*%,
which introduces another exponentially suppressed error
(cf. Sec. IV B for a discussion),

% )
Zov=3: [ d%xp(—f(esw—#(e—esﬁ

—Zf 9 9)>

0, can be determined as a power series in 1/&,V.
Because of E,(+6,V,) =E,(—0,V,), the expansion of
the vacuum energy density around 6 = 0 is

(2.11)

=& 92"
=> 5 Ec=ey) Oy (212)
k=0
(note that £, = y,). Consequently,
fO)wV = Zgz’ﬂ V —iQé. (2.13)
= (24)! '

It is straightforward to solve” the defining equation for 6,
d/dof(0)V|p—p, = 0, with respect to 0,

) ol

(2.14)

L&
(E,V)3 6&,

1
ef”QwQ+

Finally the saddle point method requires one to deform
the contour of integration to pass through the saddle point,
which is just a constant shift of the real axis by the purely
imaginary 6,. We introduce the real coordinate s=
(0 —6,)(f?(6,)V)'/? parametrizing the shifted contour
of integration yielding

Z =
oV T 2a(FO(0,)V)1 2 /_w '
1 . fg,)v
_ 2 _J \¥s)P n
X eXp( 55 n; O (6,) V)P s" ). (2.15)

2Throughout this work errors in 1/&,V are proportional to
either 1/(&,V)* or 1/(E,V)?. For errors proportional to 1/(£,V)*
we also keep track of powers of Q; e.g. we distinguish
O(1/(&V)*) and O(Q?*/(E,V)*), etc. For errors proportional
to 1/(£,V)°, we do not show powers of Q; i.e. we just write
O(1/(&,V)%). We also estimate &,/E, = O(1), for which
numerical support can be found in [25].
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After defining
)l == [ Tdse ). @a6)
a more compact notation for the result (2.15) is
e~ 10V
ot a6, v)"
<en(-2 n!(ﬁ(:;((g V)| e

where G can also be written as

k
|

(2.18)

|

We now insert f(0)V and 6, [Egs. (2.13) and (2.14)] and
perform the integration over s order by order in 1/&,V
(note that 8, ~ 1/E,V). To this end we use the relations

= \%
V= 52’ 6’2’ moop=1,2
l=n 21_
— EyV
2n— V: 21 2[— 2n+1’ :2’3"”’
2 2l=2n+ 1) "
2n)!
2n—1 =0 2n :2_1H:(
s 5] = 2n— 1) =22
=1x3x5x--x(2n-1),
n=0,1,.... (2.19)

The terms in (2.18) are
(i) for k = 1 proportional to 1/(&,V)"/>1,

(ii) for k = 2 proportional to 1/(&,V)(m+m)/2=2,

(iii) for k = 3 proportional to 1/(&,V)mtmntm)/2=3
Moreover, n, n; + n,, n; + n, + ns, ..., have to be even, or
otherwise the corresponding term in (2.18) vanishes, due to
(2.19). Finally every odd n and n; contributes in leading
order in 6, one power of O, ~1/&,V. Therefore, up to
O(1/(&,V)?) it is sufficient to consider the following terms:
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1) k=1,n=4

TSI
N0’

1 & 1 g &\ p
— ot (- e
&8s, &V 168, 882
1
of——).
" ((52v>5>

(i) k=1,n=6:

61(f (0,)V)

790,V 6H

1 Es 1
= 02 ).
EV)a8E, <(52V)2 )
(i) k=1,n=28:

f<8> (gs) V 8
81(/@ (0, V)"

1l &
~(&,V)3384¢,

! O<<521v>5>'

iv) k=1, n=10:

f1%0,)v
101(f@(0,)V)?

V) k=2,n =n,=3:

(FOOIV)?
G (0)v)°

1 5& 1
= 2+ 0 .
&V 1285 s <(52V)5>

vi) k=2,n, =3,n,=25:

ZXH (f<3)(9S)V)(f(5) 0)V) 4
3!5!(f(2)(9x)v)4

(vii)

(2.20)

(viii)

(2.21)

(ix)

(2.22)
(x)

(2.23)

(xi)

(2.24)

(xii)

=)

(2.25)
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k:2, n1:n2:4:

(F90.)V)? SSH
(4P (O 0,)v)*

1 35&2 Lol
T (&,V)? 19283 (&,V)?

e%). (2.26)

k:2,n1:4,n2:6:

sz OOV OIV) g
416!(f2)(0,)V)?

1 7E.E 1
= @ . 2.27
EV) 648 ((52‘/)5) (2.27)

k=2,n =4,n,=8:

sz UHEVIPOIY)
4181(f@(0,)V)°

-(ewy)

(2.28)

(31)241(fP(6,) V)

1
—o(——0).
<(52V)2 ’

3XH UOOIVPEDEIV)

(2.30)

k:3,n1:n2:n3:4:

FO0O)V7
@R (,)V)s

1 38583 1
(£2V) 51283 ((52V>5

>. (2.31)
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(Xlll) k= 3, ny =n :4, ns = 6:

(FYO)V)(fO0,)V) 14
(41)%6!(F2(0,)v)

3x

~(er)

(2.32)

(XiV) k=4,n1:n2:n3:n4:4;

(FYOIV) 6l 1
516 _(’)<(52V>4>. (2.33)

(4N* (2 (0,)V)*
Inserting these expressions into (2.18) leads to
1 &y & &
G=1+— |- -2+ 26
Tev ( 8e, ( 68, 3e1)%
n 3583
384&3
(&V)3 384&,  128&3

+( g )

and, after inserting the expansion of 8, (2.14), yields

Ll (&
(&, V)2 U 488,

38563
307263

(2.34)

1 1
Zoy = —Ey(0, V)T = ——~ Q2
oV 2LV (CXP< 0(0, V) g VZQ &

E N1 E
)32452Q><1 &V )2252Q>
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Li-f' 1 & +355§
E;VB8E,  (E,V)2\ 488,  384&3
385¢;

16485
307263

G=1-

128&3

e )
(2.35)

1 &
+ —_
(&,V)3 ( 3848,
Es &2 )
*(ﬁg‘ﬁﬁQ)

The remaining terms in (2.17) expressed in powers
of V are

1 1
FOV =&V +WEQ2 (EV) 2452 e ¢
1
+0<(52 T > (2.36)
and
1 £
@) _ _ k23
o)V = (1= g
1
+ O<(52V)4 Q“)). (2.37)

Combining (2.17), (2.35), (2.36) and (2.37) yields the final

result for Z, v,
-1/2 1
G+O|——750
+0(gre))

1 1 & 1 & -1/2 1 &
= -E T—— Q- %) [1-— 2 2 l—— 2
V2iE,V <eXp< o0 V)T -5 sz & vy 248, ¢ ) ( (&V)226, 2 ) ( £,V 8E,
LU (& 3SEY 1 (& 78E 3858 (& -
&V 4852 38482) T (& VY \ 3848, 12882 307263 ' \16&, 352

1
+O<54V4 54 4Q2 4Q4>>'

B. Comparison with [12]
It is easy to see that Eq. (2.16) derived in [12],

1 0? Y
%0 = N7 <_ 2ﬁV1z) (1 " O(/TV))’ (2.39)

is contained in our result (2.38), after changing notation
according to fV — Vand y;, — &, (in [12] £y = 0 has been
assumed and y « &, is a constant).

(2.38)

III. TWO-POINT CORRELATION FUNCTIONS
Cpv(t) AT FIXED TOPOLOGY AND FINITE
SPACETIME VOLUME

In this section we derive a relation between physical
hadron masses (i.e. at unfixed topology and € = 0) and the
corresponding two-point correlation functions at fixed
topological charge Q and finite spacetime volume V,
denoted as Cy y (1), up to O(1/V3).

A. Calculation of the 1/V expansion of C y(f)

Two-point correlation functions at fixed topological
charge Q and finite spacetime volume V are defined as
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1
CQ,V(t) = Z—

0 / DADyDwég ga) 0" (1)0(0)e=Selvvl,
v

(3.1)

O denotes a suitable hadron creation operator; for example
for the charged pion z* a common choice is

0=

\/IV_/ drd(r)ysu(r) (3.2)

(cf. e.g. [26] for an introduction in lattice hadron spec-
troscopy and the construction of hadron creation operators).
Cy.v(1) is related to a corresponding two-point correlation
function at nonvanishing € angle and finite spacetime
volume V defined as

1
Cov(t) = Zz

/ DADYDFO (1)0(0)e=Ses4vw] (3 3)
'A%

via a Fourier transform,

1
2Zgy

(3.4)

Cou(t) = / 402 Cor (1)e%9.

Coy (1) can be expressed in terms of energy eigenstates
|n;0,V,) and eigenvalues,

Cov(t)Zpy = ZK’"’ 0.V,|0|n; 0, V) [?eEn(@Va)t

n,m

x e~ Enl0Vo)(T=1), (3.5)

When applied to the vacuum |0; 0, V), the hadron creation
operator O creates a state, which has the quantum numbers
of the hadron of interest H, which are assumed to be not
identical to those of the vacuum, even at 8 # 0. These states
are denoted by |H, n;0, V), and the corresponding eigen-
values by Ey ,(0,V,). H is typically the lowest state in that
sector,” i.e. |[H,0;0, V) with mass My (0) = Ey o(0, V) —
Ey(0,V,) (in this section we again neglect ordinary finite
volume effects, i.e. finite volume effects not associated with
fixed topology; cf. Sec. IV B for a discussion). Using this
notation one can rewrite (3.5) according to

*Note that parity is not a symmetry at € # 0. Therefore, states
with defined parity at @ = 0, which have lighter parity partners
(e.g. positive parity mesons), have to be treated and extracted as
excited states at @ # 0 and, consequently, also at fixed topology.
This more complicated case is discussed in Sec. III C.

PHYSICAL REVIEW D 90, 074505 (2014)
Cov(t)Zgy = a(0,V)e
4 (9( —Ey(0.V,)T —M;I(a)t)
+ (9( —Ey(0.V, )Te—MH(H)(T—t))
(1+0
1) 4 O M OT20)),
(3.6)

-Eg (gvvs)Tg_MH (6)[

— a(e’ VS) _EO(H-V:)T _MH(H)t

x (e~ (M3 (O)-M

where a(0, V) = |(H,0;0,V,]0|0;0,V,)|* and M};(0) =
Ey1(0.Vy) — Ey(6,Vy) is the mass of the first excitation
with the quantum numbers of H.

For suitably normalized hadron creation operators O,
e.g. operators

1
0=—= | #ro'(r) (3.7)

where O'(r) is a local operator, i.e. an operator exciting
quark and gluon fields only at or close to r, a is
independent of V, i.e. @ = a(6). Moreover, for operators
O respecting either POP =+0 or POP = -0, ie.
operators with defined parity P, one can show a(+6) =
a(=0) by using Pln;—0,V,) =n,(0,V,)|n;+6,V,),
where 7,(0,V,) is a nonunique phase. In the following
we assume that O is suitably normalized and has defined
parity. Then a(0) can be written as a power series around
6 = 0 according to

© a(Zk) (0)92k
al0) =S 0
S
*® 92k
| . 3.8
~oee(n(3 Goay)) 00
=—pO=-3=, “ﬁl&%"“

Inserting a(0) in (3.6) and neglecting exponentially sup-
pressed corrections (cf. Sec. IV B for a discussion) leads to
O)V+Mp (0)1+p(0))

Cov(t)Zgy = a(0)e (! (3.9)

In analogy to (2.9) we define

My(0)t + B(6) — iQO

fe(0) v

=/c(0.0.V) = ey(0) +

(3.10)

For two-point correlation functions at fixed topology we
then arrive at a similar form as for Z,  [Eq. (2.10)],

a(0)

+r .
CQ,V(t)ZQ,V = ﬂ/ dge_fC(g)V. (311)

With
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(2k) 2% 2k
My (0)r + p29(0) Xok = Foulb
= = 14+ 2 OV = —i086. 3.13
-7:2k ng + Vv 52]( + SZkV s fC( ) — (2]() ( )
xop = MEY(0)1 + B9 (0), (3.12)

Up to O(1/(E,V)*) its minimum can easily be obtained by
the expansion of the exponent is using (2.14),
|

e I . |
Q“"(fQO*(fz )36sz> ((fMS)

. 1 1 54(1 +X4/54V> 3) < 1 )
= o . 3.14

l<52V(1 +x2/E,V) e (E2V)? 6E5(1 + x,/E,V)* ) (EV) (314)

Co.v(t)Zgy can be written in the same form as Z, y [Eq. (2.17)],
a 0 e_fC(e.\AC)V © f(n) (9‘ )V
Cov(t)Zoy = ( )(2) 72 CXP(—Z <C2> < B S") . (3.15)
V2r(fe' (05¢)V) =3 n!(fe (05 V)"
=G¢

Using (2.35) and (2.38) yields an explicit expression up to O(1/(&E,V)?),

__a0) sy L1 I : L _Fu 2)‘1/2 ( ! 4>>
CorttZor=rrezes (o0 (-7 220~ i) (i) 0ot o (e

! «(0) (ex <—E T—My(0)1— ! Lo
TV T im ey P\ T T e V(T x /6, V)2
1 Ef(1+x4/E4V) 1 E(1+x/EV) L\ 712 1 4
- 1-— Go+0| —— 3.16
(£,V)*245,(1 Jr)fz/gzv)é‘Q (E2V)225,(14+x,/EV) ¢ ¢t (&V)? ¢ (3.16)
with
1 S 1 Fo  TFFs 385F ([ Fo  F2\
Ge=1- 2 3\ 7 + 7~ 5+ —372/¢
FoV 8}'2 48]-"2 38472) T (Fv)P \T384F, 12872 307273 | \16F, 3F2
+ (’)( 0?
(&2 (52 (&V)*
_ 1 54(1 +x4/E4V ) I [ &1+ x6/EV) 3585(1 + xa/E4V)?
- EzVng( +XQ/52 ) (52 ) 4852<1 +X2/(€2V)3 3845%(1 +)C2/52V)4

n 1 (_ Es(1 +x3/EV) TE4(1 +x4/EV)E6(1 +x6/E6V)  385E5(1 +x4/E4V)’
(52V)3 38452(1 =+ XZ/(€2V)4 1285%(1 —+ X2/52V)5 3072(‘:3(1 + X2/82V)6
Ee(1+x6/E6V)  E1(1 +x4/E4V) > 2> ( 1 1 2)
- Ol —5,——— . 3.17
* <1652(1 SV 381+ mevy)E ) TG Evi e (3.17)

After inserting Zy y [Eq. (2.38)], it is straightforward to obtain the final result for two-point correlation functions at fixed
topology,

- (X(O) _ _L 1 _ 1 2 l 54 < 1+X4/£4 _ ) 4>
CQ’V([)_«/—IerZ/EZVeXp( Mu(0)r SQV<1+x2/52v 1>2Q V7 2as T 1 m/evy 1)
R +1/2< L1 &+ n/EY) 2)—1/2@ < 1 4>
x<1 (52V>2262Q> CEvrEa ey ?) 6 P\Eevr? ) (3.18)
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where G and G, are given in (2.35) and (3.17) [note that after inserting G and G, in (3.18) the error is
O(1/(E;V)*, Q*/(E,V)*, 0*/(E,V)*)]. For some applications it might be helpful to have an expression for two-point
correlation functions at fixed topology, which is of the form

Co.v(t) = const x exp(—My(0)t + fixed topology corrections as a power series in 1/&,V), (3.19)

i.e. where fixed topology effects only appear in the exponent and are sorted according to powers of 1/&£,V. Such an

expression can be obtained in a straightforward way from (3.18),

Co(r) = a(0)exp (—MH<0>’ C&EV2 (&V)

1 X2 1 Xq4 — 2(84/52)X2 — ZX% X2 )
8 ¢

— 8(54/52))(4 — 12X2X4 + 18(54/52))6% + 8)6%

1 <16(54/52)2X2 +x6 = 3(E6/E2)%

(&V)?

48
1

X4 bl 3(54/52))&'2 — 2X2 1 1
- )+ (g mr @ E@re? )

4

Note that the order of the error is the same for both (3.18)
and (3.20).

B. Comparison with [12]

One can see that Egs. (3.8) and (3.9) derived in [12],
(0(1)0(1)) ~ AgeMe(n=r) (3.21)

and

L, 1 Q?

are contained in our result (3.18) and (3.20), respectively,
after changing notation according to (O(#;)0(t,)) —
Cov(t), Ag = a(0), M(0) - My(0) and 1, — 1, — 1.

C. Parity mixing

Parity P is not a symmetry at 8 # 0. Therefore, states at
6 # 0 cannot be classified according to parity, and it is not
possible to construct two-point correlation functions
Coy(t), where only P = — or P = + states contribute.
Similarly, Cy y(¢) contains contributions of states with both
P = — and P = +, since it is obtained by Fourier trans-
forming Cyy () [cf. (3.4)]. Consequently, one has to
determine the masses of P = — and P = + parity partners
from the same two-point correlation functions.” While
usually there are little problems for the lighter state (in
the case of mesons typically the P = — ground state), its
parity partner (the P = + ground state) has to be treated as

*Note the similarity to twisted mass lattice QCD, where parity
is also not an exact symmetry, and where P = — and P = +
states are usually extracted from the same correlation matrix
(cf. e.g. [27-33]).

(3.20)

an excitation. To precisely determine the mass of an excited
state, a single correlator is in most cases not sufficient. For
example to extract a first excitation it is common to study at
least a 2 x 2 correlation matrix formed by two hadron
creation operators, which generate significant overlap to
both the ground state and the first excitation.

We discuss the determination of P =— and P = +
parity partners from fixed topology computations in a
simple setup: a 2 x 2 correlation matrix

Chy(t) = / DADyD8 i) O’ (1) 0 (0)e=SelA7]

(3.23)

1
ZQ,V

with hadron creation operators O_ and O, generating at
unfixed topology and small 8 mainly P = — and P = +,
respectively. An example for such operators is

1
VvV

0, = \/l‘/_s/d3ré(r)u(r)

corresponding to the D mesons and its parity partner Dy
Without loss of generality we assume that the ground state
(at 8 =0) has P =—, denoted by H_, and the first
excitation has P = +, denoted by H .

In the following we derive expressions for the four
elements of the correlation matrix C’Qk‘v(t), Joke{- +}
We proceed similarly as in Sec. IIT A. This time, however,
we consider the two lowest states H_ and H, (not only a
single state),

o_=

/d3r6(r)y5u(r),

(3.24)
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Coy (1) Zgy = (@*(0,V)e™Mn- O

+ &5, V,)eMu O g=EOVIT (3 25)
[which is the generalization of (3.6) with exponentially
suppressed corrections from higher excitations neglected],
where
! (0) A3(60) =

= A} (0)A%(0), (H,;6|0,]0;0).

(3.26)

The overlaps of the tr1al states 0;]|0;0) and the lowest
states |H,), A%(6) and aj (6), have to be treated in a more
general way, since the leading order of their # expansion
can be proportional to a constant, to & or to #*> depending on
the indices j, k and n. Since at € = 0 parity is a symmetry,
AT (0 =0) = A7 (0 = 0) = 0. Consequently,

(i) AT(0) = 0(0), A7(0) = O(0),
while

(i) A=(0) = O(1), A (0) = O(1).

[Eq. (3.26)] one can conclude

From the definition of (x’ ( )
(i) o= (8) = O(1), a7 (6) = O(1),
(i) o= (6) = 0(0), a2 (6) = O(0),
(iii) a++(9) O(6%), a7=(0) = O(6°).

Using PO.P =40, and Pln;+0,V,) =n,(0,Vy)|n
—-60,V,), where 7,(0,V,) is a nonunique phase, one
can show

() o (+0) = +a, " (=0), &~ (+0) = +a,; " (=0)
(i.e. only even powers of @ in the corresponding
expansions),

() ai (+0) = —a~(-0), a (—i—@) = —a; " (-0) (i.e.
only odd powers of (9 in the corresponding
expansions).

Technically it is straightforward to consider not only the
ground state H_, but also a first excitation H_: the con-
tributions of the two states are just summed in (3.25); 1.e. one
can independently determine their Fourier transform and,
hence, their contribution to the correlation matrix at fixed
topology, C, g v(1). Additional calculations have t0 be done,
however, for off-diagonal elements, where ;™ (+60) =

—afﬂ—é), and for contributions to diagonal matrix

a( 1 ) (O)e_fc(exﬂ)v
QafS (0,0)V)2

where G is defined in (3.15) and

HCEH—S eXp(—i f(cn)(QS,c)V s”)
(& Ouc) V)2 = (g "2

PHYSICAL REVIEW D 90, 074505 (2014)

elements, where a;f*(6) = O(6?) (cf. the following two
subsections). Contributions to diagonal matrix elements,
where aF(0) = O(1), have already been determined
(cf. Sec. IIT A).

1. Calculation for a(+0) = —a(—0), where a(0)
{a=*(0).az"(0).a27(0).a"(0)}
We proceed as in Sec. III A. a(f) can be written as a
power series around 6 = 0,

©_ q2k+1) () g2k+1
a(f) = Z—( )

22+ 1)!
© 2k+1 92k
1) (0)9exp <1n< o ) )) . (3.27)
2 i )l 0)
o p2k) k
=-p0)=- k:lﬂ 2]\(28)!92]\

The corresponding contribution to Cgfv
is

(1)Zgy [cf. (3.25)]

a(e)e_MH(B)[e_EO(e’V.\')T ( )(0)66 (eO( )V+MH(9)H'/}(€)>.

(3.28)
As before we define
fC(e) = fc(g, 0, V) = 50(9) + MH(G)Z +5(6) - iQQ‘
(3.29)

For the contribution to the correlation matrix at fixed
topology C’Qk,v(t)ZQ,V we then obtain

(1) 0 +
a(0) / d00e~1c0)V (3.30)
2 J_.

where fc(0)V is defined by (3.12) and (3.13).

Consequently, its minimum 6, is given by (3.14).
Equation (3.30) can be written as

(6’S,c m> P <_ g n!(

) 1 —fe(O5c)V
f (QS,C)V n a( ) 0)e fe(bc
; w2 - ( ) (050G + He),

 22f2(0,0)V)'
(3.31)

s 3 OV L\
) n/2 '

(2 O,00V) > i (1 (0,0)V)

(3.32)
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As in Sec. IT A it is easy to identify and calculate all terms of He up to O(1/(E,V)?):
() k=1,n=3 (x1/V2):

oV |1 F ( 1 )

3!(f<cz>(9S,C)V)2S “FvaE, et AW (333)
(i) k=1,n=5 (x1/V?):

S0V ol =L Tey +O< 1 ) (3.34)

5172 (0,0)V)? (FLV)?8F, ¢ T\(&V)) '
(i) k=2, n; =3, n, =4 (x 1/V3):

S |GG O0) | 1 35F w( ! ) (335)
31412 (0, 0) V) Yl T @ vraarg e (EV)H) '

Inserting these expressions into (3.32) leads to

Nz L ([ F 3R 1
He = - 0, - Orc+0( ). 3.36
¢ TRV, “’C+(]-"2V)2< 87, 4873) ¢ T O\ (Gvy (3.36)

The final explicit expression up to O(1/(&,V)?) for the contribution to Cg v()Zoy [Eq. (3.31)] is

a(l)(O) L1, 1 Fu 4 1 F, ~12
V25F,V AL I - =20 (0,cGc+H,
o (oo (-7 =m0 (f2V>324f2Q>< (fzv)22F2Q> (0.cGe + He)

+ (9((521‘/)4 Q4)). (3.37)

After dividing by Z, v [Eq. (2.38)], it is straightforward to obtain the final result. In exponential form (3.19) it is

: ol .)€
R e ey
1 (3(E6/E) = 13(E4/82)> = 30(E4/E)xy + 15x, — 1833 (£4/E) +3x,
_ (&v)z( 2 B/ Q2> +o< : 52‘/)4). (3.38)

2. Calculation for a(+0) = +a(—0), where a(0) € {at*(0).a7=(0)} = O(6?)

We proceed as in Sec. III A. a(0) can be written as a power series around 6 = 0,

0) - i 064 _a(0) <ln <i M)) _ (3.39)

= (2k)! 2 = (2k + 2)!06(2)(0)
w 52K 062k
=-p(0)=- k:l/j (253)19
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The  corresponding  contribution  to Cgfv(t)ZaV For the contribution to the correlation matrix at fixed

[cf. (3.25)] is topology Cg v(t)Zy.y we then obtain
2
a(0)e M0t g=E0VIT — Mgz e~ (€o(O)V+My (0)1+5(6))
2
) z
(3.40) “ 4(0) / 7 400210V (3.42)
T -
As before we define
Fol0) = £o(0.0.V) = eo(0) + MO PO =100 here @)V is defined by (3.12) and (3.13).
4 Consequently, its minimum 6, is given by (3.14).

(3.41) Equation (3.42) can be written as

|
o (0)efel®s0V ( b )2 (i £ Os0)V )
sCT v .- | eXp| — s
20215 (0,0)V)"2 (F2(0,0)v)12 (S (0,0)V)H?

a(z) (())e—fc(gs.c)v
= (63 cGe +20,cHe + 1), (3.43)
222/ (B, V)> |

|
where G is defined in (3.15), H is defined in (3.32) and (i) k=1,n=06 (x1/V3):

1OV
61(f¢ (0,0)V)*

1 TF 1
~ (B 48-7:62 " 0(<52V)4>. 347

N PV )
2o, >vexp< 2 TG

(v) k=2,n =4 n, =4 (x1/V3):
As in Sec. IT A it is easy to identify and calculate all terms
of Io up to O(1/(&E,V)?):
1) k=0 (x1/V):

(e OV

@215 (0,0)V)
_ ! 10573+(9<(1 ) (3.48)

S2

- (FLV)? 6473 EV)*
‘ & 0.0V
1 1 Fy
F,V B FV2F, Oc O((gzv)4>' (3.45) Inserting these expressions into (3.44) leads to
et (- ) e (-2)
i) k=1, n=4 (x1/V?): FoV ' 2F, °C) T (FV)?P\ 8F,
n 1 <_ TF¢ +105‘/742;> n ( 1 >
fé4)<6sC>V 6 (sz)3 48?2 128?% (82‘/)4 '
(12 0,)V) (3.49)
1 5F, 1 . . . 5
= LV 8F +0 &) (3.46) The final expllqit expression up to O(1/(&,V)’) for the
2 2 2 contribution to Cy y,(t)Zg v [Eq. (3.43)] is
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a® (0)
2\/ 2ﬂf2 Vv

()

(F,V)?24F,

(oot bde) (-

PHYSICAL REVIEW D 90, 074505 (2014)

Ja
(FaV)?2F,

—1)2
Qz) (050Ge +20,cHe + 1)

(3.50)

After dividing by Z, v [Eq. (2.38)], it is straightforward to obtain the final result. In exponential form (3.19) it is

. (2>(())
k)L
Q.V( )< 26,V

exp (—MH(O)t 5

&V

1 ((54/52) +3x,

+ Q2>

(&,V)? 24

3. The 2 x 2 correlation matrix at fixed
topology at O(1/E,V)
The 2 x 2 correlation matrix Cgv(t), J. ke {— +}, can
be obtained by properly adding the results (3.20), (3.38)
and (3.51). At first order in 1/&,V it is given by

Covlt) = a="(0)exp (‘MH_ (0) - —;>

= ?(0)

HETAY

exp(=My,_(0)1) + O <(L)

| ot
C0) = at (O)exp =y O - 21 5

a+@/(0) 1
26,y oM (00 + O((Szv)2>
(3.53)
iaX=1)(0)0
() = TCXP(_MH_(O)t)
. F4.(1)
fay 00
&V exp(—My, (0)1)
1
of——). 3.54
i <<szv>2) 55
where xi = M(fzt +ﬂi:t,(2) and ﬁii,(Z) _ _aii.(Z) (0)/

at*(0) [cf. (3.8)]. The quantities a, are products of the
more fundamental A}, [cf. (3.26)] and, therefore, are not
independent and fulfill certain constraints. Since the diago-
nal elements of Cékv(t) are real and > 0,
() a==(0), at™(0), a=+2(0), a; P (0) > 0 and real
(four real parameters),

1 (3(56/52) - 13(54/52)2 - 30(84/82))(2 + 15)(?4 - 18)(% _ 2(54/52) + 3)(72 QZ +1Q4> + O((E IV) )
2

2 2
(3.51)

|
(i) a=—®(0), ajf’(z)(O) real (two real parameters).
Moreover, from (C.\,(1))* = CS{V(I) follows:
0))" =

() (a=+M(0)) =t~ () and (a;""
af'(l)(O) (four real parameters).
Quite often one can define the hadron creation operators
O_ and O, in such a way that the off-diagonal elements of
Cgfv(t) are real (or purely imaginary), which reduces the
number of real parameters contained in ari,k from 10 to 8.
There are further parameters, My (0), My (0), MSE(O)

Mgi (0) and &,, i.e. in total 13 parameters.

Equations (3.52)—(3.54) clearly show that parity mixing at
fixed topology is already present at order 1/&,V. In particular
this will cause problems, when trying to extract a hadron,
which has a lighter parity partner, from a single two-point
correlation function: e.g. the first term in C, 7, (¢) [Eq. (3.53)]
is suited to determine a positive parity meson; however, there
is a contamination by the corresponding lighter negative
parity meson due to the second term, which is only sup-
pressed proportional to 1/&,V with respect to the spacetime
volume; since the first term is exponentially suppressed with
respect to the temporal separation compared to the second
term (< e~ M. =Mu)t) 3 precise determination of M u, from
the single correlator CEJ{,(Z) seems extremely difficult and
would probably require extremely precise simulation results.
Using the full 2 x 2 correlation matrix (3.52) to (3.54)
should, however, stabilize a fit to extract My, and My
at the same time (this is discussed in detail in Sec. V C4),
similar to what is usually done at ordinary unfixed topology
computations, when determining excited states.

This parity mixing at fixed topology has already been
observed and discussed in the context of the # meson in
[13]. When considering the correlation function C;7 (1)
with a suitable # meson creation operator, e.g.

1 / Pr(a(0ysu(r) + AE)rsd(r)).  (3.55)

o_=
VvV

one finds
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5\ g
Car0) = a0y exp My 01— g1 5 ) + )

~(ewy)

where My = 0 has been used (H, is in this context the

(3.56)

vacuum state). Using o _’(2)(0) = —2&3 from [13] shows
that there is a time independent contribution —&,/V to the
correlation function Cy7y () as in [13].

It is straightforward to extend (3.52) to (3.54) to larger
correlation matrices formed by more than the two operators
O_ and O, . Similarly, it is easy to include further states
besides H_ and H . In both cases one just has to properly
add the expressions (3.20), (3.38) and (3.51) and assign
suitable indices.

IV. DISCUSSION OF ERRORS

In this section we discuss in which regime of parameters
our 1/V expansions of two-point correlation functions at
fixed topology (3.18) and (3.20) are accurate approximations.

A. Errors proportional to 1/&,V

In Sec. II A the spacetime dependence of two-point
correlation functions Cy () has been derived up to 1/V>.
More precisely, the error is

1 1 1
@) , 2, 4 4.1
((52‘/)4 (&) ¢ (&) ¢ ) @)
[cf. (3.18), and the text below (3.18) and (3.20)]. This error

will be small, if
(Condition 1)

1/6,V « 1, |0]/&,V < 1.

In other words, computations at fixed topology require
large spacetime volumes V (in units of the topological
susceptibility y, = &,), while the topological charge Q may
not be too large. We have also used F, = &, + O(1/&,V),
which requires

(Condition 2)

| = (M (0)1 + BP(0)] < 1.

The time dependence of this constraint excludes the use of
large values of .

B. Exponentially suppressed errors

In Secs. Il A and IIT A several exponentially suppressed
corrections have been neglected:
(a) Ordinary finite volume effects, i.e. finite volume effects
not associated with fixed topology:
Such finite volume effects also appear in QCD
simulations, where topology is not fixed. These effects
are expected to be proportional to e s~ where

PHYSICAL REVIEW D 90, 074505 (2014)

m,(0) is the mass of the pion (the lightest hadron
mass) and L is the periodic spatial extension.

(b) Contributions of excited states to the partition function
and to two-point correlation functions:

Excited states contribute to the partition function
Zyy proportional to e 2FOT [cf. (2.8)], where
AE(0) = E\(0,V,) — E§(0,V,) is the mass of the
lightest hadron, i.e. AE(0) = m,(6).

The corresponding dominating terms in a two-point
correlation function Cyy(f)Zyy are proportional to
e~ MuO-My(O)1 and e~MuO)(T=21) [cf. (3.6)], where
My (0) is the mass of the hadron of interest and
M3, (6) — My (0) the difference from its first excitation.

(¢c) Changing the integration limits in (2.10) from f_tr” to
+o0.
I The relative error is expected to be suppressed
exponentially by the second term in the exponential
in (2.11) and, therefore, proportional to

>
exp <_527V (m— 9_Y)2) ~ exp (— z izv) . (42)

In zero temperature QCD simulations typically 7' = L. For
sufficiently large values of m,(0)L, e.g.
(Condition 3)

m,(0)LZ3---5>1

as typically required in QCD simulations, corrections
(a) and for the partition function also (b) should essentially
be negligible. To be able to ignore corrections (b) for two-
point correlation functions, one needs

(Condition 4)

(M7,(0) — My (0))t> 1, My(0)(T —2t) > 1.

Corrections (c) can be neglected, if £V > 1, which is
already part of (Condition 1).

For a discussion of the conditions (Condition 1)—
(Condition 4) in the context of a numerical example cf. Sec. V.

V. CALCULATIONS AT FIXED TOPOLOGY IN
QUANTUM MECHANICS

To test the equations derived in the previous sections, in
particular (3.18) and (3.20), we study a simple model,
quantum mechanics on a circle. It can be solved analytically
or, in the case of a potential, numerically up to arbitrary
precision. We extract the difference of the two lowest energy
eigenvalues, the equivalent of a hadron mass in QCD, from
two-point correlation functions calculated at fixed topology.
The insights obtained might be helpful for determining
hadron masses from fixed topology simulations in QCD.

A. A particle on a circle in quantum mechanics

The Lagrangian of a quantum mechanical particle (mass
m) on a circle (radius r) parametrized by the angle ¢ is
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mr? I,
=" -Ulp) =39 -Ulp), (5.1

where I = mr? is the moment of inertia. The potential U
will be specified below.

A periodic time with extension 7 implies
p(t+T) =¢(t)+ 270, Q € Z, and gives rise to topo-
logical charge

1 [r 1

digp =5 (@(T) = 9(0)) = Q.  (52)

27 Jo

The topological charge density is ¢ = ¢/2xz. Exemplary

paths with topological charge Q =0 and Q =1 are
sketched in Fig. 1.

The path integral for the Euclidean partition function is

T
ZE/DQDE_SE[(P]’ SE[(p]E/ dtLpg,
0

1.
LEEEfﬂZ‘FU(@’ (5.3)

PHYSICAL REVIEW D 90, 074505 (2014)

t
P(t) @)

Q=0 Q=1

FIG. 1 (color online).
o=1.

Paths with topological charge O = 0 and

where the integration f De is over all paths, which are
T-periodic modulo 27, i.e. over all topological sectors.

The corresponding path integral over a single topological
sector O, which is relevant in the context of topology
fixing, is

|
~Sily] L[ 0 i0-0(0))0 ,-5:l0]
ZQ,T = D¢5Q,Q((p)e EP] = D(pg dfe ?)Y e P

| R o1 (T .
=— dbe Dgexp| —|( Sglp| +i0— | dtg
27 ), 27 Jo

(5.4)

=Sgole]

(note that the analog of the spacetime volume V in QCD is
in quantum mechanics the temporal extension 7, i.e.
throughout this section V — T). One can read off both
Zyr and Sg . The 0-dependent Hamiltonian, which can be
obtained as usual, is

HHE%<[7¢+%>2+U((,0). (5.5)

energy levels
3.0 — n=0
|— n=-1
n=+1
— n=-2

=Zr

B. A free particle, U = 0

1. Eigenfunctions and eigenvalues

For U = 0 the eigenfunctions y,, and eigenvalues E,, of
H, can be determined analytically,

e+in(p
Hﬁlljn ((ﬂ) = Ean ((p) =Yy ((p) = \/2—71_ s

1 0\?2

energy levels
3.0 — n=0

— n=—

n=+1
— n=-

2]
-3 -2 -1 1 2 3

FIG. 2 (color online).
[Eq. (5.7)].

2]

The low lying spectrum for U = 0; (left) E,I as a function of & [Eq. (5.6)]; (right) E,I as a function of 4
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Note that in previous sections we used E,, (+0) = E, (—0).
While the spectrum fulfills this +6<> — € symmetry, it is
clearly violated by our mathematical parametrization (5.6)
for n #0 (cf. Fig. 2, left plot). An equivalent set of
eigenfunctions and eigenvalues fulfilling the +6< —6
symmetry is

7a(0) = O(+0) m o0

En0) =7 (" * |2971>

(cf. Fig. 2, right plot).

2. Partition function

The partition function Z, r is the Fourier transform of
Zgr [cf. (5.4)]. After inserting the eigenvalues E,(6) and
changing the variables of integration according to
0 — 0 = 0 + 2zn, one obtains a Gaussian integral, which
is analytically solvable,

1

Zor =—
or = ox |

L [+ 1 02
N iQ0 _ _
o /_ dBe Z exp < i <n + 2ﬂ> T)

+n—-2mn . T
do'e iQo _ 9/2
0 (g7

2” Z /—7‘[ 27n

+r .
d0e'%0 Z,
T

(5.8)

This exact result can be compared with the approxima-

tion (2.38), after inserting Ey(0,V,) - Ey(0=0) =
02/871|y_y =0, & = EP (0 = 0) = 1/47%I and £, = 0
for n # 2,

2rl 27%1
ZQ,T = TCX (——Q2)

1
+O<S4T4 84T4Q2 T4Q4>. (5.9)

Even though power corrections proportional to 1/7* and
exponentially suppressed corrections have been neglected,
the approximation is identical to the exact result (5.8).

3. Two-point correlation function

We use the creation operator O = sin(¢) (on a circle
operators must be 2z periodic in ¢). Note that
(i) Olpy;0) is orthogonal to the ground state |yy;6),
which is required for (3.6) [and consequently for
(3.18) and (3.20)] to be valid,

PHYSICAL REVIEW D 90, 074505 (2014)

(ii) Olpo;6) has nonvanishing overlap to the first
excitation |y_;;6);
i.e. O is a suitable creation operator for the first excita-
tion [_;;0).

The two-point correlation function Cy, 7(#) is the Fourier
transform of Cy7(¢), which can be expanded in terms of
energy eigenstates [cf. (3.4) and (3.5)]. After inserting the
eigenvalues E,(0) [Eq. (5.6)], using (y,,;0|0|w,;0) =
(8mni1 + Omn_1)/2 and changing the variables of integra-
tion according to @ — 0 + 2zn as in (5.8), one again obtains
a Gaussian integral, which can be solved exactly,

Corlt) = %exp (- tg{;”) cos (@) (5.10)

The analog of the lightest hadron mass in QCD is the
difference of the energy eigenvalues of the first excitation
and the ground state,

- 1—-10]/2%

E = i . (5.11)
Clearly Mg)(O) = o0, which implies x, = co. This in turn
severely violates condition (C2) of Sec. IVA, which was
assumed to be fulfilled, when deriving the approximations
of two-point correlation functions (3.18) and (3.20). In
other words, agreement between the exact result (5.10)
and (3.18) and (3.20) cannot be expected and is not
observed.

To circumvent the problem, one can use the eigenvalue
parametrization (5.6), which, however, does not fulfill
E,(+60) = E,(—6). The consequence is that the expansion
(3.13) may also contain odd terms F,6, F363/6, etc. For
a free particle, however, only a few parameters are
nonzero,

() Ey(0) = 6?/82%1 — &, = 1/4n°1,

(i) My +1(0) = Ey(0) — Eo(0) = (1 £0/n)/2] [the

two lightest hadron masses need to be considered,

since My (0) <My_(0) for 6<0 and
MH,+1 (9) > MH 1(9) for 6 > 0, cf. Flg 2]
= My, (0) = 1/21, M}y, (0) = £1/2al,

(iii) a(0) = 1/4 — a(0) = 1/4.
All further parameters &, Mg')il( 0) and g

Consequently, Fo= My (0)t/T, F| = Hil( )t/T
and F, = &,, while F,, = 0 for n > 3. In other words in
(3.13) there is only a single additional term, 6. Since this
term is proportional to 8, and since there is already a term
proportional to € in (3.13), —iQ#, it can easily be included

vanish.

in the calculation from Sec. III by replacing Q — Q +
ng’)H(O)t and Q - Q0+ ng’)_l(O)t in (3.16), respec-
tively, and by adding both results to obtain Cy y()Z.y.

Inserting the above listed parameters and dividing by Z, y
[eq. (5.9)] one finds
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FIG. 3 (color online). The low lying energy eigenvalues E, for
the square well potential (5.13) with Uy = 5.0 and p = 0.9 x 27
as functions of 6.

Cart =g (101 (2521

1 1 1
@] , 2, 4, 5.12
* <5§T4 S‘Z‘T“Q 5‘2‘T4Q) (5.12)

which is identical to the exact result (5.10), even though
power corrections proportional to 1/7% and exponentially
suppressed corrections have been neglected.

The problems associated with Mg,)i(O) = oo do not

appear when a potential U # 0 is chosen (cf. Sec. V C and
Fig. 3). They are also not expected to be present in QCD.

C. A particle in a square well

Now we study a square well potential

U((p)z{o if —p/2 <@ <+p/2 (5.13)

U, otherwise

(Ug > 0 is the depth and p > 0 the width of the well).
Again we use the creation operator O = sin(¢), for which
one can show (0;60]0|0;0) = 0° (cf. Appendix A 2).

1. Solving the model numerically

For the square well potential (5.13) the Schrodinger
equation cannot be solved analytically, but numerically up
to arbitrary precision; i.e. no simulations are required. For

A complicated theory like QCD has many symmetries and,
therefore, many orthogonal sectors of states, which are labeled by
the corresponding quantum numbers (total angular momentum,
charge conjugation, flavor quantum numbers). In such a theory one
typically chooses an operator exciting states, which do not have the
quantum numbers of the vacuum, ie. where (0;0,V |O|0;
0,V,) =0, due to symmetry. In the simple quantum mechanical
model parity is the only symmetry, which is broken at 8 # 0.
Therefore, constructing an appropriate creation operator is less
straightforward, because (0;60|0/0;6) = 0 is not guaranteed by
obvious symmetries, but has to be shown explicitly.

PHYSICAL REVIEW D 90, 074505 (2014)

these numerical computations we express all dimensionful
quantities in units of /; i.e. we work with dimensionless
quantities (denoted by a hat) I - 1 =1/I=1,T - T =
T/I and Uy — U, = U,l. For the numerical results pre-
sented in this section we have used U, =35.0 and
p =0.9 x2x.

We proceeded as follows:

(1) Solve Schrodinger’s equation

(Hy=Hyl, E,(0) = E,(0)I, U= UI as outlined
in Appendix A 1. The resulting low lying spectrum
is shown in Fig. 3.
(2) Use the resulting energy eigenvalues EO(Q) and
E, (0) to determine
@ &, =E(0),n=0,2,4,6, 8.
(b) M1 (0) = (d/d0)"(E,(0) = Eo(0))]g—. n =0,
2,4,6,8

and the resulting wave functions y(¢@; 6) and y(@;0) to

determine
(@) a™(0), n=0, 2, 4, 6, 8,
(b) pM(0), n =2, 4,6, 8,

where

M@{AMWMWﬂﬁmW%Wﬂa

p(6) = —In (%) .

These are the parameters of the two-point correlation
function Cy (1), 1= 1t/I [Egs. (3.18) and (3.20)].
For Uy = 5.0 and p = 0.9 x 2z they are collected in
Table I.

(3) Calculate Cy 7 (7) using sufficiently many low lying
energy eigenvalues and corresponding wave func-
tions from step 1 such that the exponentially sup-
pressed error is negligible already for very small
temporal separations [cf. Egs. (2.1) and (3.5)].

(4) Perform a Fourier transformation numerically to
obtain Cy, ;(7), the exact correlation function at
fixed topology.

(5.15)

TABLE L. The parameters of the two-point correlation function
CQj(?) [Egs. (3.18) and (3.20)] for Uy = 5.0 and p = 0.9 X 27.
n &, ity (0) a"(0) p0)
0 +0.11708 +0.40714 +0.50419

2 —+0.00645 —0.03838 —0.00357 +0.00709
4 —0.00497 -+0.04983 +0.00328 —0.00636
6 -+0.00042 —-0.13191 —0.04721 +0.09308
8 -+0.00834 +0.95631 +0.91037 —1.77931
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FIG. 4 (color online). Effective masses MeffT as functions
of the temporal separation 1 for different topol%gical sectors Q
and 7' = 6.0/&, = 930.2.

(5) Define and calculate the effective mass

o d ,
MfoT(t) = —Eln(cg.f(f))- (5.16)

2. Effective masses at fixed topology

In Fig. 4 we show effective masses MeQ“T [Eq. (5.16)] as
functions of the temporal separation 7 for different topo-

logical sectors Q and T = 6.0/3‘2 ~930.2. As usual at
small temporal separations the effective masses are quite
|
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large and strongly decreasing, due to the presence of
excited states. At large temporal separations there are
also severe deviations from a constant behavior. This
contrasts ordinary quantum mechanics or quantum field
theory (i.e. at unfixed topology) and is caused by topology
fixing. This effect is also visible in the 1/V expansion of
the two point correlation function, in particular in (3.20),
where the exponent is not purely linear in ¢ for large ¢, but
contains also terms proportional to > and 3. At inter-
mediate temporal separations there are plateaulike regions,
which become smaller with increasing topological
charge Q.

3. Comparison of the 1/V expansions of Cy r(t)
and the exact result

In Fig. 5 we show effective masses derived from the 1/V
expansions of two-point correlation functions® (3.18) (left
column) and (3.20) (right column) using the definition
(5.16). The first, second and third rows correspond to
0 =0, |Q| = 1and |Q| = 2, respectively. To illustrate the
relative importance of 1/V, 1/V? and 1/V? terms, we also
show versions of (3.18) and (3.20), which are only derived
up to O(1/V) and O(1/V?). While less accurate, these
expressions contain a smaller number of parameters,
which might be an advantage, when e.g. fitting to results
from lattice simulations (such a fitting is discussed in
Sec. V C4). In detail the following curves are shown with
V — T and the parameters taken from Table I:

1) Mng(?) from (3.18), derived up to O(1/V):

a(0) < 1 ( 1 )1 2) Ge
Cop(t) = ———exp( My (0)t = —— [ — 1] =02 ) £,
ov() V1+x,/EV P #(0) EV L +x/EV 2Q G
G _1_L E4(1 4+ x4/E4V)
¢ 52V852(1 +XZ/(€2V)2 ’
1 &
=1—-=—— 5.17
G 5V 8E, (5.17)
8 parameters [E,, E4, My(0), M'P(0), M'P(0), a(0), ) (0), p(0)].
B Oreff (% : .
(i) MQ,T([> from (3.18), derived up to O(1/V?):
a(0) ( 1 ( 1 >1 2>
Coy(t) =——d—exp -Mu(0)t = — (— = 1) =
Q’V( ) \/ 1 +X2/52Vexp H< ) gZV +X2/52V 2Q
5 (1_ 1 & 2>+1/z( 1 &+ x/&Y) 2)—1/2@
(E2V)? 28, (E2V)?26,(1 + %,/ E,V)? G’
G — _L 54(1+X4/54V) 1 _ 56(1+x6/56V) 355421(1+X4/(€4V)2
¢ EVBE,(1+x2/E V)2 T (E;V)F\ 485,(1 + x,/E, V) ' 384E2(1 + x,/E,V)*)
1 & 1 £ 3582
G=1—-5—— - ; 5.18
82V882+(€2V)2< 1B, 38483 (5.18)

®Note that in quantum mechanics a 1/V expansion is a 1/T expansion.
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FIG. 5 (color online). Effective masses M¢

11 parameters (&, &4y E» My(0), M ( ), M (0)
M (0), a(0). f2(0), 4(0). O (0)1.

(iii) M.(7) from (3.18) [which is derived up to
(@) 1/V3)] 14 parameters [E,, &4, Eg, Es, MH(O)
My (0). M7 (0). My (0). My;(0). a(0). p2(0).
BY(0), p(0), p(0)1.

(iv) M‘ng(?) from (3.20), up to O(1/V):

Cov(t)=a(0)exp (—MH(O)I -

5 parameters [E,, M y(0), Mg) (0), a(0), pA(0)].

B Q=0
0.410%"
—exact result
0409, | M150)
|
| (3.20), 1)V
0.408 \ (3.20), 1/V?
04070 | (3.20), 1/V?
\“ ZOOM IN
0406/ |
0405 | S
—
040 ———— T ‘7\51\
0.403 _;
5 10 15 20 25 o !
o eff Q=l
T
0410°7 |
‘ —exact result
| ?
0409 | Mu(0)
|
| (3:20), 1/V
0.408 \‘ (3.20), 1/V?
0407, | oonE (.20 V"
\ =
0406 | e
\
\
0.405 \_
0.404 = __ ==
0.403 7
5 10 15 20 25 0
wet Q=2
0410"
\ —exact result
0409 | M)
\ (3.20), 1/V
0.408 \ (3.20), 1/V?
0407\ 320, /v
N I
0406/ -
0.405
0.404
0.403 7
5 10 15 20 25 0

7 derived from the 1/V expansions of two-point correlation functions as functions of the
temporal separation 7 for different topological sectors Q and T = 6.0/&,

~ 930.2.

(v) I\A/IeQ“T(?) from (3.20), up to O(1/V?):

Cov(1) = a(0) exp (—MH(O)t L S

% <x4 - 2(54/52)362 - 2x3 M Qz) >;

8 pammeters [52, Esy My(0), M(z)(O), MS)(O),
a(0), f2(0), B (0)1.
(vi) Meff (t) from (3.20) [which is derived up
to O(]/V3)] 11 parameters [E,, E4, Eg, My(0),

MP0), MP0), MF©0), a0), p0)
p4(0), B (0)].
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Note that the definition (5.16) of Meff 7(7) eliminates a(0);
i.e. effective masses have one parameter less than the
corresponding two-point correlation functions. For com-
parison we also include the exact result already shown and
discussed in Fig. 4. Finally, the dashed line indicates the
“hadron mass” M;(0) at unfixed topology, to demonstrate
the effect of topology fixing on effective masses.

The validity of the shown 1/V expansions has been
discussed in Sec. IV and summarized in terms of four
conditions, which we check for the quantum mechanical
example with parameters Uy=50, p=09x2z and

T =6.0/&,:
(i) (Ch:
1>1/6T=1/60 and 1> |0Q|/ET =0,
1/6.0, 1/3.0 for |Q| =0, 1, 2, ie. fulfilled.
|Q| = 3,4, ..., might need a larger T extension.
(1) (C2):

Solving  (C2), |x,| = M7 (0)1 + 2 (0)] S 1,
with respect to ¢ and 1nsert1ng the numbers from
Table I, yields 7 < |(14 g% (0 ))/MH( )| ~ 26.2.
For significantly larger 7 Values the accuracy of the
1/V expansions is expected to suffer. The “safe
region” 7 < 26.2 is shaded in light gray in Fig. 5.

(iii) (C3):

Figure 3 shows that M, (6) (the analog of m,
in QCD) is minimal at 6 = +x, My(+n) =
0.336. m,L corresponds to My(+z)T and
MH(:I:n')T 6.0 x MH(j:n)/é’z ~312.6 > 1; ie.
the condition is clearly fulfilled.

(iv) (C4):

Figure 3 shows that #},(0) — My /(6) is minimal
at =0, Mj(0)—Mpy(0)=0.520; therefore,
(M3(0) = My(0))r>1 corresponds to 7> 1/
(M;;(0) — My (0)) ~ 1.92. We consider 6.0 1
and shade the corresponding safe region
7>60x1920~11.5 in light gray. Finally
My(0)(T —2t) > 1 can be solved with respect to
i resulting in 7< (T —1/My(6))/2~463.6.
Clearly also this condition is fulfilled.

The effective mass plots shown in Fig. 5 are consistent with
these estimates. There is nearly perfect agreement between

the 1/V expansions of leff(?) and the exact results in the

gray regions. On the other hand, the difference of the
effective mass at fixed topology and the mass at unfixed
topology (the quantity one is finally interested in) is quite
large. This clearly indicates that determining hadron masses
from fixed topology simulations with standard methods
(e.g. fitting a constant to an effective mass at large temporal
separations) might lead to sizable systematic errors, which,
however, can be reduced by orders of magnitude, when
using the discussed 1/V expansions of M‘“’foT(?)

The number of parameters, in particular for the expansions
derived up to O(1/V?), i.e. (3.18) and (3.20), is quite large.
This could be a problem, when fitting these expressions to

PHYSICAL REVIEW D 90, 074505 (2014)

lattice results for two-point correlation functions, where
statistical accuracy is limited, e.g. for expensive QCD
simulations. A possibility to benefit from the higher order
expansions at least to some extent, while keeping at the same
time the number of fit parameters small, is to use Egs. (3.18)
and (3.20) [i.e. expansions up to O(1/V3)], but to set
parameters, which are expected to be less important, to zero.
In Fig. 6 we explore this possibility by restricting (3.18) and

(3.20) to the parameters &, My(0), MY (0) and a(0),
which are the 4 parameters of Eq. (3.21), the 1/V expansion
from the seminal paper [12]. In detail the following curves
are shown with the parameters taken from Table I:
(i) MG';(7) from (3.18).
(i) MlefT(i) from (3.18), restricted to the 3 parameters
&>, My(0) and MS)(O):

a(0) (
C t) = —————exp| —My(0)t
Q,v( ) Tt lev FRTAT p 1(0)
1 1 1
_———1]=-0? 5.21
with x, = Mg)t.

(i) M{'(7) from (3.20).
@iv) Meff (t) from (3.20), restricted to the 3 parameters
52, My (0) and MP(0):

1 1
CQ,v<t>=a<0>exp(—MH<°”‘ezvxf (EV)
ﬁ oo\ 1 X_% x_% 2
(5.22)

with x, = Mg)t.

W) Meff (t) from (3.21), the 1/V expansion from [12].
Even though the number of parameters is identical, the
“parameter restricted (O(1/V?3) expansions,” in particular
(5.21), are significantly closer to the exact result. In practice,
when fitting to a correlator from fixed topology QCD
simulations with statistical errors, where one is limited in
the number of fit parameters, using (5.21) might be the best
compromise.

4. Extracting hadron masses from fixed topology
simulations

A straightforward method to determine physical hadron
masses (i.e. hadron masses at unfixed topology) from fixed
topology simulations based on the 1/V expansion (3.21)
and (3.22) has been proposed in [12]:

(1) Perform simulations at fixed topology for different

topological charges Q and spacetime volumes V.
Determine “fixed topology hadron masses” M y
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FIG. 6 (color online). Effective masses MeffT derived from (3.18) and (3.20) restricted to the parameters £,, M (0) and Mg)(O) as

functions of the temporal separation 7 for dQ1fferent topological

[denoted by M, in (3.21) and [12]] using (3.21) for
each simulation.

(2) Determine the hadron mass M (0) (the hadron mass

at unfixed topology), Mg) (0) and &, = y, by fitting
(3.22) to the fixed topology hadron masses M,
obtained in step 1.

Note, however, that two-point correlation functions at
fixed topology do not decay exponentially o« e~Mov’ at
large temporal separations ¢ [cf. e.g. (3.18)], as their
counterparts at unfixed topology do. Therefore, determin-
ing a fixed topology and finite volume mass M y is not
clear without ambiguity. One could e.g. define My at
some temporal separation #,;, where the 1/V expansion is a
good approximation, i.e. where the conditions (C2) and
(C4) from Sec. IV are fulfilled, using (5.16), i.e.

d
Myy = MZ)f,fv(tM) = _EIH(CQ,V(Z‘))L:W‘

We now follow this strategy to mimic the method to
determine a physical hadron mass (i.e. at unfixed topology)
from fixed topology computations using the quantum
mechanical model. To this end we choose 7, = 20.0,
i.e. a 1), value inside the “safe gray regions” of Figs. 5
and 6. We use the exact result for the effective mass (shown
e.g. in Fig. 4) in (5.23) to generate // 0.7 values for several
topological charges O =0, 1, 2, 3, 4 and temporal
extensions 7 = 2.0/&,,3.0/&,, ...,10.0/&,. Then we per-
form a single fit of either the expansion (3.22) from [12] or

(5.23)

sectors Q and T = 6.0/3‘2 ~ 930.2.

our 1/V3 version restricted to three parameters [Eq. (5.21)]
inserted in (5.23) to these masses AA/IQj, to determine

M y(0) (the hadron mass at unfixed topology), 5,2) (0) and
52 =}, (the curves in Fig. 7). Only those masses MQj
enter the fit, for which the conditions (C1) (we study both
1/8,T, |0|/&,T <05 and 1/&,T, |Q|/&,T <0.3) and
(C2) from Sec. IV are fulfilled. Both expansions give rather
accurate results for M, (0) (cf. Table I, top, column “fitting

M

211 fuo
043 o M7 excluded
. MQ.f included
hep-1at/0302005
0.42 (5.23)

0.40 TS
I~
Q=0 —~ T
~__. .
0.0000  0.0005  0.0010  0.0015  0.0020  0.0025  0.0030  0.0035f

FIG. 7 (color online). Determining the physical mass M (0)
(i.e. the mass at unfixed topology) from a fixed topology
computation; onAly those masses AA/IQ’T are included in the fit,
which fulfill 1/&,7T, |Q|/E,T < 0.5 (red points).
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TABLEII.  Collection and comparison of results for M, (0) and 7, from fixed topology computations; “rel. error” denotes the relative
difference from the exact result, i.e. the systematic error associated with the determination of My (0) and 7, from two-point correlation

functions at fixed topology.

M #(0) results from fixed topology computations (exact result: My = 0.40714)

Fitting to M, 7

Fitting to correlators

Expansion My(0) result Rel. error My /(0) result Rel. error
;Tlv’ J{% <05 hep-1at/0302005 0.40733 0.047% 0.40702 0.029%
(5.21) 0.40708 0.014% 0.40706 0.019%
ﬁ, J{% <03 hep-1at/0302005 0.40739 0.062% 0.40732 0.044%
(5.21) 0.40695 0.046% 0.40713 0.002%
7, results from fixed topology computations (exact result: y, = 0.00645)
Fitting to M oF Fitting to correlators
Expansion ¥, result Rel. error 7, result Rel. error
;Tlv’ J{% <05 hep-1at/0302005 0.00586 9.1% 0.00629 2.5%
(5.21) 0.00631 2.2% 0.00633 1.9%
ﬁ, J(% <03 hep-1at/0302005 0.00590 8.5% 0.00627 2.8%
(5.21) 0.00592 8.2% 0.00630 2.3%

to M o4 the relative errors are below 0.1%) and reason-
able results for 7, (cf. Table II, bottom, column “fitting to

A

M, ;7 relative errors of a few percent). Note that the

relative errors for both My (0) and g, are smaller, when
using the 1/V? version restricted to three parameters (5.21).

The drawback of this method is that only fixed topology
results at a single ¢ value, t = 1, enter the final result for
the hadron mass at unfixed topology. To exploit the input
data and also the derived 1/V expansions for the two-point
correlation functions at fixed topology more fully, we
propose another method:

(1) Perform simulations at fixed topology for different
topological charges Q and spacetime volumes V.
Determine C y () for each simulation.

(2) Determine the physical hadron mass My(0) by
performing a single y?> minimizing fit of the pre-
ferred 1/V expansions of Cg y(#) [in this work we
have discussed nine different versions, (3.18) (3.20),
(3.21) and (3.22), (5.17), (5.18), (5.19), (5.20),
(5.21), (5.22)] with respect to its parameters
(cf. Sec. V C3 for a detailed summary of available
expansions and their parameters) to the two-point
correlation functions obtained in step 1. This input
from step 1 is limited to those Q, V and ¢ values, for
which the conditions (C1), (C2) and (C4) from
Sec. IV are fulfilled.

Note that this method can also be applied when using
correlation matrices at fixed topology. Then corresponding
expansions, e.g. (3.52) to (3.54), have to be fitted simulta-
neously to all elements of the correlation matrix.

We apply this strategy to the quantum mechanical

example using the same Q =0, 1, 2, 3, 4 and T=
2.0/&,,3.0/&,,...,10.0/&, values as before. 7 is limited

to 12 <7 <26 and sampled equidistantly. Since our input
data are exa(:t,7 i.e. have no statistical errors, the y> minimiz-
ing fit becomes an ordinary least squares fit. Again we
compare the 1/V expansion from [12] [Egs. (3.21) and
(3.22)] and our 1/V? version restricted to three parameters
(5.21). As before, we find rather accurate results for
M(0) and 7, (cf. Table II, columns “fitting to correlators”).
Note that the relative errors for both M (0) and 7, are smaller,
when using the 1/V? version restricted to three parameters
(5.21). The relative errors are also smaller compared to
the previously discussed method of “fitting to M 0i

VI. CONCLUSIONS AND OUTLOOK

In this work we have extended a calculation of the O, V
and t dependence of two-point correlation functions at
fixed topology from [12]. While in [12] the expansion
included all terms of O(1/y,V) and some of O(1/(y,V)?),
we have derived the complete result up to O(1/(r,V)?).
Since y,V < 10 in many ensembles of typical nowadays
lattice QCD simulations (cf. e.g. [14—17]), fixed topology
corrections of order 1/(y,V)? or even 1/(y,V)* might be
sizable, in particular for topological charge Q > 2, as e.g.
demonstrated in Fig. 6. We have also discussed parity
mixing in detail, which appears at fixed topology already at
O(1/y,V). In particular we have derived corresponding
expansions of correlation functions between P = — and
P = + operators as well as contributions of opposite parity

"Note that in QCD the exact correlator Coy (1) at fixed
topological charge Q and spacetime volume V will be provided
by lattice simulations, i.e. has statistical errors.
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hadrons to correlation functions between operators of
identical parity.

We have applied, discussed and checked our results in
the context of a simple model, a quantum mechanical
particle on a circle, both in the free case and for a square
well potential. We have studied and compared various
orders and versions of the 1/V expansion of Cyg (1)
differing in accuracy and in the number of parameters.
We also discussed and demonstrated how to extract a mass
at unfixed topology from computations of two-point
correlation functions at fixed topology. In practice, e.g.
in QCD, where computed two-point correlation functions
have limited accuracy, due to statistical errors, one probably
needs a 1/V expansion of Cy () with a rather small
number of parameters to be able to perform a stable fit. We
recommend to use the 1/V expansion (5.21), which seems
to be a good compromise:

(i) It contains certain 1/V?> and 1/V? terms and,
therefore, seems to be more accurate than the
expansion from [12] (cf. Fig. 6).

(i1) At the same time the number of fit parameters is
quite small [€,, M (0) and M @ >( 0)], the same as for
the expansion from [12].

Currently we are applying the equations and methods
derived and discussed in this work to simple quantum field
theories, e.g. the Schwinger model and pure Yang-Mills
theory (cf. also [18-21,23] for existing work in this
direction). The final goal is, of course, to develop and
establish methods to reliably extract hadron masses from
QCD simulations at fixed topology.
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APPENDIX: TECHNICAL ASPECTS OF A
QUANTUM MECHANICAL PARTICLE ON A
CIRCLE IN A SQUARE WELL

1. Wave functions
After replacing p,,

(37 (-2 + 52) 4 U@ Jwatoi0) =

— —id,,, Schrodinger’s equation is

E,(0)w,(:0).
(A1)

The wave function with energy E,(6) in
—p/2 < ¢ < +p/2, where U(p) =0, is

“region 1,”

PHYSICAL REVIEW D 90, 074505 (2014)
v (9:0) = (4,(0)e ™77 + B, (0)e~?)e /020,

p=/2E, (A2)

in “region 2", +p/2 < ¢ < 27 — p/2, where U(p) = U,,

v (9:0) = (Cu(0)e ™ + D,(B)e~i40)e 020,

q=/2(E, — Uy)l. (A3)
The coefficients A, (9), B,(0), C,(0) and D, () have to be
chosen such that both the wave function and its derivative
are continuous, i.e. that

i (+p/2:0) = v (+p/2:6).
yi (2 = p/2:0) =y (=p/2:0),
)

)

Y (+p/2:0) = wiP (+p/2:6).
/(1)

2 1)
v 2= p/2:0) = wi (=p/2:0) (A4)
are fulfilled, which is only possible for specific discrete
values of E, (6). Note that, even after properly normalizing
the wave function y,(¢; 6), its coefficients A, (6), B,(6),

C,(0) and D,(0) are only unique up to a phase.

2. Probability density to find a particle

The probability density to find a particle with wave
function y,,(; 0) is P,(¢;0) = |w,(¢; )|2 In the follow-
ing it will be shown that P,(+¢;0) = P,(—¢;0).

First note that (v, (¢;0))* and v, (—¢; )fulﬁll the same
Schrodinger equation, which implies

(W, (@:0))*

where # is a nonunique phase.
Now consider region 1, where

= ny,(—¢;0), (AS)

W(:0))" = (4,(0)" e + (B,(6))"e*P7)e 10120
(A6)
and
Va(=0:0) = (A, ()70 + B, (0)e 1P0)e 00 (A7)
Inserting these expressions in (AS5) yields
(4,(0))" = 1A, (0), (B,(0))" = nB,(0) (A8)
and, consequently,
A, (0)(B,(0))" = (A,(6))"B,(0). (A9)

With this relation it is easy to show that the probability
density is an even function,

074505-22



EXTRACTING HADRON MASSES FROM FIXED TOPOLOGY ...

P, (+9:0) = (y,(+¢:0)) w,(+9;0)
=[A,(0)] +|B,(0)
+A,(0)(B,(0)) P71 (A,(6))*B,(0)e2iP?
— ~—_—
=(A,(0))"B,(0)
=y, (—9:0)"w,(—;0)
= Pn(_(/);e)-

=A,(0)(B.(9))"

(A10)

Using similar arguments one can show that also in region
2 P,(+¢;0) is an even function.

PHYSICAL REVIEW D 90, 074505 (2014)

An important consequence is

(0:0] sin(¢)[0: 6) = / (1o (:0))" sin(g)yra (:6)

2r
— [ aopa(0)sinig) 0. (ar)
0 —— ——

even odd

which has been used in Sec. V C.
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