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Lattice QCD simulations tend to become stuck in a single topological sector at fine lattice spacing
or when using chirally symmetric overlap quarks. In such cases physical observables differ from
their full QCD counterparts by finite volume corrections. These systematic errors need to be understood
on a quantitative level and possibly removed. In this paper we extend an existing relation from
the literature between two-point correlation functions at fixed and the corresponding hadron masses
at unfixed topology by calculating all terms proportional to 1=V2 and 1=V3, where V is the spacetime
volume. Since parity is not a symmetry at fixed topology, parity mixing is comprehensively
discussed. In the second part of this work we apply our equations to a simple model, quantum
mechanics on a circle both for a free particle and for a square-well potential, where we demonstrate
in detail, how to extract physically meaningful masses from computations or simulations at fixed
topology.
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I. INTRODUCTION

A QCD path integral includes the integration over all
possible gauge or gluonic field configurations. These
gauge field configurations can be classified according to
their topological charge, which is integer. The numerical
method to solve QCD path integrals is lattice QCD. In
lattice QCD the path integral is simulated by randomly
generating a representative set of gauge field configura-
tions using hybrid Monte Carlo (HMC) algorithms
(cf. e.g. [1]). These algorithms modify a given gauge
field configuration in a nearly continuous way. One of
the key ideas of such a process is to generate almost
exclusively gauge field configurations, which have small
Euclidean action, i.e. which have a large weight ∝ e−SQCD;eff
and, therefore, dominate the path integral (importance
sampling).
To simulate a QCD path integral correctly, it is essential

to sample gauge field configurations from many topologi-
cal sectors. A serious problem is, however, that topological
sectors are separated by large action barriers, which
increase, when decreasing the lattice spacing. As a conse-
quence, common HMC algorithms are not anymore able to
frequently change the topological sector for lattice spacings
a≲ 0.05 fm [2,3], which are nowadays still fine, but
within reach.
For some lattice discretizations, e.g. for chirally sym-

metric overlap quarks, the same problem arises already at
much coarser lattice spacings. Such simulations are typi-
cally performed in a single topological sector, i.e. at fixed
topological charge [4,5], which introduces systematic

errors. As an example one could mention [6] where
different pion masses have been obtained for different
topological charges and spacetime volumes. Those
differences have to be quantified and, if not negligible
compared to statistical errors, be removed.
There are also applications, where one might fix top-

ology on purpose, either by sorting the generated gauge
field configurations with respect to their topological charge
or by directly employing so-called topology fixing actions
(cf. e.g. [7–9]). For example, when using a mixed action
setup with light overlap valence and Wilson sea quarks,
approximate zero modes in the valence sector are not
compensated by the sea. The consequence is an ill-behaved
continuum limit [10,11]. Since such approximate zero
modes only arise at a nonvanishing topological charge,
fixing topology to zero might be a way to circumvent the
problem.
In view of these issues it is important to study the

relation between physical quantities (i.e. quantities cor-
responding to path integrals, where gauge field configu-
rations from many topological sectors are taken into
account) and correlation functions from fixed topology
simulations.
In the literature one can find an equation describing

the behavior of two-point correlation functions (suited to
determine hadron masses) at fixed topology, derived up to
first order and in part also to second order in 1=χtV (χt is
the topological susceptibility, V is the spacetime volume)
[12], and a general discussion of higher orders for arbitrary
n-point correlation functions at fixed topology [13]. In
the first more theoretically oriented part of this work
(Secs. II–IV) we extend the calculations from [12] by
including all terms proportional to 1=ðχtVÞ2 and 1=ðχtVÞ3.
Since χtV ≲ 10 in many ensembles from typical nowadays
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lattice QCD simulations1 (cf. e.g. [14–17]), fixed topology
corrections of order 1=ðχtVÞ2 or even 1=ðχtVÞ3 might be
sizable. Another issue we address in detail is parity mixing
in fixed topology two-point correlation functions. Since
parity is not a symmetry at fixed topology,masses of negative
and positive parity hadrons have to be extracted from the
same correlation function or matrix (in the context of the η
meson this mixing has been observed and discussed in [13]).
We also summarize all sources of systematic error and
discuss the range of parameters (e.g. spatial and temporal
extension of spacetime, topological charge, hadron masses),
where the 1=χtV expansions of two-point correlation func-
tions at fixed topology are accurate approximations.
In the second part of this work (Sec. V) we demonstrate

how to extract hadron masses from fixed topology simu-
lations in practice. To this end we apply the previously
obtained 1=χtV expansions of two-point correlation func-
tions at fixed topology to a simple model, a quantum
mechanical particle on a circle with and without potential.
This model can be solved numerically up to arbitrary
precision (there is no need to perform any simulations, only
ordinary differential equations have to be solved) and,
therefore, provides an ideal test bed. We have generated
data points of correlation functions from many topological
sectors and volumes and fit and compare different orders
and versions of the previously derived correlator expan-
sions. The results collected in various plots and tables are
expected to provide helpful insights and guidelines for
hadron mass determinations in quantum field theories, e.g.
in QCD, at fixed topology (for related exploratory studies
in the Schwinger model and the Oð2Þ and Oð3Þ nonlinear
Sigma model; cf. [18–21]).
Parts of this work have been presented at recent

conferences [22,23].

II. THE PARTITION FUNCTION ZQ;V AT FIXED
TOPOLOGY AND FINITE SPACETIME VOLUME

In this section we calculate the dependence of the
Euclidean QCD partition function at fixed topological
charge Q on the spacetime volume V, denoted as ZQ;V ,
up to Oð1=V3Þ.

A. Calculation of the 1=V expansion of ZQ;V

The Euclidean QCD partition function at nonvanishing θ
angle and finite spacetime volume V is defined as

Zθ;V ≡
Z

DADψDψ̄e−SE;θ ½A;ψ̄ ;ψ � ¼
X
n

e−Enðθ;VsÞT ð2:1Þ

[24] with

SE;θ½A; ψ̄ ;ψ �≡ SE½A; ψ̄ ;ψ � þ iθQ½A�; ð2:2Þ

where T is the periodic time extension, Vs is the spatial
volume, V ¼ TVs, Enðθ; VsÞ is the energy eigenvalue of
the nth eigenstate of the Hamiltonian and SE is the
Euclidean QCD action without the θ term. Similarly, the
Euclidean QCD partition function at fixed topological
charge Q and finite spacetime volume V is defined as

ZQ;V ≡
Z

DADψDψ̄δQ;Q½A�e−SE½A;ψ̄ ;ψ �: ð2:3Þ

Using

δQ;Q½A� ¼
1

2π

Z þπ

−π
dθeiðQ−Q½A�Þθ ð2:4Þ

it is easy to see that ZQ;V and Zθ;V are related by a Fourier
transform,

ZQ;V ¼ 1

2π

Z þπ

−π
dθeiQθZθ;V : ð2:5Þ

One can show thatEnðþθ; VsÞ ¼ Enð−θ; VsÞ [12], which
implies ðd=dθÞEnðθ; VsÞjθ¼0 ¼ 0. Using this together with
(2.1) and (2.2) one can express the topological susceptibility,
defined as

χt ≡ lim
V→∞

hQ2i
V

; ð2:6Þ

according to

χt ¼ lim
Vs→∞

Eð2Þ
0 ðθ; VsÞ
Vs

����
θ¼0

¼ eð2Þ0 ðθÞjθ¼0 ð2:7Þ

(throughout this paper XðnÞ denotes the nth derivative of
the quantity X with respect to θ). Moreover, we neglect
ordinary finite volume effects, i.e. finite volume effects not
associated with fixed topology. These are expected to be
suppressed exponentially with increasing spatial volume
Vs (cf. Sec. IV B for a discussion). In otherwordswe assume
Vs to be sufficiently large such that E0ðθ; VsÞ ≈ e0ðθÞVs,
where e0ðθÞ is the energy density of the vacuum.
At sufficiently large T the partition function is dominated

by the vacuum, i.e.

Zθ;V ¼ e−E0ðθ;VsÞTð1þOðe−ΔEðθÞTÞÞ; ð2:8Þ

where ΔEðθÞ ¼ E1ðθ; VsÞ − E0ðθ; VsÞ. The exponentially
suppressed correction will be omitted in the following
(cf. Sec. IV B for a discussion). To ease notation, we define

fðθÞ≡ fðθ; Q; VÞ≡ e0ðθÞ −
iQθ

V
: ð2:9Þ

1In particular for expensive overlap quarks as well as for very
small lattice spacings, where the problem of topology freezing is
most severe, one is often restricted to rather small volumes V,
because of limited high performance computing resources. This
in turn implies a small value of χtV.
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Using also (2.8) the partition function at fixed topology
(2.5) can be written according to

ZQ;V ¼ 1

2π

Z þπ

−π
dθe−fðθÞV; ð2:10Þ

where the integral (2.10) can be approximated by means
of the saddle point method. To this end, we expand
fðθÞV around its minimum θs and replace

Rþπ
−π by

Rþ∞
−∞ ,

which introduces another exponentially suppressed error
(cf. Sec. IV B for a discussion),

ZQ;V ¼ 1

2π

Z þ∞

−∞
dθ exp

�
−fðθsÞV −

fð2ÞðθsÞV
2

ðθ − θsÞ2

−
X∞
n¼3

fðnÞðθsÞV
n!

ðθ − θsÞn
�
: ð2:11Þ

θs can be determined as a power series in 1=E2V.
Because of Enðþθ; VsÞ ¼ Enð−θ; VsÞ, the expansion of
the vacuum energy density around θ ¼ 0 is

e0ðθÞ ¼
X∞
k¼0

E2kθ
2k

ð2kÞ! ; Ek ≡ eðkÞ0 ðθÞjθ¼0 ð2:12Þ

(note that E2 ¼ χt). Consequently,

fðθÞV ¼
X∞
k¼0

E2kθ
2k

ð2kÞ! V − iQθ: ð2:13Þ

It is straightforward to solve2 the defining equation for θs,
d=dθfðθÞVjθ¼θs

¼ 0, with respect to θs,

θs ¼ i

�
1

E2V
Qþ 1

ðE2VÞ3
E4

6E2

Q3

�
þO

�
1

ðE2VÞ5
�
:

ð2:14Þ
Finally the saddle point method requires one to deform

the contour of integration to pass through the saddle point,
which is just a constant shift of the real axis by the purely
imaginary θs. We introduce the real coordinate s≡
ðθ − θsÞðfð2ÞðθsÞVÞ1=2 parametrizing the shifted contour
of integration yielding

ZQ;V ¼ e−fðθsÞV

2πðfð2ÞðθsÞVÞ1=2
Z þ∞

−∞
ds

× exp

�
−
1

2
s2 −

X∞
n¼3

fðnÞðθsÞV
n!ðfð2ÞðθsÞVÞn=2

sn
�
: ð2:15Þ

After defining

khðsÞk≡ 1ffiffiffiffiffiffi
2π

p
Z þ∞

−∞
dse−s

2=2hðsÞ; ð2:16Þ

a more compact notation for the result (2.15) is

ZQ;V ¼ e−fðθsÞV

ð2πfð2ÞðθsÞVÞ1=2

×

����� exp
�
−
X∞
n¼3

fðnÞðθsÞV
n!ðfð2ÞðθsÞVÞn=2

sn
������|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≡G

; ð2:17Þ

where G can also be written as

G ¼ 1þ
X∞
k¼1

ð−1Þk
k!

�����
�X∞

n¼3

fðnÞðθsÞV
n!ðfð2ÞðθsÞVÞn=2

sn
�

k
�����:
ð2:18Þ

We now insert fðθÞV and θs [Eqs. (2.13) and (2.14)] and
perform the integration over s order by order in 1=E2V
(note that θs ∼ 1=E2V). To this end we use the relations

fð2nÞðθsÞV ¼
X∞
l¼n

E2lV
ð2l− 2nÞ!θ

2l−2n
s ; n ¼ 1;2;…;

fð2n−1ÞðθsÞV ¼
X∞
l¼n

E2lV
ð2l− 2nþ 1Þ!θ

2l−2nþ1
s ; n ¼ 2;3;…;

ks2n−1k ¼ 0; ks2nk ¼ ð2n− 1Þ!! ¼ ð2nÞ!
2nn!

¼ 1× 3× 5× � � �× ð2n− 1Þ;
n ¼ 0;1;…: ð2:19Þ

The terms in (2.18) are
(i) for k ¼ 1 proportional to 1=ðE2VÞn=2−1,
(ii) for k ¼ 2 proportional to 1=ðE2VÞðn1þn2Þ=2−2,
(iii) for k ¼ 3 proportional to 1=ðE2VÞðn1þn2þn3Þ=2−3;….

Moreover, n; n1 þ n2; n1 þ n2 þ n3;…, have to be even, or
otherwise the corresponding term in (2.18) vanishes, due to
(2.19). Finally every odd n and nj contributes in leading
order in θs one power of θs ∼ 1=E2V. Therefore, up to
Oð1=ðE2VÞ3Þ it is sufficient to consider the following terms:

2Throughout this work errors in 1=E2V are proportional to
either 1=ðE2VÞ4 or 1=ðE2VÞ5. For errors proportional to 1=ðE2VÞ4
we also keep track of powers of Q; e.g. we distinguish
Oð1=ðE2VÞ4Þ and OðQ2=ðE2VÞ4Þ, etc. For errors proportional
to 1=ðE2VÞ5, we do not show powers of Q; i.e. we just write
Oð1=ðE2VÞ5Þ. We also estimate En=E2 ¼ Oð1Þ, for which
numerical support can be found in [25].
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(i) k ¼ 1, n ¼ 4:

����� fð4ÞðθsÞV
4!ðfð2ÞðθsÞVÞ2

s4
�����

¼ 1

E2V
E4

8E2

þ 1

E2V

�
E6

16E2

−
E2
4

8E2
2

�
θ2s

þO
�

1

ðE2VÞ5
�
: ð2:20Þ

(ii) k ¼ 1, n ¼ 6:

����� fð6ÞðθsÞV
6!ðfð2ÞðθsÞVÞ3

s6
�����

¼ 1

ðE2VÞ2
E6

48E2

þO
�

1

ðE2VÞ2
θ2s

�
: ð2:21Þ

(iii) k ¼ 1, n ¼ 8:

����� fð8ÞðθsÞV
8!ðfð2ÞðθsÞVÞ4

s8
�����

¼ 1

ðE2VÞ3
E8

384E2

þO
�

1

ðE2VÞ5
�
: ð2:22Þ

(iv) k ¼ 1, n ¼ 10:

����� fð10ÞðθsÞV
10!ðfð2ÞðθsÞVÞ5

s10
����� ¼ O

�
1

ðE2VÞ4
�
: ð2:23Þ

(v) k ¼ 2, n1 ¼ n2 ¼ 3:

����� ðfð3ÞðθsÞVÞ2
ð3!Þ2ðfð2ÞðθsÞVÞ3

s6
�����

¼ 1

E2V
5E2

4

12E2
2

θ2s þO
�

1

ðE2VÞ5
�
: ð2:24Þ

(vi) k ¼ 2, n1 ¼ 3, n2 ¼ 5:

2×

����� ðf
ð3ÞðθsÞVÞðfð5ÞðθsÞVÞ
3!5!ðfð2ÞðθsÞVÞ4

s8
����� ¼ O

�
1

ðE2VÞ2
θ2s

�
:

ð2:25Þ

(vii) k ¼ 2, n1 ¼ n2 ¼ 4:

����� ðfð4ÞðθsÞVÞ2
ð4!Þ2ðfð2ÞðθsÞVÞ4

s8
�����

¼ 1

ðE2VÞ2
35E2

4

192E2
2

þO
�

1

ðE2VÞ2
θ2s

�
: ð2:26Þ

(viii) k ¼ 2, n1 ¼ 4, n2 ¼ 6:

2×

����� ðf
ð4ÞðθsÞVÞðfð6ÞðθsÞVÞ
4!6!ðfð2ÞðθsÞVÞ5

s10
�����

¼ 1

ðE2VÞ3
7E4E6

64E2
2

þO
�

1

ðE2VÞ5
�
: ð2:27Þ

(ix) k ¼ 2, n1 ¼ 4, n2 ¼ 8:

2×

����� ðf
ð4ÞðθsÞVÞðfð8ÞðθsÞVÞ
4!8!ðfð2ÞðθsÞVÞ6

s12
����� ¼ O

�
1

ðE2VÞ4
�
:

ð2:28Þ

(x) k ¼ 2, n1 ¼ n2 ¼ 6:

����� ðfð6ÞðθsÞVÞ2
ð6!Þ2ðfð2ÞðθsÞVÞ6

s12
����� ¼ O

�
1

ðE2VÞ4
�
: ð2:29Þ

(xi) k ¼ 3, n1 ¼ n2 ¼ 3, n3 ¼ 4:

3×

����� ðf
ð3ÞðθsÞVÞ2ðfð4ÞðθsÞVÞ
ð3!Þ24!ðfð2ÞðθsÞVÞ5

s10
�����

¼ O
�

1

ðE2VÞ2
θ2s

�
: ð2:30Þ

(xii) k ¼ 3, n1 ¼ n2 ¼ n3 ¼ 4:

����� ðfð4ÞðθsÞVÞ3
ð4!Þ3ðfð2ÞðθsÞVÞ6

s12
�����

¼ 1

ðE2VÞ3
385E3

4

512E3
2

þO
�

1

ðE2VÞ5
�
: ð2:31Þ

ARTHUR DROMARD AND MARC WAGNER PHYSICAL REVIEW D 90, 074505 (2014)

074505-4



(xiii) k ¼ 3, n1 ¼ n2 ¼ 4, n3 ¼ 6:

3×

����� ðf
ð4ÞðθsÞVÞ2ðfð6ÞðθsÞVÞ
ð4!Þ26!ðfð2ÞðθsÞVÞ7

s14
����� ¼ O

�
1

ðE2VÞ4
�
:

ð2:32Þ

(xiv) k ¼ 4, n1 ¼ n2 ¼ n3 ¼ n4 ¼ 4:����� ðfð4ÞðθsÞVÞ4
ð4!Þ4ðfð2ÞðθsÞVÞ8

s16
����� ¼ O

�
1

ðE2VÞ4
�
: ð2:33Þ

Inserting these expressions into (2.18) leads to

G ¼ 1þ 1

E2V

�
−

E4

8E2

þ
�
−

E6

16E2

þ E2
4

3E2
2

�
θ2s

�

þ 1

ðE2VÞ2
�
−

E6

48E2

þ 35E2
4

384E2
2

�

þ 1

ðE2VÞ3
�
−

E8

384E2

þ 7E4E6

128E2
2

−
385E3

4

3072E3
2

�

þO
�

1

ðE2VÞ4
;

1

ðE2VÞ2
θ2s

�
ð2:34Þ

and, after inserting the expansion of θs (2.14), yields

G ¼ 1 −
1

E2V
E4

8E2

þ 1

ðE2VÞ2
�
−

E6

48E2

þ 35E2
4

384E2
2

�

þ 1

ðE2VÞ3
�
−

E8

384E2

þ 7E4E6

128E2
2

−
385E3

4

3072E3
2

þ
�

E6

16E2

−
E2
4

3E2
2

�
Q2

�
þO

�
1

ðE2VÞ4
;

1

ðE2VÞ4
Q2

�
:

ð2:35Þ

The remaining terms in (2.17) expressed in powers
of V are

fðθsÞV ¼ E0V þ 1

E2V
1

2
Q2 þ 1

ðE2VÞ3
E4

24E2

Q4

þO
�

1

ðE2VÞ5
�

ð2:36Þ

and

fð2ÞðθsÞV ¼ E2V

�
1 −

1

ðE2VÞ2
E4

2E2

Q2

þO
�

1

ðE2VÞ4
Q4

��
: ð2:37Þ

Combining (2.17), (2.35), (2.36) and (2.37) yields the final
result for ZQ;V,

ZQ;V ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πE2V

p
�
exp

�
−E0ð0; VsÞT −

1

E2V
1

2
Q2 −

1

ðE2VÞ3
E4

24E2

Q4

��
1 −

1

ðE2VÞ2
E4

2E2

Q2

�
−1=2

GþO
�

1

ðE2VÞ4
Q4

��

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πE2V

p
�
exp

�
−E0ð0; VsÞT −

1

E2V
1

2
Q2 −

1

ðE2VÞ3
E4

24E2

Q4

��
1 −

1

ðE2VÞ2
E4

2E2

Q2

�
−1=2

�
1 −

1

E2V
E4

8E2

þ 1

ðE2VÞ2
�
−

E6

48E2

þ 35E2
4

384E2
2

�
þ 1

ðE2VÞ3
�
−

E8

384E2

þ 7E4E6

128E2
2

−
385E3

4

3072E3
2

þ
�

E6

16E2

−
E2
4

3E2
2

�
Q2

�

þO
�

1

E4
2V

4
;

1

E4
2V

4
Q2;

1

E4
2V

4
Q4

��
: ð2:38Þ

B. Comparison with [12]

It is easy to see that Eq. (2.16) derived in [12],

ZQ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πβVχt

p exp

�
−

Q2

2βVχt

��
1þO

�
γ

βV

��
; ð2:39Þ

is contained in our result (2.38), after changing notation
according to βV → V and χt → E2 (in [12] E0 ¼ 0 has been
assumed and γ ∝ E4 is a constant).

III. TWO-POINT CORRELATION FUNCTIONS
CQ;VðtÞ AT FIXED TOPOLOGY AND FINITE

SPACETIME VOLUME

In this section we derive a relation between physical
hadron masses (i.e. at unfixed topology and θ ¼ 0) and the
corresponding two-point correlation functions at fixed
topological charge Q and finite spacetime volume V,
denoted as CQ;VðtÞ, up to Oð1=V3Þ.

A. Calculation of the 1=V expansion of CQ;VðtÞ
Two-point correlation functions at fixed topological

charge Q and finite spacetime volume V are defined as
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CQ;VðtÞ≡ 1

ZQ;V

Z
DADψDψ̄δQ;Q½A�O†ðtÞOð0Þe−SE½A;ψ̄ ;ψ �:

ð3:1Þ

O denotes a suitable hadron creation operator; for example

for the charged pion πþ a common choice is

O≡ 1ffiffiffiffiffiffi
Vs

p
Z

d3rd̄ðrÞγ5uðrÞ ð3:2Þ

(cf. e.g. [26] for an introduction in lattice hadron spec-

troscopy and the construction of hadron creation operators).

CQ;VðtÞ is related to a corresponding two-point correlation

function at nonvanishing θ angle and finite spacetime

volume V defined as

Cθ;VðtÞ≡ 1

Zθ;V

Z
DADψDψ̄O†ðtÞOð0Þe−SE;θ ½A;ψ̄ ;ψ � ð3:3Þ

via a Fourier transform,

CQ;VðtÞ ¼
1

2πZQ;V

Z þπ

−π
dθZθ;VCθ;VðtÞeiQθ: ð3:4Þ

Cθ;VðtÞ can be expressed in terms of energy eigenstates
jn; θ; Vsi and eigenvalues,

Cθ;VðtÞZθ;V ¼
X
n;m

jhm; θ; VsjOjn; θ; Vsij2e−Emðθ;VsÞt

× e−Enðθ;VsÞðT−tÞ: ð3:5Þ

When applied to the vacuum j0; θ; Vsi, the hadron creation
operator O creates a state, which has the quantum numbers
of the hadron of interest H, which are assumed to be not
identical to those of the vacuum, even at θ ≠ 0. These states
are denoted by jH; n; θ; Vsi, and the corresponding eigen-
values by EH;nðθ; VsÞ. H is typically the lowest state in that
sector,3 i.e. jH; 0; θ; Vsi with massMHðθÞ≡ EH;0ðθ; VsÞ −
E0ðθ; VsÞ (in this section we again neglect ordinary finite
volume effects, i.e. finite volume effects not associated with
fixed topology; cf. Sec. IV B for a discussion). Using this
notation one can rewrite (3.5) according to

Cθ;VðtÞZθ;V ¼ αðθ; VsÞe−E0ðθ;VsÞTe−MHðθÞt

þOðe−E0ðθ;VsÞTe−M�
HðθÞtÞ

þOðe−E0ðθ;VsÞTe−MHðθÞðT−tÞÞ
¼ αðθ; VsÞe−E0ðθ;VsÞTe−MHðθÞtð1þO

× ðe−ðM�
HðθÞ−MHðθÞÞtÞ þOðe−MHðθÞðT−2tÞÞÞ;

ð3:6Þ

where αðθ; VsÞ≡ jhH; 0; θ; VsjOj0; θ; Vsij2 and M�
HðθÞ≡

EH;1ðθ; VsÞ − E0ðθ; VsÞ is the mass of the first excitation
with the quantum numbers of H.
For suitably normalized hadron creation operators O,

e.g. operators

O≡ 1ffiffiffiffiffiffi
Vs

p
Z

d3rO0ðrÞ; ð3:7Þ

where O0ðrÞ is a local operator, i.e. an operator exciting
quark and gluon fields only at or close to r, α is
independent of Vs, i.e. α ¼ αðθÞ. Moreover, for operators
O respecting either POP ¼ þO or POP ¼ −O, i.e.
operators with defined parity P, one can show αðþθÞ ¼
αð−θÞ by using Pjn;−θ; Vsi ¼ ηnðθ; VsÞjn;þθ; Vsi,
where ηnðθ; VsÞ is a nonunique phase. In the following
we assume that O is suitably normalized and has defined
parity. Then αðθÞ can be written as a power series around
θ ¼ 0 according to

αðθÞ ¼
X∞
k¼0

αð2kÞð0Þθ2k
ð2kÞ!

¼ αð0Þ exp
�
ln

�X∞
k¼0

αð2kÞð0Þθ2k
ð2kÞ!αð0Þ

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡−βðθÞ¼−

P
∞
k¼1

βð2kÞð0Þθ2k
ð2kÞ!

�
: ð3:8Þ

Inserting αðθÞ in (3.6) and neglecting exponentially sup-
pressed corrections (cf. Sec. IV B for a discussion) leads to

Cθ;VðtÞZθ;V ¼ αð0Þe−ðe0ðθÞVþMHðθÞtþβðθÞÞ: ð3:9Þ

In analogy to (2.9) we define

fCðθÞ≡ fCðθ; Q; VÞ≡ e0ðθÞ þ
MHðθÞtþ βðθÞ − iQθ

V
:

ð3:10Þ

For two-point correlation functions at fixed topology we
then arrive at a similar form as for ZQ;V [Eq. (2.10)],

CQ;VðtÞZQ;V ¼ αð0Þ
2π

Z þπ

−π
dθe−fCðθÞV: ð3:11Þ

With

3Note that parity is not a symmetry at θ ≠ 0. Therefore, states
with defined parity at θ ¼ 0, which have lighter parity partners
(e.g. positive parity mesons), have to be treated and extracted as
excited states at θ ≠ 0 and, consequently, also at fixed topology.
This more complicated case is discussed in Sec. III C.

ARTHUR DROMARD AND MARC WAGNER PHYSICAL REVIEW D 90, 074505 (2014)

074505-6



F 2k ≡ E2k þ
Mð2kÞ

H ð0Þtþ βð2kÞð0Þ
V

¼ E2k

�
1þ x2k

E2kV

�
;

x2k ≡Mð2kÞ
H ð0Þtþ βð2kÞð0Þ; ð3:12Þ

the expansion of the exponent is

fCðθÞV ¼
X∞
k¼0

F 2kθ
2k

ð2kÞ! V − iQθ: ð3:13Þ

Up to Oð1=ðE2VÞ4Þ its minimum can easily be obtained by
using (2.14),

θs;C ¼ i

�
1

F 2V
Qþ 1

ðF 2VÞ3
F 4

6F 2

Q3

�
þO

�
1

ðF 2VÞ5
�

¼ i

�
1

E2Vð1þ x2=E2VÞ
Qþ 1

ðE2VÞ3
E4ð1þ x4=E4VÞ
6E2ð1þ x2=E2VÞ4

Q3

�
þO

�
1

ðE2VÞ5
�
: ð3:14Þ

CQ;VðtÞZQ;V can be written in the same form as ZQ;V [Eq. (2.17)],

CQ;VðtÞZQ;V ¼ αð0Þe−fCðθs;CÞVffiffiffiffiffiffi
2π

p ðfð2ÞC ðθs;CÞVÞ1=2

����� exp
�
−
X∞
n¼3

fðnÞC ðθs;CÞV
n!ðfð2ÞC ðθs;CÞVÞn=2

sn
������|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≡GC

: ð3:15Þ

Using (2.35) and (2.38) yields an explicit expression up to Oð1=ðE2VÞ3Þ,

CQ;VðtÞZQ;V ¼
αð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πF 2V

p
�
exp

�
−F 0V−

1

F 2V
1

2
Q2−

1

ðF 2VÞ3
F 4

24F 2

Q4

��
1−

1

ðF 2VÞ2
F 4

2F 2

Q2

�
−1=2

GCþO
�

1

ðE2VÞ4
Q4

��

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πE2V

p αð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þx2=E2V

p
�
exp

�
−E0T−MHð0Þt−

1

E2Vð1þx2=E2VÞ
1

2
Q2

−
1

ðE2VÞ3
E4ð1þx4=E4VÞ

24E2ð1þx2=E2VÞ4
Q4

��
1−

1

ðE2VÞ2
E4ð1þx4=E4VÞ
2E2ð1þx2=E2VÞ3

Q2

�
−1=2

GCþO
�

1

ðE2VÞ4
Q4

��
ð3:16Þ

with

GC ¼ 1 −
1

F 2V
F 4

8F 2

þ 1

ðF 2VÞ2
�
−

F 6

48F 2

þ 35F 2
4

384F 2
2

�
þ 1

ðF 2VÞ3
�
−

F 8

384F 2

þ 7F 4F 6

128F 2
2

−
385F 3

4

3072F 3
2

þ
�

F 6

16F 2

−
F 2

4

3F 2
2

�
Q2

�

þO
�

1

ðE2VÞ4
;

1

ðE2VÞ4
Q2

�

¼ 1 −
1

E2V
E4ð1þ x4=E4VÞ
8E2ð1þ x2=E2VÞ2

þ 1

ðE2VÞ2
�
−

E6ð1þ x6=E6VÞ
48E2ð1þ x2=E2VÞ3

þ 35E2
4ð1þ x4=E4VÞ2

384E2
2ð1þ x2=E2VÞ4

�

þ 1

ðE2VÞ3
�
−

E8ð1þ x8=E8VÞ
384E2ð1þ x2=E2VÞ4

þ 7E4ð1þ x4=E4VÞE6ð1þ x6=E6VÞ
128E2

2ð1þ x2=E2VÞ5
−

385E3
4ð1þ x4=E4VÞ3

3072E3
2ð1þ x2=E2VÞ6

þ
�

E6ð1þ x6=E6VÞ
16E2ð1þ x2=E2VÞ4

−
E2
4ð1þ x4=E4VÞ2

3E2
2ð1þ x2=E2VÞ5

�
Q2

�
þO

�
1

ðE2VÞ4
;

1

ðE2VÞ4
Q2

�
: ð3:17Þ

After inserting ZQ;V [Eq. (2.38)], it is straightforward to obtain the final result for two-point correlation functions at fixed
topology,

CQ;VðtÞ ¼
αð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2=E2V
p exp

�
−MHð0Þt −

1

E2V

�
1

1þ x2=E2V
− 1

�
1

2
Q2 −

1

ðE2VÞ3
E4

24E2

�
1þ x4=E4V

ð1þ x2=E2VÞ4
− 1

�
Q4

�

×

�
1 −

1

ðE2VÞ2
E4

2E2

Q2

�þ1=2
�
1 −

1

ðE2VÞ2
E4ð1þ x4=E4VÞ
2E2ð1þ x2=E2VÞ3

Q2

�
−1=2GC

G
þO

�
1

ðE2VÞ4
Q4

�
; ð3:18Þ
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where G and GC are given in (2.35) and (3.17) [note that after inserting G and GC in (3.18) the error is
Oð1=ðE2VÞ4; Q2=ðE2VÞ4; Q4=ðE2VÞ4Þ]. For some applications it might be helpful to have an expression for two-point
correlation functions at fixed topology, which is of the form

CQ;VðtÞ ¼ const × expð−MHð0Þtþ fixed topology corrections as a power series in 1=E2VÞ; ð3:19Þ

i.e. where fixed topology effects only appear in the exponent and are sorted according to powers of 1=E2V. Such an
expression can be obtained in a straightforward way from (3.18),

CQ;VðtÞ ¼ αð0Þ exp
�
−MHð0Þt −

1

E2V
x2
2
−

1

ðE2VÞ2
�
x4 − 2ðE4=E2Þx2 − 2x22

8
−
x2
2
Q2

�

−
1

ðE2VÞ3
�
16ðE4=E2Þ2x2 þ x6 − 3ðE6=E2Þx2 − 8ðE4=E2Þx4 − 12x2x4 þ 18ðE4=E2Þx22 þ 8x32

48

−
x4 − 3ðE4=E2Þx2 − 2x22

4
Q2

��
þO

�
1

ðE2VÞ4
;

1

ðE2VÞ4
Q2;

1

ðE2VÞ4
Q4

�
: ð3:20Þ

Note that the order of the error is the same for both (3.18)
and (3.20).

B. Comparison with [12]

One can see that Eqs. (3.8) and (3.9) derived in [12],

hOðt1ÞOðt2Þi ∼ AQe−MQðt1−t2Þ ð3:21Þ

and

MQ ¼ Mð0Þ þ 1

2
M00ð0Þ 1

βVχt

�
1 −

Q2

βVχt

�
þ � � � ; ð3:22Þ

are contained in our result (3.18) and (3.20), respectively,
after changing notation according to hOðt1ÞOðt2Þi →
CQ;VðtÞ, AQ → αð0Þ, Mð0Þ → MHð0Þ and t1 − t2 → t.

C. Parity mixing

Parity P is not a symmetry at θ ≠ 0. Therefore, states at
θ ≠ 0 cannot be classified according to parity, and it is not
possible to construct two-point correlation functions
Cθ;VðtÞ, where only P ¼ − or P ¼ þ states contribute.
Similarly,CQ;VðtÞ contains contributions of states with both
P ¼ − and P ¼ þ, since it is obtained by Fourier trans-
forming Cθ;VðtÞ [cf. (3.4)]. Consequently, one has to
determine the masses of P ¼ − and P ¼ þ parity partners
from the same two-point correlation functions.4 While
usually there are little problems for the lighter state (in
the case of mesons typically the P ¼ − ground state), its
parity partner (the P ¼ þ ground state) has to be treated as

an excitation. To precisely determine the mass of an excited
state, a single correlator is in most cases not sufficient. For
example to extract a first excitation it is common to study at
least a 2 × 2 correlation matrix formed by two hadron
creation operators, which generate significant overlap to
both the ground state and the first excitation.
We discuss the determination of P ¼ − and P ¼ þ

parity partners from fixed topology computations in a
simple setup: a 2 × 2 correlation matrix

Cjk
Q;VðtÞ≡ 1

ZQ;V

Z
DADψDψ̄δQ;Q½A�O

†
jðtÞOkð0Þe−SE½A;ψ̄ ;ψ �

ð3:23Þ

with hadron creation operators O− and Oþ generating at
unfixed topology and small θ mainly P ¼ − and P ¼ þ,
respectively. An example for such operators is

O− ≡ 1ffiffiffiffiffiffi
Vs

p
Z

d3rc̄ðrÞγ5uðrÞ;

Oþ ≡ 1ffiffiffiffiffiffi
Vs

p
Z

d3rc̄ðrÞuðrÞ ð3:24Þ

corresponding to the D mesons and its parity partner D�
0.

Without loss of generality we assume that the ground state
(at θ ¼ 0) has P ¼ −, denoted by H−, and the first
excitation has P ¼ þ, denoted by Hþ.
In the following we derive expressions for the four

elements of the correlation matrix Cjk
Q;VðtÞ, j, k ∈ f−;þg.

We proceed similarly as in Sec. III A. This time, however,
we consider the two lowest states H− and Hþ (not only a
single state),

4Note the similarity to twisted mass lattice QCD, where parity
is also not an exact symmetry, and where P ¼ − and P ¼ þ
states are usually extracted from the same correlation matrix
(cf. e.g. [27–33]).
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Cjkθ;VðtÞZθ;V ¼ ðαjk− ðθ; VsÞe−MH− ðθÞt

þ αjkþ ðθ; VsÞe−MHþðθÞtÞe−E0ðθ;VsÞT ð3:25Þ

[which is the generalization of (3.6) with exponentially
suppressed corrections from higher excitations neglected],
where

αjkn ðθÞ≡ Aj;†
n ðθÞAk

nðθÞ; Aj
nðθÞ≡ hHn; θjOjj0; θi:

ð3:26Þ
The overlaps of the trial states Ojj0; θi and the lowest

states jHni, Aj
nðθÞ and αjkn ðθÞ, have to be treated in a more

general way, since the leading order of their θ expansion
can be proportional to a constant, to θ or to θ2 depending on
the indices j, k and n. Since at θ ¼ 0 parity is a symmetry,
Aþ
−ðθ ¼ 0Þ ¼ A−þðθ ¼ 0Þ ¼ 0. Consequently,
(i) Aþ

−ðθÞ ¼ OðθÞ, A−þðθÞ ¼ OðθÞ,
while

(i) A−
−ðθÞ ¼ Oð1Þ, Aþ

þðθÞ ¼ Oð1Þ.
From the definition of αjkn ðθÞ [Eq. (3.26)] one can conclude

(i) α−−− ðθÞ ¼ Oð1Þ, αþþ
þ ðθÞ ¼ Oð1Þ,

(ii) α−þ� ðθÞ ¼ OðθÞ, αþ−
� ðθÞ ¼ OðθÞ,

(iii) αþþ
− ðθÞ ¼ Oðθ2Þ, α−−þ ðθÞ ¼ Oðθ2Þ.

Using PO�P ¼ �O� and Pjn;þθ; Vsi ¼ ηnðθ; VsÞjn;
−θ; Vsi, where ηnðθ; VsÞ is a nonunique phase, one
can show

(i) αþþ
n ðþθÞ ¼ þαþþ

n ð−θÞ, α−−n ðþθÞ ¼ þα−−n ð−θÞ
(i.e. only even powers of θ in the corresponding
expansions),

(ii) αþ−
n ðþθÞ ¼ −αþ−

n ð−θÞ, α−þn ðþθÞ ¼ −α−þn ð−θÞ (i.e.
only odd powers of θ in the corresponding
expansions).

Technically it is straightforward to consider not only the
ground state H−, but also a first excitation Hþ: the con-
tributions of the two states are just summed in (3.25); i.e. one
can independently determine their Fourier transform and,
hence, their contribution to the correlation matrix at fixed
topology, Cjk

Q;VðtÞ. Additional calculations have to be done,
however, for off-diagonal elements, where α�∓

n ðþθÞ ¼
−α�∓

n ð−θÞ, and for contributions to diagonal matrix

elements, where α��
n ðθÞ ¼ Oðθ2Þ (cf. the following two

subsections). Contributions to diagonal matrix elements,
where α��

n ðθÞ ¼ Oð1Þ, have already been determined
(cf. Sec. III A).

1. Calculation for αðþθÞ ¼ −αð−θÞ, where αðθÞ ∈
fα−þ

− ðθÞ;α−þ
þ ðθÞ;αþ−

− ðθÞ;αþ−
þ ðθÞg

We proceed as in Sec. III A. αðθÞ can be written as a
power series around θ ¼ 0,

αðθÞ ¼
X∞
k¼0

αð2kþ1Þð0Þθ2kþ1

ð2kþ 1Þ!

¼ αð1Þð0Þθ exp
�
ln

�X∞
k¼0

αð2kþ1Þð0Þθ2k
ð2kþ 1Þ!αð1Þð0Þ

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≡−βðθÞ¼−
P

∞
k¼1

βð2kÞð0Þθ2k
ð2kÞ!

�
: ð3:27Þ

The corresponding contribution to Cjkθ;VðtÞZθ;V [cf. (3.25)]
is

αðθÞe−MHðθÞte−E0ðθ;VsÞT ¼ αð1Þð0Þθe−ðe0ðθÞVþMHðθÞtþβðθÞÞ:
ð3:28Þ

As before we define

fCðθÞ≡ fCðθ; Q; VÞ≡ e0ðθÞ þ
MHðθÞtþ βðθÞ − iQθ

V
:

ð3:29Þ

For the contribution to the correlation matrix at fixed
topology Cjk

Q;VðtÞZQ;V we then obtain

αð1Þð0Þ
2π

Z þπ

−π
dθθe−fCðθÞV; ð3:30Þ

where fCðθÞV is defined by (3.12) and (3.13).
Consequently, its minimum θs;C is given by (3.14).
Equation (3.30) can be written as

αð1Þð0Þe−fCðθs;CÞV
ð2πfð2ÞC ðθs;CÞVÞ1=2

�����
�
θs;C þ

s

ðfð2ÞC ðθs;CÞVÞ1=2
�
exp

�
−
X∞
n¼3

fðnÞC ðθs;CÞV
n!ðfð2ÞC ðθs;CÞVÞn=2

sn
������ ¼ αð1Þð0Þe−fCðθs;CÞV

ð2πfð2ÞC ðθs;CÞVÞ1=2
ðθs;CGC þHCÞ;

ð3:31Þ
where GC is defined in (3.15) and

HC≡
����� s

ðfð2ÞC ðθs;CÞVÞ1=2
exp

�
−
X∞
n¼3

fðnÞC ðθs;CÞV
n!ðfð2ÞC ðθs;CÞVÞn=2

sn
������ ¼

X∞
k¼1

ð−1Þk
k!

����� s

ðfð2ÞC ðθs;CÞVÞ1=2
�X∞

n¼3

fðnÞC ðθs;CÞV
n!ðfð2ÞC ðθs;CÞVÞn=2

sn
�

k
�����:

ð3:32Þ

EXTRACTING HADRON MASSES FROM FIXED TOPOLOGY … PHYSICAL REVIEW D 90, 074505 (2014)

074505-9



As in Sec. II A it is easy to identify and calculate all terms of HC up to Oð1=ðE2VÞ3Þ:
(i) k ¼ 1, n ¼ 3 (∝ 1=V2):

����� fð3ÞC ðθs;CÞV
3!ðfð2ÞC ðθs;CÞVÞ2

s4
����� ¼ 1

F 2V
F 4

2F 2

θs;C þO
�

1

ðE2VÞ4
�
: ð3:33Þ

(ii) k ¼ 1, n ¼ 5 (∝ 1=V3):

����� fð5ÞC ðθs;CÞV
5!ðfð2ÞC ðθs;CÞVÞ3

s6
����� ¼ 1

ðF 2VÞ2
F 6

8F 2

θs;C þO
�

1

ðE2VÞ4
�
: ð3:34Þ

(iii) k ¼ 2, n1 ¼ 3, n2 ¼ 4 (∝ 1=V3):

2×

����� ðf
ð3Þ
C ðθs;CÞVÞðfð4ÞC ðθs;CÞVÞ
3!4!ðfð2ÞC ðθs;CÞVÞ4

s8
����� ¼ 1

ðF 2VÞ2
35F 2

4

24F 2
2

θs;C þO
�

1

ðE2VÞ4
�
: ð3:35Þ

Inserting these expressions into (3.32) leads to

HC ¼ −
1

F 2V
F 4

2F 2

θs;C þ
1

ðF 2VÞ2
�
−

F 6

8F 2

þ 35F 2
4

48F 2
2

�
θs;C þO

�
1

ðE2VÞ4
�
: ð3:36Þ

The final explicit expression up to Oð1=ðE2VÞ3Þ for the contribution to Cjk
Q;VðtÞZQ;V [Eq. (3.31)] is

αð1Þð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πF 2V

p
�
exp

�
−F 0V −

1

F 2V
1

2
Q2 −

1

ðF 2VÞ3
F 4

24F 2

Q4

��
1 −

1

ðF 2VÞ2
F 4

2F 2

Q2

�
−1=2

ðθs;CGC þHCÞ

þO
�

1

ðE2VÞ4
Q4

��
: ð3:37Þ

After dividing by ZQ;V [Eq. (2.38)], it is straightforward to obtain the final result. In exponential form (3.19) it is

Cjk
Q;VðtÞ←

iαð1Þð0ÞQ
E2V

exp

�
−MHð0Þt −

1

E2V

�ðE4=E2Þ þ 3x2
2

�

−
1

ðE2VÞ2
�
3ðE6=E2Þ − 13ðE4=E2Þ2 − 30ðE4=E2Þx2 þ 15x4 − 18x22

24
−
ðE4=E2Þ þ 3x2

6
Q2

�
þO

�
1

ðE2VÞ4
�
: ð3:38Þ

2. Calculation for αðþθÞ ¼ þαð−θÞ, where αðθÞ ∈ fαþþ
− ðθÞ;α−−þ ðθÞg ¼ Oðθ2Þ

We proceed as in Sec. III A. αðθÞ can be written as a power series around θ ¼ 0,

αðθÞ ¼
X∞
k¼1

αð2kÞð0Þθ2k
ð2kÞ! ¼ αð2Þð0Þ

2
θ2 exp

�
ln

�X∞
k¼0

2αð2kþ2Þð0Þθ2k
ð2kþ 2Þ!αð2Þð0Þ

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≡−βðθÞ¼−
P

∞
k¼1

βð2kÞð0Þθ2k
ð2kÞ!

�
: ð3:39Þ
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The corresponding contribution to Cjkθ;VðtÞZθ;V
[cf. (3.25)] is

αðθÞe−MHðθÞte−E0ðθ;VsÞT ¼ αð2Þð0Þ
2

θ2e−ðe0ðθÞVþMHðθÞtþβðθÞÞ:

ð3:40Þ
As before we define

fCðθÞ≡ fCðθ; Q; VÞ≡ e0ðθÞ þ
MHðθÞtþ βðθÞ − iQθ

V
:

ð3:41Þ

For the contribution to the correlation matrix at fixed
topology Cjk

Q;VðtÞZQ;V we then obtain

αð2Þð0Þ
4π

Z þπ

−π
dθθ2e−fCðθÞV; ð3:42Þ

where fCðθÞV is defined by (3.12) and (3.13).
Consequently, its minimum θs;C is given by (3.14).
Equation (3.42) can be written as

αð2Þð0Þe−fCðθs;CÞV
2ð2πfð2ÞC ðθs;CÞVÞ1=2

�����
�
θs;C þ

s

ðfð2ÞC ðθs;CÞVÞ1=2
�

2

exp

�
−
X∞
n¼3

fðnÞC ðθs;CÞV
n!ðfð2ÞC ðθs;CÞVÞn=2

sn
������

¼ αð2Þð0Þe−fCðθs;CÞV
2ð2πfð2ÞC ðθs;CÞVÞ1=2

ðθ2s;CGC þ 2θs;CHC þ ICÞ; ð3:43Þ

where GC is defined in (3.15), HC is defined in (3.32) and

IC≡
����� s2

fð2ÞC ðθs;CÞV
exp

�
−
X∞
n¼3

fðnÞC ðθs;CÞV
n!ðfð2ÞC ðθs;CÞVÞn=2

sn
������

¼
X∞
k¼0

ð−1Þk
k!

����� s2

fð2ÞC ðθs;CÞV

�X∞
n¼3

fðnÞC ðθs;CÞV
n!ðfð2ÞC ðθs;CÞVÞn=2

sn
�

k
�����:

ð3:44Þ

As in Sec. II A it is easy to identify and calculate all terms
of IC up to Oð1=ðE2VÞ3Þ:

(i) k ¼ 0 (∝ 1=V):

����� s2

fð2ÞC ðθs;CÞV

�����
¼ 1

F 2V
−

1

F 2V
F 4

2F 2

θ2s;C þO
�

1

ðE2VÞ4
�
: ð3:45Þ

(ii) k ¼ 1, n ¼ 4 (∝ 1=V2):

����� fð4ÞC ðθs;CÞV
4!ðfð2ÞC ðθs;CÞVÞ3

s6
�����

¼ 1

ðF 2VÞ2
5F 4

8F 2

þO
�

1

ðE2VÞ4
�
: ð3:46Þ

(iii) k ¼ 1, n ¼ 6 (∝ 1=V3):

����� fð6ÞC ðθs;CÞV
6!ðfð2ÞC ðθs;CÞVÞ4

s8
�����

¼ 1

ðF 2VÞ3
7F 6

48F 2

þO
�

1

ðE2VÞ4
�
: ð3:47Þ

(iv) k ¼ 2, n1 ¼ 4, n2 ¼ 4 (∝ 1=V3):

����� ðfð4ÞC ðθs;CÞVÞ2
ð4!Þ2ðfð2ÞC ðθs;CÞVÞ5

s10
�����

¼ 1

ðF 2VÞ3
105F 2

4

64F 2
2

þO
�

1

ðE2VÞ4
�
: ð3:48Þ

Inserting these expressions into (3.44) leads to

IC ¼
1

F 2V

�
1 −

F 4

2F 2

θ2s;C

�
þ 1

ðF 2VÞ2
�
−
5F 4

8F 2

�

þ 1

ðF 2VÞ3
�
−

7F 6

48F 2

þ 105F 2
4

128F 2
2

�
þO

�
1

ðE2VÞ4
�
:

ð3:49Þ

The final explicit expression up to Oð1=ðE2VÞ3Þ for the
contribution to Cjk

Q;VðtÞZQ;V [Eq. (3.43)] is
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αð2Þð0Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πF 2V

p
�
exp

�
−F 0V −

1

F 2V
1

2
Q2 −

1

ðF 2VÞ3
F 4

24F 2

Q4

��
1 −

1

ðF 2VÞ2
F 4

2F 2

Q2

�
−1=2

ðθ2s;CGC þ 2θs;CHC þ ICÞ

þO
�

1

ðE2VÞ4
Q4

��
: ð3:50Þ

After dividing by ZQ;V [Eq. (2.38)], it is straightforward to obtain the final result. In exponential form (3.19) it is

Cjk
Q;VðtÞ←

αð2Þð0Þ
2E2V

exp

�
−MHð0Þt −

1

E2V

�ðE4=E2Þ þ 3x2
2

þQ2

�

−
1

ðE2VÞ2
�
3ðE6=E2Þ − 13ðE4=E2Þ2 − 30ðE4=E2Þx2 þ 15x4 − 18x22

24
−
2ðE4=E2Þ þ 3x2

2
Q2 þ 1

2
Q4

�
þO

�
1

ðE2VÞ4
�
:

ð3:51Þ

3. The 2 × 2 correlation matrix at fixed
topology at Oð1=E2VÞ

The 2 × 2 correlation matrix Cjk
Q;VðtÞ, j, k ∈ f−;þg, can

be obtained by properly adding the results (3.20), (3.38)
and (3.51). At first order in 1=E2V it is given by

C−−
Q;VðtÞ ¼ α−−− ð0Þ exp

�
−MH−

ð0Þt − 1

E2V

x−−2;−
2

�

þ α−−;ð2Þþ ð0Þ
2E2V

expð−MHþð0ÞtÞ þO
�

1

ðE2VÞ2
�

ð3:52Þ

Cþþ
Q;VðtÞ ¼ αþþ

þ ð0Þ exp
�
−MHþð0Þt −

1

E2V

xþþ
2;þ
2

�

þ αþþ;ð2Þ
− ð0Þ
2E2V

expð−MH−
ð0ÞtÞ þO

�
1

ðE2VÞ2
�

ð3:53Þ

C∓�
Q;VðtÞ ¼

iα∓�;ð1Þ
− ð0ÞQ
E2V

expð−MH−
ð0ÞtÞ

þ iα∓�;ð1Þ
þ ð0ÞQ
E2V

expð−MHþð0ÞtÞ

þO
�

1

ðE2VÞ2
�
; ð3:54Þ

where x��
2;� ¼ Mð2Þ

H�tþ β��;ð2Þ
� and β��;ð2Þ

� ¼ −α��;ð2Þ
� ð0Þ=

α��
� ð0Þ [cf. (3.8)]. The quantities αjkn are products of the

more fundamental Aj
n [cf. (3.26)] and, therefore, are not

independent and fulfill certain constraints. Since the diago-
nal elements of Cjkθ;VðtÞ are real and ≥ 0,

(i) α−−− ð0Þ, αþþ
þ ð0Þ, αþþ;ð2Þ

− ð0Þ, α−−;ð2Þþ ð0Þ ≥ 0 and real
(four real parameters),

(ii) α−−;ð2Þ− ð0Þ, αþþ;ð2Þ
þ ð0Þ real (two real parameters).

Moreover, from ðCjkθ;VðtÞÞ� ¼ Ckjθ;VðtÞ follows:
(i) ðα−þ;ð1Þ

− ð0ÞÞ� ¼ αþ−;ð1Þ
− ð0Þ and ðα−þ;ð1Þ

þ ð0ÞÞ� ¼
αþ−;ð1Þ
þ ð0Þ (four real parameters).

Quite often one can define the hadron creation operators
O− and Oþ in such a way that the off-diagonal elements of
Cjkθ;VðtÞ are real (or purely imaginary), which reduces the

number of real parameters contained in αjkn from 10 to 8.

There are further parameters, MH−
ð0Þ, MHþð0Þ, Mð2Þ

H−
ð0Þ,

Mð2Þ
Hþð0Þ and E2, i.e. in total 13 parameters.
Equations (3.52)–(3.54) clearly show that parity mixing at

fixed topology is already present at order 1=E2V. In particular
this will cause problems, when trying to extract a hadron,
which has a lighter parity partner, from a single two-point
correlation function: e.g. the first term in Cþþ

Q;VðtÞ [Eq. (3.53)]
is suited to determine a positive parity meson; however, there
is a contamination by the corresponding lighter negative
parity meson due to the second term, which is only sup-
pressed proportional to 1=E2V with respect to the spacetime
volume; since the first term is exponentially suppressed with
respect to the temporal separation compared to the second
term (∝ e−ðMHþ−MH− Þt), a precise determination ofMHþ from
the single correlator Cþþ

Q;VðtÞ seems extremely difficult and
would probably require extremely precise simulation results.
Using the full 2 × 2 correlation matrix (3.52) to (3.54)
should, however, stabilize a fit to extract MHþ and MH−
at the same time (this is discussed in detail in Sec. V C 4),
similar to what is usually done at ordinary unfixed topology
computations, when determining excited states.
This parity mixing at fixed topology has already been

observed and discussed in the context of the η meson in
[13]. When considering the correlation function C−−

Q;VðtÞ
with a suitable η meson creation operator, e.g.

O− ≡ 1ffiffiffiffiffiffi
Vs

p
Z

d3rðūðrÞγ5uðrÞ þ d̄ðrÞγ5dðrÞÞ; ð3:55Þ

one finds
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C−−
Q;VðtÞ ¼ α−−η ð0Þ exp

�
−Mηð0Þt −

1

E2V

x−−2;η
2

�
þ α−−;ð2Þ0 ð0Þ

2E2V

þO
�

1

ðE2VÞ2
�
; ð3:56Þ

where MHþ ¼ 0 has been used (Hþ is in this context the

vacuum state). Using α−−;ð2Þ0 ð0Þ ¼ −2E2
2 from [13] shows

that there is a time independent contribution −E2=V to the
correlation function C−−

Q;VðtÞ as in [13].
It is straightforward to extend (3.52) to (3.54) to larger

correlation matrices formed by more than the two operators
O− and Oþ. Similarly, it is easy to include further states
besides H− and Hþ. In both cases one just has to properly
add the expressions (3.20), (3.38) and (3.51) and assign
suitable indices.

IV. DISCUSSION OF ERRORS

In this section we discuss in which regime of parameters
our 1=V expansions of two-point correlation functions at
fixed topology (3.18) and (3.20) are accurate approximations.

A. Errors proportional to 1=E2V

In Sec. II A the spacetime dependence of two-point
correlation functions CQ;VðtÞ has been derived up to 1=V3.
More precisely, the error is

O
�

1

ðE2VÞ4
;

1

ðE2VÞ4
Q2;

1

ðE2VÞ4
Q4

�
ð4:1Þ

[cf. (3.18), and the text below (3.18) and (3.20)]. This error
will be small, if
(Condition 1)

1=E2V ≪ 1; jQj=E2V ≪ 1:

In other words, computations at fixed topology require
large spacetime volumes V (in units of the topological
susceptibility χt ¼ E2), while the topological chargeQmay
not be too large. We have also used F 2 ¼ E2 þOð1=E2VÞ,
which requires
(Condition 2)

jx2j ¼ jMð2Þ
H ð0Þtþ βð2Þð0Þj ≲ 1:

The time dependence of this constraint excludes the use of
large values of t.

B. Exponentially suppressed errors

In Secs. II A and III A several exponentially suppressed
corrections have been neglected:
(a) Ordinary finite volume effects, i.e. finite volume effects

not associated with fixed topology:
Such finite volume effects also appear in QCD

simulations, where topology is not fixed. These effects
are expected to be proportional to e−mπðθÞL, where

mπðθÞ is the mass of the pion (the lightest hadron
mass) and L is the periodic spatial extension.

(b) Contributions of excited states to the partition function
and to two-point correlation functions:
Excited states contribute to the partition function

Zθ;V proportional to e−ΔEðθÞT [cf. (2.8)], where
ΔEðθÞ ¼ E1ðθ; VsÞ − E0ðθ; VsÞ is the mass of the
lightest hadron, i.e. ΔEðθÞ ¼ mπðθÞ.
The corresponding dominating terms in a two-point

correlation function Cθ;VðtÞZθ;V are proportional to
e−ðM�

HðθÞ−MHðθÞÞt and e−MHðθÞðT−2tÞ [cf. (3.6)], where
MHðθÞ is the mass of the hadron of interest and
M�

HðθÞ −MHðθÞ the difference from its first excitation.
(c) Changing the integration limits in (2.10) from

Rþπ
−π toRþ∞

−∞ :
The relative error is expected to be suppressed

exponentially by the second term in the exponential
in (2.11) and, therefore, proportional to

exp

�
−
E2V
2

ðπ − θsÞ2
�
≈ exp

�
−
π2E2V

2

�
: ð4:2Þ

In zero temperature QCD simulations typically T ≳ L. For
sufficiently large values of mπðθÞL, e.g.
(Condition 3)

mπðθÞL≳ 3 � � � 5 ≫ 1

as typically required in QCD simulations, corrections
(a) and for the partition function also (b) should essentially
be negligible. To be able to ignore corrections (b) for two-
point correlation functions, one needs
(Condition 4)

ðM�
HðθÞ −MHðθÞÞt ≫ 1; MHðθÞðT − 2tÞ ≫ 1:

Corrections (c) can be neglected, if E2V ≫ 1, which is
already part of (Condition 1).
For a discussion of the conditions (Condition 1)–

(Condition 4) in the context of a numerical example cf. Sec. V.

V. CALCULATIONS AT FIXED TOPOLOGY IN
QUANTUM MECHANICS

To test the equations derived in the previous sections, in
particular (3.18) and (3.20), we study a simple model,
quantummechanics on a circle. It can be solved analytically
or, in the case of a potential, numerically up to arbitrary
precision.We extract the difference of the two lowest energy
eigenvalues, the equivalent of a hadron mass in QCD, from
two-point correlation functions calculated at fixed topology.
The insights obtained might be helpful for determining
hadron masses from fixed topology simulations in QCD.

A. A particle on a circle in quantum mechanics

The Lagrangian of a quantum mechanical particle (mass
m) on a circle (radius r) parametrized by the angle φ is
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L≡mr2

2
_φ2 −UðφÞ ¼ I

2
_φ2 −UðφÞ; ð5:1Þ

where I ≡mr2 is the moment of inertia. The potential U
will be specified below.
A periodic time with extension T implies

φðtþ TÞ ¼ φðtÞ þ 2πQ, Q ∈ Z, and gives rise to topo-
logical charge

1

2π

Z
T

0

dt _φ ¼ 1

2π
ðφðTÞ − φð0ÞÞ ¼ Q: ð5:2Þ

The topological charge density is q≡ _φ=2π. Exemplary
paths with topological charge Q ¼ 0 and Q ¼ 1 are
sketched in Fig. 1.
The path integral for the Euclidean partition function is

Z≡
Z

Dφe−SE½φ�; SE½φ�≡
Z

T

0

dtLE;

LE ≡ I
2
_φ2 þ UðφÞ; ð5:3Þ

where the integration
R
Dφ is over all paths, which are

T-periodic modulo 2π, i.e. over all topological sectors.
The corresponding path integral over a single topological

sector Q, which is relevant in the context of topology
fixing, is

ZQ;T ≡
Z

DφδQ;QðφÞe−SE½φ� ¼
Z

Dφ
1

2π

Z þπ

−π
dθeiðQ−QðφÞÞθe−SE½φ�

¼ 1

2π

Z þπ

−π
dθeiθQ

Z
Dφ exp

�
−
�
SE½φ� þ iθ

1

2π

Z
T

0

dt _φ

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≡SE;θ ½φ�

�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡Zθ;T

ð5:4Þ

(note that the analog of the spacetime volume V in QCD is
in quantum mechanics the temporal extension T, i.e.
throughout this section V → T). One can read off both
Zθ;T and SE;θ. The θ-dependent Hamiltonian, which can be
obtained as usual, is

Hθ ≡ 1

2I

�
pφ þ

θ

2π

�
2

þ UðφÞ: ð5:5Þ

B. A free particle, U ¼ 0

1. Eigenfunctions and eigenvalues

For U ¼ 0 the eigenfunctions ψn and eigenvalues En of
Hθ can be determined analytically,

HθψnðφÞ ¼ EnψnðφÞ → ψnðφÞ ¼
eþinφffiffiffiffiffiffi
2π

p ;

EnðθÞ ¼
1

2I

�
nþ θ

2π

�
2

: ð5:6Þ

FIG. 1 (color online). Paths with topological charge Q ¼ 0 and
Q ¼ 1.

FIG. 2 (color online). The low lying spectrum for U ¼ 0; (left) EnI as a function of θ [Eq. (5.6)]; (right) ĒnI as a function of θ
[Eq. (5.7)].
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Note that in previous sections we used EnðþθÞ ¼ Enð−θÞ.
While the spectrum fulfills this þθ↔ − θ symmetry, it is
clearly violated by our mathematical parametrization (5.6)
for n ≠ 0 (cf. Fig. 2, left plot). An equivalent set of
eigenfunctions and eigenvalues fulfilling the þθ↔ − θ
symmetry is

ψ̄nðφÞ ¼ ΘðþθÞ e
þinφffiffiffiffiffiffi
2π

p þ Θð−θÞ e
−inφffiffiffiffiffiffi
2π

p ;

ĒnðθÞ ¼
1

2I

�
nþ jθj

2π

�
2

ð5:7Þ

(cf. Fig. 2, right plot).

2. Partition function

The partition function ZQ;T is the Fourier transform of
Zθ;T [cf. (5.4)]. After inserting the eigenvalues EnðθÞ and
changing the variables of integration according to
θ → θ0 ¼ θ þ 2πn, one obtains a Gaussian integral, which
is analytically solvable,

ZQ;T ¼ 1

2π

Z þπ

−π
dθeiQθZθ;T

¼ 1

2π

Z þπ

−π
dθeiQθ

X
n

exp
�
−

1

2I

�
nþ θ

2π

�
2

T
�

¼ 1

2π

X
n

Z þπ−2πn

−π−2πn
dθ0

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
¼
R þ∞
−∞

dθ0

eiQθ0 exp

�
−

T
8π2I

θ02
�

¼
ffiffiffiffiffiffiffiffi
2πI
T

r
exp

�
−
2π2I
T

Q2

�
: ð5:8Þ

This exact result can be compared with the approxima-
tion (2.38), after inserting E0ð0; VsÞ → E0ðθ ¼ 0Þ ¼
θ2=8π2Ijθ¼0 ¼ 0, E2 ¼ Eð2Þ

0 ðθ ¼ 0Þ ¼ 1=4π2I and En ¼ 0

for n ≠ 2,

ZQ;T ¼
ffiffiffiffiffiffiffiffi
2πI
T

r
exp

�
−
2π2I
T

Q2

�

þO
�

1

E4
2T

4
;

1

E4
2T

4
Q2;

1

E4
2T

4
Q4

�
: ð5:9Þ

Even though power corrections proportional to 1=T4 and
exponentially suppressed corrections have been neglected,
the approximation is identical to the exact result (5.8).

3. Two-point correlation function

We use the creation operator O≡ sinðφÞ (on a circle
operators must be 2π periodic in φ). Note that

(i) Ojψ̄0; θi is orthogonal to the ground state jψ̄0; θi,
which is required for (3.6) [and consequently for
(3.18) and (3.20)] to be valid,

(ii) Ojψ̄0; θi has nonvanishing overlap to the first
excitation jψ̄−1; θi;

i.e. O is a suitable creation operator for the first excita-
tion jψ̄−1; θi.
The two-point correlation function CQ;TðtÞ is the Fourier

transform of Cθ;TðtÞ, which can be expanded in terms of
energy eigenstates [cf. (3.4) and (3.5)]. After inserting the
eigenvalues EnðθÞ [Eq. (5.6)], using hψm; θjOjψn; θi ¼
ðδm;nþ1 þ δm;n−1Þ=2 and changing the variables of integra-
tion according to θ → θ þ 2πn as in (5.8), one again obtains
a Gaussian integral, which can be solved exactly,

CQ;TðtÞ ¼
1

2
exp

�
−
tðT − tÞ
2IT

�
cos

�
2πQt
T

�
: ð5:10Þ

The analog of the lightest hadron mass in QCD is the
difference of the energy eigenvalues of the first excitation
and the ground state,

MHðθÞ ¼ Ē−1ðθÞ − Ē0ðθÞ ¼
1 − jθj=2π

2I
: ð5:11Þ

Clearly Mð2Þ
H ð0Þ ¼ ∞, which implies x2 ¼ ∞. This in turn

severely violates condition (C2) of Sec. IVA, which was
assumed to be fulfilled, when deriving the approximations
of two-point correlation functions (3.18) and (3.20). In
other words, agreement between the exact result (5.10)
and (3.18) and (3.20) cannot be expected and is not
observed.
To circumvent the problem, one can use the eigenvalue

parametrization (5.6), which, however, does not fulfill
EnðþθÞ ¼ Enð−θÞ. The consequence is that the expansion
(3.13) may also contain odd terms F 1θ, F 3θ

3=6, etc. For
a free particle, however, only a few parameters are
nonzero,

(i) E0ðθÞ ¼ θ2=8π2I → E2 ¼ 1=4π2I,
(ii) MH;�1ðθÞ≡ E�1ðθÞ − E0ðθÞ ¼ ð1� θ=πÞ=2I [the

two lightest hadron masses need to be considered,
since MH;þ1ðθÞ < MH;−1ðθÞ for θ < 0 and
MH;þ1ðθÞ > MH;−1ðθÞ for θ > 0; cf. Fig. 2]
→ MH;�1ð0Þ ¼ 1=2I, Mð1Þ

H;�1ð0Þ ¼ �1=2πI,
(iii) αðθÞ ¼ 1=4 → αð0Þ ¼ 1=4.

All further parameters En, MðnÞ
H;�1ð0Þ and βðnÞ vanish.

Consequently, F 0 ¼ MH;�1ð0Þt=T, F 1 ¼ Mð1Þ
H;�1ð0Þt=T

and F 2 ¼ E2, while F n ¼ 0 for n ≥ 3. In other words in
(3.13) there is only a single additional term, F 1θ. Since this
term is proportional to θ, and since there is already a term
proportional to θ in (3.13), −iQθ, it can easily be included

in the calculation from Sec. III by replacing Q → Qþ
iMð1Þ

H;þ1ð0Þt and Q → Qþ iMð1Þ
H;−1ð0Þt in (3.16), respec-

tively, and by adding both results to obtain CQ;VðtÞZQ;V .
Inserting the above listed parameters and dividing by ZQ;V

[eq. (5.9)] one finds
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CQ;TðtÞ ¼
1

2
exp

�
−
tðT − tÞ
2IT

�
cos

�
2πQt
T

�

þO
�

1

E4
2T

4
;

1

E4
2T

4
Q2;

1

E4
2T

4
Q4

�
; ð5:12Þ

which is identical to the exact result (5.10), even though
power corrections proportional to 1=T4 and exponentially
suppressed corrections have been neglected.

The problems associated with Mð2Þ
H;�ð0Þ ¼ ∞ do not

appear when a potential U ≠ 0 is chosen (cf. Sec. V C and
Fig. 3). They are also not expected to be present in QCD.

C. A particle in a square well

Now we study a square well potential

UðφÞ≡
�
0 if − ρ=2 < φ < þρ=2
U0 otherwise

ð5:13Þ

(U0 > 0 is the depth and ρ > 0 the width of the well).
Again we use the creation operator O≡ sinðφÞ, for which
one can show h0; θjOj0; θi ¼ 0

5 (cf. Appendix A 2).

1. Solving the model numerically

For the square well potential (5.13) the Schrödinger
equation cannot be solved analytically, but numerically up
to arbitrary precision; i.e. no simulations are required. For

these numerical computations we express all dimensionful
quantities in units of I; i.e. we work with dimensionless
quantities (denoted by a hat) I → Î ¼ I=I ¼ 1, T → T̂ ¼
T=I and U0 → Û0 ¼ U0I. For the numerical results pre-
sented in this section we have used Û0 ¼ 5.0 and
ρ ¼ 0.9 × 2π.
We proceeded as follows:
(1) Solve Schrödinger’s equation

Ĥθψnðφ; θÞ ¼ ÊnðθÞψnðφ; θÞ;

Ĥθ ¼
1

2

�
pφ þ

θ

2π

�
2

þ ÛðφÞ ð5:14Þ

(Ĥθ ≡HθI, ÊnðθÞ ¼ EnðθÞI, Û ≡UI) as outlined
in Appendix A 1. The resulting low lying spectrum
is shown in Fig. 3.

(2) Use the resulting energy eigenvalues Ê0ðθÞ and
Ê1ðθÞ to determine
(a) Ên ¼ ÊðnÞ

0 ð0Þ, n ¼ 0, 2, 4, 6, 8.
(b) M̂ðnÞ

H ð0Þ ¼ ðd=dθÞnðÊ1ðθÞ − Ê0ðθÞÞjθ¼0, n ¼ 0,
2, 4, 6, 8

and the resulting wave functions ψ0ðφ; θÞ and ψ1ðφ; θÞ to
determine

(a) αðnÞð0Þ, n ¼ 0, 2, 4, 6, 8,
(b) βðnÞð0Þ, n ¼ 2, 4, 6, 8,

where

αðθÞ ¼
����
Z

2π

0

dφðψ1ðφ; θÞÞ� sinðφÞψ0ðφ; θÞ
����2;

βðθÞ ¼ − ln

�
αðθÞ
αð0Þ

�
: ð5:15Þ

These are the parameters of the two-point correlation
function CQ;T̂ðt̂Þ, t̂ ¼ t=I [Eqs. (3.18) and (3.20)].
For Û0 ¼ 5.0 and ρ ¼ 0.9 × 2π they are collected in
Table I.

(3) Calculate Cθ;Tðt̂Þ using sufficiently many low lying
energy eigenvalues and corresponding wave func-
tions from step 1 such that the exponentially sup-
pressed error is negligible already for very small
temporal separations [cf. Eqs. (2.1) and (3.5)].

(4) Perform a Fourier transformation numerically to
obtain CQ;T̂ðt̂Þ, the exact correlation function at
fixed topology.

FIG. 3 (color online). The low lying energy eigenvalues Ên for
the square well potential (5.13) with Û0 ¼ 5.0 and ρ ¼ 0.9 × 2π
as functions of θ.

TABLE I. The parameters of the two-point correlation function
CQ;T̂ðt̂Þ [Eqs. (3.18) and (3.20)] for Û0 ¼ 5.0 and ρ ¼ 0.9 × 2π.

n Ên M̂ðnÞ
H ð0Þ αðnÞð0Þ βðnÞð0Þ

0 þ0.11708 þ0.40714 þ0.50419
2 þ0.00645 −0.03838 −0.00357 þ0.00709
4 −0.00497 þ0.04983 þ0.00328 −0.00636
6 þ0.00042 −0.13191 −0.04721 þ0.09308
8 þ0.00834 þ0.95631 þ0.91037 −1.77931

5A complicated theory like QCD has many symmetries and,
therefore, many orthogonal sectors of states, which are labeled by
the corresponding quantum numbers (total angular momentum,
charge conjugation, flavor quantum numbers). In such a theory one
typically chooses an operator exciting states, which do not have the
quantum numbers of the vacuum, i.e. where h0; θ; VsjOj0;
θ; Vsi ¼ 0, due to symmetry. In the simple quantum mechanical
model parity is the only symmetry, which is broken at θ ≠ 0.
Therefore, constructing an appropriate creation operator is less
straightforward, because h0; θjOj0; θi ¼ 0 is not guaranteed by
obvious symmetries, but has to be shown explicitly.
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(5) Define and calculate the effective mass

M̂eff
Q;T̂ðt̂Þ≡ −

d
dt̂

lnðCQ;T̂ðt̂ÞÞ: ð5:16Þ

2. Effective masses at fixed topology

In Fig. 4 we show effective masses M̂eff
Q;T̂ [Eq. (5.16)] as

functions of the temporal separation t̂ for different topo-
logical sectors Q and T̂ ¼ 6.0=Ê2 ≈ 930.2. As usual at
small temporal separations the effective masses are quite

large and strongly decreasing, due to the presence of
excited states. At large temporal separations there are
also severe deviations from a constant behavior. This
contrasts ordinary quantum mechanics or quantum field
theory (i.e. at unfixed topology) and is caused by topology
fixing. This effect is also visible in the 1=V expansion of
the two point correlation function, in particular in (3.20),
where the exponent is not purely linear in t for large t, but
contains also terms proportional to t2 and t3. At inter-
mediate temporal separations there are plateaulike regions,
which become smaller with increasing topological
charge Q.

3. Comparison of the 1=V expansions of CQ;TðtÞ
and the exact result

In Fig. 5 we show effective masses derived from the 1=V
expansions of two-point correlation functions6 (3.18) (left
column) and (3.20) (right column) using the definition
(5.16). The first, second and third rows correspond to
Q ¼ 0, jQj ¼ 1 and jQj ¼ 2, respectively. To illustrate the
relative importance of 1=V, 1=V2 and 1=V3 terms, we also
show versions of (3.18) and (3.20), which are only derived
up to Oð1=VÞ and Oð1=V2Þ. While less accurate, these
expressions contain a smaller number of parameters,
which might be an advantage, when e.g. fitting to results
from lattice simulations (such a fitting is discussed in
Sec. V C 4). In detail the following curves are shown with
V → T and the parameters taken from Table I:

(i) M̂eff
Q;T̂ðt̂Þ from (3.18), derived up to Oð1=VÞ:

CQ;VðtÞ ¼
αð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2=E2V
p exp

�
−MHð0Þt −

1

E2V

�
1

1þ x2=E2V
− 1

�
1

2
Q2

�
GC

G
;

GC ¼ 1 −
1

E2V
E4ð1þ x4=E4VÞ
8E2ð1þ x2=E2VÞ2

;

G ¼ 1 −
1

E2V
E4

8E2

; ð5:17Þ

8 parameters [E2, E4, MHð0Þ, Mð2Þ
H ð0Þ, Mð4Þ

H ð0Þ, αð0Þ, βð2Þð0Þ, βð4Þð0Þ].
(ii) M̂eff

Q;T̂ðt̂Þ from (3.18), derived up to Oð1=V2Þ:

CQ;VðtÞ ¼
αð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2=E2V
p exp

�
−MHð0Þt −

1

E2V

�
1

1þ x2=E2V
− 1

�
1

2
Q2

�

×

�
1 −

1

ðE2VÞ2
E4

2E2

Q2

�þ1=2
�
1 −

1

ðE2VÞ2
E4ð1þ x4=E4VÞ
2E2ð1þ x2=E2VÞ3

Q2

�
−1=2GC

G
;

GC ¼ 1 −
1

E2V
E4ð1þ x4=E4VÞ
8E2ð1þ x2=E2VÞ2

þ 1

ðE2VÞ2
�
−

E6ð1þ x6=E6VÞ
48E2ð1þ x2=E2VÞ3

þ 35E2
4ð1þ x4=E4VÞ2

384E2
2ð1þ x2=E2VÞ4

�
;

G ¼ 1 −
1

E2V
E4

8E2

þ 1

ðE2VÞ2
�
−

E6

48E2

þ 35E2
4

384E2
2

�
; ð5:18Þ

FIG. 4 (color online). Effective masses M̂eff
Q;T̂ as functions

of the temporal separation t̂ for different topological sectors Q
and T̂ ¼ 6.0=Ê2 ≈ 930.2.

6Note that in quantum mechanics a 1=V expansion is a 1=T expansion.
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11 parameters [E2, E4, E6, MHð0Þ, Mð2Þ
H ð0Þ, Mð4Þ

H ð0Þ,
Mð6Þ

H ð0Þ, αð0Þ, βð2Þð0Þ, βð4Þð0Þ, βð6Þð0Þ].
(iii) M̂eff

Q;T̂ðt̂Þ from (3.18) [which is derived up to
Oð1=V3Þ]; 14 parameters [E2, E4, E6, E8, MHð0Þ,
Mð2Þ

H ð0Þ, Mð4Þ
H ð0Þ, Mð6Þ

H ð0Þ, Mð8Þ
H ð0Þ, αð0Þ, βð2Þð0Þ,

βð4Þð0Þ, βð6Þð0Þ, βð8Þð0Þ].
(iv) M̂eff

Q;T̂ðt̂Þ from (3.20), up to Oð1=VÞ:

CQ;VðtÞ¼ αð0Þexp
�
−MHð0Þt−

1

E2V
x2
2

�
; ð5:19Þ

5 parameters [E2, MHð0Þ, Mð2Þ
H ð0Þ, αð0Þ, βð2Þð0Þ].

(v) M̂eff
Q;T̂ðt̂Þ from (3.20), up to Oð1=V2Þ:

CQ;VðtÞ ¼ αð0Þ exp
�
−MHð0Þt −

1

E2V
x2
2
−

1

ðE2VÞ2

×

�
x4 − 2ðE4=E2Þx2 − 2x22

8
−
x2
2
Q2

��
;

ð5:20Þ

8 parameters [E2, E4, MHð0Þ, Mð2Þ
H ð0Þ, Mð4Þ

H ð0Þ,
αð0Þ, βð2Þð0Þ, βð4Þð0Þ].

(vi) M̂eff
Q;T̂ðt̂Þ from (3.20) [which is derived up

to Oð1=V3Þ]; 11 parameters [E2, E4, E6, MHð0Þ,
Mð2Þ

H ð0Þ, Mð4Þ
H ð0Þ, Mð6Þ

H ð0Þ, αð0Þ, βð2Þð0Þ,
βð4Þð0Þ, βð6Þð0Þ].

FIG. 5 (color online). Effective masses M̂eff
Q;T̂ derived from the 1=V expansions of two-point correlation functions as functions of the

temporal separation t̂ for different topological sectors Q and T̂ ¼ 6.0=Ê2 ≈ 930.2.
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Note that the definition (5.16) of M̂eff
Q;T̂ðt̂Þ eliminates αð0Þ;

i.e. effective masses have one parameter less than the
corresponding two-point correlation functions. For com-
parison we also include the exact result already shown and
discussed in Fig. 4. Finally, the dashed line indicates the
“hadron mass” M̂Hð0Þ at unfixed topology, to demonstrate
the effect of topology fixing on effective masses.
The validity of the shown 1=V expansions has been

discussed in Sec. IV and summarized in terms of four
conditions, which we check for the quantum mechanical
example with parameters Û0 ¼ 5.0, ρ ¼ 0.9 × 2π and
T̂ ¼ 6.0=Ê2:

(i) (C1):
1 ≫ 1=E2T ¼ 1=6.0 and 1 ≫ jQj=E2T ¼ 0,

1=6.0, 1=3.0 for jQj ¼ 0, 1, 2, i.e. fulfilled.
jQj ¼ 3; 4;…, might need a larger T extension.

(ii) (C2):
Solving (C2), jx2j ¼ jMð2Þ

H ð0Þtþ βð2Þð0Þj ≲ 1,
with respect to t and inserting the numbers from
Table I, yields t̂≲ jð1þ βð2Þð0ÞÞ=M̂ð2Þ

H ð0Þj ≈ 26.2.
For significantly larger t̂ values the accuracy of the
1=V expansions is expected to suffer. The “safe
region” t̂≲ 26.2 is shaded in light gray in Fig. 5.

(iii) (C3):
Figure 3 shows that M̂HðθÞ (the analog of mπ

in QCD) is minimal at θ ¼ �π, M̂Hð�πÞ ¼
0.336. mπL corresponds to M̂Hð�πÞT̂ and
M̂Hð�πÞT̂ ¼ 6.0 × M̂Hð�πÞ=Ê2 ≈ 312.6 ≫ 1; i.e.
the condition is clearly fulfilled.

(iv) (C4):
Figure 3 shows that M̂�

HðθÞ − M̂HðθÞ is minimal
at θ ¼ 0, M̂�

Hð0Þ − M̂Hð0Þ ¼ 0.520; therefore,
ðM�

Hð0Þ −MHð0ÞÞt ≫ 1 corresponds to t̂ ≫ 1=
ðM̂�

Hð0Þ − M̂Hð0ÞÞ ≈ 1.92. We consider 6.0 ≫ 1
and shade the corresponding safe region
t̂ > 6.0 × 1.920 ≈ 11.5 in light gray. Finally
MHðθÞðT − 2tÞ ≫ 1 can be solved with respect to
t̂ resulting in t̂ ≪ ðT̂ − 1=M̂HðθÞÞ=2 ≈ 463.6.
Clearly also this condition is fulfilled.

The effective mass plots shown in Fig. 5 are consistent with
these estimates. There is nearly perfect agreement between
the 1=V expansions of M̂eff

Q;T̂ðt̂Þ and the exact results in the

gray regions. On the other hand, the difference of the
effective mass at fixed topology and the mass at unfixed
topology (the quantity one is finally interested in) is quite
large. This clearly indicates that determining hadron masses
from fixed topology simulations with standard methods
(e.g. fitting a constant to an effective mass at large temporal
separations) might lead to sizable systematic errors, which,
however, can be reduced by orders of magnitude, when
using the discussed 1=V expansions of M̂eff

Q;T̂ðt̂Þ.
The number of parameters, in particular for the expansions

derived up to Oð1=V3Þ, i.e. (3.18) and (3.20), is quite large.
This could be a problem, when fitting these expressions to

lattice results for two-point correlation functions, where
statistical accuracy is limited, e.g. for expensive QCD
simulations. A possibility to benefit from the higher order
expansions at least to some extent, while keeping at the same
time the number of fit parameters small, is to use Eqs. (3.18)
and (3.20) [i.e. expansions up to Oð1=V3Þ], but to set
parameters, which are expected to be less important, to zero.
In Fig. 6 we explore this possibility by restricting (3.18) and

(3.20) to the parameters E2, MHð0Þ, Mð2Þ
H ð0Þ and αð0Þ,

which are the 4 parameters of Eq. (3.21), the 1=V expansion
from the seminal paper [12]. In detail the following curves
are shown with the parameters taken from Table I:

(i) M̂eff
Q;T̂ðt̂Þ from (3.18).

(ii) M̂eff
Q;T̂ðt̂Þ from (3.18), restricted to the 3 parameters

E2, MHð0Þ and Mð2Þ
H ð0Þ:

CQ;VðtÞ ¼
αð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2=E2V
p exp

�
−MHð0Þt

−
1

E2V

�
1

1þ x2=E2V
− 1

�
1

2
Q2

�
ð5:21Þ

with x2 ≡Mð2Þ
H t.

(iii) M̂eff
Q;T̂ðt̂Þ from (3.20).

(iv) M̂eff
Q;T̂ðt̂Þ from (3.20), restricted to the 3 parameters

E2, MHð0Þ and Mð2Þ
H ð0Þ:

CQ;VðtÞ¼ αð0Þexp
�
−MHð0Þt−

1

E2V
x2
2
þ 1

ðE2VÞ2

×

�
x22
4
þx2

2
Q2

�
−

1

ðE2VÞ3
�
x32
6
þx22

2
Q2

��

ð5:22Þ

with x2 ≡Mð2Þ
H t.

(v) M̂eff
Q;T̂ðt̂Þ from (3.21), the 1=V expansion from [12].

Even though the number of parameters is identical, the
“parameter restricted Oð1=V3Þ expansions,” in particular
(5.21), are significantly closer to the exact result. In practice,
when fitting to a correlator from fixed topology QCD
simulations with statistical errors, where one is limited in
the number of fit parameters, using (5.21) might be the best
compromise.

4. Extracting hadron masses from fixed topology
simulations

A straightforward method to determine physical hadron
masses (i.e. hadron masses at unfixed topology) from fixed
topology simulations based on the 1=V expansion (3.21)
and (3.22) has been proposed in [12]:
(1) Perform simulations at fixed topology for different

topological charges Q and spacetime volumes V.
Determine “fixed topology hadron masses” MQ;V
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[denoted by MQ in (3.21) and [12]] using (3.21) for
each simulation.

(2) Determine the hadron massMHð0Þ (the hadron mass

at unfixed topology), Mð2Þ
H ð0Þ and E2 ¼ χt by fitting

(3.22) to the fixed topology hadron masses MQ;V

obtained in step 1.
Note, however, that two-point correlation functions at

fixed topology do not decay exponentially ∝ e−MQ;Vt at
large temporal separations t [cf. e.g. (3.18)], as their
counterparts at unfixed topology do. Therefore, determin-
ing a fixed topology and finite volume mass MQ;V is not
clear without ambiguity. One could e.g. define MQ;V at
some temporal separation tM, where the 1=V expansion is a
good approximation, i.e. where the conditions (C2) and
(C4) from Sec. IV are fulfilled, using (5.16), i.e.

MQ;V ≡Meff
Q;VðtMÞ ¼ −

d
dt

lnðCQ;VðtÞÞjt¼tM : ð5:23Þ
We now follow this strategy to mimic the method to

determine a physical hadron mass (i.e. at unfixed topology)
from fixed topology computations using the quantum
mechanical model. To this end we choose t̂M ¼ 20.0,
i.e. a t̂M value inside the “safe gray regions” of Figs. 5
and 6. We use the exact result for the effective mass (shown
e.g. in Fig. 4) in (5.23) to generate M̂Q;T̂ values for several
topological charges Q ¼ 0, 1, 2, 3, 4 and temporal
extensions T̂ ¼ 2.0=Ê2; 3.0=Ê2;…; 10.0=Ê2. Then we per-
form a single fit of either the expansion (3.22) from [12] or

our 1=V3 version restricted to three parameters [Eq. (5.21)]
inserted in (5.23) to these masses M̂Q;T̂ , to determine

M̂Hð0Þ (the hadron mass at unfixed topology), M̂ð2Þ
H ð0Þ and

Ê2 ¼ χ̂t (the curves in Fig. 7). Only those masses M̂Q;T̂

enter the fit, for which the conditions (C1) (we study both
1=Ê2T, jQj=Ê2T ≤ 0.5 and 1=Ê2T, jQj=Ê2T ≤ 0.3) and
(C2) from Sec. IVare fulfilled. Both expansions give rather
accurate results for M̂Hð0Þ (cf. Table II, top, column “fitting

FIG. 7 (color online). Determining the physical mass M̂Hð0Þ
(i.e. the mass at unfixed topology) from a fixed topology
computation; only those masses M̂Q;T̂ are included in the fit,
which fulfill 1=Ê2T, jQj=Ê2T ≤ 0.5 (red points).

FIG. 6 (color online). Effective masses M̂eff
Q;T̂ derived from (3.18) and (3.20) restricted to the parameters E2, MHð0Þ and Mð2Þ

H ð0Þ as
functions of the temporal separation t̂ for different topological sectors Q and T̂ ¼ 6.0=Ê2 ≈ 930.2.
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to M̂Q;T̂”; the relative errors are below 0.1%) and reason-
able results for χ̂t (cf. Table II, bottom, column “fitting to
M̂Q;T̂”; relative errors of a few percent). Note that the

relative errors for both M̂Hð0Þ and χ̂t are smaller, when
using the 1=V3 version restricted to three parameters (5.21).
The drawback of this method is that only fixed topology

results at a single t value, t ¼ tM, enter the final result for
the hadron mass at unfixed topology. To exploit the input
data and also the derived 1=V expansions for the two-point
correlation functions at fixed topology more fully, we
propose another method:
(1) Perform simulations at fixed topology for different

topological charges Q and spacetime volumes V.
Determine CQ;VðtÞ for each simulation.

(2) Determine the physical hadron mass MHð0Þ by
performing a single χ2 minimizing fit of the pre-
ferred 1=V expansions of CQ;VðtÞ [in this work we
have discussed nine different versions, (3.18) (3.20),
(3.21) and (3.22), (5.17), (5.18), (5.19), (5.20),
(5.21), (5.22)] with respect to its parameters
(cf. Sec. V C 3 for a detailed summary of available
expansions and their parameters) to the two-point
correlation functions obtained in step 1. This input
from step 1 is limited to those Q, V and t values, for
which the conditions (C1), (C2) and (C4) from
Sec. IV are fulfilled.

Note that this method can also be applied when using
correlation matrices at fixed topology. Then corresponding
expansions, e.g. (3.52) to (3.54), have to be fitted simulta-
neously to all elements of the correlation matrix.
We apply this strategy to the quantum mechanical

example using the same Q ¼ 0, 1, 2, 3, 4 and T̂ ¼
2.0=Ê2; 3.0=Ê2;…; 10.0=Ê2 values as before. t̂ is limited

to 12 ≤ t̂ ≤ 26 and sampled equidistantly. Since our input
data are exact,7 i.e. have no statistical errors, the χ2 minimiz-
ing fit becomes an ordinary least squares fit. Again we
compare the 1=V expansion from [12] [Eqs. (3.21) and
(3.22)] and our 1=V3 version restricted to three parameters
(5.21). As before, we find rather accurate results for
M̂Hð0Þ and χ̂t (cf. Table II, columns “fitting to correlators”).
Note that the relative errors for both M̂Hð0Þ and χ̂t are smaller,
when using the 1=V3 version restricted to three parameters
(5.21). The relative errors are also smaller compared to
the previously discussed method of “fitting to M̂Q;T̂ .”

VI. CONCLUSIONS AND OUTLOOK

In this work we have extended a calculation of the Q, V
and t dependence of two-point correlation functions at
fixed topology from [12]. While in [12] the expansion
included all terms of Oð1=χtVÞ and some of Oð1=ðχtVÞ2Þ,
we have derived the complete result up to Oð1=ðχtVÞ3Þ.
Since χtV ≲ 10 in many ensembles of typical nowadays
lattice QCD simulations (cf. e.g. [14–17]), fixed topology
corrections of order 1=ðχtVÞ2 or even 1=ðχtVÞ3 might be
sizable, in particular for topological charge Q ≥ 2, as e.g.
demonstrated in Fig. 6. We have also discussed parity
mixing in detail, which appears at fixed topology already at
Oð1=χtVÞ. In particular we have derived corresponding
expansions of correlation functions between P ¼ − and
P ¼ þ operators as well as contributions of opposite parity

TABLE II. Collection and comparison of results for M̂Hð0Þ and χ̂t from fixed topology computations; “rel. error” denotes the relative
difference from the exact result, i.e. the systematic error associated with the determination of M̂Hð0Þ and χ̂t from two-point correlation
functions at fixed topology.

M̂Hð0Þ results from fixed topology computations (exact result: MH ¼ 0.40714)

Fitting to M̂Q;T̂ Fitting to correlators

Expansion M̂Hð0Þ result Rel. error M̂Hð0Þ result Rel. error
1

χtV
, jQj
χtV

≤ 0.5 hep-lat/0302005 0.40733 0.047% 0.40702 0.029%
(5.21) 0.40708 0.014% 0.40706 0.019%

1
χtV

, jQj
χtV

≤ 0.3 hep-lat/0302005 0.40739 0.062% 0.40732 0.044%
(5.21) 0.40695 0.046% 0.40713 0.002%

χ̂t results from fixed topology computations (exact result: χ̂t ¼ 0.00645)

Fitting to M̂Q;T̂ Fitting to correlators

Expansion χ̂t result Rel. error χ̂t result Rel. error
1

χtV
, jQj
χtV

≤ 0.5 hep-lat/0302005 0.00586 9.1% 0.00629 2.5%
(5.21) 0.00631 2.2% 0.00633 1.9%

1
χtV

, jQj
χtV

≤ 0.3 hep-lat/0302005 0.00590 8.5% 0.00627 2.8%
(5.21) 0.00592 8.2% 0.00630 2.3%

7Note that in QCD the exact correlator CQ;VðtÞ at fixed
topological charge Q and spacetime volume V will be provided
by lattice simulations, i.e. has statistical errors.
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hadrons to correlation functions between operators of
identical parity.
We have applied, discussed and checked our results in

the context of a simple model, a quantum mechanical
particle on a circle, both in the free case and for a square
well potential. We have studied and compared various
orders and versions of the 1=V expansion of CQ;VðtÞ
differing in accuracy and in the number of parameters.
We also discussed and demonstrated how to extract a mass
at unfixed topology from computations of two-point
correlation functions at fixed topology. In practice, e.g.
in QCD, where computed two-point correlation functions
have limited accuracy, due to statistical errors, one probably
needs a 1=V expansion of CQ;VðtÞ with a rather small
number of parameters to be able to perform a stable fit. We
recommend to use the 1=V expansion (5.21), which seems
to be a good compromise:

(i) It contains certain 1=V2 and 1=V3 terms and,
therefore, seems to be more accurate than the
expansion from [12] (cf. Fig. 6).

(ii) At the same time the number of fit parameters is
quite small [E2,MHð0Þ andMð2Þ

H ð0Þ], the same as for
the expansion from [12].

Currently we are applying the equations and methods
derived and discussed in this work to simple quantum field
theories, e.g. the Schwinger model and pure Yang-Mills
theory (cf. also [18–21,23] for existing work in this
direction). The final goal is, of course, to develop and
establish methods to reliably extract hadron masses from
QCD simulations at fixed topology.
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APPENDIX: TECHNICAL ASPECTS OF A
QUANTUM MECHANICAL PARTICLE ON A

CIRCLE IN A SQUARE WELL

1. Wave functions

After replacing pφ → −i∂φ, Schrödinger’s equation is

�
1

2I

�
−i∂φ þ

θ

2π

�
2

þ UðφÞ
�
ψnðφ; θÞ ¼ EnðθÞψnðφ; θÞ:

ðA1Þ

The wave function with energy EnðθÞ in “region 1,”
−ρ=2 < φ < þρ=2, where UðφÞ ¼ 0, is

ψ ð1Þ
n ðφ; θÞ ¼ ðAnðθÞeþipφ þ BnðθÞe−ipφÞe−iðθ=2πÞφ;

p ¼
ffiffiffiffiffiffiffiffiffiffi
2EnI

p
; ðA2Þ

in “region 2”, þρ=2 < φ < 2π − ρ=2, where UðφÞ ¼ U0,

ψ ð2Þ
n ðφ; θÞ ¼ ðCnðθÞeþiqφ þDnðθÞe−iqφÞe−iðθ=2πÞφ;

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðEn − U0ÞI

p
: ðA3Þ

The coefficients AnðθÞ, BnðθÞ, CnðθÞ and DnðθÞ have to be
chosen such that both the wave function and its derivative
are continuous, i.e. that

ψ ð1Þ
n ðþρ=2; θÞ ¼ ψ ð2Þ

n ðþρ=2; θÞ;
ψ ð2Þ
n ð2π − ρ=2; θÞ ¼ ψ ð1Þ

n ð−ρ=2; θÞ;
ψ 0ð1Þ
n ðþρ=2; θÞ ¼ ψ 0ð2Þ

n ðþρ=2; θÞ;
ψ 0ð2Þ
n ð2π − ρ=2; θÞ ¼ ψ 0ð1Þ

n ð−ρ=2; θÞ ðA4Þ

are fulfilled, which is only possible for specific discrete
values of EnðθÞ. Note that, even after properly normalizing
the wave function ψnðφ; θÞ, its coefficients AnðθÞ, BnðθÞ,
CnðθÞ and DnðθÞ are only unique up to a phase.

2. Probability density to find a particle

The probability density to find a particle with wave
function ψnðφ; θÞ is Pnðφ; θÞ≡ jψnðφ; θÞj2. In the follow-
ing it will be shown that Pnðþφ; θÞ ¼ Pnð−φ; θÞ.
First note that ðψnðφ; θÞÞ� and ψnð−φ; θÞ fulfill the same

Schrödinger equation, which implies

ðψnðφ; θÞÞ� ¼ ηψnð−φ; θÞ; ðA5Þ

where η is a nonunique phase.
Now consider region 1, where

ðψnðφ; θÞÞ� ¼ ððAnðθÞÞ�e−ipφ þ ðBnðθÞÞ�eþipφÞeþiðθ=2πÞφ

ðA6Þ

and

ψnð−φ;θÞ¼ ðAnðθÞe−ipφþBnðθÞeþipφÞeþiðθ=2πÞφ: ðA7Þ

Inserting these expressions in (A5) yields

ðAnðθÞÞ� ¼ ηAnðθÞ; ðBnðθÞÞ� ¼ ηBnðθÞ ðA8Þ

and, consequently,

AnðθÞðBnðθÞÞ� ¼ ðAnðθÞÞ�BnðθÞ: ðA9Þ

With this relation it is easy to show that the probability
density is an even function,
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Pnðþφ;θÞ¼ðψnðþφ;θÞÞ�ψnðþφ;θÞ
¼ jAnðθÞj2þjBnðθÞj2
þAnðθÞðBnðθÞÞ�|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

¼ðAnðθÞÞ�BnðθÞ

eþ2ipφþðAnðθÞÞ�BnðθÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
¼AnðθÞðBnðθÞÞ�

e−2ipφ

¼ðψnð−φ;θÞ�ψnð−φ;θÞ
¼Pnð−φ;θÞ: ðA10Þ

Using similar arguments one can show that also in region
2 Pnðþφ; θÞ is an even function.

An important consequence is

h0; θj sinðφÞj0; θi ¼
Z

2π

0

dφðψnðφ; θÞÞ� sinðφÞψnðφ; θÞ

¼
Z

2π

0

dφPnðφ; θÞ|fflfflfflffl{zfflfflfflffl}
even

sinðφÞ|fflffl{zfflffl}
odd

¼ 0; ðA11Þ

which has been used in Sec. V C.
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