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The spectrum of excitations of triply charmed baryons is computed using lattice QCD including
dynamical light quark fields. Calculations are performed on anisotropic lattices with temporal and spatial
spacings at ¼ 0.0351ð2Þ fm and as ∼ 0.12 fm, respectively, and with pion mass of about 390 MeV. The
spectrum obtained has baryonic states with well-defined total spin up to 7

2
and the low-lying states closely

resemble the expectation from models with an SUð6Þ ×Oð3Þ symmetry. Energy splittings between
extracted states, including those due to spin-orbit coupling in the heavy quark limit, are computed and
compared against data at other quark masses.
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I. INTRODUCTION

The charmonium spectrum has been studied in detail in
both experiments and theoretical calculations over many
years. This has provided crucial input into our under-
standing of the nature of the strong interaction. In contrast,
while charm baryons can provide similar insight, they have
not yet been studied so thoroughly. Only a handful of
charmed baryons have been discovered and a reliable
determination of the quantum number of most of the
observed states has not been made [1]. Only very recently
have a few excited singly charmed baryons been observed,
and the discovery status of the doubly charmed baryons
remains unsettled. While the SELEX experiment observed
doubly charmed ΞccðccuÞ baryons [2–4], these have not
been confirmed either by BABAR [5] or Belle [6]. Along
with the well-established triply flavored ΔðuuuÞ and
strange ΩðsssÞ baryons, QCD predicts similar states built
from charm quarks, the triply charmed baryon,Ωccc. Such a
state has yet to be observed. Beside Ωccc, QCD also
predicts many other triply charmed baryons, which can
be considered as the baryon analogues of charmonia. While
it has been pointed out that semileptonic decay processes
such as Ωþþ

ccc → Ω−
sss þ 3μþ þ 3νμ and Ωþþ

ccc → Ω−
sss þ 3πþ

possibly can offer signature for a “ccc” event [7], the
production of triply charmed baryons in current charm
factories is difficult (see Refs. [8,9] for triply charmed
baryon production). However, it is expected that the large
statistical sample collected at the LHCb experiment, the

PANDA experiment at the FAIR facility, Belle II at KEK
and BES III may be able to provide some information on
triply charmed baryons, along with other baryons contain-
ing charm quarks.
The triply charmed baryons may provide a new window

for understanding the structure of baryons, as pointed out
by Bjorken several years ago [7]. A comprehensive study
of the excitation spectra of these states, where the com-
plications of light-quark interaction are absent, can provide
information about the quark confinement mechanism as
well as elucidating our knowledge about the nature of the
strong force by providing a clean probe of the interplay
between perturbative and nonperturbative QCD [10].
On the theoretical side, one expects that potential models
will be able to describe triply charmed baryons to a similar
level of precision as their success in charmonia. Just as the
quark-antiquark interactions are examined in charmonia,
these studies will probe the quark-quark interactions in the
charm sector. The spectra for triply charmed baryons have
been studied theoretically by nonrelativistic [11,12] and
relativistic [13,14] quark models, quark models in the
Faddeev formalism [15], the bag model [16], effective
field theory with potential NRQCD [17–20], heavy quark
spin symmetry [21], variational method [22], QCD sum
rules [23,24], Regge phenomenology [25] and the one-
gluon-exchange model [26]. However, in the absence of
any experimental discovery the only way to test these
model-dependent as well as perturbative approaches is to
compare these with the results from nonperturbative lattice
QCD calculations. By using lattice QCD, several calcu-
lations have already been performed to compute the ground
state triply charmed baryon, ΩcccðJP ¼ 3

2
þÞ, including

quenched [27] as well as full QCD [28–32].
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A quantitative description of the spectra of triply
charmed baryons using a nonperturbative method such
as lattice QCD is thus important for a number of reasons.
First, as mentioned above, it will be interesting to compare
the spectra of triply charmed baryons computed from a first
principles method to those obtained from potential models
which have been very successful for charmonia. Second,
all results from such first principles calculations will be
predictions and thus naturally can provide crucial inputs to
future experimental discovery. Given this significance of
triply charmed baryons, it is desirable to study these states
comprehensively using lattice QCD. All previous lattice
calculations have studied only the ΩcccðJP ¼ 3

2
þÞ ground

state. However, it is expected that more information about
interactions between multiple charm quarks can be
obtained by computing the excited state spectra of
ΩcccðJP ¼ 3

2
þÞ baryons, including in particular the spin-

dependent energy splittings, as well as by studying similar
spectra for other triply charmed baryons with all spin and
parity combinations. In this work, we make the first attempt
towards this goal and compute the excited state spectra
of triply charmed baryons using dynamical lattice QCD.
The ground states for each spin-parity channel up to spin
7=2 are computed along with a number of their excited
states and several spin-dependent energy splittings. Similar
studies of singly and doubly-charmed baryons will be
reported in subsequent publications.
We use a well-defined procedure developed and

employed extensively for extracting excited states for light
mesons [33–35], mesons containing charm quarks [36,37],
and light and strange baryons [38–40]. This method uses
anisotropic lattice configurations with the light quark
dynamics included [41,42]. The anisotropic discretization
helps us to obtain better resolution of the correlation
functions, which is very helpful for the extraction of
excited states. Furthermore, we construct a large set of
baryonic operators in the continuum and then subduce them
to various lattice irreducible representations to obtain lattice
operators [38]. These operators transform as irreducible
representations (irreps) of SUð3ÞF symmetry for flavor,
SUð4Þ symmetry for Dirac spins of quarks and Oð3Þ
symmetry for orbital angular momenta. Finally, using a
novel technique called “distillation” [43], correlation func-
tions of these operators are computed and the variational
method is utilized to extract excited energies as well as to
reliably determine the spins of these states.
The layout of the remainder of the paper is as follows. In

the next section, we describe the details of our numerical
methods mentioning first the details of lattices used and
then the construction of the lattice interpolating operators in
subsection II B. In subsection II C, we detail the generation
and analysis of baryon correlation functions by distillation
and variational methods and then in II D we discuss our
procedure of identifying the continuum spins of the
extracted states; subsection II E discusses about the lattice

artifacts related to thiswork. In Sec. IIIwe present our results
and give details of energy splittings in subsection III A.
Finally, a summary of the work is presented in Sec. IV.

II. LATTICE METHODOLOGY

In this section, the details of our Monte Carlo calculation
of triply charmed baryon excitations using lattice QCD
are described. In recent years the Hadron Spectrum
Collaboration has exploited a dynamical anisotropic lattice
formulation to extract highly excited hadron spectra. In this
approach a lattice with a much finer temporal spacing than
in the spatial directions is employed. The high temporal
resolution means many time slices are available to compute
the signal for highly excited states which decay very rapidly
at large Euclidean time separations leading to a increase in
the noise-to-signal ratio. The anisotropic lattice achieves this
resolution while avoiding the computational cost which
would come from reducing the spacing in all directions.

A. The lattice action

The tree-level Symanzik-improved gauge action and
the anisotropic Shekholeslami-Wohlert fermion action with
tree-level tadpole improvement and three-dimensional
stout-link smearing of gauge fields are used. More details
of the formulation of actions as well as the techniques used
to determine the anisotropy parameters can be found in
Refs. [41,42].
The lattice action parameters of the gauge-field ensem-

bles used this work are given in Table I. As mentioned in
Ref. [38], the temporal lattice spacing at was determined
by equating the Ω-baryon mass measured on these ensem-
bles atmΩ ¼ 0.2951ð22Þ with the physical value, mΩ ¼
1672.45ð29Þ MeV. This leads to a−1t ¼ 5.67ð4Þ GeV and
with an anisotropy of close to 3.5, as ¼ 0.12 fm. This gives
a spatial extent of about 1.9 fm, which should be suffi-
ciently large for a study of triply charmed baryons.
The details of the charm quark action used for this study

are given in Ref. [36]. The action parameters for the charm
quark are obtained by ensuring the mass of the ηc meson
takes its physical value and its dispersion relation at low
momentum is relativistic. As mentioned in [36], it is
expected that the effects due to the absence of dynamical
charm quark fields in this calculation will be small.

B. Baryon operator construction

We follow the same methods described in Ref. [38] for
the construction of baryon interpolating operators on the

TABLE I. Properties of the gauge-field ensembles used. Ncfgs is
the number of gauge-field configurations.

Lattice size atml atms Ncfgs mπ=MeV mK=mπ atmΩ

163 × 128 −0.0840 −0.0743 96 391 1.39 0.2951(22)
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lattice. Baryons are color singlets made of three quarks and
so have anti-symmetric wave functions in color space.
Since they are fermions, their interpolating operators
excluding the color part should be totally symmetric
combinations of all the quark labels representing flavor,
spin and the spatial structure. Our construction of baryon
interpolating operators proceeds in two stages; first, a set of
continuum operators with well-defined continuum spin is
defined. These operators are then subduced into irreducible
representations of the double-cover octahedral group.
The overall spin and parity of a continuum baryon

interpolating operator can be found by decomposing it
into a combination of three components,

O½JP� ¼ ½FΣF
⊗ SΣS

⊗ DΣD
�JP ; ð1Þ

where F , S and D represent flavor, Dirac spin and spatial
structure, respectively, while the subscripts Σi specify the
permutation symmetry in the respective subspaces. The
details of these permutation symmetries and their combi-
nations are given in Refs. [38,40]. After combining them
together, we get interpolating fields with specific spin and
parity which are overall symmetric under permutations.
The flavor combination FΣF

of triply charmed operators
must be totally symmetric and is the same as that of the
IZ ¼ �3=2 part of the Δ and the Ω baryon operators.
Consequently the remaining spin and spatial part must be
combined together in a symmetric combination to form an
overall symmetric interpolating operator. The spin sym-
metry combinations SΣS

in Dirac space can be obtained by
combining the ρ and σ spins for a quark field ψμ ¼ qρσ, as
explained in Ref. [38]. Only creation operators formed
from the upper two components of the four-component
Dirac spinor appear at leading order in a velocity expan-
sion. Those based on the lower components of Dirac
spinors are relativistic.
The spatial symmetry combinations DΣD

depend on the
gauge covariant derivatives acting on the three quark fields.
As in our previous studies [38,40], we include up to two
covariant derivatives. These are combined to transform
irreducibly with orbital angular momentum, L, giving
access to L ¼ 0; 1 and 2. Without derivatives, only the
totally symmetric Dirac spin structure is allowed. The
single derivative structures can have mixed symmetry or
mixed antisymmetry and hence they can only be combined
with Dirac spin structures with mixed symmetry and mixed
antisymmetry, respectively. With up to one derivative it is
possible to construct operators with spins up to 3

2
while for

baryons with flavor-mixed symmetry it is up to 5
2
. However,

two derivative projection operators can be combined with
all spin symmetry combinations SΣS

in Dirac space which
enables states with spins up to 7

2
. In Table II, we show

allowed spin-parity patterns of operators using the upper
quark spinors combined with up to two covariant deriva-
tives. Note that with the nonrelativistic Dirac spin

components alone, it is not possible to construct a negative
parity state beyond spin 3

2
− even with operators that include

two derivatives. This limited the extraction of spin-5
2
− and

spin-7
2
− states in Ref. [44]. Use of relativistic operators

along with nonrelativistic ones enable us to extract these
negative parity states along with more excited states.
With two derivatives, a subset of operators with L ¼ 1 in

mixed-symmetric and mixed-antisymmetric combinations
[39] are identified as hybrid operators because they vanish
in the absence of a gluon field. Note that a color-singlet
object ½ðqqqÞ8cG8c

�1c can be constructed through a combi-
nation of three quarks in a color octet with a gluon field, G.
Table II shows the pattern of states expected to be created
by two-derivatives operators built from nonrelativistic
quark spinors. As will be observed later, operators which
incorporate the gluon field-strength tensor are essential in
obtaining some states in the spectrum.
To define a creation operator that respects the sym-

metries of the lattice, continuum operators with definite
spin and parity are subduced into the irreps of the cubic
group. The three irreps of the double-valued representa-
tions of the octahedral group for half-integer spins are G1,
G2 and H. The details of this subduction procedure was
discussed in Ref. [38]. After completing the subduction
procedure, the number of operators used for this study are
shown in Table III. In each irrep, the same number of
operators for both positive and negative parities, denoted
by the subscript g and u, respectively, are used. This table
also gives the number of operators made exclusively from
nonrelativistic quark spinors (NR) and those hybrid oper-
ators which vanish in the absence of a gluon field.
We have followed the same naming convention as

Ref. [38]. Since there are only charm valence quarks in
this calculation we do not refer to flavor and name an
operator according to its spin and spatial structure.

TABLE II. The number of operators of a given JP that can be
constructed from up to two derivatives acting on nonrelativistic
quark spinors. ND indicates the number of covariant derivatives,
S indicates the total spin of the quarks and L indicates the total
orbital angular momentum. The row indicated in bold face
contains the two-derivative “hybrid” operators, which vanish
in the absence of a gluon field.

NðJPÞ
ND L S 1

2
þ 3

2
þ 5

2
þ 7

2
þ 1

2
− 3

2
−

0 0 3
2

1

1 1 1
2

1 1

2 0 1
2

1

2 0 3
2

1

2 1 1
2 1 1

2 2 1
2

1 1

2 2 3
2

1 1 1 1
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For example, in the operator O ¼ ½ð3
2
þ
1;SÞ ⊗ D½2�

L¼2;S�
7
2Hg1,

the label ð3
2
þ
1;SÞ indicates the quark spins are combined to

form the first (1) embedding of the Hg (3=2) irrep in the

symmetric (S) combination, D½2�
L¼2;S represents two covar-

iant derivatives with two units of angular momentum in
the symmetric combination, the

7
2 part of the name indicates

the continuum spin J ¼ 7=2 and Hg1 indicates the lattice
operator transforms as the first row of the subduced
irrep Hg.

C. Variational analysis of correlation functions

We employ a variational method to extract the spectrum
of baryon states from the matrix of correlation functions
calculated by using the large basis of interpolating oper-
ators described above. For operators i and j, in a given irrep
Λ, we calculate the matrix of correlation functions,

CΛ
ijðtf − tiÞ ¼ h0jŌiðtfÞOjðtiÞj0i; ð2Þ

between a baryon creation operators at time ti and an
annihilation operator at time tf. An efficient way to
construct this correlation matrix for the large basis of
interpolating operators utilized in this work is through the
distillation method, detailed in Ref. [43] and utilized in
various calculations by the collaboration. Distillation is a
smearing method that defines a linear smoothing operator
with support only in a small space of physically relevant
vectors. As with other recent calculations by the collabo-
ration, we use the low-lying eigenvectors of the gauge-
covariant three-dimensional Laplacian in this calculation.
The correlation function of Eq. (2) then factorizes, enabling
efficient computation of all elements of the matrix. The
distillation method is useful for these calculations since
it provides a technique to determine the full matrix of
correlation functions for any number of smeared operators
at both source and sink. For this work, the distillation
method was realized by constructing the smearing operator
from the lowest 64 eigenvectors of the Laplacian.
Correlation functions are then constructed using a set of
four time sources per gauge configuration.
The variational method enables a reliable extraction of

the spectrum beyond the ground state. The method [45,46]

proceeds by solving a generalized eigenvalue problem of
the form

CijðtÞvnj ¼ λnðt; t0ÞCijðt0Þvnj ; ð3Þ

where vn is the nth eigenvector and the eigenvalues,
λnðt; t0Þ are termed the “principal correlators” and obey

lim
t−t0→∞

λnðt; t0Þ ¼ e−Enðt−t0Þ; ð4Þ

with En the energy of the nth excited state. An appropriate
reference time-slice t0 is chosen for diagonalization as
described in Refs. [33,34,47], which corresponds to a
minimum of a χ2-like quantity as defined in Ref. [47].
We extract the energy of a state by fitting the dependence of
λn on t − t0 to the form

λnðt; t0Þ ¼ ð1 − AnÞe−mnðt−t0Þ þ Ane−m
0
nðt−t0Þ; ð5Þ

with three fit parameters mn;m0
n and An. As with our

previous studies, we find that allowing a second exponen-
tial stabilizes the fits and the resulting second exponential
decreases rapidly with large t0. All the excited states in
our fits are found to be less than the second exponentialm0

n.
In Fig. 1 we plot some examples of fits to the principal
correlators in irrep Hg, where the fitted states will be
identified with JP ¼ 3

2
þ. The fits approach the constant

value, 1 − An, for large t, and they approach one if a single
exponential dominates. This is seen to be the case for most
of our fits. In Table IV we show fit results for the lowest
three states in each irrep. While fitting principal correlators
we used a standard χ2 minimization procedure incorporat-
ing the measured data covariance.

D. Rotational symmetry and continuum spin
identification

One goal of lattice calculations such as this one is to
ensure that any states identified can be assigned continuum
quantum numbers in a reliable way. As the continuum limit
is taken, rotational symmetry should be restored. The use
of smeared fields in construction operators should to help
make this restoration more directly observable.
With the aim of making a more direct link with physical

quantum numbers, operators were constructed first in the
continuum and then subduced onto the lattice irreps.
Therefore, it is useful to determine whether these lattice
operators exhibit a remnant of the continuum rotational
symmetry on the lattice. To check this, Fig. 2 shows the
correlation function in the Hg irrep at time-separation 5at
after normalizing using Cij=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
CiiCjj

p
. The choice of time-

separation here is arbitrary, with alternatives giving similar
pictures. We do not use this figure for spin identification.
The normalization ensures all the diagonal entries are unity,
while cross correlations are always less than 1. Various

TABLE III. The number of lattice operators obtained after
subduction to various irreps of operators with up to two covariant
derivatives. The number of nonrelativistic (NR) and hybrid
operators for each irreps and for both parities are given.

G1 H G2

g u g u g u

Total 20 20 33 33 12 12
Hybrid 4 4 5 5 1 1
NR 4 1 8 1 3 0
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operators are represented by the following abbreviations:
“r” indicates relativistic quark spinor components are used
while “nr” indicates nonrelativistic spinor only, “h” denotes
hybrid operators and “nh” indicates nonhybrid. There are
33 operators used in this irrep, including operators up to
two derivatives. The solid lines divide these operators
subduced from continuum spins 3

2
; 5
2
and 7

2
, and the dashed

lines are used for separating operators defined above with
various abbreviations. The matrix is seen to be almost block

diagonal in the continuum spin label. A similar pattern is
also observed for light and strange baryons [40] and our
result for triply charmed baryons also suggests that after
the subduction a remarkable degree of rotational symmetry
remains. Similar block-diagonal matrices of correlation
functions are also observed within other irreps. The
approximate block-diagonal structure of these matrices
gives confidence in our ability to make unambiguous spin
identification for triply charmed baryons.
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FIG. 1 (color online). Principal correlator fits for six states in irrepHg that are identified as JP ¼ 3=2þ. Fits are obtained using Eq. (5).
Data points are obtained from emnðt−t0ÞλnðtÞ and the lines show the fits and one sigma-deviation according to the fitting form
emnðt−t0ÞλnðtÞ ¼ 1 − An þ Ane−ðm

0
n−mnÞðt−t0Þ, with t0 ¼ 10; the grey points are not included in the fits.

TABLE IV. Fit results from principal correlators of the lowest three states in all the irreps.

Positive parity Negative parity

Irrep atmn Range χ2=d:o:f: atmn Range χ2=d:o:f:

G1 0.9460 (23) [3–22] 1.30 0.8970 (16) [4–22] 1.44
0.9470 (24) [3–22] 0.94 0.9832 (54) [4–22] 0.77
0.9505 (23) [3–22] 0.62 0.9866 (76) [4–22] 2.54

H 0.8345 (11) [4–22] 1.49 0.8977 (23) [4–22] 0.97
0.9315 (55) [14–22] 1.55 0.9558(259) [5–20] 1.20
0.9513 (22) [3–22] 1.62 0.9920 (53) [4–22] 0.76

G2 0.9523 (18) [1–22] 1.67 0.9189(217) [5–22] 1.36
0.9524 (25) [3–22] 1.38 0.9812(117) [12–22] 1.96
0.9529 (32) [4–22] 1.56 0.9977 (55) [4–22] 0.88
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From this figure, we can also identify the mixing
between different operators. For example, it is evident
from Fig. 2 that there is strong mixing between
“nr-nh”- and “r-nh”-type operators and comparatively weak
mixing between “h”- and “nh”-type operators. As was
observed in Ref. [44], we also found additional suppression
of mixing for operators with a given J, but with different L
and S, compared to those with the same J, as well as the

same L and S. For example, for the operators O1 ¼
½ð3
2
þ
1;SÞ ⊗ D½0�

L¼0;S�
3
2Hg1 and O2 ¼ ½ð3

2
þ
1;SÞ ⊗ D½2�

L¼0;S�
3
2Hg1

which both have J ¼ 3=2; L ¼ 0; S ¼ 3=2 the matrix
element M12¼C12=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11C22

p ¼0.99. On the other hand,

the mixings of these operators with O3¼½ð3
2
þ
1;SÞ⊗

D½2�
L¼2;S�

3
2Hg1 which has J ¼ 3=2; L ¼ 2; S ¼ 3=2 are

M13 ¼ 0.0026 and M23 ¼ 0.0031. This suppression of
mixing is however evident only for the nonrelativistic
operators. We found that for some relativistic operators
mixing enhance between operators with same J but differ-
ent L and S, compared to those with same J, L and S.
To identify the spin of a state we followed the same

method detailed in Ref [47] and used in the calculations of
light mesons [33–35], baryons [38,40], charm mesons [36]

as well as heavy-light mesons [37]. The main ingredient is
the overlap factor, Zn

i , of an operator, Oi, to a state, n,
which we define as, Zn

i ≡ hnjO†
i j0i. It is possible to show

that these overlap factors enter in the spectral decompo-
sition of the matrices of the correlation functions as

CijðtÞ ¼
X

n

Zn�
i Zn

j

2mn
e−mnt: ð6Þ

Furthermore, one can use the orthogonality for the eigen-
vectors vn†Cðt0Þvm ¼ δn;m to show that the overlap factors
can be obtained from the eigenvectors from the relation

Zn
i ¼

ffiffiffiffiffiffiffiffiffi
2mn

p
emnt0=2vn�j Cjiðt0Þ: ð7Þ

As in previous studies, we utilize these overlap factors for
spin identification. Figure 3 shows a histogram of these
factors for a number of operators onto some of the lower-
lying states in each of the lattice irreps. The factors
presented in this figure are normalized according to

Zn
i

maxn½Zn
i � such that the largest overlap across all states for

a given operator is unity. The figure shows clearly that for

nr nh

nr
h

r nh r h

nr
nh r nh

r
nh

nr
nh r nh

nr nh

nr h

r nh

r h

nr nh

r nh

r nh
nr nh

r nh

3 2 5 2 7 2

3
2

5
2

7
2

t
5

0.17

0.34

0.50

0.67

0.83

1.00

FIG. 2 (color online). A normalized correlation matrix, Cij=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
CiiCjj

p
, at a given time slice at t=at ¼ 5 for the Hg irrep. Operators are

ordered such that those subduced from spin 3=2 appear first followed by spin 5=2 and then spin 7=2.
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each state, operators coming from a single set subduced
from a continuum spin dominate. This gives us confidence
in the spin assignment for the triply charmed baryons.
As in Ref. [40], one can also show a “matrix” plot to

depict the dominant contribution to each state from all
operators. Figures 4 and 5 show examples for the G1g and
Hg irreps where the horizontal axis corresponds to the
operator index, while the vertical location indicates the
different states obtained in the fitting procedure. Solid lines
between columns are used to distinguish operators sub-
duced from different continuum spins while dashed lines
separate operators of different types in a given spin.
Figure 4 shows states 2 and 8 predominantly overlap with
spin 7

2
þ operators and hence can be identified as JP ¼ 7

2
þ

states. For all other fitted states, dominant overlaps are
from spin 1

2
þ operators. However, in order to confirm the

reliability of the identification of a state with a given spin
one has to compare the magnitudes of overlap factors of
one operator which is subduced into different irreps, which
will be discussed later.
These plots give some information on the structure of a

state, in particular the type of operators from which it is

constructed. For example, states 2 and 8 in G1g, which are
identified as 7

2
þ states, have predominant overlap to non-

relativistic nonhybrid and relativistic nonhybrid operators,
respectively. Similarly, state 4 overlaps mainly with rela-
tivistic nonhybrid operators. Strong hybrid content was
similarly observed in a number of states. It is to be noted
from these figures that hybrid operators contribute pre-
dominantly to high-lying states in our observed spectrum.
To identify a spin contained within a single irrep is

relatively easy. For example, by studying the overlap
factors shown in the histogram and matrix plots spin-1

2

and spin-3
2
states are clearly identified. However, spin-5

2
and

spin-7
2
states appear in multiple lattice irreps and so more

information is crucial. In these cases, an operator can be
subduced to various irreps but in the continuum limit,
overlap factors of a continuum operator with a particular
state obtained from various cubic irreps should be almost
the same. For example, the spin-7=2 continuum operator,

½ð3=2þÞ1;S ⊗ D½2�
L¼2S�

7
2
þ
, can be subduced to irrepG1g,Hg as

well as to G2g. However, it is expected that at a finite lattice
spacing for a particular spin-7

2
þ state which is near

G1 g

G2 g

Hg

FIG. 3 (color online). Histograms of the normalized overlap factor, Z of a set of operators onto some of the lower-lying states in each

lattice irrep. The overlaps shown are weighted Zn
i

maxn½Zn
i �, such that the largest normalized value across all states for a given operator is unity.

Various operators are depicted in each state however, due to the large basis size, their names are not shown here. Black bars correspond
to spin-1=2 state, red for spin-3=2, green for spin-5=2 and blue represents spin-7=2 states. Lighter and darker shades at the top of each
bar represent the one-sigma statistical uncertainty.
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degenerate over these irreps, overlap factors of the above
operator to that state would also be degenerate. This near
degeneracy of overlap factors identifies this state as spin-7

2
þ

state. In Fig. 6 we compare a selection of Z values for states

conjectured to be J ¼ 5
2
þ (top two plots), 5

2
− (middle two

plots), 7
2
þ (bottom left) and 7

2
− (bottom right) which can

be subduced to different irreps. The values of Z obtained
for a given operator from different irreps are found to be
consistent, or have very small deviations in high-lying
states which gives confidence in the spin interpretation.
Deviations may be due to small remaining renormalization
or discretization artifacts.

E. Investigating lattice artifacts

For a simulation carried out at a finite lattice cutoff, the
results obtained will differ from their continuum counter-
parts and the difference can be understood in a Symanzik
expansion in powers of the lattice spacing. Usually, the best
means of removing these artifacts is to perform calculations
at a range of lattice spacings and to use the expansion to
extrapolate to vanishing lattice spacing. In this study, we do
not have sufficient data to carry out this extrapolation. In
Ref. [36], a simple experiment was carried out to provide a
crude estimate of the systematic uncertainty due to OðaÞ
discretization artifacts. The charm quark action is discre-
tized using an action that removes the OðasÞ effects at the
tree level. To assess if radiative corrections to the coef-
ficient of the improvement term in the charm-quark action
could lead to significant changes in physical predictions, a
second calculation was carried out after the coefficient was
boosted from the tree-level cs ¼ 1.35 to cs ¼ 2. In the
charmonium study, the shift in the mass difference between
the two lightest states, the ηc and J=Ψ was found to be
45 MeV. For the energy difference mΩccc

− 3=2mηc , a very
similar shift is observed in the lowest few states, indicating
a similar scale of uncertainty in this calculation. The higher

1 2 7 2
nr nh

nr
h

r nh r h
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nh r nh
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3
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10

11

Operators
St

at
es

FIG. 4 (color online). “Matrix” plot of values of overlap factor,
Zn
i , of an operator i to a given state n, as defined by Eq. (7). Z

n
i are

normalized according to Zn
i

maxn ½Zn
i �, so that for a given operator the

largest overlap across all states is unity. The normalizedmagnitudes
of various operator overlaps to states in the G1g irrep are shown.
Darkerpixel indicates largervaluesof theoperatoroverlapsasshown
in the adjacent legend. Various type of operators, for example,
nonrelativistic (nr) and relativistic (r) operators, aswell as hybrid (h)
and nonhybrid (nh) operators are indicated by column labels.
In addition, the continuum spins of the operators are shown by
1=2 and 7=2. State 0, the ground state, and excited states 1, 3, 4, 10
and 11 are identifiedwith JP ¼ 1

2
þ from the overlap to various types

of operators according to pixel strength. States 2 and 8 are identified
as JP ¼ 7

2
þ states with the predominant overlap to nonrelativistic

nonhybrid and relativistic nonhybrid operators, respectively.
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r
nh

nr
nh r nh

3 2 5 2 7 2

0

1

2

3

4

5

6

7

8

9

10

11

Operators

St
at

es

FIG. 5 (color online). Same “matrix” plot, as Fig. 4, for theHg irrep. Here one can associate state 6 with quantum number JP ¼ 7
2
þ, the

states 3, 5 and 10 with JP ¼ 5
2
þ, and the rest with JP ¼ 3

2
þ. The states 7 and 9 are predominantly hybrid in nature, while states 4, 8 and 10

are found to have substantial overlap with nonhybrid operators. Pixel legend is the same as in Fig. 4.
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FIG. 6 (color online). A selection of Z values for states conjectured to be identified with JP ¼ 5
2
þ (top two plots), 5

2
− (middle two plots),

7
2
þ (bottom left) and 7

2
− (bottom right). Operators in consideration, which overlap to these states, are mentioned at the bottom of each plot.

Z values obtained for a given operator, but from different irreps, are found to be consistent or very close to each other which helps to
identify the spin of a given state. Some operators are scaled so the set can all be shown on a single panel. These rescalings are indicated
by numbers in front of the operator labels.
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lying states do not show any statistically significant differ-
ence between the two charm quark actions. Here the factor
of 3

2
corrects for the different number of valence charm

quarks in a triply charmed baryon and the ηc meson.
Figure 7 shows this alongside other published lattice data,
which use a different discretization and so have distinct
artifacts. Our result for this quantity is consistent with
Refs. [29–32], but is not consistent with Ref. [28].

III. RESULTS

In this section we present our results spectra for spins up
to 7

2
and for both parities. Results for the extracted masses as

well as mass splittings from charmonia states are presented.
Various spin dependent energy splittings between the
extracted states are also considered along with similar

splittings at light, strange as well as bottom quark masses.
Results for the light and strange quark masses are from
Ref. [40] and bottom quark results are from Ref. [44].
Due to systematic uncertainty in the determination of the

charm quark mass parameter in the lattice action, it is
preferable to compare energy splittings between states that
reduce the impact of these uncertainties. This also lessens
the effect of ambiguity in the scale setting procedure. In
Ref. [36], the quark mass was determined by ensuring the
ratio of masses of the ηc meson and Ω-baryon took its
physical value. Consequently for this study, the spectrum is
presented relative to the reference scale of 3

2
mηc , where the

factor of 3
2
corrects for the different number of valence charm

quarks in triply charmed baryon and charmonium states.
This subtracted spectrum is presented in Fig. 8 and tabulated
in Table V. Boxes with thicker borders correspond to those
with a greater overlap onto operators proportional to the field
strength tensor as discussed in the previous section and
which might consequently be hybrid states. The states inside
the pink ellipses have relatively large overlap with non-
relativistic operators and should thus be well described in a
quark model. An analysis of the spectrum using only the
nonrelativistic operators is presented in the right panel of
Fig. 8. The main difference between the two panels is the
absence of spin-5=2 and spin-7=2 negative parity states
when only operators that couple to the dominant spin
components for heavy quarks moving nonrelativistically.
In Ref. [44], triply bottom baryons were studied. The main
difference with the set of operators used in that calculation is
the inclusion of the nonrelativistic hybrid operators in this
work, which provides access to higher excited states.
In the lowest positive-parity band and the two lowest

negative-parity bands the number of states for each spin
agrees with the expectation given in Table II. In that table,
the number of states is presented for operator built from
up to two derivatives and this corresponds to the number
allowed by SUð6Þ ×Oð3Þ symmetry. In this picture for

This  work [30] [31] [32]
0.06

0.09
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FIG. 7 (color online). Mass splitting of the ground state of
JP ¼ 3

2
þ Ωccc from J=ψ meson. A factor 3=2 is multiplied with

J=ψ mass to account for the difference in the number of charm
quarks in baryons and mesons. This mass splitting mimics the
binding energy of the ground state Ωccc. Results of this mass
splitting from this work (red boxes) are compared with those
obtained from other lattice calculations [29–32].
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FIG. 8 (color online). Spin identified spectra of triply charmed baryons with respect to 3
2
mηc . The boxes with thick borders corresponds

to the states with strong overlap with hybrid operators. The states inside the pink ellipses are those with relatively large overlap to
nonrelativistic operators.
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ND ¼ 0, only one state with JP ¼ 3
2
þ is expected. For

ND ¼ 1 the expected quantum numbers are JP ¼ 1
2
− and

JP ¼ 3
2
− and forND ¼ 2, a set of positive parity states with

a range of spins from 1
2
to 5

2
is predicted with multiple states

appearing for the lower spins. This pattern is clearly seen in
the spectrum determined by this calculation. This agree-
ment of the number of low lying states between the lattice
spectra obtained in this work and the expectations based on
nonrelativistic quark spins implies a clear signature of
SUð6Þ ×Oð3Þ symmetry in the spectra. Such SUð6Þ×
Oð3Þ symmetric nature of spectra was also observed in
Ref. [40]. As was pointed out in Ref. [40], it is not
meaningful to interpret the higher excited states in terms
of SUð6Þ ×Oð3Þ symmetry. The reasons behind this are
following : firstly, we did not include nonrelativistic
operators with three derivatives and secondly for higher
excited states it is expected that the relativistic operators
generally overlaps more with these states. For negative
parity it is also not possible to identify a state with strong
hybrid content because it is not clear how the relative
importance of all the relevant operators overlapping to that
state will change in the presence of nonrelativistic operators
having three or more number of derivatives.

A. Valence quark mass dependence
of energy splittings

Spin-dependent splittings between the triply flavored
baryons provide an insight into interactions between three
confined quarks with the same mass. We consider now the
dependence of these splittings on the mass of the valence
quarks.
As presented in Table II, operators with increasing

numbers of gauge-covariant derivatives (which can corre-
spond to nonzero orbit angular momentum in a quark
model) create states with numerous values of total spin
J. For example, we construct flavor (F) decuplet states
with D ¼ 2; S ¼ 3

2
and L ¼ 2 with the combination

f10FS ⊗ ðSÞS ⊗ ðDÞSg, where S in the subscript stands
for symmetric combinations, as defined in Ref. [38]. In
this way of construction we get four quantum numbers
with JP ¼ 1

2
þ; 3

2
þ; 5

2
þ and 7

2
þ. In the heavy quark limit the

spin-orbit interaction vanishes since the interaction term

is inversely proportional to the square of the heavy
quark mass. States corresponding to quantum numbers
(jL; S; JPi≡ j2; 3

2
; 1
2
þi; j2; 3

2
; 3
2
þi; j2; 3

2
; 5
2
þi and j2; 3

2
; 7
2
þi)

will thus be degenerate in the heavy quark limit.
Similarly, two states with quantum numbers JP ¼ 1

2
− and

3
2
− with L ¼ 1 and S ¼ 1

2
will also be degenerate in the

heavy quark limit. In Fig. 9 we plot absolute values of

TABLE V. Spin identified spectra of triply charmed baryons with respect to 3
2
mηc (that is mΩccc

− 3
2
mηc ) in GeV.

1
2
þ 3

2
þ 5

2
þ 7

2
þ 1

2
− 3

2
− 5

2
− 7

2
−

0.923(13) 0.287(6) 0.930(15) 0.921(49) 0.644(9) 0.648(13) 1.040(64) 1.205(28)
0.929(14) 0.841(31) 0.988(15) 1.136(31) 1.186(31) 1.233(25)
1.563(33) 0.954(13) 1.155(43) 1.248(44) 1.234(24)
1.607(42) 0.989(13) 1.273(21) 1.289(34) 1.236(32)
1.992(80) 1.618(40) 1.656(69) 1.823(44)
2.236(56) 2.147(46) 1.850(51)

2.165(43)
2.298(46)

|E(1/2 +
) - E(3/2 +

)|

|E(5/2 +
) - E(3/2 +

)|

|E(7/2 +
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)|
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FIG. 9 (color online). Energy splittings between states with
same L and S values, starting from light to heavy baryons. For
Ωbbb, results are with only nonrelativistic operators [44]; forΩccc,
results from relativistic and nonrelativistic as well as only
nonrelativistic operators are shown, and for light and strange
baryons results are with relativistic and nonrelativistic operators
[40]. These results are obtained from fitting the jackknife ratio of
the correlators which helps to get smaller error bar in splittings.
The left column is for the states with D ¼ 2; S ¼ 3

2
and L ¼ 2.

The symbol Hg;1;S refers to the first embedding of irrep Hg in the

totally symmetric Dirac spin combination, while D½2�
L¼2;S refers to

spatial projection operators with two derivatives in a totally
symmetric combination, and with orbital angular momentum
two. Similarly, the middle column is for the states with D ¼
2; S ¼ 1

2
and L ¼ 2. Here irrep is G1g and both Dirac and

derivative are in a mixed symmetric combination. In the right
column these negative parity states haveD ¼ 1; S ¼ 1

2
and L ¼ 1.

Here again irrep is G1g and both Dirac and derivative are in a
mixed symmetric combination.
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FIG. 10 (color online). Energy splittings of triply flavored baryons at various quark masses (u to b → left to right) from the respective
isoscalar vector meson (irrep T−−

1 ) ground state. Top four figures are for positive parity states and bottom four are for negative parity
states, respectively. A factor 3=2 is multiplied with isoscalar vector meson masses to account for the difference in the number of charm
quarks in baryons and mesons. For charm quark, results are from this work, while for light and strange quark results are from Ref. [40]
and those for bottom quark are from Ref. [44]. The zebra-shaded boxes are the results obtained by using only nonrelativistic operators.
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FIG. 11 (color online). Energy splittings of a few triple-flavored baryons (labeled by different symbols and colors) from isoscalar
vector meson (irrep T−−

1 ) ground state are plotted against the square of the pseudoscalar masses. Top four figures are for positive parity
and bottom four are for negative parity baryons, respectively. This energy splitting mimics the binding energy and considering that these
plots show the dependence of binding energies of these states as a function of quark mass. We fit this dependence with a form aþ b=mps
(please see text for details).
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energy differences between energy levels which originate
from the spin-orbit interaction of the following (L; S) pairs:
(2; 3

2
–in the left column), (2; 1

2
–in the middle column) and

(1; 1
2
–in the right column). We plot these spin-orbit energy

splittings at various quark masses corresponding to follow-
ing triple-flavored baryons : Δuuu, Ωsss, Ωccc and Ωbbb.
We identified the states with these (L; S) pairs by finding
the operators which incorporate these pairs and which
have major overlaps to these states. These energy
differences are obtained from the ratio of jackknifed
correlators, which in general, reduce error bars by cancel-
ling correlation of these correlators. For bottom baryons we
use data from Ref. [44] and for light and strange baryons,
results from Ref. [40] are used.
It should be noticed that energy levels shown for bottom

baryons are obtained from only nonrelativistic operators
[44]. For charm baryons we show results from the full set of
operators (including relativistic operators) as well as from
only nonrelativistic operators, and for light and strange
baryons the splittings results are obtained also with the
full set operators. In some cases we find that the inclusion
of the relativistic operators increase error bars. As one can
observe that the degeneracy between these states is more or
less satisfied both for bottom and charm quarks. However,
data with higher statistics are necessary to identify the
breaking of this degeneracy at charm quark. We will
address this issue in future. For ΔðuuuÞ and ΩðsssÞ some
of these splittings are nonzero. This is expected because of
the presence of the light quark masses in the denominator
of the spin-orbit interaction which enhance these splittings.
We also compared how energy splittings change between

light and heavy baryons. Some of these, such as the
hyperfine splitting, vanish in the heavy quark limit while
others become constant. However, most splittings tend to
be higher at lighter quark masses where relativistic effects
are prominent. We determined the energy difference
between the triply flavored baryons with respect to the

isoscalar vector mesons with two constituents of the same
flavor. To make a comparison which is independent of the
quark mass in the heavy quark limit, we subtract 3

2
of the

vector meson mass, where this factor simply takes account
of the difference in the number of charm quarks between
baryons and mesons. Specifically we consider following
splittings: mΔuuu

− 3
2
mωūu

; mΩsss
− 3

2
mϕs̄s

; mΩccc
− 3

2
mJ=ψ c̄c

and mΩbbb
− 3

2
mΥb̄b

. Figure 10 shows these splittings for
positive and negative parity states at varying quark masses
from the light u; d quarks up to the b-quark mass. For
ΔþþðuuuÞ and Ωsss baryons, results are from Ref. [40],
while for Ωbbb, we use results from Ref. [44]. The zebra-
shaded boxes are the results obtained using only non-
relativistic operators. These splittings mimic the binding
energies of triple-flavored states and thus it is interesting
to compare these as a function of quark masses. In Fig. 11
we plot these splittings, for the ground state and a few
excitations as a function of the square of the pseudoscalar
meson masses. Notice that most of the splittings in various
spin parity channels decrease with quark mass. In the
heavy quark limit, naively one can expand the mass of a
heavy hadron, with n heavy quarks, as MHnq

¼ nmQ þ
Aþ B=mQ þOð1=mQ2Þ [48]. We expect that these energy
splittings can also be expressed in the form aþ b=mQ

and similarly in the heavy quark limit with aþ b=mps.
Note this form is not expected to be valid for light
hadrons. Using this function we fitted the data obtained
for mΩbbb

− 3
2
mΥb̄b

; mΩccc
− 3

2
mJ=ψ c̄c

and mΩsss
− 3

2
mϕs̄s

.
Because of the very different behavior in the chiral limit,
the light quark point, mΔuuu

− 3
2
mωūu

is excluded from the
fit. For the cases where data for the bottom quark are not
available (mainly for negative parity cases), fitting is done
using only the two data at charm and strange masses.
While there is no good reason for the heavy-quark inspired
functional form to model the data at the strange quark mass,
a good fit is still found. We also extrapolate fit results to

TABLE VI. Fitted values of the parameters a and b for the heavy quark expansion of the mass differenceΔmH ¼ aþ b=mps. Left side
is for positive parity and the right side is for negative parity states. Color coding for these states are corresponding to Fig. 11. We do not
quote χ2=d:o:f: for the cases where there are only two data points (i.e., data points are not available at the bottom quark).

State a b χ2=d:o:f: State a b χ2=d:o:f:
1
2
þ 773 (16) 59 (22) 1.8 1

2
− 511 (12) 0.9

1
2
þ 758 (16) 117 (19) 0.4 1

2
− 963 (31) 193 (27)

3
2
þ 168 (9) -2.0 (9) 0.5 3

2
− 513 (14) 45 (15) 0.08

3
2
þ 170 (5) 0.4

3
2
þ 640 (22) 179 (21) 0.56 3

2
− 1089 (30) 109 (20)

3
2
þ 765 (17) 149 (21) 1.2

3
2
þ 805 (12) 177 (21) 0.18

5
2
þ 760 (17) 140 (16) 0.01 5

2
− 954 (61) 230 (50)

5
2
þ 807 (17) 167 (15) 0.15 5

2
− 1021 (26) 271 (26)

7
2
þ 739 (17) 201 (16) 0.7 7

2
− 1009 (30) 220 (27)
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lighter pion masses and observe that for many cases they
pass through the light quark points though those points
are not included in these fits. The fitted results for the
parameters a and b are tabulated in Table VI. However, as
mentioned before, one should not use this extrapolation to
get splittings at lighter quark masses as is evident in many
cases where data points fall significantly below the fit. It is
worth noting that that the energy splittings for the spin-3

2
þ

and spin-1
2
− ground states are almost constant even when

varying the quark mass from light to bottom. In fact, we
observe better fit with a constant term for these splittings.

IV. CONCLUSIONS

In this work, we present results from the first non-
perturbative calculation on the excited state spectroscopy of
the triply charmed baryons with spin up to 7=2. This system
is the baryonic analogue of charmonium, which has been
central to understanding more about the phenomenology of
the strong force. Calculations were performed using aniso-
tropic lattice QCD with a background of 2þ 1 dynamical
light quarks with pion mass of about 390 MeV in a finite
volume with extent of approximately 1.9 fm where the
temporal and spatial spacings were at ¼ 0.0351ð2Þ fm and
as ∼ 0.12 fm, respectively. The systematic uncertainties
due to chiral, continuum and final volume extrapolations
have not been explored here and those will be addressed
in future.
Using the distillation smearing technique to make use of

the variational method, we extracted the spectrum of triply
charmed baryons comprising a total of 18 states, including
spin up to 7=2. We use a large set of continuum operators
which can be classified according to the irreducible
representation of SUð3ÞF flavor and which transform
according to good total angular momentum in the con-
tinuum. Angular momenta are realized by including up to
two covariant derivatives in creation operators. Similar to
earlier work, we observe approximate rotational symmetry
for these operators at the scale of hadrons. By using this
symmetry and calculating overlap factors of various oper-
ators to energy eigenstates and then comparing those over
irreps we are able to extract states reliably with spin up to
7=2. We also observe that there is strong mixing between
states created by nonrelativistic nonhybrid and relativistic
nonhybrid type operators but comparatively weaker mixing
between those created by hybrid and nonhybrid type
operators. Additional suppression of mixing is seen for
nonrelativistic operators with given J but with different
L and S compared to those with the same J; L and S.
However, this suppression is not present for relativistic
operators.
The main results are shown in Fig. 8. As in Ref. [40], we

also find bands of states with alternating parities and
increasing energies. Beside identifying the spin of a state
we are also able to decode the structure of operators leading

to that state : whether constructed by relativistic, non-
relativistic, hybrids, nonhybrid types or a mixture of them
all. However, for negative parity states and highly excited
positive parity states, this identification is not possible since
we do not include operators with more than two derivatives
which will contribute to these states and so will change the
relative contribution from various operators leading to such
states. Similar to light and strange baryon spectra [40], we
also find the number of extracted states of each spin in
the three lowest-energy bands and the number of quantum
numbers expected based on weakly broken SUð6Þ ×Oð3Þ
symmetry agree perfectly, i.e., the triply charmed baryon
spectra remarkably resemble the expectations of quantum
numbers from quark model [49–51]. Even the inclusion of
nonrelativistic hybrid operators does not spoil this agree-
ment for positive parity states. However, with the inclusion
of relativistic operators which contribute more to the higher
excited states it is expected that this band structure will not
be followed. That is what we also observe for the higher
excited states. However, it is to be noted that we have not
used any multi-hadron operators in this calculation.
Inclusion of those operators, particularly those involving
light quarks, may affect some of the above conclusions,
though to a lesser extent than their influence in the light
hadron spectra.
Various energy splittings, including splittings due to

spin-orbit coupling, are also evaluated for these baryons
and those are compared with similar splittings obtained at
light, strange as well as bottom quark masses. While the
data at charm quark mass (forΩccc) is from this work, those
for light and strange quark masses (for Δuuu and Ωsss
baryons) are taken from Ref. [40] and bottom quark results
(forΩbbb) are from Ref. [44]. The energy splittings between
baryons due to spin-orbit coupling vanish at the heavy
quark limit. To check this degeneracy we identify the states
with same L and S values from overlap factors of various
operators and find that the spin-orbit energy degeneracy
between these states are more or less satisfied both for
bottom and charm quarks. However, for a few cases they
are nonzero at lighter quark masses. More precise data are
necessary to check the breaking of this degeneracy at the
charm quark mass.
The energy splitting of the triply charmed baryon spec-

trum, from the isoscalar vector meson (irrep T−−
1 ) ground

state is also evaluated. These splittings are compared with
similar ones obtained at other quark masses. For the
splitting, which mimics the binding energy of these states,
significant quarkmass dependence is observed for ground as
well as for first few excited states, except for the JP ¼ 3=2þ
and JP ¼ 1=2− ground states. These splittings can be
modeled with a form aþ b=mps to show their expected
quark mass dependence which assumes they will tend to a
constant in the heavy quark limit. It is interesting to note that
this form gives a good fit for data at bottom, charm as well as
strange quarkmasses. For some of them, we observe that the
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extrapolated fit lines pass through the light quark data points
even when they are not included in the fit.
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