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The lattice regularized Schwinger model with a so-called θ term is studied by using the Grassmann
tensor renormalization group. We perform the Lee-Yang and Fisher zero analyses in order to investigate the
phase structure at θ ¼ π. We find a first-order phase transition at larger fermion mass. Both the Lee-Yang
zero and Fisher zero analyses indicate that the critical endpoint at which the first-order phase transition
terminates belongs to the Ising universality class.
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I. INTRODUCTION

The Monte Carlo simulation of lattice gauge theory is
quite powerful to study nonperturbative phenomena of
particle physics. However, when the action has an imagi-
nary part like the θ term, it suffers from the numerical sign
problem, failure of usual importance sampling techniques.
The effect of the θ term on non-Abelian gauge theory,
especially quantum chromodynamics (QCD) is important,
because it is related to a famous unsolved problem, “strong
CP problem”. See Ref. [1] for a recent review on gauge
theory with the θ term. In order to tackle such a problem,
another approach is desired. Lattice gauge theory with the θ
term shares the difficulty with finite density lattice QCD.
Therefore, developing techniques to solve or by-pass the
sign problem also leads to a lot of progress in the study of
the QCD phase diagram at finite temperature and density.
It is well known that the θ term has a nontrivial

contribution to Abelian gauge theory in two dimensions
also. Coleman argued that the (massive) Schwinger model,
two-dimensional QED, undergoes a phase transition at θ ¼
π asm=g increases wherem is the fermion mass and g is the
coupling constant [2]. It was followed by numerical lattice
calculations and they succeeded in estimating the critical
endpoint [3–5]. However, all these are based on the
Hamiltonian lattice gauge theory and numerical studies
with the Euclidean lattice gauge theory are falling behind:
Up to now only pure lattice gauge theory has been studied
in the Euclidean formulation because it is analytically
solvable [6–9]. Once including fermions, we have not yet
established any reliable method which is effective at θ ¼ π
in the Euclidean formulation.
Recently the authors have successfully applied the

Grassmann tensor renormalization group (GTRG) [10] to
the analysis on the lattice Schwinger model in the
Euclidean formulation [11]. The GTRG method directly
treats the Grassmann numbers without relying on the
pseudofermion technique employed in the hybrid

Monte Carlo algorithm so that the computational cost is
comparable to the bosonic case. Another virtue is that it
does not suffer from the sign problem caused by the
fermion determinant. In this paper, we extend the GTRG
method to the case including the θ term, where the action
becomes complex, and demonstrate that it enables us to
investigate the phase structure at θ ¼ π.
This paper is organized as follows. We briefly discuss the

Schwinger model with the θ term in the continuum theory
and its lattice formulation in Sec. II. In Sec. III, our
numerical results obtained by the Lee-Yang and Fisher
zero analyses are presented. Section IV is devoted to
summary and outlook.

II. SCHWINGER MODEL WITH θ TERM

A. Continuum theory

Let us briefly describe the Schwinger model with the θ
term. The Euclidean action is given by

S ¼
Z

d2x

�
ψ̄ðγμ∂μ þ iγμAμ þmÞψ þ 1

4g2
FμνFμν

�
; ð1Þ

where ψ is a two-component spinor field and Aμ is a U(1)
gauge field. The field strength is defined by

Fμν ¼ ∂μAν − ∂νAμ: ð2Þ

Vacua of U(1) gauge theory in two dimensions are labeled
by an integer number Q which is computed from

Q ¼ 1

4πi

Z
d2xϵμνFμν; ð3Þ

where ϵμν is an antisymmetric tensor with ϵ12 ¼ i. The θ
vacuum is introduced as a superposition of the labeled
vacua. Therefore, the partition function in the θ vacuum is
expressed as
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Z ¼
X∞

Q¼−∞
eiθQ

Z
DAðQÞDψ̄Dψe−S½AðQÞ� ð4Þ

¼
X∞

Q¼−∞

Z
DAðQÞDψ̄Dψe−S½A

ðQÞ�þ θ
4π

R
d2xϵμνF

ðQÞ
μν ð5Þ

¼
Z

DADψ̄Dψe−S½A�þ
θ
4π

R
d2xϵμνFμν ; ð6Þ

where θ is the vacuum angle. In addition, with the use of a
chiral transformation,

ψ → e−i
θ
2
γ5ψ ; ð7Þ

ψ̄ → ψ̄e−i
θ
2
γ5 ; ð8Þ

the θ term is canceled by the anomaly and the mass term is
modified:

Z ¼
Z

DADψ̄Dψ

× e
−
R

d2xfψ̄ðγμ∂μþiγμAμþm cos θþimγ5 sin θÞψþ 1

4g2
FμνFμνg: ð9Þ

The Schwinger model can be mapped to a bosonic model
by using the following correspondences [2,12]:

Sm¼0 ↔
R
d2x

�
1
2
ð∂ϕÞ2 þ g2

2π ϕ
2

�
; ð10Þ

ψ̄ψ ↔ −Cg cosð2 ffiffiffi
π

p
ϕÞ; ð11Þ

iψ̄γ5ψ ↔ −Cg sinð2 ffiffiffi
π

p
ϕÞ; ð12Þ

where ϕ is a scalar field and C is some constant which
depends on the scheme employed for normal-ordering
operators [13]. The bosonized version of the partition
function is

Z ¼
Z

Dϕe−
R

d2xf1
2
ð∂ϕÞ2þg2

2πϕ
2−Cmg cosð2 ffiffi

π
p

ϕ−θÞg: ð13Þ

Let us consider the potential term,

V½ϕ� ¼ g2

2π
ϕ2 − Cmg cosð2 ffiffiffi

π
p

ϕ − θÞ: ð14Þ

An intriguing finding is that θ ¼ π is a special case. For
sufficiently large m=g, V½ϕ� becomes a double well
potential. It tells us that there exists a first-order phase
transition at the semiclassical level. On the other hand, in
the limit of m=g → 0, the second term can be negligible so
that V½ϕ� has an unique minimum. This means that the first-
order phase transition terminates at some value of m=g,
where a second-order phase transition takes place due to the

breaking of the Z(2) symmetry. In Fig. 1 we illustrate the
expected phase diagram of the Schwinger model with the θ
term. It should be noted that the Ising model has a similar
phase structure in the plane of an external magnetic field H
and the temperature T. In the Ising case, a first-order phase
transition at lower temperature with H ¼ 0 terminates at
some critical temperature Tc where a second-order phase
transition occurs.

B. Lattice formulation

We follow the formulation given in Ref. [11] except the
additional θ term. Hereafter, all the parameters are
expressed by dimensionless quantities multiplied by the
lattice spacing a.
We employ the Wilson fermion action and plaquette

gauge action. The Wilson-Dirac matrix D½U� is given by

ψ̄D½U�ψ ¼ 1

2κ

X
n;α

ψ̄n;αψn;α

−
1

2

X
n;μ;α;β

ψ̄n;αfð1 − γμÞα;βUn;μψnþμ̂;β

þ ð1þ γμÞα;βU†
n−μ̂;μψn−μ̂;βg; ð15Þ

where the hopping parameter κ satisfies 1=κ ¼ 2ðmþ 2Þ
and an U(1) link variable at site n along μ direction, Un;μ is
related to AμðnÞ as follows:

Un;μ ¼ eiaAμðnÞ: ð16Þ

α, β denote the Dirac indices and μ̂ represents an unit vector
along μ direction. The U(1) gauge action including the θ
term is given by

Sg ¼ −β
P
p
cosφp − iθQ; ð17Þ

FIG. 1. Expected phase diagram of Schwinger model with the θ
term. The dotted line denotes a first-order phase transition, which
terminates at a second-order phase transition point belonging to
the Ising universality class.
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φp ¼ φn;1 þ φnþ1̂;2 − φnþ2̂;1 − φn;2; ð18Þ

φn;1;φnþ1̂;2;φnþ2̂;1;φn;2 ∈ ½−π; π�; ð19Þ

Q ¼ 1

2π

X
p

qp; ð20Þ

qp ¼ φp mod 2π ð21Þ

with β ¼ 1=g2. φn;1;φnþ1̂;2;φnþ2̂;1 and φn;2 are phases of
U(1) link variables which compose a plaquette variable.
The range of qp is ½−π; π� and it can be expressed as follows
by introducing an integer np:

qp ¼ φp þ 2πnp; np ∈ f−2;−1; 0; 1; 2g: ð22Þ

For periodic boundary conditions, the topological chargeQ
should be an integer even on the lattice:

Q ¼ 1

2π

X
p

φp þ
X
p

np ¼
X
p

np: ð23Þ

With the inclusion of the θ term, the character expansion of
the Boltzmann weight per plaquette is decomposed as
follows [7,8]:

exp

�
β cosφp þ i

θ

2π
qp

�

¼
X∞

m¼−∞
eimφp

X∞
l¼−∞

IlðβÞ
2 sinðθþ2πðm−lÞ

2
Þ

θ þ 2πðm − lÞ

≃ XNce

m¼−Nce

eimφp

XN0
ce

l¼−N0
ce

IlðβÞ
2 sinðθþ2πðm−lÞ

2
Þ

θ þ 2πðm − lÞ ; ð24Þ

where Il is the modified Bessel function. We choose Nce
and N0

ce for truncation of the summations in the practical
numerical calculations. This series converges due to rapid
decreasing of the modified Bessel function with increasing
jlj, but the rate becomes smaller than the case without the
θ term.

III. NUMERICAL ANALYSIS

A. Setup

We perform the Lee-Yang and Fisher zero analyses at
β ¼ 10.0 to investigate the phase transition of the model on
L × L lattices. In the previous study without the θ term [11]
numerical studies with the choice of β ¼ 5.0 and 10.0 have
successfully shown that the model belongs to the Ising
universality class. This experience suggests that β ¼ 10.0
would be an appropriate choice for the purpose of this
work. We refer to partition function zeros in the complex κ
plane as the Fisher zeros in order to distinguish them from

those in the complex θ plane which are referred to as the
Lee-Yang zeros. We employ the GTRG method described
in Ref. [11], which allows us to estimate partition function
zeros. We choose Nce ¼ 20 and N0

ce ¼ 100 for truncation
of the summations in Eq. (24). Note that while Nce is
related to the dimension of the initial tensor, N0

ce is
independent of it. This allows us to increase the value of
N0

ce with little computational effort. We have chosen an
excessively large value for N0

ce in order not to mind its
truncation error. The singular value decomposition (SVD)
in the GTRG procedure is truncated with D ¼ 160. We
have checked that these choices for Nce, N0

ce and D provide
us sufficiently converged results for all the parameter sets
employed in this work. Figure 2 shows an example of
convergence behavior of the location of a Fisher zero as a
function of Nce, N0

ce and D. It is clear that the convergence
is assured with our choice of Nce ¼ 20, N0

ce ¼ 100 and
D ¼ 160. Since the scaling factor of the GTRG trans-
formation is

ffiffiffi
2

p
, we are allowed to evaluate the partition

function zeros not only at the lattice size L ¼ 4; 8; 16;…,
but also at L ¼ 4

ffiffiffi
2

p
; 8

ffiffiffi
2

p
; 16

ffiffiffi
2

p
;…. The periodic boun-

dary condition is employed in both directions.

B. Fisher zero analysis

Partition function zeros in a complex parameter plane
should approach a phase transition point on the real axis as
the lattice size L increases. Their scaling behavior, how-
ever, depends on which parameter we focus on. In the case
of the hopping parameter κ, which may correspond to the
temperature parameter in the Ising model, the scaling
behavior is governed by the critical exponent for the
correlation length ν,

Reκ0ðLÞ − Reκ0ð∞Þ ∝ L−1=ν; ð25Þ

Imκ0ðLÞ − Imκ0ð∞Þ ∝ L−1=ν; ð26Þ

FIG. 2 (color online). Convergence of Imκ0ðLÞ for L ¼ 128 as
a function of SVD truncation number D. Results for smaller Nce
and N0

ce values are also presented at D ¼ 160. Note that they are
plotted at slightly shifted values of D in order to avoid the
superposition of symbols and error bars.
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where κ0ðLÞ denotes the position of a partition function
zero in the complex κ plane for the lattice size L. Reκ0ð∞Þ
should agree with the critical point κc, while Imκ0ð∞Þ
should be consistent with zero.
Figure 3 shows finite-size scaling plots of both the real

and imaginary parts of the Fisher zero closest to the real
axis. The lattice size is ranging from L ¼ 8 to 128. We
locate κ0ðLÞ on the mesh of the discretized Reκ and Imκ so
that the mesh spacing determines the error bars of Reκ0ðLÞ
and Imκ0ðLÞ. The solid curves denote the fit results with
Re=Imκ0ðLÞ ¼ Re=Imκ0ð∞Þ þ aR=IL−1=ν. The fit range is
chosen as L ∈ ½16; 128� avoiding possible finite-size effects
expected in the small L region. Numerical values for the fit
results are listed in Table I. We observe that the result for ν
in the imaginary part is very close to ν ¼ 1 which indicates
the Ising universality class. On the other hand, the real part
clearly deviates from ν ¼ 1. The situation is quite similar to
the case without the θ term [11], where the disagreement
can be explained by possible finite-size contaminations. Let
us try the following fit functions with the leading term with
ν ¼ 1 and the L−2 subleading term:

Reκ0ðLÞ − Reκ0ð∞Þ ¼ aRL−1 þ bRL−2; ð27Þ

Imκ0ðLÞ − Imκ0ð∞Þ ¼ aIL−1 þ bIL−2: ð28Þ
The dotted curves in Figs. 3 represent the fit results and the
values for the coefficients aR=I and bR=I are given in
Table II. We find that the coefficient jbRj is roughly ten
times larger than the coefficient jaRj, which means the L−1

and L−2 terms give comparable contributions to Reκ0ðLÞ.
On the other hand, the aIL−1 contribution is dominant in
Imκ0ðLÞ. These observations assure that the scaling analy-
sis of the imaginary part is more reliable than the real one
avoiding the possible subleading contaminations. In con-
clusion, the Fisher zero analysis indicates that the phase
transition belongs to the Ising universality class.

C. Lee-Yang zero analysis

θ is regarded as an external field parameter. Scaling
behavior of partition function zeros in the complex θ plane
should be different from Eqs. (25) and (26). It is controlled
by another critical exponent at the critical end point κc:

Imθ0ðLÞ − Imθ0ð∞Þ ∝ L−ð 2δ
1þδÞ ¼ L−ð2ν−βν Þ; ð29Þ

where θ0ðLÞ is the position of a partition function zero in
the complex θ plane for the lattice size L and Imθ0ð∞Þ is
expected to be zero. δ and β are the critical isotherm
exponent and the critical exponent for magnetization,
respectively. In the case of the first-order phase transition
at κ < κc, θ0ðLÞ should scale in inverse proportion to the
two-dimensional lattice volume,

Imθ0ðLÞ − Imθ0ð∞Þ ∝ L−2; ð30Þ
where Imθ0ð∞Þ should be zero. We may find Imθ0ð∞Þ ≠ 0
at κ > κc, where no phase transition is expected. Note that
Reθ0ðLÞ is always fixed at π so that all the Lee-Yang zeros
reside on the line Reθ ¼ π.
In Fig. 4, we present the scaling behavior of Imθ0ðLÞ at

κ ¼ 0.2400, 0.2415 and 0.2430 from L ¼ 32 to 256 as a
function of L−2. We expect κ ¼ 0.2415 is (almost) on the
critical end point based on the Fisher zero analysis in the
previous section. The solid curves denote the fit results with
Imθ0ðLÞ ¼ Imθ0ð∞Þ þ aL−y. We choose L ∈ ½32 ffiffiffi

2
p

; 256�
for the fit range. Note that the oscillation of the partition
function in the complex θ plane is slower than in the
complex κ plane. This makes it easier to find partition
function zeros on larger lattice with good precision.
Numerical values for the fit results of Imθ0ð∞Þ and y

FIG. 3 (color online). Real (top) and imaginary (bottom) parts
of the Fisher zero as a function of L−1 at β ¼ 10.0. Solid curves
represent the fit results with Re=Imκ0ðLÞ ¼ Re=Imκ0ð∞Þ þ
aR=IL−1=ν and dotted ones with Eqs. (27) and (28).

TABLE I. Results for the finite-size scaling analysis on both the
real and imaginary parts of the Fisher zero. The fit range is
L ∈ ½16; 128�.

ν Re=Imκ0ð∞Þ aR=I χ2=d:o:f

Reκ0 0.779(23) 0.241593(41) 0.205(22) 0.38
Imκ0 1.030(14) −0.000002ð68Þ 0.2310(84) 0.53

TABLE II. Fit results including the subleading finite-size
contribution. The fit ranges are the same as in Table I.

Re=Imκ0ð∞Þ aR=I bR=I χ2=d:o:f

Reκ0 0.241466(37) 0.0636(39) 0.520(67) 0.23
Imκ0 0.000075(37) 0.2578(39) −0.138ð67Þ 0.48
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are presented in Table III. For κ ¼ 0.2400, which is smaller
than κc, the inverse dependence on L2 with Imθ0ð∞Þ ¼ 0 is
clearly observed. It leads us to the conclusion that there is a
first-order phase transition. On the other hand, Imθ0ð∞Þ
shows clear deviation from zero at κ ¼ 0.2430 > κc, which
means there is no phase transition as expected. For
κ ¼ 0.2415 ≈ κc, the fit results give y ¼ 1.869ð10Þ and
Imθ0ð∞Þ ¼ −0.000016ð64Þ. If there occurs a second-order
phase transition belonging to the Ising universality class,
the critical exponent should be y ¼ 1.875with δ ¼ 15, β ¼
0.125 and ν ¼ 1 in Eq. (29), which is consistent with our
result within the error bar. The Lee-Yang zero analysis

indicate that the phase transition at κc belongs to the Ising
universality class. It also agrees with the conclusion of the
Fisher zero analysis.

IV. SUMMARY AND OUTLOOK

We have investigated the phase structure of the lattice
Schwinger model with the θ term through the Lee-Yang
and Fisher zero analyses using the GTRGmethod. We have
succeeded in reproducing the expected phase structure at
θ ¼ π. When κ is small, namely, the fermion mass is large,
there exists a first-order phase transition and it terminates at
κc which has a second-order phase transition belonging to
the Ising universality class. It is shown that the GTRG is
applicable to the physical system with the θ term whose
action is a complex number.
Extrapolation of the critical endpoint to the continuum

limit was already studied by the Hamiltonian formulation
with the staggered fermion employing the density matrix
renormalization group approach [5]. It is interesting to
check whether different formulations yield a consistent
result. However, the naive Wilson fermion employed in this
work is not suited for the detailed study of the continuum
extrapolation. We will revisit it after the extension of our
formulation to the OðaÞ-improved fermion action.
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