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We study the autocorrelations of observables constructed from the topological charge density, such as the
topological charge on a time slice or in a subvolume, using a series of hybrid Monte Carlo simulations of
pure SU(3) gauge theory with both periodic and open boundary conditions. We show that the
autocorrelation functions of these observables obey a simple diffusion equation and we measure the
diffusion coefficient, finding that it scales like the square of the lattice spacing. We use this result and
measurements of the rate of tunneling between topological charge sectors to calculate the scaling behavior
of the autocorrelation times of these observables on periodic and open lattices. There is a characteristic
lattice spacing at which open boundary conditions become worthwhile for reducing autocorrelations and
we show how this lattice spacing is related to the diffusion coefficient, the tunneling rate, and the lattice
Euclidean time extent.
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I. INTRODUCTION

It is well known that in hybrid Monte Carlo (HMC)
simulations of lattice QCD the autocorrelation time of the
topological charge increases very rapidly as the lattice
spacing is reduced [1–4]. This is understood to be a
consequence of the fact that in a periodic volume the
topological charge of a continuum gauge field cannot
change by any continuous deformation, while the topo-
logical charge of a lattice gauge field can only change by
passing through noncontinuumlike configurations with
large values of the action. As the coupling is made weaker
such configurations are more and more strongly sup-
pressed, so that eventually tunneling between the topo-
logical sectors of field space becomes very rare.
The resulting increase in the autocorrelation time of the

topological charge is dangerous, because when autocorre-
lation times become comparable to or longer than the total
length of a simulation there is no guarantee that the
statistical errors on measured quantities can be reliably
estimated. The whole calculation then becomes suspect.
Modern simulations of QCD are being performed at lattice
spacings fine enough that this problem is a real and
pressing one.
In [5], it was proposed that switching from periodic to

open boundary conditions for the Euclidean time direction
should slow the increase of the autocorrelation time of the
topological charge. The reason is that when open boundary
conditions are used topological charge can flow into or out
of the lattice through the boundaries and thus the topo-
logical charge can change continuously without the need
for rare tunneling events. Reference [5] provided evidence
for this hypothesis by studying the dependence of

autocorrelation times on the lattice spacing a in simulations
of pure SU(3) gauge theory with open boundary conditions.
Autocorrelation times were observed to scale like 1=a2 at
fine enough lattice spacings, which is a slower increase
than expected with periodic boundary conditions. However,
that work was not able to make a direct comparison
between periodic and open boundary conditions because
only open boundaries were simulated.
The present authors attempted such a comparison in [6]

and did not find any dramatic improvement from switching
to open boundary conditions, but the small statistics of that
study made it impossible to draw precise conclusions. That
motivated this work, in which we collect very high statistics
and carry out a systematic comparison of periodic and open
boundary conditions across a wide range of lattice spac-
ings. There has not yet been such a systematic study,
although some smaller-scale comparisons have been made
[3,7,8] and a similar study was recently done in the context
of the Schrödinger functional [4].
A systematic direct comparison between periodic and

open boundaries is needed because open boundary con-
ditions have some drawbacks: they distort the physics in the
region of the lattice immediately adjacent to the boundaries
and they also break time-translational symmetry. These
effects can be avoided by working far from the lattice
boundaries, but this requires sacrificing some of the lattice
volume to boundary effects. It is therefore important to
find out under what circumstances open boundary con-
ditions can produce a worthwhile reduction in autocorre-
lation times compared to traditional periodic boundary
conditions.
In answering this question, we do more than provide raw

numerical data on autocorrelation times. We focus on
observables constructed from the topological charge den-
sity (which we will call “topological observables”) and we
show that their autocorrelation functions can be reproduced

*gem2128@columbia.edu
†rdm@phys.columbia.edu

PHYSICAL REVIEW D 90, 074502 (2014)

1550-7998=2014=90(7)=074502(16) 074502-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.90.074502
http://dx.doi.org/10.1103/PhysRevD.90.074502
http://dx.doi.org/10.1103/PhysRevD.90.074502
http://dx.doi.org/10.1103/PhysRevD.90.074502


by a simple mathematical model that postulates only two
processes: a tunneling process and a diffusion process. This
model fits our data surprisingly well and provides insight
into how the topological charge density evolves during the
HMC algorithm. For example, the model will tell us how
quickly topological charge moves into the lattice after
being created at an open boundary, or how long it takes
simulations with fixed topology to be ergodic within a
given sector of field space.
The free parameters of the model are the tunneling rate

and the diffusion coefficient. We measure the scaling of
these parameters with a and then use this knowledge to
compute the scaling behavior of topological autocorrelation
times. In the end, the model provides a criterion for
deciding when open boundary conditions are useful for
reducing autocorrelation times.
This paper is organized as follows. In Sec. II we describe

the numerical simulations that form the basis of this work.
In Sec. III we discuss which observables should be used in
comparisons between periodic and open boundary con-
ditions and give the measured integrated autocorrelation
times of these observables as a function of the lattice
spacing. In Sec. IV we develop our mathematical model
for topological autocorrelation functions, compare it to the
data, and derive its predictions for the scaling behavior of
autocorrelation times.

II. NUMERICAL SIMULATIONS

In this section we describe the parameters of our
simulations and define the observables that we will study
in later sections.

A. Ensembles

We simulate pure SU(3) gauge theory using the doubly
blocked Wilson (DBW2) gauge action (first introduced in
[9] as MCRG-2), which is defined by

Sg ¼ −
β

3
½ð1 − 8c1ÞPþ c1R�; c1 ¼ −1.4088 ð2:1Þ

where P is the sum of all unoriented 1 × 1 plaquettes and R
is the sum of all unoriented 1 × 2 rectangles. For our
purposes, the advantage of the DBW2 action is that it lets
us study the effects of nearly frozen topology at relatively
coarse lattice spacings [10]. Already at a ¼ 0.1 fm the
topological charge has autocorrelations of thousands of
molecular dynamics time units (MDU). To study such long
autocorrelations with, for example, theWilson gauge action
would require going to a ∼ 0.05 fm. By allowing us to
study the freezing of topology on relatively coarse lattices,
the DBW2 action lets us save computing resources by using
relatively small lattice volumes for a given physical
volume.
In the case of open boundary conditions there is some

freedom to choose the details of the action at the temporal
boundaries. We make the following simple choice: the
action is given by Eq. (2.1) except that any plaquette or
rectangle which extends beyond one of the temporal
boundaries is omitted from the action. In our conventions
the temporal boundaries are at Euclidean times t ¼ 0 and
t ¼ T − a (so the lattice comprises Nt ¼ T=a time slices).
Table I summarizes the parameters of our simulations,

which span a factor of two in lattice spacing. Our lattices
all have physical spatial extent L ¼ 1.6 fm, with lattice
volumes ranging from 83 to 163. The Euclidean time extent
T of our lattices is always twice the spatial extent. At the
coarsest lattice spacings, topological tunneling is very
frequent, while at the finest lattice spacings topology is
nearly frozen and autocorrelation times are extremely long.
We have collected enough statistics to accurately measure
these long autocorrelations even on the finest lattices.
Each row of Table I represents two simulations: one with

periodic boundary conditions and one with open boundary
conditions. The β ¼ 0.9465 row is an exception: for this
lattice spacing we generated four independent ensembles
for each boundary condition, for a total of eight ensembles
at this lattice spacing (this was simply a convenient strategy
given the computer resources we used). All of our results at
this lattice spacing are averages over these sets of four
independent ensembles.

TABLE I. Simulation parameters. The lattice spacings in this table are computed using Eq. (4.11) of [11], which gives r0=a as a
function of β for the DBW2 action; we take r0 ¼ 0.5 fm and estimate a 1% statistical error based on the data in [11]. τtraj is the HMC
trajectory length in MDU, and each trajectory consists of Nsteps steps of the force gradient integrator. τmeas is the MD time separation
between successive measurements of the observables described in Sec. II B. The listed MD time is the total length of the simulation in
MDU (for β ¼ 0.9465 we ran four simulations of equal length for each type of boundary condition and the listed MD time is the sum of
the lengths of the four simulations). The last column is the acceptance rate, which we found to be independent of the boundary
conditions.

β a (fm) Volume τtraj Nsteps τmeas MD time Acceptance

0.7796 0.2000(20) 83 × 16 1.00 8 10 48410 94%
0.8319 0.1600(16) 103 × 20 1.25 12 15 157875 95%
0.8895 0.1326(13) 123 × 24 1.50 15 21 228438 93%
0.9465 0.1143(11) 143 × 28 1.75 20 28 510944 93%
1.0038 0.1000(10) 163 × 32 2.00 24 40 830560 93%
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Following [5], we scale the molecular dynamics (MD)
trajectory length 1τtraj like 1=a and take measurements at a
MD time interval τmeas which we scale approximately like
1=a2.We perform the molecular dynamics integration with
a force gradient integrator [13,14] and choose step sizes
that lead to > 90% acceptance rates for all ensembles. For
each pair of ensembles we find identical acceptance rates
for periodic and open boundary conditions.

B. Observables

The basic observables we study are the sums of the
topological charge density over single time slices, which
we call QðtÞ:

QðtÞ≡ a4
X
~x

ρð~x; tÞ: ð2:2Þ

In the continuum the topological charge density ρ is

ρð~x; tÞ ¼ 1

32π2
ϵμνρλtrðFμνð~x; tÞFρλð~x; tÞÞ: ð2:3Þ

On the lattice we use the “5Li” discretization of this
formula, defined in [15]. We always measure the topo-
logical charge density after smearing the gauge field by
running the Wilson flow to the reference flow time t0 [16].
From the time slice observables QðtÞ we can also

construct observables on four-dimensional subvolumes.
As we will see, the charge summed over a large subvolume
has a longer autocorrelation time than the charge summed
over a single time slice. We define the topological
charge Qðt1; t2Þ summed over the Euclidean time interval
½t1; t2Þ by

Qðt1; t2Þ≡
X

t1≤t<t2

QðtÞ: ð2:4Þ

A particularly important special case is the “global” topo-
logical charge summed over the entire lattice, Q≡Qð0; TÞ.
In our discussion of boundary effects in Sec. III Awewill

also consider one observable unrelated to topology: EðtÞ,
the Yang-Mills action density averaged over a single time
slice, given by

EðtÞ≡ a3

L3

X
~x

1

2
trðFμνð~x; tÞFμνð~x; tÞÞ: ð2:5Þ

In this formula we use the “clover” discretization of the
field strength tensor Fμν [16]. As with the topological

charge density, we measure the action density after running
the Wilson flow to the reference flow time t0.

III. RESULTS

A. Boundary effects

When open boundary conditions are used in a lattice
QCD simulation, there is a region near each open boundary
in which the simulated physics is very different from
infinite-volume QCD. For example, Fig. 1 shows the
dimensionless quantity t20hEðtÞi on open lattices as a
function of the Euclidean time t near the open boundary
at t ¼ 0. The definition of t0 is such that the true value of
this observable is exactly 0.3 in an infinite volume, but it is
evident that in the immediate vicinity of t ¼ 0 the action
density is quite different from its value in the central region
of the lattice.
Similar boundary effects will be present in all observ-

ables. Ultimately, the physics we are interested in is
infinite-volume QCD, which means the physics in the
central region of Euclidean time, where measurements are
independent of the boundary conditions. We will call the
central region of the lattice where the physics is indepen-
dent of the boundary conditions the “bulk,” in contrast to
the “boundary regions” near t ¼ 0 and t ¼ T − a where
open and periodic boundary conditions show significant
differences. Figure 1 suggests that on our lattices a
conservative estimate for the width of the boundary region
is 0.8 fm, which on our lattices is equal to T=4. Thus on our
lattices we will take the bulk region to be the central half
volume ½T=4; 3T=4Þ. (On a lattice with a larger physical
value of T, the bulk would be a larger fraction of the total
lattice volume.)
We also examined boundary effects in observables

constructed from QðtÞ, such as hQðtÞ2i, and found the
boundary region to be no wider than that for hEðtÞi. The
width of the boundary region is presumably determined
by a combination of QCD correlation lengths (inverse
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FIG. 1 (color online). Measurements of t20hEðtÞi as a function
of the Euclidean time t on open lattices near the t ¼ 0 Euclidean
time boundary. Error bars are too small to see.

1We use the conventions in [12] to define MD time. Other
conventions exist which differ by a factor of

ffiffiffi
2

p
. In particular, a

unit-length MD trajectory in our conventions is longer by a factor
of

ffiffiffi
2

p
than a unit-length trajectory in [5].
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glueball masses, in the pure gauge theory) and the smearing
radius

ffiffiffiffiffiffi
8t0

p
∼ 0.5 fm of the Wilson flow [16]. The boun-

dary region is likely narrower for observables defined
without smearing.
The fact that the physics is altered in the boundary

regions means that a useful comparison between periodic
and open boundary conditions requires some care. The
boundary regions on an open lattice are simulating physics
which is not infinite-volume QCD and which has no
analogue on a corresponding periodic lattice. Therefore
it is not sensible to include the boundary regions in any
comparison between an open ensemble and a periodic
ensemble. For example, we will not compare the autocor-
relations of the global topological chargeQ on periodic and
open lattices because this observable contains large con-
tributions from the boundary regions. It turns out that
autocorrelation times tend to be much shorter in the
boundary regions than in the bulk, so observables with
contributions from boundary regions will show artificially
low autocorrelation times on open lattices compared to
periodic lattices. But when the goal is to simulate infinite-
volume QCD, this effect does not represent a speed-up
because it comes from regions of the open lattice where
the physics is very different from infinite-volume QCD.
The interesting question is whether autocorrelation times
in the bulk are reduced by using open boundary conditions.
Therefore when we discuss autocorrelations we will only
make comparisons between open and periodic lattices
using observables defined within the central region
½T=4; 3T=4Þ of Euclidean time, which we found above
to have boundary-independent physics.

B. Measurements of some physical quantities

Table II gives the measured values of two physical
quantities on our simulated ensembles: the reference flow
scale t0 and the topological susceptibility χt ≡ hQ2i=V.
These values suffer from finite volume and finite lattice
spacing errors that we make no attempt to correct, but they

serve as a useful cross-check. The measured susceptibility
is consistent with previously measured values for the pure
SU(3) gauge theory (e.g. [17] and references therein).
Note that on open lattices we use modified definitions

of t0 and χt that only involve the bulk and exclude the
boundary regions. This leads to increased finite-volume
effects on the open boundary data which are particularly
visible in χt.

C. Measured autocorrelations of
topological observables

In this section we give some measurements of autocor-
relations of topological observables on our ensembles. First
we briefly clarify our conventions for measures of auto-
correlation. Suppose we measure some observable X as a
function of MD time τ. Then ΓX, the autocorrelation
function of X, is defined as

ΓXðτÞ ¼ hXðτ0 þ τÞXðτ0Þi − hXi2: ð3:1Þ
The normalized autocorrelation function ρXðτÞ and inte-
grated autocorrelation time τintðXÞ are defined by

ρXðτÞ ¼
ΓXðτÞ
ΓXð0Þ

τintðXÞ ¼
τmeas

2

X∞
n¼−∞

ρXðnτmeasÞ

ð3:2Þ
where τmeas is the MD time interval at which we measure X.
We always report integrated autocorrelation times in
molecular dynamics time units. References [1,5] contain
useful formulas for calculating statistical errors on the
estimators of these quantities.
As discussed in the introduction, the global topological

charge Q rapidly develops longer and longer autocorrela-
tions as the lattice spacing is decreased. In Fig. 2 we show
portions of the MD time histories of Q on our periodic
lattices at each simulated lattice spacing. The dramatic
slowdown ofQ as a → 0 is obvious. Table III gives τintðQÞ,
the integrated autocorrelation time of the global topological
charge, on each of our periodic lattices. τintðQÞ increases byTABLE II. Measurements of t0 and χt on all simulated

ensembles. Note that measurements on open ensembles only
use the central half volume of the lattice. This leads to different
finite volume errors in the measurement of χt on the open
ensembles. χt is converted to physical units using the lattice
spacings of Table I. The quoted error on χ1=4t is purely statistical
and does not include the uncertainty in the lattice spacing or
systematic errors such as finite volume effects.

ffiffiffiffi
t0

p
=a χ1=4t ðMeVÞ

β Periodic Open Periodic Open

0.7796 1.00234(60) 1.00277(78) 161.9(1.1) 157.9(1.4)
0.8319 1.16374(44) 1.16395(54) 176.6(1.0) 169.4(1.1)
0.8895 1.35219(55) 1.35185(72) 181.6(1.7) 174.9(1.5)
0.9465 1.55082(38) 1.55093(45) 182.5(2.1) 180.0(1.4)
1.0038 1.76629(48) 1.76415(77) 181.5(3.0) 178.0(1.6)
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FIG. 2 (color online). Portions of the MD time histories of the
global topological charge Q from periodic ensembles.
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a factor of about 100 from our coarsest to our finest lattice.
Figure 3 shows that we obtain a good fit to the scaling
behavior of τintðQÞ with the ansatz

τintðQÞ ¼ k1ek2β;

k1 ¼ 2.7ð1.7Þ × 10−6 MDU;

k2 ¼ 20.2ð7Þ: ð3:3Þ

This fit form is motivated by the notion that there is some
action barrier S0 to topological tunneling which should
therefore be suppressed by a factor e−βS0. We can also
obtain a good fit using the form

τintðQÞ ¼ k1 expðk2=aÞ;
k1 ¼ 0.20ð5Þ MDU;

k2 ¼ 0.90ð3Þ fm: ð3:4Þ

A power law k1ak2 with k2 ≈ −6 can approximately fit the
data, but this fit is not as good, as Fig. 3 shows.
These results for the a-dependence of τintðQÞ are quite

similar to those of [1], which simulated the pure gauge
theory with the Wilson gauge action, and found that both

the form of Eq. (3.4) and the power law form (with
exponent around −5) described the data reasonably well.
While we use the DBW2 gauge action, so τintðQÞ becomes
large at a coarser lattice spacing, the same fit forms
apparently work reasonably well for both actions.
On all of our periodic lattices we find that the autocor-

relation function of Q has the form of a single exponential
to within our statistical precision. Fig. 4 shows this for our
two finest lattice spacings.
As discussed in Sec. III A, the global topological charge

Q is not the best observable to use for comparisons between
periodic and open lattices. We should instead look at
observables defined on subvolumes that lie entirely within
the bulk. For the moment we focus on two such observ-
ables: QðT=2Þ, the topological charge density summed
over the central time slice, and QðT=4; 3T=4Þ, the topo-
logical charge density summed over the central half of the
lattice volume.
Table III gives the integrated autocorrelation times of

these observables on both periodic and open lattices at each
lattice spacing. Like τintðQÞ, these integrated autocorrela-
tion times rise very rapidly as the lattice spacing is reduced.
However, the a-dependence of these autocorrelation times
is not captured by a simple function like Eq. (3.3) or (3.4).
We determine the scaling behavior of these autocorrelation
times in Sec. IV below. Note that the half-volume charge
QðT=4; 3T=4Þ always has a significantly longer autocor-
relation time than the time-slice charge QðT=2Þ.
The results of Table III show that open boundary

conditions do indeed lead to reduced (but still quite long)
autocorrelation times at fine enough lattice spacings. At
the very finest lattice spacing, a ¼ 0.1 fm, open boundary
conditions produce a more than a factor of 2 reduction in
the integrated autocorrelation times. At a ¼ 0.114 fm and
0.133 fm, the next two finest lattice spacings, open
boundary conditions show slightly shorter autocorrelations
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FIG. 3 (color online). Fits to the scaling behavior of τintðQÞ on
periodic lattices. a and β are related using Eq. (4.11) of [11].

TABLE III. Measured integrated autocorrelation times of some
topological observables. Open boundary conditions lead to
significantly shorter integrated autocorrelation times when the
lattice spacing is fine enough. (However, even these shorter times
are still quite long.)

Q QðT=2Þ QðT=4; 3T=4Þ
a (fm) Periodic Periodic Open Periodic Open

0.2000 20(2) 13.0(4) 13(1) 18(1) 18(1)
0.1600 53(4) 28(1) 28(2) 44(2) 41(3)
0.1326 175(18) 66(4) 62(5) 129(11) 105(9)
0.1143 525(63) 151(11) 136(11) 353(35) 270(22)
0.1000 2197(389) 465(66) 217(19) 1307(214) 464(43)
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FIG. 4 (color online). Measured normalized autocorrelation
functions of the global chargeQ on our two finest periodic lattices.
Also shown are curves of the form expð−τ=τintÞ where τint is the
measured integrated autocorrelation time. This single-exponential
form matches the measured autocorrelation functions well.
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than periodic boundary conditions, with the improvement
clearer for the half-volume charge QðT=4; 3T=4Þ. At the
two coarsest lattice spacings the integrated autocorrelation
times are independent of the boundary conditions to within
the limits of our measurements.
The reason for the difference between periodic and open

boundary conditions at fine lattice spacings is exactly
that envisaged in [5]. At fine lattice spacings on periodic
lattices, the autocorrelation functions of topological observ-
ables like the time-slice charge and the half-volume charge
develop long tails proportional to the autocorrelation
function of the global charge. As the autocorrelation time
of the global charge becomes very long, so do these tails.
Autocorrelation functions on open lattices do not develop
such long tails, because the global charge does not slow
down as drastically. On open lattices the topological charge
can flow in and out through the boundaries and so the
global charge can change without having to wait for rare
tunneling events. Figure 5 demonstrates this, comparing
the autocorrelation function of the half-volume charge
QðT=4; 3T=4Þ between open and periodic boundary con-
ditions at the coarsest and finest lattice spacings.
In the rest of this paper we will develop a model for

topological autocorrelations which will precisely reproduce
the measured autocorrelation functions of topological
observables, such as those plotted in Fig. 5. Among other
things this model lets us predict the lattice spacing at which
integrated autocorrelation times on periodic lattices start to
become much longer than those on open lattices. Thus the
model will tell us when open boundary conditions start to
become useful for reducing autocorrelations.

IV. DIFFUSION OF TOPOLOGICAL CHARGE

The mechanism by which the global topological charge
changes during an HMC evolution is moderately well
understood. As discussed in the introduction, the global

charge on a periodic lattice can only change via lattice
artifacts: “tears” or “dislocations” in the gauge field where
the field is not smooth and continuumlike. These disloca-
tions are likely to be small structures, with size of order the
lattice scale, in order to minimize their action. When the
global topological charge changes by means of one of these
dislocations we speak of the lattice gauge field tunneling
between adjacent topological sectors. The rate of tunneling
can be quantified by, for example, the integrated autocor-
relation time of the global topological charge.
Less well understood is how the topological charge

moves around the lattice in the absence of these tunneling
events. In particular, when considering open boundary
conditions it would be very useful to know how fast this
motion is, because open boundary conditions are supposed
to reduce autocorrelations by allowing topological charge
to be created or destroyed at the open boundaries and then
move into the bulk of the lattice. The effectiveness of open
boundary conditions will therefore be directly related to
the speed at which topological charge moves through the
lattice in the absence of tunneling. (This question is also
interesting for simulations which deliberately run in a fixed
topological sector, as discussed in e.g. [18,19]; then the rate
at which charge moves around will determine how long it
takes the lattice to decorrelate within a given topological
sector.)
One of the strengths of the mathematical model we now

develop is that it provides a clean and quantitative defi-
nition of the vague notion of “how fast topological charge
moves around the lattice.” This will enable us to develop a
theoretical understanding of the circumstances in which
open boundary conditions will reduce autocorrelations.

A. The diffusion model

In this section we give a mathematical model that
reproduces the autocorrelation function of QðtÞ, the topo-
logical charge summed over a single time slice. With this
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FIG. 5 (color online). Normalized autocorrelation function of QðT=4; 3T=4Þ, the topological charge summed over the central half of
the lattice time extent. At a ¼ 0.100 fm, the autocorrelation function has a very long tail on the periodic lattice which is absent on the
open lattice.
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model we will be able to determine the scaling behavior of
the autocorrelation times of Sec. III C and we will show
how to determine the lattice spacing at which the auto-
correlation times measured on open and periodic lattices
start to differ.
Denote by Qðt; τÞ the topological charge summed

over the time slice with Euclidean time coordinate t on
the configuration at MD time τ. We will focus on the
correlation function2

Cðt; t0; τÞ≡ hQðt; τ0 þ τÞQðt0; τ0Þi: ð4:1Þ

This correlation function tells us about the movement of
topological charge through the lattice during the HMC
evolution. Roughly speaking, Cðt; t0; τÞ will be large when
a lump of topological charge present on time slice t0 at
some MD time τ0 is likely to move to time slice t by MD
time τ0 þ τ. As a special case, Cðt0; t0; τÞ is the autocorre-
lation function of Qðt0Þ.
We can measure the correlation function C straightfor-

wardly with our high statistics. We find empirically that it
obeys a simple diffusion-decay equation3:

∂
∂τCðt; t0; τÞ ¼

∂
∂t

�
DðtÞ ∂∂t Cðt; t0; τÞ

�
−

1

τtunn
Cðt; t0; τÞ:

ð4:2Þ

Here the derivatives ∂=∂t with respect to Euclidean time
should be understood as finite differences and DðtÞ is a
function defined at Euclidean times midway between
the lattice time slices. We will call Eq. (4.2) the “diffusion
model.” The free parameters of the model are the function
DðtÞ and the quantity τtunn.
DðtÞ is a t-dependent diffusion coefficient with units of

fm2=MDU. It quantifies how fast topological charge
diffuses in the Euclidean time direction and answers the
question raised above of how fast topological charge moves
around the lattice in the absence of tunneling events. By
time-translation invariance, DðtÞ is a constant function on
periodic lattices or in the bulk region of open lattices, but it
can have nontrivial t dependence near open boundaries.
In fact we will find in Sec. IV B that DðtÞ is somewhat
enhanced in the immediate vicinity of an open boundary.
However, we will often treat DðtÞ as a constant, D, unless
we are interested in this boundary effect.
τtunn, which we call the “tunneling time scale,” has units

of MD time and quantifies the rate of tunneling between

topological sectors. In fact, on a periodic lattice it is exactly
the integrated autocorrelation time of the global topological
charge. This can be seen as follows. Summing Cðt; t0; τÞ
over t and t0 gives the autocorrelation function ΓQ of the
global topological charge:

ΓQðτÞ≡ hQðτ0 þ τÞQðτ0Þi ¼
XT−a
t¼0

XT−a
t0¼0

Cðt; t0; τÞ ð4:3Þ

where here QðτÞ denotes the global topological charge
at MD time τ. Then if we sum Eq. (4.2) over t and t0, the
diffusion term drops out because it is a total derivative,
leaving

d
dτ

ΓQðτÞ ¼ −
1

τtunn
ΓQðτÞ: ð4:4Þ

This implies that the autocorrelation function of the global
chargeQ is a simple exponential, as found in Sec. III C, and
that the area under the normalized autocorrelation function
ρQðτÞ is τtunn, as claimed. Thus on periodic lattices we
have τtunn ¼ τintðQÞ.
In principle, τtunn could be a function of Euclidean time t

near an open boundary. However, we are unable to resolve
any such t dependence in our data, and so we always take
τtunn to be a constant throughout the lattice.
The boundary conditions satisfied by the correlation

function C depend on the boundary conditions for the
lattice gauge field. On periodic latticesCðt; t0; τÞ is periodic
in t and in t0. On open lattices C goes to zero at the
Euclidean time boundaries in the continuum limit:

Cð0;t0;τÞ¼CðT−a;t0;τÞ¼Cðt;0;τÞ¼Cðt;T−a;τÞ¼0:

ð4:5Þ

These boundary conditions let the correlations measured
by C “leak out” through the open boundaries, just as the
topological charge itself can leak out. They arise from the
fact that open boundary conditions correspond to setting

the color-electric field ~E to zero at the boundaries [5].
Therefore the topological charge density, which is propor-

tional to trð~E · ~BÞ, also vanishes at the boundaries, as do
correlation functions of the charge density such as C.
The diffusion model provides a concrete way of thinking

about how the topological charge density changes during
an HMC evolution. There are two processes: a diffusion
process that proceeds at a rate given by D and a tunneling
process that proceeds at a rate given by τtunn. As we will
now demonstrate, this simple model suffices to completely
explain our measurements of the autocorrelations of topo-
logical observables. The integrated autocorrelation time
τtunn is of course a well-known quantity but as far as we
know the diffusion coefficient D has not been identified
before.

2Henceforth “t0” will always be a Euclidean time and should
not be confused with the Wilson flow reference time.

3This generalization of the diffusion equation to a position-
dependent diffusion coefficient DðtÞ is just one of many
possibilities. This form is the first that we tried and we found
it to work well. Later we tried altering the diffusion term to
∂2=∂t2ðDðtÞCÞ. This form also works well but led to slightly
larger values of the χ2 defined in Eq. (4.6).
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B. Diffusion model fits to simulation data

In this section we discuss our method for estimating the
free parameters of Eq. (4.2) from our data and demonstrate
the close agreement between the model and our simula-
tion data.
Equation (4.2) predicts Cðt; t0; τÞ for MD time separa-

tions τ > 0 given the “initial condition” Cðt; t0; τ ¼ 0Þ,
which gives the correlations between the QðtÞ at zero MD
time separation. The free parameters in the differential
equation are the diffusion coefficient DðtÞ and the tunnel-
ing time scale τtunn. DðtÞ must be a constant function on
periodic lattices, but on open lattices we allow it to be a
general function of t, except that we impose time-reversal
symmetry (i.e., symmetry under t → T − a − t). So on
periodic lattices, the model has two free parameters, τtunn
and D, while on open lattices the model has T=2þ 1 free
parameters, τtunn and the values of DðtÞ for t < T=2.
For a given choice of the parameters DðtÞ and τtunn, we

define a measure of the goodness of fit as follows. We
measure the function Cðt; t0; 0Þ from our data, then numeri-
cally integrate Eq. (4.2) to obtain the prediction for the
correlation function at τ > 0, which we will denote by

C model. We then measure the function Cðt; t0; τÞ from our
data, obtaining an estimate C̄ with statistical error ΔC̄.
These measurements are made for a discrete set of MD time
separations nτmeas, n ¼ 1; 2;…; N. Finally we define the
goodness of fit,

χ2≡XN
n¼1

XT−a
t¼0

XT−a
t0¼0

�
Cmodelðt;t0;nτmeasÞ− C̄ðt;t0;nτmeasÞ

ΔC̄ðt;t0;nτmeasÞ
�

2

:

ð4:6Þ

We find the best estimates of DðtÞ and τtunn by varying
them to minimize this χ2. Finally we estimate statistical
errors on DðtÞ and τtunn by the jackknife method. We use a
blocked jackknife with blocks much longer than the longest
measured autocorrelation time.
The resulting fits are shown in Figs. 6 and 7 where for

each ensemble we plot Cðt; t0; τÞ for several choices of t
and t0 alongside the model fit. In every case our simple
model produces remarkably good agreement with the
measured correlation functions. We stress that τtunn and
DðtÞ are determined only once per ensemble: the χ2 in
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FIG. 6 (color online). Measurements and diffusion model predictions of Cðtþ Δt; t; τÞ vs τ for several values of Δt on each periodic
ensemble. This is the correlation between the charge on time slice t and the charge on time slice tþ Δt an MD time τ later. By time-
translation invariance this function is independent of t. Error bars on measurements are too small to see. In all cases the model curve
closely matches the measured data.
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Eq. (4.6) sums over all values of t and t0. After minimizing
χ2, the resulting estimates for τtunn and DðtÞ are used to
predict the Cðt; t0; τÞ for any t and any t0.
We can integrate the diffusion model predictions for

autocorrelation functions to get predictions for integrated
autocorrelation times. Figure 8 compares measurements of
τintðQðtÞÞ, the integrated autocorrelation time of QðtÞ,

to model predictions on our finest pair of ensembles.
The predictions are computed using the estimates of
DðtÞ and τtunn from the above fitting procedure. There is
close agreement, and the diffusion model correctly repro-
duces the nontrivial t dependence of τintðQðtÞÞ in the
presence of open boundary conditions.
The best estimates for τtunn and DðT−a

2
Þ (the diffusion

coefficient at the center of the lattice) are summarized in
Table IV. At a given lattice spacing, the measured values
of these quantities on the periodic and open lattices are
consistent with each other. This is expected: the boundary
conditions should not affect the rate of tunneling or
diffusion in the bulk. Furthermore, the measured values
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FIG. 7 (color online). Measurements and diffusion model predictions of Cðt; T=2; τÞ vs τ for several values of t on each open
ensemble. This is the correlation between the charge on the central time slice and the charge on time slice t an MD time τ later. Error bars
on measurements are too small to see. In all cases the model curve closely matches the measured data.
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FIG. 8 (color online). Measurements and diffusion model
prediction of τintðQðtÞÞ vs t on the a ¼ 0.100 fm periodic and
open lattices.

TABLE IV. Best fit results for diffusion model parameters.

τtunn DðT−a
2
Þ=a2 (MDU−1)

a (fm) Periodic Open Periodic Open

0.2000 20(1) 20(2) 0.090(12) 0.099(30)
0.1600 56(3) 51(3) 0.1018(73) 0.113(18)
0.1326 185(20) 162(19) 0.1085(97) 0.088(15)
0.1143 561(59) 737(143) 0.1080(56) 0.120(14)
0.1000 2350(389) 1973(621) 0.1155(29) 0.116(12)
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of τtunn in Table IV are consistent with the measured values
of the integrated autocorrelation time τintðQÞ on periodic
lattices in Table III, as expected since Eq. (4.4) predicts
τintðQÞ ¼ τtunn. The estimates from open lattices tend to
have larger error bars: this is because the model has more
free parameters on open lattices since DðtÞ is allowed to
depend on t.
While DðtÞ is identical in the bulk between periodic and

open lattices, when t is close to an open boundary we
observe that DðtÞ is enhanced relative to its bulk value. As
an example, Fig. 9 shows the fit results for the function
DðtÞ at our finest lattice spacing, comparing the open result
to the (time-translation invariant) periodic result.
DðtÞ is a property of the HMC algorithm and not a

physical observable. However, we expect that the width
of the boundary region in which DðtÞ is enhanced is
controlled, as for physical observables, by a combination
of the Wilson flow smearing radius

ffiffiffiffiffiffi
8t0

p
and QCD

correlation lengths.

C. Scaling of the diffusion coefficient

In Sec. III C we gave some fits to the a-dependence of
τintðQÞ, which is identical to the diffusion model parameter
τtunn. It is very interesting to ask how the diffusion
coefficient D, the other parameter of the diffusion model,
depends on the lattice spacing. The answer is that over
the range of lattice spacings we simulated D scales like a2

up to smallOða4Þ corrections. Figure 10 plots the fit results
for D as a function of a on periodic lattices, finding good
agreement with a fit of the form

D=a2 ¼ c1 þ c2a2;

c1 ¼ 0.123ð5Þ MDU−1;

c2 ¼ −0.85ð32Þ MDU−1 fm−2: ð4:7Þ

As we will discuss below in Sec. IVG, the parameters D
and τtunn depend on the parameters of the HMC algorithm,

in particular the trajectory length. In our simulations, we
have chosen to scale the trajectory length like 1=a. It may
be that a different choice for the scaling of the trajectory
length would lead to different scaling behaviors for D and
τtunn. In the rest of this paper we will assume that D scales
like a2, but it should be kept in mind that this could be
modified to some extent by different choices for the scaling
of the trajectory length.
The diffusion coefficient D and the lattice Euclidean

time extent T together define a characteristic MD time we
will call the “diffusion time scale,”

τdiff ≡ T2=8D: ð4:8Þ
With the factor of 8 included, this is roughly the MD time
it takes a lump of topological charge to diffuse across a
distance T=2. It should be thought of as the speed at which
the center of the lattice can communicate with the boun-
daries. From the scaling of D, the characteristic MD time
interval τdiff scales like 1=a2 at fixed Euclidean time
extent T.
Another way of thinking about the diffusion time scale is

that in simulations that deliberately run in a fixed topo-
logical sector, the diffusion time scale is a measure of how
fast the lattice decorrelates in the absence of tunneling.
Thus it answers the important question of how long it takes
these simulations to be ergodic within a fixed topological
sector of field space.

D. The tunneling- and diffusion-dominated regimes

The diffusion model thus identifies a tunneling time
scale τtunn and a diffusion time scale τdiff . There are two
limiting cases where one of these time scales is much
shorter than the other. In the tunneling-dominated regime
characterized by τtunn ≪ τdiff, diffusion is much slower than
tunneling, while in the diffusion-dominated regime where
τtunn ≫ τdiff diffusion is much faster than tunneling.
The tunneling-dominated regime corresponds to large a

(because then tunneling is fast) or large T (because then it
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FIG. 9 (color online). Measured diffusion coefficient DðtÞ on
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takes a long time to diffuse across the lattice). Conversely the
diffusion-dominated regime corresponds to small a or small
T. For a fixed physical value of T, coarse enough lattices will
be tunneling dominated while fine enough lattices will be
diffusion dominated. Similarly, for a fixed value of a, short
enough lattices will be diffusion dominated while long
enough lattices will be tunneling dominated.
The transition region between these regimes is the region

of parameter space where τtunn ∼ τdiff . Given the measure-
ments of τdiff and τtunn shown in Fig. 11, this happens in our
set of ensembles at a ∼ 0.11 fm. It should be kept in mind
that the transition between the tunneling- and diffusion-
dominated regimes will happen at a different lattice spacing
depending on the action, Euclidean time extent, and the
HMC algorithm parameters. For example, if we used an
action that was better at topological tunneling, such as the
Wilson gauge action, this transition would occur at a finer
lattice spacing.
Tunneling happens at equal rates on periodic and open

lattices. Therefore in the tunneling-dominated regime there

will be little difference between the autocorrelation times
on periodic and open lattices. Because τtunn is so short,
autocorrelations are destroyed by tunneling much faster
than the time scale τdiff on which the boundaries can affect
the bulk. In the diffusion-dominated regime, however, we
expect significant differences between autocorrelation
times on open and periodic lattices. On open lattices, in
the diffusion-dominated regime, the topological charge in
the bulk can change even in the absence of tunneling by
exchanging topological charge with the boundaries, where
topological charge can be created and destroyed freely.
Figure 12 shows that the integrated autocorrelation times

of the time slice chargeQðT=2Þ and the half-volume charge
QðT=4; 3T=4Þ both follow this pattern. At coarse lattice
spacings, periodic and open boundary conditions produce
identical autocorrelation times. At fine lattice spacings,
open boundary conditions produce much shorter autocor-
relation times. The transition region between these two
regimes indeed occurs at a ≈ 0.11 fm.
Also plotted in Fig. 12 are the integrated autocorrelation

times for these observables calculated with the diffusion
model, using as inputs the measured scaling behavior of
τtunn and D [we have neglected the boundary region
enhancement of DðtÞ on open lattices, which has only a
minor effect on these integrated autocorrelation times].
The model curves correctly reproduce the observed
behavior and show that if we ran simulations at even finer
lattice spacings the difference between periodic and open
boundary conditions would become very large.
How exactly do autocorrelation times scale with a? How

much do open boundary conditions improve the scaling in
the diffusion-dominated regime? In principle to answer
these questions all we have to do is numerically integrate
Eq. (4.2), making use of our knowledge of the simple
a-dependence of τtunn and D. That is what we have done in
Fig. 12. However, we can do better: in the tunneling- or
diffusion-dominated limits we can obtain analytic results
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FIG. 11 (color online). Measurements of the tunneling and
diffusion time scales from diffusion model fits on all periodic
lattices.
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for some integrated autocorrelation times in the diffusion
model. We work these out in the next section.

E. Analytic scaling laws in the tunneling- and
diffusion-dominated regimes

In this section we use Eq. (4.2) to compute the integrated
autocorrelation time of Qðt0Þ, the topological charge on
the time slice at Euclidean time t0, in the tunneling- and
diffusion-dominated regimes on periodic and open lattices.
We will obtain analytic results telling us how this integrated
autocorrelation time scales with a in each of these limits.
While we will carry out the computations for the specific
observable Qðt0Þ, some of the results will generalize to all
topological observables.
In these calculations we make a few simplifications to

make the problem more analytically tractable. First, we will
treat Euclidean time as continuous, so that the ∂=∂ts in
Eq. (4.2) will be actual derivatives instead of finite
differences. This is a good approximation because
Cðt; t0; τÞ is always fairly smooth as a consequence of
the Wilson flow smearing that goes into measuring QðtÞ.
Second, we will ignore the fact that in real simulations
measurements are only conducted at discrete MD times
separated by an interval τmeas; we will simply compute the
integrated autocorrelation time as an integral:

τintðQðt0ÞÞ≡
Z

∞

0

dτρQðt0ÞðτÞ ¼
Z

∞

0

dτ
Cðt0; t0; τÞ
Cðt0; t0; 0Þ

;

ð4:9Þ

whereas in an actual simulation τint would have to be
computed as a discrete sum. Finally, we will ignore the t
dependence of D near the open boundaries, which will not
change the qualitative conclusions as long as T is signifi-
cantly larger than the boundary region in which DðtÞ is not
constant.
In order to make predictions we need as input the equal-

MD-time correlation function Cðt; t0; 0Þ. In our simula-
tions, we find that Cðt; t0; 0Þ is very close to Gaussian:

Cðt; t0; 0Þ ≈ ce−ðt−t0Þ2=2σ2 ; ð4:10Þ

where σ is a physical length scale which we find to be about
0.22 fm. The scaling predictions in this section use this
Gaussian form for Cðt; t0; 0Þ. However the exact shape of
Cðt; t0; 0Þ is not important for the qualitative conclusions
we will draw about scaling.
With these simplifications the problem amounts to

solving the simple linear differential equation Eq. (4.2)
with initial conditions given by Eq. (4.10) and then
performing the integral in Eq. (4.9). We relegate the details
to an Appendix and just give the results here.

1. The tunneling-dominated regime

In the tunneling-dominated regime, autocorrelation times
are independent of the boundary conditions for observables
located far enough from the boundaries. Here far enough
means a distance greater than about

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dτtunn

p
. If t0 satisfies

this condition, we find

τintðQðt0ÞÞ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πσ2τtunn
2D

r
ð4:11Þ

where the approximation is good up to corrections down
by powers of σ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dτtunn

p
. These corrections become

small at fine enough lattice spacings, well before the lattice
spacing becomes fine enough that we transition from the
tunneling-dominated to the diffusion-dominated regime.
Equation (4.11) says that in the tunneling-dominated regime
this integrated autocorrelation time scales essentially likeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τtunn=D

p
. This scaling is not quite as bad as that of τtunn

itself but it is still quite bad. We will now see that the scaling
in the diffusion-dominated regime is worse than this on
periodic lattices, but better than this on open lattices.

2. The diffusion-dominated regime on periodic lattices

On a periodic lattice, the large-τ behavior of the
normalized autocorrelation function of Qðt0Þ is

ρQðt0ÞðτÞ⟶
τ→∞ ffiffiffiffiffiffi

2π
p σ

T
e−τ=τtunn : ð4:12Þ

In the diffusion-dominated limit, τtunn is very large and τint
becomes dominated by the area under this tail, so that

τintðQðt0ÞÞ →
ffiffiffiffiffiffi
2π

p σ

T
τtunn: ð4:13Þ

So on periodic lattices in the diffusion-dominated regime,
τintðQðt0ÞÞ scales in the same (very bad) way as τtunn, the
integrated autocorrelation time of the global topological
charge.
This result generalizes beyond the time-slice charge: in

the diffusion-dominated limit on a periodic lattice all
topological autocorrelation times scale like τtunn, and thus
increase very rapidly as a → 0. The reason is that all
topological autocorrelation functions develop long tails of
the form expð−τ=τexpÞ with τexp ∝ τtunn, and for τtunn large
enough the area under this tail dominates the integrated
autocorrelation time.

3. The diffusion-dominated regime on open lattices

On an open lattice in the diffusion-dominated limit,
we find

τintðQðt0ÞÞ ≈
ffiffiffiffiffiffi
2π

p
K
t0
T

�
1 −

t0
T

�
σT
D

ð4:14Þ
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where K ¼ 1þOðσ=TÞ is a near-unity coefficient. This
formula gives the form of the t0 dependence of τintðQðt0ÞÞ
on open lattices, although it should be kept in mind that
the exact form of the t0 dependence will be modified by the
time dependence of the diffusion coefficient near the
boundaries, which we have neglected in this calculation.
Equation (4.14) shows that in the diffusion-dominated

regime τintðQðt0ÞÞ scales in the same way as 1=D. Above
we found that D scales like a2, so in this regime the
integrated autocorrelation time ofQðt0Þ scales like 1=a2. In
fact this scaling behavior generalizes to all topological
autocorrelation times. This is because in the diffusion-
dominated limit on open lattices the term in Eq. (4.2)
proportional to 1=τtunn can be dropped. Then any quantity
with units of MD time that we can construct from the
parameters of the diffusion model is proportional to 1=D.
Thus in the diffusion-dominated limit on open lattices, all
topological autocorrelation times scale like 1=a2.
Finally, we see that at fixed t0=T this integrated

autocorrelation time is proportional to T. So while the
1=a2 scaling is an improvement over the scaling seen with
periodic boundary conditions, if the lattice has a large
Euclidean time extent the coefficient in front of the 1=a2

will be large.

F. More general topological observables

The mathematical model we have given describes the
MD-time correlation functions of the time-slice topological
charges QðtÞ. We can combine these to find the autocorre-
lation function ofQðt1; t2Þ, the charge summed over a finite
Euclidean time extent t1 ≤ t < t2 by expressing the sub-
volume charge as a sum of time-slice charges:

hQðt1; t2; τ1ÞQðt1; t2; τ2Þi ¼
Xt2−a
ta¼t1

Xt2−a
tb¼t1

hQðta; τ1ÞQðtb; τ2Þi

ð4:15Þ

where here Qðt1; t2; τÞ is the value of the subvolume
charge Qðt1; t2Þ at the MD time τ. The diffusion model
gives all the correlation functions on the right-hand side,
so we can use it to compute the left-hand side also. For
example, in Fig. 13 we plot the normalized autocorrela-
tion functions of several subvolume charges on the
periodic a ¼ 0.100 fm ensemble and demonstrate that
they are in close agreement with the model predictions
calculated using Eq. (4.15).
We can also use the model to compute the autocorre-

lations of squared charges like QðtÞ2 and Qðt1; t2Þ2. As
noted in [5], if X is any observable defined by a sum over a
region of the lattice much larger than the longest physical
QCD correlation length, then there is a simple relationship,

ρX2ðτÞ ¼ ρXðτÞ2; ð4:16Þ

between the normalized autocorrelation function of X and
the normalized autocorrelation function of X2. Thus for
instance we can predict the normalized autocorrelation
function of QðtÞ2 just by squaring the prediction for the
normalized autocorrelation function of QðtÞ.

G. Dependence of diffusion model parameters
on HMC algorithm parameters

Autocorrelation times are properties of the HMC algo-
rithm and not properties of the simulated theory alone.
Therefore the tunneling and diffusion time scales that we
have defined may depend not just on the lattice spacing
and the Euclidean time extent but also on the parameters of
the simulation algorithm. Here the only parameter we will
consider is the trajectory length.
We ran several additional simulations with different

HMC trajectory lengths at our coarsest lattice spacing in
order to measure the influence of the trajectory length on
the diffusion coefficient D and the tunneling time scale
τtunn. The measurement interval τmeas ¼ 10MDU was held
constant as the trajectory length was varied, and the MD
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integrator step size was adjusted to keep acceptance high.
As shown in Fig. 14, we find that longer trajectories lead to
larger D and smaller τtunn. This is consistent with previous
experience which suggests that increasing the trajectory
length can decrease autocorrelation times [1,20].

V. CONCLUSIONS

We have shown that the autocorrelation functions of
topological observables are predicted very accurately by a
surprisingly simple mathematical model that incorporates
only two processes: diffusion of topological charge and
tunneling between topological sectors. The rates of these
processes are given by the diffusion coefficient D and the
tunneling time scale τtunn (which on a periodic lattice is just
the integrated autocorrelation time of the global topological
charge). We find thatD scales like a2 while τtunn scales like
expðkβÞ with k being uncomfortably large.
The relative rates of the tunneling process and the

diffusion process determine whether open boundary con-
ditions are useful for reducing autocorrelation times.
The characteristic time scale of the diffusion process is
τdiff ¼ T2=8D. Open boundary conditions show drastically
improved scaling of autocorrelation times in the diffusion-
dominated regime, when

T2=8D ≪ τtunn: ð5:1Þ
In this regime, topological autocorrelation times scale like
1=D ∼ 1=a2 on open lattices, while on periodic lattices
they are proportional to τtunn. It is when Eq. (5.1) is satisfied
that open boundary conditions are useful for reducing
autocorrelation times.
In the opposite limit of T2=8D ≫ τtunn the simulation is

tunneling dominated. In this regime autocorrelation times
in the bulk are independent of the boundary conditions and
open boundary conditions will not reduce autocorrela-
tion times.
As an example of applying this criterion, we can

consider the Wilson gauge action simulations of [6],
mentioned in the introduction, in which we attempted to
compare open and periodic boundary conditions with the
Wilson gauge action at β ¼ 6.42, a ∼ 0.05 fm, T=a ¼ 32.
The statistics of those simulations were quite low given the
long autocorrelations, but we can estimate the order of
magnitude of the tunneling time scale τtunn from the high-
statistics simulations of [1]. There a simulation with the
same gauge action (but a slightly different simulation
algorithm) at the nearby value of β ¼ 6.475 found the
integrated autocorrelation time ofQ2 to be several thousand
MDU; this gives the right order of magnitude for τtunn,
which is the integrated autocorrelation time of Q.
Meanwhile if the diffusion constant for the Wilson gauge
action is similar to the valueD=a2 ∼ 0.1 MDU−1 measured
here with the DBW2 action, then the diffusion time scale is
τdiff ¼ T2=8D ∼ 1000 MDU. The situation is therefore

likely similar to the DBW2 lattices at a ¼ 0.100 fm in
this paper: τdiff is smaller than τtunn by a factor of a few, so
open boundary conditions should decrease autocorrelation
times by a factor of a few. However both time scales are
quite long, and with the limited statistics we collected in [6]
we were not able to measure the long autocorrelations
accurately enough to detect this difference.
Equation (5.1) will be satisfied eventually for small

enough a, so open boundary conditions will always be
useful if the lattice spacing is fine enough. How small a
needs to be depends on the lattice action (which controls
the tunneling time scale) and the Euclidean time extent.
The faster the tunneling time scale and the longer the
lattice, the finer the lattice spacing needs to be before open
boundary conditions will be useful. Long lattices have an
additional drawback: in the diffusion-dominated regime on
open lattices some integrated autocorrelation times are
proportional to T.
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APPENDIX: ANALYTIC CALCULATION
OF τintðQðt0ÞÞ

Here we supply some of the details in the calculations of
τintðQðt0ÞÞ in Sec. IV E.
For convenience we will scale Cðt; t0; 0Þ so that

Cðt0; t0; 0Þ ¼ c ¼ 1; then the normalized autocorrelation
function of Qðt0Þ is ρQðt0ÞðτÞ ¼ Cðt0; t0; τÞ.

1. The tunneling-dominated regime

In the tunneling-dominated regime, as long as t0 is not
too close to an open boundary we can pretend that we are
working with a lattice of infinite Euclidean time extent,
because the correlations measured by Cðt; t0; τÞ are
destroyed by tunneling before they can diffuse to the
boundaries of the lattice. Solving Eq. (4.2) on an infinite
domain with initial conditions given by Eq. (4.10) we
obtain

Cðt; t0; τÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2Dτ=σ2
p exp

�
−ðt − t0Þ2
2σ2 þ 4Dτ

−
τ

τtunn

�
:

ðA1Þ
The normalized autocorrelation function of Qðt0Þ is then

ρQðt0ÞðτÞ ¼ Cðt0; t0; τÞ ¼
e−τ=τtunnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Dτ=σ2

p ; ðA2Þ
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and the integrated autocorrelation time is

τintðQðt0ÞÞ ¼
Z

∞

0

dτρQðt0ÞðτÞ

¼ τtunn½
ffiffiffi
π

p
x − 2x2 þ ffiffiffi

π
p

x3 þOðx4Þ� ðA3Þ

where x ¼ σ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dτtunn

p
.

2. The diffusion-dominated regime
on periodic lattices

At finite T, Eq. (4.2) can be solved by solving the
eigenvalue equation

�
−D

∂2

∂t2 þ
1

τtunn

�
ϕnðtÞ ¼ λnϕnðtÞ ðA4Þ

where the ϕn satisfy periodic boundary conditions, and
then expanding Cðt; t0; τÞ in the eigenmodes ϕn as

Cðt; t0; τÞ ¼
X
n

cnϕnðtÞe−λnτ: ðA5Þ

The integrated autocorrelation time of Qðt0Þ is then

τintðQðt0ÞÞ ¼
X
n

cn
λn

ϕnðt0Þ: ðA6Þ

Without loss of generality we will take t0 ¼ 0. The
eigenfunctions and eigenvalues are

ϕnðtÞ ¼ cos

�
2nπt
T

�
;

λn ¼
1

τtunn
þD

�
2nπ
T

�
2

;

n ¼ 0; 1; 2;… ðA7Þ

where we have ignored the odd eigenfunctions of Eq. (A4)
because they are orthogonal to the initial state Cðt; 0; 0Þ. In
the diffusion-dominated limit, τtunn becomes large and so
λ0 ¼ 1=τtunn becomes much smaller than all the other
eigenvalues. In this limit, the normalized autocorrelation
function develops a long tail at large τ:

ρQðt0ÞðτÞ ¼ Cðt0; t0; τÞ⟶τ→∞ ffiffiffiffiffiffi
2π

p σ

T
e−τ=τtunn : ðA8Þ

In the diffusion-dominated limit, τint becomes dominated
by the area under this tail, so that

τintðQðt0ÞÞ ¼
c0
λ0

þO

�
1

λ1

�
¼

ffiffiffiffiffiffi
2π

p σ

T
τtunn þO

�
T2

4π2D

�
:

ðA9Þ

3. The diffusion-dominated regime on open lattices

On open lattices we again must solve the eigenvalue
problem Eq. (A4) but this time the boundary conditions are
ϕnð0Þ ¼ ϕnðTÞ ¼ 0. The eigenfunctions and eigenvalues
are

ϕnðtÞ ¼ sin

�
nπt
T

�
;

λn ¼
1

τtunn
þD

�
nπ
T

�
2

;

n ¼ 1; 2;… ðA10Þ

This time there is no near-zero eigenvalue when τtunn
becomes large, so the sum in Eq. (A6) is not dominated
by a single mode. Therefore in the diffusion-dominated
limit we can drop the 1=τtunn term in Eq. (A10). For
n ≪ T=σ, a good approximation is

cn ≈
ffiffiffiffiffiffi
8π

p σ

T
sin

�
nπt0
T

�
: ðA11Þ

For n > T=σ, cn goes rapidly to zero. Then using Eq. (A6)
we can write a good approximation to τint:

τintðQðt0ÞÞ ≈
ffiffiffiffiffiffi
8π

p σT
π2D

XT=σ
n¼1

1

n2
sin2

�
nπt0
T

�
: ðA12Þ

We can extend this finite sum to an infinite sum at the cost
of an Oðσ=TÞ error. Then using the fact that, for a ∈ ½0; π�,

X∞
n¼1

sin2ðanÞ
n2

¼ 1

2
aðπ − aÞ ðA13Þ

we get

τintðQðt0ÞÞ ≈
ffiffiffiffiffiffi
2π

p
K
t0
T

�
1 −

t0
T

�
σT
D

ðA14Þ

where K is some coefficient of order 1þOðσ=TÞ that
accounts for the error introduced by going from a finite sum
to an infinite one.
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