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The masses of the low-lying baryons are evaluated using a total of ten ensembles of dynamical twisted
mass fermion gauge configurations. The simulations are performed using two degenerate flavors of light
quarks, and a strange and a charm quark fixed to approximately their physical values. The light sea quarks
correspond to pseudo scalar masses in the range of about 210 to 430 MeV. We use the Iwasaki improved
gluonic action at three values of the coupling constant corresponding to lattice spacing a ¼ 0.094, 0.082
and 0.065 fm determined from the nucleon mass. We check for both finite volume and cutoff effects on the
baryon masses. We examine the issue of isospin symmetry breaking for the octet and decuplet baryons and
its dependence on the lattice spacing. We show that in the continuum limit isospin breaking is consistent
with zero, as expected. We performed a chiral extrapolation of the forty baryon masses using SU(2) χPT.
After taking the continuum limit and extrapolating to the physical pion mass our results are in good
agreement with experiment. We provide predictions for the mass of the doubly charmed Ξ�

cc, as well as of
the doubly and triply charmed Ωs that have not yet been determined experimentally.
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I. INTRODUCTION

Simulations of QCD defined on four-dimensional
Euclidean lattice using near to physical values of the light
quark masses are enabling the reliable extraction of the
masses of the low-lying hadrons. This progress in lattice
QCD coupled with the interest in charmed-baryon spec-
troscopy, partly triggered by the first observation of a
family of doubly charmed baryons Ξþ

ccð3519Þ and
Ξþþ
cc ð3460Þ by the SELEX Collaboration [1–3], make

the study of the charmed hadron masses particularly timely.
The fact that the observation of Ξþ

ccð3519Þ or Ξþþ
cc ð3460Þ,

has not be confirmed by the BABAR [4] nor the BELLE [5]
experiments calls for further attention into the existence of
doubly charmed Ξs. Even more interesting is the mass
splitting of about 60 MeV for this doublet as compared to
the splitting of other previously observed isospin partners
that have mass differences 1 order of magnitude smaller.
Theoretical studies using e.g. the nonrelativistic [6] and
relativistic quark models [7,8], and QCD sum rules [9]
predict the Ξcc mass to be 100–200 MeV higher than
that observed by SELEX. Heavy baryon spectra will be
further studied experimentally at the recently upgraded
Beijing Electron-Positron Collider detector, the Beijing
Spectrometer and at the antiproton annihilation at
DArmstadt at FAIR. Lattice QCD calculations can provide
theoretical input for these experiments. A number of lattice
QCD studies have recently looked at the mass of charmed
baryons. Most of these studies employ a mixed action
approach using staggered sea quarks. In Ref. [10]

Nf ¼ 2þ 1þ 1 staggered sea quarks with clover light
and strange valence quarks and a relativistic action for the
charm quark are employed and the results are extrapolated
to the continuum limit. In Refs. [11,12] Nf ¼ 2þ 1
staggered sea quarks are used with staggered light and
strange [11] or domain wall [12] valence quarks with a
relativistic action for the charm quark.
In this work we extend our previous study on the low-

lying spectrum of the baryon octet and decuplet using
Nf ¼ 2 twisted mass fermions [13] to Nf ¼ 2þ 1þ 1

twisted mass fermions at maximal twist. For the valence
strange and charm sector we use an Osterwalder-Seiler
quarks avoiding mixing between these two sectors. The
strange and charm valence quark masses are tuned using
the Ω− and Λc baryon mass, respectively. We analyze a
total of ten Nf ¼ 2þ 1þ 1 ensembles at three different
lattice spacings and volumes. This enables us to take the
continuum limit and assess volume effects. Our results are
fully compatible with an Oða2Þ behavior which is used to
extrapolate to the continuum limit.
The good precision of our results on the baryon masses

allows us to perform a study of chiral extrapolations to
obtain results at the physical point. This study shows that
one of the main uncertainties in predicting the mass at the
physical point is caused by the chiral extrapolations, which
yield the largest systematic error.
An important issue is the restoration of the explicitly

broken isospin symmetry in the continuum limit. At finite
lattice spacing, baryon masses display Oða2Þ isospin
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breaking effects. There are, however, theoretical arguments
[14] as well as numerical evidence [15,16] that these
isospin breaking effects are particularly pronounced for
the neutral pseudo scalar mass, whereas for other quantities
studied so far by the European Twisted Mass Collaboration
(ETMC) they are compatible with zero. In this paper, we
will corroborate this result also in the baryon sector
showing that isospin breaking effects are in general small
or even compatible with zero. For a preliminary account of
these results see Ref. [17].
The paper is organized as follows: The details of our

lattice setup, namely those concerning the twisted mass
action, the parameters of the simulations and the interpo-
lating fields used, are given in Sec. II. Section III contains
the numerical results of the baryon masses computed for
different lattice volumes, lattice spacings and bare quark
masses. Lattice artifacts, including finite volume and
discretization errors are also discussed with special empha-
sis on the Oða2Þ isospin breaking effects inherent in the
twisted mass formulation of lattice QCD. The chiral
extrapolations are analyzed in Sec. IV. Section V contains
a comparison with other existing calculations and con-
clusions are finally drawn in Sec. VI.

II. LATTICE TECHNIQUES

A. The lattice action

In the present work we employ the twisted mass fermion
action [18] and the Iwasaki improved gauge action [19].
Twisted mass fermions provide an attractive formulation of
lattice QCD that allows for automatic OðaÞ improvement,
infrared regularization of small eigenvalues and fast
dynamical simulations [20].
The twisted mass Wilson action used for the light

degenerate doublet of quarks (u, d) is given by [18,20]

SðlÞF ½χðlÞ; χ̄ðlÞ; U� ¼ a4
X
x

χ̄ðlÞðxÞðDW ½U� þm0;l

þ iμlγ5τ3ÞχðlÞðxÞ ð1Þ
with τ3 the third Pauli matrix acting in the flavor space,m0;l
the bare untwisted light quark mass, μl the bare twisted
light quark mass and the massless Wilson-Dirac operator
given by

DW ½U� ¼ 1

2
γμð∇μ þ∇�

μÞ −
ar
2
∇μ∇�

μ ð2Þ
where

∇μψðxÞ ¼
1

a
½U†

μðxÞψðxþ aμ̂Þ − ψðxÞ� and

∇�
μψðxÞ ¼ −

1

a
½Uμðx − aμ̂Þψðx − aμ̂Þ − ψðxÞ�: ð3Þ

The quark fields denoted by χðlÞ in Eq. (1) are in the
so-called “twisted basis.” The fields in the “physical

basis,” ψ ðlÞ, are obtained for maximal twist by the simple
transformation

ψ ðlÞðxÞ ¼ 1ffiffiffi
2

p ð1þ iτ3γ5ÞχðlÞðxÞ;

ψ̄ ðlÞðxÞ ¼ χ̄ðlÞðxÞ 1ffiffiffi
2

p ð1þ iτ3γ5Þ: ð4Þ

In addition to the light sector, a twisted heavy mass-split
doublet χðhÞ ¼ ðχc; χsÞ for the strange and charm quarks is
introduced, described by the action [21,22]

SðhÞF ½χðhÞ; χ̄ðhÞ; U� ¼ a4
X
x

χ̄ðhÞðxÞðDW ½U� þm0;h

þ iμσγ5τ1 þ τ3μδÞχðhÞðxÞ ð5Þ

where m0;h is the bare untwisted quark mass for the heavy
doublet, μσ is the bare twisted mass along the τ1 direction
and μδ is the mass splitting in the τ3 direction. The quark
fields for the heavy quarks in the physical basis are
obtained from the twisted basis through the transformation

ψ ðhÞðxÞ ¼ 1ffiffiffi
2

p ð1þ iτ1γ5ÞχðhÞðxÞ;

ψ̄ ðhÞðxÞ ¼ χ̄ðhÞðxÞ 1ffiffiffi
2

p ð1þ iτ1γ5Þ: ð6Þ

In this paper, unless otherwise stated, the quark fields
will be understood as “physical fields,” ψ , in particular
when we define the baryonic interpolating fields.
The form of the fermionic action in Eq. (1) breaks parity

and isospin at nonvanishing lattice spacing. In particular,
the isospin breaking in physical observables is a cutoff
effect of Oða2Þ [20].
Maximally twistedWilson quarks are obtained by setting

the untwisted quark mass m0 to its critical value mcr, while
the twisted quark mass parameter μ is kept nonvanishing in
order to work away from the chiral limit. A crucial
advantage of the twisted mass formulation is the fact that,
by tuning the bare untwisted quark mass m0 to its critical
value mcr, all physical observables are automatically OðaÞ
improved [20,22]. In practice, we implement maximal twist
of Wilson quarks by tuning to zero the bare untwisted
current quark mass, commonly called Partially Conserved
Axial Current (PCAC) mass, mPCAC [23,24], which is
proportional to m0 −mcr up to OðaÞ corrections. A
convenient way to evaluate mPCAC is through

mPCAC ¼ lim
t=a≫1

P
xh∂4

~Ab
4ðx; tÞ ~Pbð0ÞiP

xh ~Pbðx; tÞ ~Pbð0Þi b ¼ 1; 2; ð7Þ

where ~Ab
μ ¼ χ̄γμγ5

τb

2
χ is the axial vector current and ~Pb ¼

χ̄γ5
τb

2
χ is the pseudoscalar density in the twisted basis. The

large t=a limit is required in order to isolate the contribution
of the lowest-lying charged pseudoscalar meson state in the
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correlators of Eq. (7). This way of determining mPCAC is
equivalent to imposing on the lattice the validity of the axial
Ward identity ∂μ

~Ab
μ ¼ 2mPCAC

~Pb, b ¼ 1; 2, between the
vacuum and the charged zero three-momentum one-pion
state. When m0 is taken such that mPCAC vanishes, this
Ward identity expresses isospin conservation, as it becomes
clear by rewriting it in the physical quark basis. The value
of mcr is determined at each μl in our Nf ¼ 2þ 1þ 1
simulations, a procedure that preserves OðaÞ improvement
and keeps Oða2Þ small [23,24]. The reader can find more
details on the twisted mass fermion action in Ref. [25].
Simulating a charm quark may give rise to concerns
regarding cutoff effects. An analysis presented in
Ref. [26] shows that they are surprising small. In this
work we investigate in detail the cutoff effects on the
hyperon and charmed-baryon masses using simulations at
our three values of the lattice spacings. All final results are
extrapolated to the continuum limit.
In order to avoid complications due to flavor mixing in

the heavy quark sector we only use Osterwalder-Seiler
valence strange and charm quarks. Since the bare heavy
quark masses in the sea were approximately tuned to the
mass of the kaon and D-meson, in order to match their
masses exactly tuning would have been required even if we
used twisted mass quarks for the strange and the charm.
Since our interest in this work is the baryon spectrum we
choose to use the physical mass of the Ω− and the Λc in
order to tune the Osterwalder-Seiler strange and charm
quark masses. This means that we need to choose a value of
strange (charm) quark mass performed the computation
at several values of the pion mass and then chiral extrapo-
late the Ω− (Λc) mass and compare with its experimental
value. If our chirally extrapolated results do not reproduce
the right mass we change the strange (charm) quark
mass and iterate until we reach agreement with the
experimental value. Osterwalder-Seiler fermions are
doublets with r ¼ �1 like the u- and d-doublet, i.e.

χðsÞ ¼ ðsþ; s−Þ and χðcÞ ¼ ðcþ; c−Þ, have an action that
is the same as for the doublet of light quarks, as given in
Eq. (1), but with μl in Eq. (1) replaced with the tuned value
of the bare twisted mass of the strange (charm) valence
quark. Taking m0 to be equal to the critical mass deter-
mined in the light sector the OðaÞ improvement in any
observable still applies. One can equally work with the
upper or the lower component of the strange and charm
doublets. In the continuum limit both choices are equiv-
alent. In this work we choose to work with the upper
components, namely the sþ and cþ. The action for the
heavy quarks would then read

SðhÞOS½χðhÞ; χ̄ðhÞ; U� ¼ a4
X
x

Xc
h¼s

χ̄ðhÞðxÞðDW ½U� þmcr

þ iμhγ5ÞχðhÞðxÞ: ð8Þ

The reader interested in the advantage of this
mixed action in the mesonic sector is referred to the
Refs. [21,27–30]. We give more details on the tuning of
the strange and charm quark masses in Sec. II F.

B. Simulation details

We summarize the input parameters of the calculations,
namely β, L=a, the light quark mass aμ as well as the value
of the pion mass in Table I. A total of ten gauge ensembles
at three values of β are considered, namely β ¼ 1.90,
β ¼ 1.95 and β ¼ 2.10, allowing for an investigation of
finite lattice spacing effects and for taking the continuum
limit. The values of the lattice spacings a given in Table I
are determined using the nucleon mass as explained in
Sec. II E. The pion masses for the simulations span a range
from about 210 to 430 MeV, which is close enough to
the physical point mass to allow us to perform chiral
extrapolations.

TABLE I. Input parameters (β; L; aμ) of our lattice simulations with the corresponding lattice spacing (a), pion mass (mπ) as well as
the number of gauge configurations analyzed.

β ¼ 1.90, a ¼ 0.0936ð13Þ fm r0=a ¼ 5.231ð38Þ

323 × 64, L ¼ 3.0 fm

aμ 0.0030 0.0040 0.0050
Number of configurations 200 200 200
mπ (GeV) 0.261 0.298 0.332
mπL 3.97 4.53 5.05

β ¼ 1.95, a ¼ 0.0823ð10Þ fm, r0=a ¼ 5.710ð41Þ

323 × 64, L ¼ 2.6 fm

aμ 0.0025 0.0035 0.0055 0.0075
Number of configurations 200 200 200 200
mπ (GeV) 0.256 0.302 0.372 0.432
mπL 3.42 4.03 4.97 5.77

β ¼ 2.10, a ¼ 0.0646ð7Þ fm r0=a ¼ 7.538ð58Þ

483 × 96, L ¼ 3.1 fm

aμ 0.0015 0.002 0.003
Number of configurations 196 184 200
mπ (GeV) 0.213 0.246 0.298
mπL 3.35 3.86 4.69
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C. Two-point correlation functions and effective mass

In order to extract baryon masses we consider two-point correlation functions at ~p ¼ ~0 defined by

C�
X ðt; ~p ¼ ~0Þ ¼

X
xsink−xsource

�
1

4
Trð1� γ0ÞJ Xðxsink; tsinkÞ × J̄ Xðxsource; tsourceÞ

�
; t ¼ tsink − tsource ð9Þ

where J X is the interpolating field of the baryon state of
interest acting at the source ðxsource; tsourceÞ and the sink,
ðxsink; tsinkÞ. Space-time reflection symmetries of the action
and the antiperiodic boundary conditions in the temporal
direction for the quark fields imply, for zero three-
momentum correlators, that Cþ

X ðtÞ ¼ −C−
XðT − tÞ. There-

fore, in order to decrease errors we average correlators in
the forward and backward direction and define

CXðtÞ ¼ Cþ
X ðtÞ − C−

XðT − tÞ: ð10Þ
In addition, the source location is chosen randomly on the
whole lattice for each configuration, in order to decrease
correlation among measurements.
The ground state mass of a given hadron can be extracted

by examining the effective mass defined by

amX
effðtÞ ¼ log

�
CXðtÞ

CXðtþ 1Þ
�

¼ amX þ log
�

1þP∞
i¼1 cie

−Δit

1þP∞
i¼1 cie

−Δiðtþ1Þ

�
→
t→∞

amX

ð11Þ
where Δi ¼ mi −mX is the mass difference of the excited
state i with respect to the ground mass mX. All results in
this work have been extracted from correlators where
Gaussian smearing is applied both at the source and sink.
In general, effective masses of correlators of any interpo-
lating fields are expected to have the same value in the large
time limit, but applying smearing on the interpolating fields
suppresses excited states, therefore yielding a plateau
region at earlier source-sink time separations and better
accuracy in the extraction of the mass. Our fitting procedure
to extract mX is as follows: The sum over excited states in
the effective mass given in Eq. (11) is truncated, keeping
only the first excited state,

amX
effðtÞ ≈ amX þ log

�
1þ c1e−Δ1t

1þ c1e−Δ1ðtþ1Þ

�
: ð12Þ

The upper fitting time slice boundary is kept fixed, while
allowing the lower fitting time to be two or three time slices
away from tsource. We then fit the effective mass to the form
given in Eq. (12). This exponential fit yields an estimate for
c1 and Δ1 as well as for the ground state mass, which we
denote by mðEÞ

X . Then, we perform a constant fit to the
effective mass increasing the initial fitting time t1. We

denote the value extracted by mðCÞ
X ðt1Þ. The final value of

the mass is selected such that the ratio

jamðCÞ
X ðt1Þ − amðEÞ

X j
ammean

X
; ammean

X ¼ amðCÞ
X ðt1Þ þ amðEÞ

X

2

ð13Þ

becomes less than 50% the statistical error on mðCÞ
X ðt1Þ.

This criterion is, in most cases, in agreement with χ2=d:o:f:
becoming less than unity. In the cases in which this
criterion is not satisfied a careful examination of the
effective mass is made to ensure that the fit range is in
the plateau region. We show representative results of these
fits to the effective mass of the baryons Ξ0 andΩ0

c in Fig. 1.
The error bands on the constant and exponential fits are
obtained using jackknife analysis. As can be seen, the
exponential and constant fits yield consistent results in the
large time limit.

D. Interpolating fields

The baryon states are created from the vacuum with the
use of interpolating fields that are constructed such that
they have the quantum numbers of the baryon of interest
and reduce to the quark model wave functions in the
nonrelativistic limit. We have a four-dimensional flavor
space and therefore we consider SU(3) subgroups to
visualize baryons under SU(4) symmetry. The baryon
states split into a 200-plet of spin-1=2 states and a 20-plet
of spin-3=2 states. There also exists a 4̄-plet, which is not
considered in this work. Light, strange and charmed
baryons can be classified according to their transformation
properties under flavor SU(3) and their charm content. This
is shown schematically in Fig. 2 and Fig. 3. The spin-1=2
200-plet decomposes into three horizontal levels. The first
level is the standard octet of the SU(3) symmetry that has
no charm quarks, the c ¼ 1 is the second level that splits
into two SU(3) multiplets, a 6 containing the Σc and a 3̄
containing the Λc and the Ξc and the c ¼ 2 3 multiplet of
SU(3) that forms the top level. In a similar way, the 20-plet
of spin-3=2 baryons contains the standard c ¼ 0 decuplet at
the lowest level, the c ¼ 1 level 6 multiplet of SU(3), the
c ¼ 2 3 multiplet and a c ¼ 3 singlet at the top of
the pyramid. The interpolating fields for these baryons,
displayed Fig. 2 and Fig. 3, are collected in the Tables XII
and XIII of Appendix A [31–33].
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In other recent works where baryon properties are
studied, e.g. in Ref. [34], different interpolating fields to
those we provide in Tables XII and XIII were used. These
different interpolating fields are tabulated in Table XIV of
Appendix A. In what follows we will compare the effective
masses using the two different sets that have the same
quantum numbers but different structure.
As local interpolating fields are not optimal for

suppressing excited state contributions, we apply
Gaussian smearing to each quark field qðx; tÞ [35,36].
The smeared quark field is given by qsmearðx; tÞ ¼P

yFðx; y;UðtÞÞqðy; tÞ, where we have used the gauge
invariant smearing function

Fðx; y;UðtÞÞ ¼ ð1þ αHÞnðx; y;UðtÞÞ; ð14Þ

constructed from the hopping matrix understood as a
matrix in coordinate, color and spin space,

Hðx;y;UðtÞÞ¼
X3
i¼1

ðUiðx; tÞδx;y−aîþU†
i ðx−aî; tÞδx;yþaîÞ:

ð15Þ

In addition, we apply APE smearing to the spatial links that
enter the hopping matrix. The parameters α and n of the
Gaussian and APE smearing at each value of β are collected
in Table II.
The interpolating fields for the spin-3=2 baryons defined

in Table XIII have an overlap with spin-1=2 states. These
overlaps can be removed with the incorporation of a spin-
3=2 projector in the definitions of the interpolating fields

J μ
X3=2

¼ Pμν
3=2J νX: ð16Þ

For nonzero momentum, Pμν
3=2 is defined by [37]

Pμν
3=2 ¼ δμν −

1

3
γμγν −

1

3p2
ðpγμpν þ pμγνpÞ: ð17Þ

In correspondence, the spin-1=2 component J μ
X1=2

can be
obtained by acting with the spin-1=2 projector Pμν

1=2 ¼
δμν − Pμν

3=2 on J μ
X. Elements with Lorentz indices μ; ν ¼ 0

will not contribute. In this work we study the mass
spectrum of the baryons in the rest frame taking ~p ¼ ~0.

FIG. 1 (color online). Representative effective mass plots for Ξ0 (left) and Ω0
c (right) at β ¼ 2.10, aμl ¼ 0.0015. Both the constant and

the exponential fits are displayed.

FIG. 2. The 200-plet of spin-1=2 baryons classified according
to their charm content. The lowest level represents the c ¼ 0
SU(3) octet.

FIG. 3. The 20-plet of spin-3=2 baryons classified according to
their charm content. The lowest level represents the c ¼ 0
decuplet subgroup.
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Since in that case the last term of Eq. (17) will contain δ0μ,
it will vanish. When the spin-3=2 and spin-1=2 projectors
are applied to the interpolating field operators, the resulting
two-point correlators for the spin-3=2 baryons acquire the
form

C3
2
ðtÞ ¼ 1

3
Tr½CðtÞ� þ 1

6

X3
i≠j

γiγjCijðtÞ;

C1
2
ðtÞ ¼ 1

3
Tr½CðtÞ� − 1

3

X3
i≠j

γiγjCijðtÞ; ð18Þ

where Tr½C� ¼ P
iCii. When no projector is taken into

account, the resulting two-point correlator would
be C ¼ 1

3
Tr½C�.

We have carried out an analysis to examine the results of
the effective masses extracted from correlation functions
with and without the spin-3=2 projection, as well as with
the spin-1=2 projector using 100 gauge configurations, a
number sufficiently large for the purpose of this

comparison. In our comparison we also consider correla-
tion functions obtained using the alternative interpolating
fields given in Table XIV. To distinguish these two sets we
denote the interpolating fields of Tables XII and XIII by J B
and those in Table XIV by ~J B. The left panel of Fig. 4
compares effective masses extracted from correlators with
J Σ�þ at β ¼ 2.10, aμl ¼ 0.0015. As can be seen, the results
for the effective masses when applying the 3=2-projector
and without any projection are perfectly consistent even at
short source-sink time separations yielding the mass of
Σ�þ. On the other hand, the effective mass obtained using
the spin-1=2 projected interpolating field is much more
noisy and yields a higher value of the mass. The latter
property suggests that the 1=2-projected interpolating field
J Σ� yields an excited spin-1=2 state of the Σ� at least at
small time slices. The large errors associated with the
correlator with the spin-1=2 projector suggest that the
overlap with this state is weak. Another example is shown
in the right panel of Fig. 4, where results are displayed for
the correlator using J Σ�þþ

c
at β ¼ 1.95, aμl ¼ 0.0055. A

similar behavior to ours for the Σ�þþ
c was found in Ref. [38]

where the same spin projections are implemented.
However, there are cases where the spin-3=2 projection
is required. One example is the Ξ�− baryon, shown in
Fig. 5, where the effective mass when no projection is
applied is persistently lower than when using the spin-3=2
projector. It is also apparent from Fig. 5 that the spin-1=2
projected interpolating field J Ξ�− yields an effective mass,
which is consistent with the corresponding results using the
spin-1=2 interpolating field J Ξ− and thus the mass of Ξ−. A
similar case to this is the Ξ�0, as can be seen from Fig. 6.
Therefore, it is crucial in order to obtain the correct spin-
3=2 mass to project out the lower-lying spin-1=2 state.
In order to further examine the properties of the

interpolating fields, we also include effective mass results
from the alternative set of interpolating fields. We plot
effective mass results obtained from ~J Ξ�0 as well as
the effective mass of the spin-1=2 Ξ0 at β ¼ 1.95,

TABLE II. Smearing parameters for the ensembles at β ¼ 1.90,
β ¼ 1.95 and β ¼ 2.10.

APE Gaussian

aμl; L=a n α n α

β ¼ 1.90
0.0030, 32 20 0.5 50 4.0
0.0040, 32 20 0.5 50 4.0
0.0050, 32 20 0.5 50 4.0

β ¼ 1.95

0.0025, 32 20 0.5 50 4.0
0.0035, 32 20 0.5 50 4.0
0.0055, 32 20 0.5 50 4.0
0.0075, 32 20 0.5 50 4.0

β ¼ 2.10
0.0015, 48 50 0.5 110 4.0
0.0020, 48 20 0.5 50 4.0
0.0030, 48 20 0.5 50 4.0

FIG. 4 (color online). Comparison of effective masses extracted using J Σ�þ at β ¼ 2.10, aμl ¼ 0.0015 (left) and using J Σ�þþ
c

at
β ¼ 1.95, aμl ¼ 0.0055 (right) obtained with the spin-3=2 projection (red filled circles), spin-1=2 projection (green triangles) and
without projection (blue open squares, shifted to the right for clarity).
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aμl ¼ 0.0025 in Fig. 7, in correspondence with Fig. 6. As
shown, the results from using spin-3=2 projection and when
applying no projection on ~J Ξ�0 are now consistent. In
contrast with J Ξ�0 , the spin-1=2 projection of ~J Ξ�0 yields
an excited spin-1=2 state of Ξ�0. However, as can be seen
from Fig. 8, the spin-3=2 projections of the two interpolat-
ing fields for Ξ�0 yield fully consistent results, as expected.
Similar behavior is observed in the other baryon states as
well. We demonstrate this by showing results for Ω�0

c at
β ¼ 1.95, aμl ¼ 0.0075 in Figs. 9 and 10.
The main conclusion of this analysis is that the set of

spin-3=2 ~J interpolating fields do not need any spin-3=2
projection, whereas the J in general do. After spin-3=2
projection they both give consistent results for the mass of
the spin-3=2 state they represent, as expected. Therefore
from now on we use only results from spin-3=2 projected

FIG. 5 (color online). Comparison of effective masses extracted
using for J Ξ�− at β ¼ 1.95, aμl ¼ 0.0025 obtained with the spin-
3=2 projection (red filled circles), without projection (blue open
squares, shifted to the right for clarity) and with spin-1=2
projection (green triangles). Also plotted is the effective mass
using J Ξ− (magenta diamonds).

FIG. 6 (color online). Comparison of effective masses for Ξ�0 at
β ¼ 1.95, aμl ¼ 0.0025 obtained with the spin-3=2 projection,
without projection and with spin-1=2 projection. Also plotted is
the effective mass of Ξ0. The notation is as in Fig. 5.

FIG. 7 (color online). Effective masses obtained using ~J Ξ�0 at
β ¼ 1.95, aμl ¼ 0.0025 with the spin-3=2 projection (red filled
circles), without projection (blue open squares, shifted to the right
for clarity) and with spin-1=2 projection (green triangles). Also
plotted is the effective masses using ~J Ξ0 (magenta diamonds).

FIG. 8 (color online). Comparison of effective masses for Ξ�0 at
β ¼ 1.95, aμl ¼ 0.0025 obtained from J Ξ�0 (red filled circles)
and ~J Ξ�0 (blue open squares, shifted to the right for clarity) using
the spin-3=2 projection. Results from the two interpolating fields
are fully consistent.

FIG. 9 (color online). Effective mass results obtained for Ω0
c

(red filled squares) and from J Ω�0
c
using the spin-1=2 projection

(blue open squares). The results are in agreement.
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interpolating fields and limit ourselves to the interpolating
fields J listed in Tables XII and XIII.

E. Determination of the lattice spacing

Since in this work the observables discussed are the
masses of baryons, the physical nucleon mass is the most
appropriate quantity to set the scale. In order to determine
the values of the lattice spacings as accurate as possible we
have carried out a high statistics analysis of the nucleon
masses for a total of 17 Nf ¼ 2þ 1þ 1 gauge ensembles
at β ¼ 1.90, β ¼ 1.95 and β ¼ 2.10 on a range of pion
masses and volumes. We average over the masses of the
proton and neutron to further gain on statistics. The

resulting nucleon masses for each of the gauge ensembles
are collected in Table III.
The nucleon masses as function of m2

π are presented in
Fig. 11. As can be seen, cutoff effects are negligible,
therefore we can use continuum chiral perturbation theory
to extrapolate to the physical pion mass using all the lattice
results. To this end we consider SU(2) chiral perturbation
theory (χPT) [39] and the well-established Oðp3Þ result of
the nucleon mass dependence on the pion mass, given by

mN ¼ mð0Þ
N − 4c1m2

π −
3g2A

32πf2π
m3

π ð19Þ

where m0
N is the nucleon mass at the chiral limit and

together with c1 are treated as fit parameters. This lowest
order result for the nucleon in heavy baryon chiral
perturbation theory (HBχPT), first derived in Ref. [40],
and describes well lattice data [13,41]. Since this result is
well established as the leading contribution irrespective of
the various approaches to compute higher orders such as in
HBχPT with dimensional and infra-red regularization with
and without the Δ degree of freedom explicitly included,
we will use it to fix the lattice spacing from the nucleon
mass The lattice spacings aβ¼1.90, aβ¼1.95 and aβ¼2.10 are
considered as additional independent fit parameters in a
combined fit of our data at β ¼ 1.90, β ¼ 1.95 and
β ¼ 2.10. We constrain our fit so that the fitted curve
passes through the physical point by fixing the value of c1.
The physical values of fπ and gA are used in the fits, namely
fπ ¼ 0.092419ð7Þð25Þ GeV and gA ¼ 1.2695ð29Þ, which
is common practice in chiral fits to lattice data on the
nucleon mass [42–44]. The left panel of Fig. 11 shows the

FIG. 10 (color online). Effective mass results of Ω�0
c obtained

from the spin-3=2 projections of J Ω�0
c

(red filled squares) and
~J Ω�0

c
(blue open squares) as well as from the spin-1=2 projection

of ~J Ω�0
c
(green triangles). More details are given in the text.

TABLE III. Values of the nucleon masses with the associated statistical error.

Volume Statistics aμl amπ mπ (GeV) amN mN (GeV)

β ¼ 1.90

323 × 64
740 0.0030 0.1240 0.2607 0.5239(87) 1.1020(183)

1556 0.0040 0.1414 0.2975 0.5192(112) 1.0921(235)
387 0.0050 0.1580 0.3323 0.5422(62) 1.1407(130)

243 × 48

2092 0.0400 0.1449 0.3049 0.5414(84) 1.1389(176)
1916 0.0060 0.1728 0.3634 0.5722(48) 1.2036(101)
1796 0.0080 0.1988 0.4181 0.5898(50) 1.2407(104)
2004 0.0100 0.2229 0.4690 0.6206(43) 1.3056(90)

203 × 48 617 0.0040 0.1493 0.3140 0.5499(195) 1.1568(410)
β ¼ 1.95

323 × 64

2892 0.0025 0.1068 0.2558 0.4470(59) 1.0706(141)
4204 0.0035 0.1260 0.3018 0.4784(48) 1.1458(114)

18576 0.0055 0.1552 0.3716 0.5031(16) 1.2049(39)
2084 0.0075 0.1802 0.4316 0.5330(42) 1.2764(100)

243 × 48 937 0.0085 0.1940 0.4645 0.5416(50) 1.2970(121)
β ¼ 2.10

483 × 96
2424 0.0015 0.0698 0.2128 0.3380(41) 1.0310(125)
744 0.0020 0.0805 0.2455 0.3514(70) 1.0721(215)
226 0.0030 0.0978 0.2984 0.3618(68) 1.1038(208)

323 × 64 1905 0.0045 0.1209 0.3687 0.3944(26) 1.2032(79)
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fit to theOðp3Þ result of Eq. (19) on the nucleon mass. The
error band and the errors on the fit parameters are obtained
from super-jackknife analysis [45]. As can be seen, the
Oðp3Þ result provides a very good fit to our lattice data,
which in fact confirms that cutoff and finite volume effects
are small for the β values used. In addition, our lattice
results exhibit a curvature which supports the presence of
the m3

π-term.
In order to estimate the systematic error due to the chiral

extrapolation we also perform a fit using HBχPT to Oðp4Þ
in the so-called small scale expansion (SSE) [44]. This
form includes explicit Δ degrees of freedom by introducing
as an additional parameter the Δ-nucleon mass splitting,
Δ≡mΔ −mN , takingOðΔ=mNÞ ∼Oðmπ=mNÞ. In SSE the
nucleon mass is given by

mN ¼m0
N−4c1m2

π−
3g2A

32πf2π
m3

π−4E1ðλÞm4
π

−
3ðg2Aþ3c2AÞ
64π2f2πm0

N
m4

π−
ð3g2Aþ10c2AÞ
32π2f2πm0

N
m4

π log

�
mπ

λ

�

−
c2A

3π2f2π

�
1þ Δ

2m0
N

��
Δ
4
m2

πþ
�
Δ3−

3

2
m2

πΔ
�
log

�
mπ

2Δ

�

þðΔ2−m2
πÞRðmπÞ

�
ð20Þ

where RðmπÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π − Δ2
p

cos−1ð Δmπ
Þ for mπ > Δ and

RðmπÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 −m2

π

p
log ð Δmπ

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

m2
π
− 1

q
Þ for mπ < Δ. We

take the cutoff scale λ ¼ 1 GeV, c1 ¼ 1.127 [44] and treat

the counterterm E1 as an additional fit parameter. As in the
Oðp3Þ case we use the physical values of gA and fπ . The
corresponding plot is shown on the right panel of Fig. 11.
The error band as well as the errors on the fit parameters are
obtained using super-jackknife analysis. One can see that
this formulation provides a good description of the lattice
data as well and yields values of the lattice spacings andm0

N
which are consistent with those obtained in Oðp3Þ of
HBχPT. We take the difference between the results of the
Oðp3Þ and Oðp4Þ fits as an estimate of the uncertainty due
to the chiral extrapolation. This is found to be about three
times the statistical error. The final values of the lattice
spacing are shown in Eq. (21). The first parenthesis is the
statistical error and the systematic error is given is the
second parenthesis. The rest of the fit parameters for
the two expansions and the χ2/d.o.f. are given in Table IV.

aβ¼1.90 ¼ 0.0936ð13Þð35Þ fm;

aβ¼1.95 ¼ 0.0823ð10Þð35Þ fm;

aβ¼2.10 ¼ 0.0646ð7Þð25Þ fm: ð21Þ

In order to better assess discretization effects we perform
a fit to Oðp3Þ at each of the β values separately. The values
we find are aβ¼1.90 ¼ 0.0923ð20Þ fm, aβ¼1.95 ¼
0.0821ð16Þ fm and aβ¼2.10 ¼ 0.0657ð12Þ fm. These values
are fully consistent with those obtained in Eq. (21) from the
combined fit, indicating that discretization effects are
small, thus confirming a posteriori the validity of the
assumption that cutoff effects are small for the nucleon

FIG. 11 (color online). Nucleon masses at the three values of the lattice spacing. On the left panel the solid band represents a fit to the
lowest order Oðp3Þ expansion from HBχPT. The band on the right panel is a fit to Oðp4Þ with explicit Δ degrees of freedom in the
so-called SSE. The physical nucleon mass is denoted with the asterisk.

TABLE IV. Fit parameters m0
N in GeVand E1ðλÞ in GeV−3 from Oðp3Þ χPT and Oðp4Þ SSE, as well as the fixed

value of −4c1. Also included is the value of the σ-term for each fit.

m0
N −4c1ðGeV−1Þ E1ðλÞ (GeV−3) σπN (MeV) χ2=d:o:f:

Oðp3Þ HBχPT 0.8667(15) 4.5735 64.9(1.5) 1.5779
Oðp4Þ SSE 0.8813(47) 3.7282 −2.5858ð2480Þ 45.3(4.3) 1.0880
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mass. A different way of demonstrating this is to include a
quadratic term da2 to Eqs. (19) and (20), treating d as an
additional fit parameter. Performing the fits with the da2-
term gives a value of d ¼ 0.017ð17Þ GeV3 i.e. consistent
with zero. The same is true for the Δ mass confirming that
cutoff effects are negligible in the light quark sector.
We will use the values given in Eq. (21) to convert to

physical units all the quantities studied in this work. We
note that when performing these fits only statistical errors
are taken into account and systematic errors due to the
choice of the plateau are not included. The lattice spacings
for these β values were also calculated from a pion decay
constant analysis using next-to-leading order (NLO) SU(2)
chiral perturbation theory for the extrapolations [46]. In that
preliminary analysis only a subset of the ensembles used
here was included, yielding values of the lattice spacings
that are smaller compared to the values we extract using the
nucleon mass in this work. Specifically, the lattice spacings
at β ¼ 1.90; 1.95 and 2.10 were found to be afπ ¼
0.0863ð4Þ; 0.0779ð4Þ and 0.607(2) respectively, where
afπ denotes the lattice spacing determined using the pion
decay constant. This implies that the values of the pion
masses in physical units we quote in this paper are
equivalently smaller than those obtained using fπ to
convert to physical units. A comprehensive study of the
different lattice spacing determinations is ongoing.
Having determined the parameters of the chiral fit we can

compute the nucleon σπN-term by evaluating m2
π∂mN=∂m2

π

where we have taken the leading order relation m2
π ∼ μl.

Using Eq. (19) we find σπN ¼ 64.9� 1.5 MeV. This value
is fully consistent with previous values extracted using this
lowest order fit by ETMC on Nf ¼ 2 quark flavor
ensembles [13,41]. Performing the same calculation using
the Oðp4Þ expression we obtain a lower value of σπN ¼
45.3� 4.3 MeV showing the sensitivity to the chiral

extrapolation. It is worth mentioning that such a difference
in the determination of the σπN-term is known in the
literature. For example, a latest πN scattering study [47],
reporting a value σπN ¼ 59� 7 MeV, while higher values
were also obtained using the Feynman-Hellmann theorem
to analyze lattice QCD data yielding σπN ¼ 55� 1 MeV
[48]. Lower values are associated with the well-known
result of σπN ¼ 45� 8 MeV extracted from an earlier
chiral perturbation analysis of experimental scattering data
[49], as well as, with the values extracted in other lattice
QCD calculations, such as the analysis of the QCDSF
Collaboration [50], where a value σπN ¼ 38� 12 MeV is
obtained and of Ref. [51] where a value of σπN ¼ 52�
3� 8 is extracted from a flavor SU(2) extrapolation of a
large set of lattice data on the nucleon mass. A very recent
result is obtained using the relativistic chiral Lagrangian
from Ref. [52], suggests a rather smaller value of
σπN ¼ 39þ 2 − 1 MeV. We summarize lattice results on
σπN in Fig. 12 we show our Oðp3Þ value. We take
difference between the value extracted from the Oðp4Þ
expression of Eq. (20) and the Oðp3Þ value as an estimate
for the error arising from chiral extrapolation. As can be
seen from the values in Table IV the chiral extrapolation
error is large showing the sensitivity on the chiral extrapo-
lation, which explains the large error shown on our σπN
results. It is apparent that, despite the long efforts, the
precise determination of the nucleon σ-terms is still an open
issue and direct techniques as those described in for
example Ref. [53] are welcome.

F. Tuning of the bare strange and charm quark masses

A tuning of the bare strange and charm quark masses is
performed using the physical mass of the Ω− and the Λþ

c
baryons respectively. For the tuning we calculate the Ω−

FIG. 12 (color online). Comparison of lattice results for σπN in MeV, extracted from the Oðp3Þ analysis of this work with the results
from other lattice calculations. Our result shows the statistical error in red and a systematic error in blue taken as the difference between
the value obtained using theOðp3Þ andOðp4Þ expressions [Eqs. (19) and (20) respectively] providing an estimate of the uncertainty due
to the chiral extrapolation.
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and Λþ
c masses at a given value of the renormalized strange

and charm quark mass for all β values. For this we need the
renormalization constants ZP for the three β values. These
were computed in Ref. [54] and we quote, for the
convenience of the reader, the values computed in the
MS scheme at 2 GeV:

Zβ¼1.90
P ¼ 0.529ð7Þ;

Zβ¼1.95
P ¼ 0.509ð4Þ;

Zβ¼2.10
P ¼ 0.516ð2Þ: ð22Þ

For the Ω− we use the leading one-loop result from SU(2)
χPT, given by

mΩ ¼ mð0Þ
Ω − 4cð1ÞΩ m2

π; ð23Þ
where the mass mð0Þ

Ω and cð1ÞΩ are treated as fit parameters.
For the Λþ

c baryon, we use the result motivated by SU(2)
HBχPT to leading one-loop order given by

mΛc
¼ mð0Þ

Λc
þ c1m2

π þ c2m3
π; ð24Þ

where mð0Þ
Λc

and the coefficients ci are treated as fit
parameters. We include cutoff effects, by adding a quad-
ratic term da2 to the Eqs. (23) and (24), where d is treated
as an additional fit parameter. The fit then yields the result
at the physical point in the continuum limit. We use the
lattice spacings given in Eq. (21) extracted from the
nucleon mass to convert the Ω− and Λc masses to physical
units.
In order to perform the tuning we use several values of

the strange and charm quark masses for the gauge ensem-
bles considered in this work, as listed in Table V. Our
strategy is to interpolate the Ω− and Λþ

c masses to a given
value of the renormalized strange and charm quark mass,
respectively, and then extrapolate to the physical point
using Eqs. (23) and (24) to compare with the experimental
values. The value of the renormalized quark mass is then
changed iteratively until the extrapolated continuum values

TABLE V. The values of the strange and charm quark masses for each ensemble used for the tuning.

Ensemble ams mR
s (GeV) amc mR

c (GeV)

β ¼ 1.90

aμl ¼ 0.0030; L=a ¼ 32
0.0229 0.0904 0.2968 1.1737
0.0234 0.0924 0.2999 1.1860

aμl ¼ 0.0040; L=a ¼ 32
0.0232 0.0917

0.2851 1.1272
0.0234 0.0924
0.0264 0.1043

0.2999 1.1860

aμl ¼ 0.0050; L=a ¼ 32 0.0234 0.0924 0.2943 1.1637
0.2999 1.1860

β ¼ 1.95

aμl ¼ 0.0025; L=a ¼ 32

0.0182 0.0862 0.2350 1.1122
0.0192 0.0909 0.2506 1.1860
0.0195 0.0924 0.2550 1.2069
0.0200 0.0947 0.2694 1.2752

aμl ¼ 0.0035; L=a ¼ 32
0.0187 0.0883

0.2250 1.0649

0.0195 0.0924
0.2450 1.1596
0.2506 1.18600.0200 0.0970
0.2580 1.2210

aμl ¼ 0.0055; L=a ¼ 32
0.0186 0.0879

0.2350 1.1122

0.0195 0.0924
0.2506 1.1860
0.2570 1.21640.0200 0.0970
0.2715 1.2848

aμl ¼ 0.0075; L=a ¼ 32
0.0195 0.0924

0.2240 1.0602
0.2440 1.15480.0200 0.0970
0.2506 1.1860

β ¼ 2.10

aμl ¼ 0.0015; L=a ¼ 48

0.0155 0.0919 0.1850 1.0959
0.0156 0.0924 0.2000 1.1847
0.0162 0.0959 0.2002 1.1860
0.0169 0.1002 0.2195 1.3002

aμl ¼ 0.0020; L=a ¼ 48
0.0156 0.0924 0.1900 1.1255
0.0158 0.0936 0.2002 1.1860
0.0165 0.0977 0.2150 1.2736

aμl ¼ 0.0030; L=a ¼ 48
0.0156 0.0924

0.1800 1.0662
0.2002 1.18600.0163 0.0965
0.2080 1.2321
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agree with the experimental ones. This determines the
tuned values of mR

s and mR
c that reproduce the physical

masses of Ω− and Λþ
c , respectively. In Fig. 13 we show

representative plots from the determination of mR
S and mR

c .
We obtain the following values in MS at 2 GeV:

mR
s ¼ 92.4ð6Þð2.0Þ MeV

mR
c ¼ 1173.0ð2.4Þð17.0Þ MeV: ð25Þ

The error in the first parenthesis is the statistical error on the
fit parameters and in the second parenthesis is the error
associated with the tuning estimated by allowing the
renormalized mass to vary within the statistical errors of
the Ω− and Λþ

c mass at the physical point. The latter
systematic uncertainty due to the tuning will be included in
the final errors we quote for the baryon masses. In Ref. [54]
the mass of the kaon and D-meson were used to tune the
strange and charm quark masses, obtaining mR

s ¼
99.6ð4.1Þ MeV and mR

c ¼ 1176ð36Þ MeV in MS at
2 GeV, respectively, both in agreement with our values.
The corresponding plots of the chiral extrapolations for Ω−

(Λþ
c ) at the fixed value of the strange (charm) quark mass

after correcting for cutoff effects are shown in Fig. 14,
where indeed all data fall on the same curve and the
physical masses of the Ω− and Λþ

c baryons are reproduced.
The fit parameters mð0Þ

Ω , cð1ÞΩ and ci are collected in

Table VII. The results in lattice units and the continuum
extrapolated values in physical units for Ω− and Λþ

c are
listed in Table VI.
Given the fact that we have performed a high statistics

run (see Table I) using mR
c ¼ 1186 MeV, which was our

first estimate for mR
c and since this value is consistent with

FIG. 14 (color online). Chiral extrapolations of the lattice data for Ω− (left) and Λc (right) at the fixed values of the renormalized
strange and charm quark masses of Eq. (25) respectively. In these figures, the lattice data for each β value as well as the continuum
extrapolated values are plotted. The physical masses of Ω− and Λc are reproduced at the continuum limit and at the physical pion mass.

FIG. 13 (color online). Tuning of the renormalized strange and charm quark masses with the experimental values of theΩ (left) andΛþ
c

(right) masses respectively.

TABLE VI. Masses of the Ω and Λþ
c baryons in lattice and

physical units with the associated statistical error. The values in
physical units are continuum extrapolated.

aμl amΩ mΩ (GeV) amΛþ
c

mΛþ
c
(GeV)

β ¼ 1.90
0.0030 0.8380(77) 1.6575(609) 1.1651(157) 2.3223(729)
0.0040 0.8374(131) 1.6562(648) 1.1714(92) 2.3356(678)
0.0050 0.8491(118) 1.6808(637) 1.1816(78) 2.3571(670)

β ¼ 1.95
0.0025 0.7484(60) 1.7111(535) 1.0236(52) 2.3523(584)
0.0035 0.7406(72) 1.6924(544) 1.0261(45) 2.3581(581)
0.0055 0.7477(67) 1.7093(540) 1.0434(43) 2.3997(580)
0.0075 0.7409(62) 1.6931(536) 1.0468(53) 2.4077(585)

β ¼ 2.10
0.0015 0.5676(34) 1.6816(418) 0.7817(33) 2.3234(459)
0.0020 0.5568(54) 1.6484(437) 0.7796(68) 2.3171(494)
0.0030 0.5651(51) 1.6740(434) 0.7883(43) 2.3438(467)

ALEXANDROU et al. PHYSICAL REVIEW D 90, 074501 (2014)

074501-12



the final tuned value given in Eq. (25) we will use the high
statistics results to obtain the values of the charmed-baryon
masses at the physical point. We have checked that
interpolation of our lattice data for the charm baryons at
the tuned value of mR

c ¼ 1173ð2.4Þ yield masses at the
physical point which are totally consistent with the ones
obtained atmR

c ¼ 1186ð2.4Þ, albeit with larger errors due to
the interpolation of the lattice results. Thus, we avoid
interpolation and use the results obtained directly at mR

c ¼
1186 MeV in what follows.

III. LATTICE RESULTS

Lattice results are obtained for three lattice spacings
allowing to assess cutoff effects. We start by addressing any
possible isospin breaking effects on the baryon masses.

A. Isospin symmetry breaking

The twisted mass action breaks isospin explicitly to
Oða2Þ and the size of the Oða2Þ-terms determines how
large this breaking is. Any isospin splitting should vanish in
the continuum limit. In general, isospin symmetry breaking
manifests itself as a mass splitting among baryons belong-
ing to the same multiplets. We note that there is still a
symmetry when interchanging a u- with a d-quark, which
means for example that the proton and the neutron are still
degenerate as are the Δþþ and the Δ− as well as the Δþ and
Δ0. However, mass splitting could be seen between the

FIG. 15 (color online). Mass differences for the Δ baryons for
our three lattice spacings (circles for β ¼ 1.90, squares for β ¼
1.95 and triangles for β ¼ 2.10) examined and for all pion masses.
Symbols for each lattice spacing have been shifted to the left and
right for clarity. Red symbols represent the lightest pion mass and
blue symbols the heaviest pion mass for each lattice spacing. For
β ¼ 1.95, the green symbol is the second lightest pion mass and
the magenta symbol is the second heaviest pion mass.

TABLE VII. Fit parameters and physical point values deter-
mined from the chiral fits to the Ω− and Λþ

c using Eqs. (23) and
(24) respectively.

Ω− (1.672)

mð0Þ
Ω (GeV) 1.669(19)

−4cð1ÞΩ (GeV−1) 0.161(124)
d (GeV3) 0.466(123)
χ2=d:o:f: 2.24
m (GeV) 1.672(18)

Λþ
c (2.286)

mð0Þ
Λc

(GeV) 2.272(26)
c1 (GeV−1) 0.799(935)
c2 (GeV−2) −0.118ð1.834Þ
d (GeV3) 0.553(104)
χ2=d:o:f: 1.33
m (GeV) 2.286(17)

FIG. 16 (color online). Mass differences for the octet (left) and decuplet (right) hyperons for our three lattice spacings examined. Small
nonzero mass differences are observed for the octet hyperons. The symbol notation is as in Fig. 15.
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Δþþ and the Δþ. Also, isospin breaking effects maybe
present in the hyperons and charmed baryons in particular
given that we consider only the sþ and cþ, as explained in
Sec. II A.
We begin this analysis by plotting the mass difference as

a function of a2 for the Δ baryons. We average over Δþþ
and Δ− as well as over Δþ and Δ0 and take the difference
between the two averages. The corresponding plot is shown
in Fig. 15, where as one can see, the mass difference is

consistent with zero, indicating that isospin breaking effects
are small for the Δ baryons at the β values analyzed.
We also examine the mass difference of the strange baryons
in Fig. 16. We observe that the mass difference between
the Σþ and Σ− and between the Ξ0 and Ξ− are indeed
decreasing linearly with a2 being almost zero at our
smallest lattice spacing. For the strange spin-3=2 baryons
the results are fully consistent with zero at all lattice
spacings.

FIG. 17 (color online). Mass differences between the charm baryons belonging to the same isospin multiplets for the three lattice
spacings. Small nonzero differences which are reduced as the lattice spacing gets smaller are seen between the Ξc states. The notation is
the same as that in Fig. 15.
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We continue our analysis by studying the isospin break-
ing for the charm baryons. We show in Fig. 17 the mass
difference between the Σc, Ξc and Ξcc multiplets at the
three lattice spacings for all pion masses considered in this
work. As in the strange sector, nonzero values are obtained
at the largest lattice spacing, which do not exceed 3% the
average mass of these baryons. As expected, the mass
splitting vanishes as the continuum limit is approached. In
the same figure we also show the mass difference between
Ξ0þ
c and Ξ00

c , which is consistent with zero indicating that
isospin breaking effects are small at all values of the lattice
spacing. As in the case of the strange decuplet, the isospin
splitting for the charmed spin-3=2 baryons is consistent
with zero.
Having several pion masses at a given lattice spacing one

can ask how the isospin mass splitting depends on the pion
mass. As shown in Figs. 16 and 17, the baryon mass
differences are independent of the light quark mass to the
present accuracy of our results.

IV. CHIRAL AND CONTINUUM
EXTRAPOLATION

In order to extrapolate our lattice results to the physical
pion mass we allow for cutoff effects by including a term
quadratic in the lattice spacing and then apply continuum
chiral perturbation theory at our results.
For the strange baryon sector we consider SU(2) HBχPT.

The same expressions were used in other twisted mass
fermion studies [13,41,55] and were found to describe
lattice data satisfactory. The leading one-loop results for the
octet and decuplet baryons [56,57] are given by

mΛðmπÞ ¼ mð0Þ
Λ − 4cð1ÞΛ m2

π −
g2ΛΣ

16πf2π
m3

π

mΣðmπÞ ¼ mð0Þ
Σ − 4cð1ÞΣ m2

π −
2g2ΣΣ þ g2ΛΣ=3

16πf2π
m3

π

mΞðmπÞ ¼ mð0Þ
Ξ − 4cð1ÞΞ m2

π −
3g2ΞΞ
16πf2π

m3
π ð26Þ

for the octet baryons and

mΔðmπÞ ¼ mð0Þ
Δ − 4cð1ÞΔ m2

π −
25

27

g2ΔΔ
16πf2π

m3
π

mΣ�ðmπÞ ¼ mð0Þ
Σ� − 4cð1ÞΣ� m2

π −
10

9

g2Σ�Σ�

16πf2π
m3

π

mΞ�ðmπÞ ¼ mð0Þ
Ξ� − 4cð1ÞΞ� m2

π −
5

3

g2Ξ�Ξ�

16πf2π
m3

π

mΩðmπÞ ¼ mð0Þ
Ω − 4cð1ÞΩ m2

π ð27Þ

for the decuplet baryons. In addition we consider the next-
to-leading order SU(2) χPT results [39]. For completeness,
we include the expressions in Appendix C.
We fix the nucleon axial charge gA and pion decay

constant fπ to their experimental values [we use the
convention such that fπ ¼ 0.092419ð7Þð25Þ GeV] as
was done in the case of determining the lattice spacings
from fitting the nucleon mass. The remaining pion-baryon
axial coupling constants are taken from the following
SU(3) relations [39]:

Octet∶ gA ¼ Dþ F gΣΣ ¼ 2F; gΞΞ ¼ D − F; gΛΣ ¼ 2D

Decuplet∶ gΔΔ ¼ H; gΣ�Σ� ¼ 2

3
H; gΞ�Ξ� ¼ 1

3
H

Transition∶ gΔN ¼ C; gΣ�Σ ¼ 1ffiffiffi
3

p C; gΞ�Ξ ¼ 1ffiffiffi
3

p C; gΛΣ� ¼ −
1ffiffiffi
2

p C: ð28Þ

In the octet case, once gA is fixed, the axial coupling
constants depend on a single parameter α such that
α ¼ D

DþF. Its value is poorly known. It can be taken either
from the quark model (α ¼ 3=5), from the phenomenology
of semileptonic decays or from hyperon-nucleon scattering.
As in Ref. [39], we take α ¼ 0.58 or 2D ¼ 1.47. The axial
couplings in the decuplet case depend only on H for
which we take the value H ¼ 2.2, again from Ref. [39].
This value is close to the prediction by SU(6), namely
H ¼ 9

5
gA ¼ 2.29. The latter was used in a previous work

[41], resulting in the same cubic term for the nucleon and
Δ. When fixing the octet-decuplet transition couplings we
take C ¼ 1.48 from Ref. [58]. Having fixed the coupling
constants this way, the LO, the one-loop as well as the NLO
expressions are left with mð0Þ

X and cð1ÞX as independent fit

parameters. Unlike in Ref. [39] where a universal mass
parameter mð0Þ

X was used for all baryons with the same
strangeness, in this work we treat all mass parameters mð0Þ

X
independently. The chiral extrapolation is applied to the
average over all states belonging to the same isospin
multiplets, except for the charged states of the Σ, Ξ and
Ξc where small nonzero mass differences exist due to
isospin breaking effects. For these particles we first
extrapolate to the continuum limit to ensure that they are
degenerate and then take the average of their continuum
values.
We give the fit parameters extracted from fitting our

lattice results for the octet and decuplet baryons to the
leading one-loop order [Eqs. (26) and (27)] and NLO
[Eqs. (C1) and (C2)] in Table IX. We also show the baryon
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masses at the physical point obtained from the leading
order fits in Table XI. The lattice results for the octet and
decuplet baryons at the three β values are collected in
Appendix B. The deviation of the values obtained at the
physical pion mass from the two fitting procedures provide
an estimate of the systematic error due to the chiral
extrapolation. This error on the masses is given in the
second parenthesis in Table XI. Since for the Ω the LO and
NLO expressions have no difference, we do not quote a
systematic error due to the chiral extrapolation. We show
representative plots of the chiral fits for the octet and
decuplet baryons in Fig. 18. Our results shown here are
continuum extrapolated and thus the errors on the points are
larger than those on the raw data. The error band for the
leading one-loop order and NLO fits are constructed using
the super-jackknife procedure [45]. As can be seen, the data
are well described by the LO fits and the physical masses of
Λ, Σ0 and Ξ0 are reproduced. For the Δ and Ξ� the physical
point is missed by about 1 standard deviation, while
the results for Σ� extrapolate to a 5% higher value. The

NLO fits also describe the lattice data satisfactory but in
general extrapolate to a lower value at the physical point.
Taking the difference between the value found using the
LO and NLO expressions we estimate the systematic error
due to the chiral extrapolation, and this yields agreement
with the experimental values also in the cases of Δ, Σ�
and Ξ�.
For the charm baryons we use the ansatz

mB ¼ mð0Þ
B þ c1m2

π þ c2m3
π: ð29Þ

This expression is motivated by SU(2) HBχPT to leading
one-loop order, where mð0Þ

B and ci are treated as indepen-
dent fit parameters. As before, we add the term da2 in the
fits in order to simultaneously extrapolate to the continuum
and we average over the states belonging to the same
isospin multiplets. We show representative plots of the
chiral fits for the charm baryons in Fig. 19. The resulting fit
parameters from the fits are listed in Table X. The masses at
the physical point are shown in Table XI. The lattice results

FIG. 18 (color online). Chiral extrapolations of the octet (left) and decuplet (right) baryons in physical units, using the leading one-
loop expressions of Eqs. (26) and (27) respectively as well as the NLO expressions of Eqs. (C1) and (C2). The lattice values are
continuum extrapolated. The notation is given in the legend in the top left plot. The experimental value is shown with the black asterisk.
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for all charm baryons at the three β values are collected in
Appendix B. As can be seen from the chiral fits, setting
c2 ¼ 0 in the ansatz would lead to satisfactory fits as well.
This is also reflected by the large uncertainties on this fit
parameter, making it consistent with zero. As in the strange
baryon sector, our continuum data are described well by
Eq. (29), yielding values at the physical point which in

general are consistent with experiment. For the Ω0
c and Ω�0

c
the lattice data extrapolate to a lower value by 1 and 2
standard deviations respectively. In order to estimate a
systematic error due to the chiral extrapolation in the charm
sector, we perform the chiral fits using Eq. (29) with our
lattice data only up to mπ ∼ 300 MeV and setting c2 ¼ 0.
The deviation of the values obtained at the physical pion

FIG. 19 (color online). Representative chiral fits of the charm spin-1=2 (left) and spin-3=2 (right) baryon results in physical units, using
the ansatz of Eq. (29). The lattice results are the continuum extrapolated ones. The notation is shown in the legend of the top left plot.

FIG. 20 (color online). Dependence of the Ω− (left) and Ωccc (right) mass on the lattice spacing.
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mass from fitting using the whole pion mass range and
fitting up to mπ ∼ 300 MeV yields an estimation of the
systematic error due to the chiral extrapolation.
The size of the cutoff effects in both the strange and

charm quark sectors are small. This can be seen by the
values of the fit parameter d, which are Oð1Þ, and thus the
cutoff effects are indeedOða2Þ. As an example, we show in
Fig. 20 the a-dependence of the mass of the Ω− and Ωccc
for fixed quark masses. The correction at the largest value
of a is 6% for the Ω− and 5% for the Ωccc. In Table VIII we
give the values of the parameter d and the finite lattice

spacing corrections in percentage of the mass at each β
value for the doubly and triply charmed-baryon masses.
We also estimate a systematic uncertainty due to the

tuning for all strange and charm baryons. This is done by
evaluating the baryon masses when the strange and charm
quark masses take the upper and lower bound allowed by
the error in their tuned values [Eq. (25)]. The deviation of
the mass extracted using χPT to leading order provides an
estimate of the systematic error due to the tuning, given in
the third parenthesis in Table XI. In the strange sector, the
systematic error due to the tuning on the strange baryon
masses gives an upper bound of the error expected, since
the tuning was performed using the Ω which contains three
strange quarks, and thus any error due to the uncertainty of
the tuning would be the largest in this case.
As in the nucleon case, an estimate of the light σ-term of

all the hyperons and charmed baryons considered in this
work can be made, by taking the derivative m2

π∂mB=∂m2
π .

For the octet and decuplet we calculate σπB using the LO as
well as the NLO expressions. It is apparent that the value
extracted depends on the fitting ansatz, and since the slope
of the NLO fit is larger at the physical point, the resulting
values for σπB from the NLO expressions are larger, again
indicating the sensitivity on the chiral extrapolations. We

TABLE VIII. The value of the fit parameter d and the finite
lattice spacing correction as percentage of the mass for the doubly
and triply charmed baryons.

% correction

Baryon d (GeV3) β ¼ 1.90 β ¼ 1.95 β ¼ 2.10

Ξcc 1.08 6.3 5.0 3.1
Ξ�
cc 1.01 5.9 4.6 2.9

Ωcc 1.20 6.9 5.4 3.4
Ω�

cc 1.10 6.2 4.9 3.0
Ωccc 1.15 5.1 4.1 2.6

FIG. 21 (color online). Comparison of the light σ-term of the spin-1=2 hyperons in MeV, extracted from the Oðp3Þ in this work with
the results from other lattice calculations. Our result shows the statistical error in red and a systematic error in blue taken as the difference
between the value obtained using the Oðp3Þ and Oðp4Þ expressions [Eqs. (26) and (C1) respectively] providing an estimate of the
uncertainty due to the chiral extrapolation.

FIG. 22 (color online). Comparison of the light σ-term of the spin-3=2 hyperons in MeV, extracted from the Oðp3Þ in this work with
the results from other lattice calculations. The notation is the same as that in Fig. 21.
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list the values extracted for the octet and decuplet baryons
in Table IX. A number of other recent works [13,48,52,59–
63] have computed the light σ-terms for the octet and
decuplet baryons by analyzing lattice QCD data from
various collaborations. We compare our results with the
results of these calculations in Figs. 21 and 22. As for the
case of the nucleon σ-term, we take the difference between
the values obtained using Oðp3Þ and Oðp4Þ perturbation
theory as an estimate of the systematic error arising from
the chiral extrapolation. This explains why our results have
a larger error as compared to other groups which, typically,
do not include such an estimate. Extending this analysis we

can compute the poorly known σ-terms for the charmed
baryons from the fitting ansatz of Eq. (29). We list the
resulting values in Table X.
It is worth mentioning that a number of analyses based

on baryon chiral perturbation theory have been carried out
for the octet baryon masses and sigma terms. We refer for
example to Refs. [64–66] for details.

V. COMPARISON WITH RESULTS FROM
OTHER COLLABORATIONS

In this section we compare our lattice results with those
of other collaborations which use different discretization
schemes. Having already extrapolated to the continuum, we
also compare our values at the physical pion mass with the
corresponding results of other collaborations and with
experiment.
Several collaborations have calculated the strange

spectrum. The Budapest-Marseille-Wuppertal (BMW)
Collaboration carried out simulations using tree level
improved 6-step stout smearedNf ¼ 2þ 1 clover fermions
and a tree level Symanzik improved gauge action. The
lattice spacing values used to obtain the continuum limit

TABLE X. The mass at the chiral limit, mð0Þ
B , and fit parameters

ci as determined from fitting to the ansatz of Eq. (29) for the
charm baryons at the tuned strange and charm quark masses. Also
listed is the value of the light σ-term in MeV.

Baryon mð0Þ
B (GeV) c1 (GeV−1) c2 (GeV−2) σπB (MeV)

Λc 2.272(26) 0.799(935) −0.118ð1.834Þ 14.1(10.3)
Σc 2.445(32) 0.903(1.118) −0.662ð2.159Þ 14.0(12.4)
Ξc 2.469(28) 0.233(906) −0.087ð1.782Þ 4.6(10.0)
Ξc 2.447(25) 0.855(788) −1.128ð1.527Þ 11.4(8.8)
Ξ0
c 2.542(27) 1.242(870) −1.924ð1.690Þ 15.5(9.7)

Ωc 2.629(22) 1.028(768) −2.017ð1.507Þ 11.3(8.5)
Ξcc 3.561(22) 0.516(725) −0.880ð1.415Þ 6.2(8.0)
Ωcc 3.654(18) 0.341(602) −0.937ð1.193Þ 2.8(6.6)
Σ�
c 2.513(38) 0.887(1.345) −0.481ð2.593Þ 14.4(15.0)

Ξ�
c 2.628(33) 0.483(1.178) −0.766ð2.339Þ 6.0(12.9)

Ω�
c 2.709(26) 1.408(875) −2.623ð1.710Þ 16.0(9.7)

Ξ�
cc 3.642(26) 0.703(891) −1.087ð1.733Þ 8.8(9.9)

Ω�
cc 3.724(21) 0.792(719) −1.695ð1.418Þ 8.2(7.9)

Ωccc 4.733(18) 0.156(551) −0.443ð1.082Þ 1.2(6.1)

TABLE XI. Our values of the masses of the baryons considered
in this work after extrapolating to the physical point and taking
the continuum limit given in GeV, with the associated statistical
error shown in the first parenthesis. The error in the second
parenthesis is an estimate of the systematic error due to the chiral
extrapolation and in the third parenthesis (except for Δ, which
contains only light quarks) is an estimate of the systematic error
due to the tuning. There are no systematic errors for Ω− and Λþ

c
since these are used for the tuning of the strange and charm quark
mass, respectively.

Baryon (PDG) m (GeV)

N (0.939) 0.939
Λ (1.116) 1.120(15)(54)(22)
Σ (1.193) 1.168(32)(14)(44)
Ξ (1.318) 1.318(19)(23)(9)
Δ (1.232) 1.299(30)(66)
Σ� (1.384) 1.457(22)(28)(32)
Ξ� (1.530) 1.558(18)(41)(19)
Ω (1.672) 1.672(18)
Λc (2.286) 2.286(17)(10)
Σc (2.453) 2.460(20)(20)(6)
Ξc (2.470) 2.467(24)(4)(5)
Ξ0
c (2.575) 2.560(16)(22)(42)

Ω0
c (2.695) 2.643(14)(19)(42)

Ξcc (3.519) 3.568(14)(19)(1)
Ωþ

cc 3.658(11)(16)(50)
Σ�
c (2.517) 2.528(25)(15)(7)

Ξ�
c (2.645) 2.635(20)(27)(55)

Ω�0
c (2.765) 2.728(16)(19)(26)

Ξ�
cc 3.652(17)(27)(3)

Ω�þ
cc 3.735(13)(18)(43)

Ωþþ
ccc 4.734(12)(11)(9)

TABLE IX. The mass at the chiral limit, mð0Þ
B , and the fit

parameter cð1ÞB as determined from fitting to the leading one-loop
order expressions for the octet and decuplet baryons at the tuned
strange quark mass. Also shown in the value of the light σ-term at
the physical point determined from the fits.

σπB (MeV)

Baryon mð0Þ
B (GeV) −4cð1ÞB (GeV−1) Oðp3Þ NLO

N 0.867(2) 4.574 64.9(1.5) 45.3(4.3)
Λ 1.067(16) 3.544(97) 46.0(1.8) 74.5(1.8)
Σþ 1.110(21) 4.470(113) 55.6(2.1) 65.3(2.2)
Σ0 1.117(17) 4.422(95) 54.7(1.7) 64.5(1.8)
Σ− 1.095(18) 4.618(102) 58.3(1.9) 68.3(1.9)
Ξ0 1.307(16) 0.433(147) 6.8(2.7) 18.9(2.7)
Ξ− 1.312(12) 0.497(107) 8.0(2.0) 20.4(1.9)
Δ 1.207(31) 6.496(162) 79.9(3.0) 100.3(3.1)
Σ� 1.405(23) 3.603(156) 45.1(2.8) 68.6(2.7)
Ξ� 1.535(19) 1.562(123) 20.8(2.2) 38.2(2.2)
Ω 1.669(19) 0.161(124) 2.9(2.3)
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were a ¼ 0.065 fm, 0.085 fm and 0.125 fm. Using pion
masses as low as 190 MeV, a polynomial fit was performed
to extrapolate to the physical point [67]. The PACS-CS
Collaboration obtained results using Nf ¼ 2þ 1 nonper-
turbatively OðaÞ improved clover fermions on an Iwasaki
gauge action on a lattice of spatial length of 2.9 fm and a
value of lattice spacing a ¼ 0.09 fm [68]. In addition, the
octet and decuplet spectrum was obtained in Ref. [69],
using Nf ¼ 2þ 1 SLiNC configurations. Reference [70]
also includes results on the charmed baryons from an
analysis on Nf ¼ 2þ 1 2-HEX [71] and SLiNC [69,72]
configurations produced by the BMW-c and QCDSF
Collaborations respectively. Finally, we compare with the
LHPC Collaboration, which obtained results using a hybrid
action of domain wall valence quarks on a staggered sea on
a lattice of spatial length 2.5 and 3.5 fm at lattice spacing
a ¼ 0.124 fm [73].
In Fig. 23 we compare our lattice results on the octet

baryons with those of BMW, the PACS-CS and the LHPC
Collaborations. In the nucleon case, we furthermore com-
pare with results from the MILC Collaboration [74],
obtained from Nf ¼ 2þ 1þ 1 simulations using the
one-loop Symanzik improved gauge action and an
improved Kogut-Susskind quark action at a lattice spacing
value a ¼ 0.130 fm and with results from QCDSF-
UKQCD, obtained using Nf ¼ 2 simulations at three
values of the lattice spacing, a ¼ 0.076; 0.072; 0.060 fm
[75]. We note that our results shown in these plots and the

results from the PACS-CS and LHPC are not continuum
extrapolated, while the results from BMW are continuum
extrapolated and have larger errors than the rest.
Nevertheless, there is an overall agreement, best seen in
the case of the nucleon mass, which indicates that cutoff
effects are small. A similar behavior is also seen in the case
for the mass in the decuplet shown in Fig. 24, where we
compare our results with those from PACS-CS and LHPC.
We stress that these lattice results need to be extrapolated to
zero lattice spacing (continuum limit) and therefore small
deviations are to be expected the raw data. A comparison is
also made with recent phenomenology results on the octet
and decuplet baryon masses, obtained from an analysis of
lattice QCD data based on the relativistic chiral Lagrangian
[52]. As can be seen from Fig. 25, results show an overall
agreement.
In Fig. 26 we show the masses for the octet and decuplet

baryons obtained after extrapolating to the continuum limit
and to the physical pion mass. Our results are obtained
using the leading order expansions from HBχPT and the
statistical error and total error are shown separately. The
error in red in our results shown in Fig. 26 represents
the statistical error. The total error bar, shown in blue, is
obtained after adding quadratically the statistical error and
the systematic errors due to the chiral extrapolation and due
to the tuning.
In addition, we compare our results obtained in the

charm sector with the corresponding results of other lattice

FIG. 23 (color online). Comparison of lattice results of this work (red filled circles) with those from other collaborations for the octet
baryons. Results using clover fermions from BMW [67] are shown in green triangles and from PACS-CS [68] with blue squares.
Domain wall valence quarks by the LHPC [73] are shown in magenta diamonds. In the nucleon case we additionally show results from
the MILC Collaboration [74] in purple inverted triangles and from QCDSF-UKQCD [75] with orange crosses. The physical point is
shown with the black asterisk.
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calculations. Specifically, the MILC Collaboration has
obtained results using a clover charm valence quark in
Nf ¼ 2þ 1þ 1 gauge configurations at three values of the
lattice spacing, a ¼ 0.09; 0.12; 0.15 fm [11,77]. Moreover,
results for the charm spectrum were produced from Nf ¼
2þ 1þ 1 gauge configurations at lattice spacing values
a ¼ 0.06; 0.09; 0.12 fm using the highly improved stag-
gered quark action, whereas the valence up, down and
strange quark propagators were generated using the clover
improved Wilson action [10]. A relativistic heavy quark

action was implemented for the charm quark in order to
reduce discretization artifacts. In Ref. [12] domain wall
fermions are used for the up, down and strange quarks
with Nf ¼ 2þ 1 simulations using the improved Kogut-
Susskind sea quarks at a lattice spacing value a ¼ 0.12 fm.
For the charm quark the relativistic Fermilab action was
adopted. Finally, the PACS-CS has obtained results in the
charm sector using the relativistic heavy quark action on
Nf ¼ 2þ 1 configurations with the light and strange
quarks tuned to their physical masses, a lattice spacing

FIG. 24 (color online). Comparison of the results for the decuplet baryons in this work with the results from PACS-CS using clover
fermions [68] and from the LHPC Collaboration [73] using domain wall valence quarks. The notation is as in Fig. 23.

FIG. 25 (color online). Comparison of the lattice results for the octet (left) and decuplet (right) baryons from this work (red circles)
with the phenomenology results from Ref. [52] (blue open squares). The results are consistent for all β values.
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of a ¼ 0.09 fm and a spatial length of L ¼ 2.9 fm [78]. We
compare our results with those from Refs. [10–12,77,78].
In Fig. 27 we compare our continuum extrapolated

results on the charmed spectrum with experiment again
showing separately the statistical error and the total error.
Given the agreement with the experimental values, lattice
QCD thus provides predictions for the mass of the Ξ�

cc,Ωcc,
Ω�

cc and Ωccc. These predictions are consistent among
lattice calculations, as shown in Fig. 27. We also point out
that our value for Ξcc is within errors with the value
measured by the SELEX experiment.

VI. CONCLUSIONS

The twisted mass formulation allowing simulations with
dynamical strange and charm quarks with their mass fixed
to approximately their physical values provides a good
framework for studying the baryon spectrum. A number of
gauge ensembles are analyzed spanning pion masses from
about 450 to 210 MeV for three lattice spacings. For the
strange and charm valence quarks we use the Osterwalder-
Seiler formulation and tuned their mass using the mass of
the Ω and Λc, respectively. Thus the strange and charm
quarks are treated in the same manner as the light quarks.
This is to be contrasted with other lattice calculations where
Nf ¼ 2þ 1 staggered gauge configurations are used and
the charm valence quark is introduced using a different
discretization scheme such as clover or described by a
relativistic heavy quark action. A comparison of our lattice
results to other lattice calculations before extrapolations
shows an overall similar tread for all lattice formulations.
Having values for the masses at three lattice spacings is

crucial in order to both verify that cutoff effects are under
control and to extrapolate the results to the continuum limit.
We perform a continuum extrapolation to all our data and
chiral extrapolate to the physical pion mass. In most cases,
the largest systematic error arises because of the chiral
extrapolation and the tuning of the strange and charm quark
masses. We estimate the error due to the chiral extrapo-
lation by comparing results at different orders of the chiral
expansion. The systematic error due to tuning is estimated
by varying the strange and charm quark mass within the
error band of the Ω and Λc masses at the physical point.
From the chiral fits we can determine the light σ-terms for
all baryons via the Feynman-Hellmann theorem. The
largest uncertainty in their determination arises from the
chiral extrapolation which, in some cases amounts to over
30% error. Therefore direct determinations of the σ-terms
[53,79] although very computer intensive can provide a
valuable alternative. The values extracted for σπB for all the
baryons are given in Table IX.

FIG. 26 (color online). The octet and decuplet baryon masses
obtained at the physical point and the experimental masses [76]
shown by the horizontal bands. For most baryons the band is too
small to be visible. For the twisted mass results of this work (red
circles) the chiral extrapolation was performed using the leading
order HBχPT. In our results, the statistical error is shown in red,
whereas the blue error bar includes the statistical error and the
systematic errors due to the chiral extrapolation and due to the
tuning added in quadrature. Results using clover fermions from
BMW [67] are shown in magenta squares and from PACS-CS
[68] with green triangles. Results from QCDSF-UKQCD Col-
laborations [69] using Nf ¼ 2þ 1 SLiNC configurations are also
displayed in blue inverted triangles. Open symbols are used
wherever the mass was used as input to the calculations.

FIG. 27 (color online). The masses of spin-1=2 (left) and spin-3=2 (right) charm baryons. The notation of our results (ETMC) is the
same as in Fig. 26. The experimental values are from Ref. [76] and are shown with the horizontal bands. Included are results from
various hybrid actions with staggered sea quarks from Refs. [11,77] (purple triangles), [10] (magenta diamonds) and [12] (orange
inverted triangles). Results from PACS-CS [78] are shown in green triangles.
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Our values for the baryon masses at the physical
point, shown in Figs. 26 and 27, reproduce the
known baryon masses. For the Ξcc we find a mass of
3.568(14)(19)(1) GeV, which is higher by 1 standard
deviation as compared with the value of 3.519 GeV
measured by the SELEX Collaboration. Our prediction
for the mass of the Ξ�

cc is 3.652(17)(27)(3) GeV, for the Ωþ
cc

is 3.658(11)(16)(50) GeV, for Ω�þ
cc 3.735(13)(18)(43) GeV

and for Ωþþ
ccc 4.734(12)(11)(9) GeV.
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APPENDIX A: INTERPOLATING FIELDS FOR BARYONS

In Tables XII, XIII, and XIV, we give the interpolating fields for the baryons used in this work in correspondence with
Fig. 2 and Fig. 3. Throughout, C denotes the charge conjugation matrix and spinor indices are suppressed.

TABLE XII. Interpolating fields and quantum numbers for the 200-plet of spin-1=2 baryons.

Charm Strange Baryon Quark content Interpolating field I Iz

c ¼ 2 s ¼ 0 Ξþþ
cc ucc ϵabcðcTaCγ5ubÞcc 1=2 þ1=2

Ξþ
cc dcc ϵabcðcTaCγ5dbÞcc 1=2 −1=2

s ¼ 1 Ωþ
cc scc ϵabcðcTaCγ5sbÞcc 0 0

c ¼ 1

s ¼ 0

Λþ
c udc 1ffiffi

6
p ϵabc½2ðuTaCγ5dbÞcc þ ðuTaCγ5cbÞdc − ðdTaCγ5cbÞuc� 0 0

Σþþ
c uuc ϵabcðuTaCγ5cbÞuc 1 þ1

Σþ
c udc 1ffiffi

2
p ϵabc½ðuTaCγ5cbÞdc þ ðdTaCγ5cbÞuc� 1 0

Σ0
c ddc ϵabcðdTaCγ5cbÞdc 1 −1

s ¼ 1

Ξþ
c usc ϵabcðuTaCγ5sbÞcc 1=2 þ1=2

Ξ0
c dsc ϵabcðdTaCγ5sbÞcc 1=2 −1=2

Ξ0þ
c usc 1ffiffi

2
p ϵabc½ðuTaCγ5cbÞsc þ ðsTaCγ5cbÞuc� 1=2 þ1=2

Ξ00
c dsc 1ffiffi

2
p ϵabc½ðdTaCγ5cbÞsc þ ðsTaCγ5cbÞdc� 1=2 −1=2

s ¼ 2 Ω0
c ssc ϵabcðsTaCγ5cbÞsc 0 0

c ¼ 0 s ¼ 0 p uud ϵabcðuTaCγ5dbÞuc 1=2 þ1=2

n udd ϵabcðdTaCγ5ubÞdc 1=2 −1=2

s ¼ 1

Λ uds 1ffiffi
6

p ϵabc½2ðuTaCγ5dbÞsc þ ðuTaCγ5sbÞdc − ðdTaCγ5sbÞuc� 0 0

Σþ uus ϵabcðuTaCγ5sbÞuc 1 þ1

Σ0 uds 1ffiffi
2

p ϵabc½ðuTaCγ5sbÞdc þ ðdTaCγ5sbÞuc� 1 0

Σ− dds ϵabcðdTaCγ5sbÞdc 1 −1

s ¼ 2
Ξ0 uss ϵabcðsTaCγ5ubÞsc 1=2 þ1=2

Ξ− dss ϵabcðsTaCγ5dbÞsc 1=2 −1=2
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APPENDIX B: LATTICE RESULTS

In Tables XV, XVI, XVII, XVIII, XIX, and XX we list the baryon masses in lattice units and the continuum extrapolated
values in physical units. The masses in physical units are in GeV and are converted from lattice units using the lattice
spacing values extracted from the nucleon in this work, Eq. (21). The masses for the nucleon Ω and Λþ

c are listed in
Tables III and VI.

TABLE XIV. Additional interpolating fields for spin-1=2 and spin-3=2 baryons. There are two of the spin-1=2 baryons and eight of the
spin-3=2 baryons.

Charm Strange Baryon Quark content Interpolating field I Iz

Spin-1=2 baryons
c ¼ 1 s ¼ 1 Ξþ

c usc 1ffiffi
6

p ϵabc½2ðsTaCγ5ubÞcc þ ðsTaCγ5cbÞuc − ðuTaCγ5cbÞsc� 1=2 þ1=2

Ξ0
c dsc 1ffiffi

6
p ϵabc½2ðsTaCγ5dbÞcc þ ðsTaCγ5cbÞdc − ðdTaCγ5cbÞsc� 1=2 −1=2

Spin-3=2 baryons

c ¼ 0 s ¼ 2 Ξ⋆0 uss 1ffiffi
3

p ϵabc½2ðsTaCγμubÞsc þ ðsTaCγμsbÞuc� 1=2 þ1=2

Ξ⋆− dss 1ffiffi
3

p ϵabc½2ðsTaCγμdbÞsc þ ðsTaCγμsbÞdc� 1=2 −1=2

c ¼ 1 s ¼ 1 Ξ⋆þ
c usc

ffiffi
2
3

q
ϵabc½ðuTaCγμsbÞcc þ ðsTaCγμcbÞuc þ ðcTaCγμubÞsc� 1=2 þ1=2

Ξ⋆0
c dsc

ffiffi
2
3

q
ϵabc½ðdTaCγμsbÞcc þ ðsTaCγμcbÞdc þ ðcTaCγμdbÞsc� 1=2 −1=2

s ¼ 2 Ω⋆0
c ssc 1ffiffi

3
p ϵabc½2ðsTaCγμcbÞsc þ ðsTaCγμsbÞcc� 0 0

c ¼ 2 s ¼ 0 Ξ⋆þþ
cc ucc 1ffiffi

3
p ϵabc½2ðcTaCγμubÞcc þ ðcTaCγμcbÞuc� 1=2 þ1=2

Ξ⋆þ
cc dcc 1ffiffi

3
p ϵabc½2ðcTaCγμdbÞcc þ ðcTaCγμcbÞdc� 1=2 −1=2

s ¼ 1 Ω⋆þ
cc scc 1ffiffi

3
p ϵabc½2ðcTaCγμsbÞcc þ ðcTaCγμcbÞsc� 0 0

TABLE XIII. Interpolating fields and quantum numbers for the 20-plet of spin-3=2 baryons.

Charm Strange Baryon Quark content Interpolating field I Iz

c ¼ 3 s ¼ 0 Ωþþ
ccc ccc ϵabcðcTaCγμcbÞcc 0 0

c ¼ 2
s ¼ 0

Ξ⋆þþ
cc ucc ϵabcðcTaCγμubÞcc 1=2 þ1=2

Ξ⋆þ
cc dcc ϵabcðcTaCγμdbÞcc 1=2 −1=2

s ¼ 1 Ω⋆þ
cc scc ϵabcðcTaCγμsbÞcc 0 0

c ¼ 1

s ¼ 0

Σ⋆þþ
c uuc 1ffiffi

3
p ϵabc½ðuTaCγμubÞcc þ 2ðcTaCγμubÞuc� 1 þ1

Σ⋆þ
c udc

ffiffi
2
3

q
ϵabc½ðuTaCγμdbÞcc þ ðdTaCγμcbÞuc þ ðcTaCγμubÞdc� 1 0

Σ⋆0
c ddc 1ffiffi

3
p ϵabc½ðdTaCγμdbÞcc þ 2ðcTaCγμdbÞdc� 1 −1

s ¼ 1
Ξ⋆þ
c usc ϵabcðsTaCγμubÞcc 1=2 þ1=2

Ξ⋆0
c dsc ϵabcðsTaCγμdbÞcc 1=2 −1=2

s ¼ 2 Ω⋆0
c ssc ϵabcðsTaCγμcbÞsc 0 0

c ¼ 0

s ¼ 0

Δþþ uuu ϵabcðuTaCγμubÞuc 3=2 þ3=2

Δþ uud 1ffiffi
3

p ϵabc½2ðuTaCγμdbÞuc þ ðuTaCγμubÞdc� 3=2 þ1=2

Δ0 udd 1ffiffi
3

p ϵabc½2ðdTaCγμubÞdc þ ðdTaCγμdbÞuc� 3=2 −1=2
Δ− ddd ϵabcðdTaCγμdbÞdc 3=2 −3=2

s ¼ 1

Σ⋆þ uus 1ffiffi
3

p ϵabc½ðuTaCγμubÞsc þ 2ðsTaCγμubÞuc� 1 þ1

Σ⋆0 uds
ffiffi
2
3

q
ϵabc½ðuTaCγμdbÞsc þ ðdTaCγμsbÞuc þ ðsTaCγμubÞdc� 1 0

Σ⋆− dds 1ffiffi
3

p ϵabc½ðdTaCγμdbÞsc þ 2ðsTaCγμdbÞdc� 1 −1

s ¼ 2
Ξ⋆0 uss ϵabcðsTaCγμubÞsc 1=2 þ1=2

Ξ⋆− dss ϵabcðsTaCγμdbÞsc 1=2 −1=2
s ¼ 3 Ω− sss ϵabcðsTaCγμsbÞsc 0 0
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TABLE XVI. Octet and decuplet baryon masses in physical units with the associated statistical error.

aμl mΛ mΣ mΞ mΔ mΣ� mΞ�

β ¼ 1.90
0.0030 1.2329(394) 1.3103(435) 1.3331(356) 1.4909(834) 1.5669(678) 1.6139(539)
0.0040 1.2343(394) 1.2924(431) 1.3294(349) 1.4560(863) 1.5372(674) 1.5869(545)
0.0050 1.2496(402) 1.3381(431) 1.3422(369) 1.4923(835) 1.5920(675) 1.6133(604)

β ¼ 1.95
0.0025 1.2314(364) 1.3067(399) 1.3632(312) 1.5178(749) 1.5938(608) 1.6379(504)
0.0035 1.2610(356) 1.3180(385) 1.3662(320) 1.5152(750) 1.5787(610) 1.6126(502)
0.0055 1.3063(351) 1.3580(393) 1.3748(322) 1.5621(740) 1.6332(598) 1.6609(487)
0.0075 1.3328(358) 1.3909(378) 1.3746(345) 1.6019(731) 1.6382(600) 1.6633(483)

β ¼ 2.10
0.0015 1.1798(287) 1.2522(308) 1.3272(250) 1.4074(598) 1.5222(470) 1.5973(380)
0.0020 1.2157(294) 1.2775(324) 1.3282(258) 1.4484(632) 1.5380(486) 1.5819(395)
0.0030 1.2216(291) 1.2783(320) 1.3290(253) 1.4484(609) 1.5294(497) 1.5885(402)

TABLE XVII. Charm spin-1=2 baryon masses in lattice units with the associated statistical error.

aμl amΣc
amΞc

amΞ0
c

amΩ0
c

amΞcc
amΩþ

cc

β ¼ 1.90
0.0030 1.2543(72) 1.2611(46) 1.3028(53) 1.3575(46) 1.8187(48) 1.8704(38)
0.0040 1.2448(53) 1.2580(62) 1.2983(50) 1.3506(37) 1.8166(42) 1.8694(33)
0.0050 1.2696(55) 1.2599(61) 1.3185(49) 1.3655(47) 1.8303(44) 1.8781(37)

β ¼ 1.95
0.0025 1.0896(55) 1.0900(43) 1.1388(42) 1.1764(41) 1.5684(34) 1.6099(29)
0.0035 1.0927(49) 1.0920(41) 1.1322(43) 1.1726(39) 1.5684(32) 1.6077(27)
0.0055 1.1091(51) 1.1027(37) 1.1440(44) 1.1788(39) 1.5782(36) 1.6138(33)
0.0075 1.1112(43) 1.1024(36) 1.1412(37) 1.1691(37) 1.5739(34) 1.6065(34)

β ¼ 2.10
0.0015 0.8348(35) 0.8362(25) 0.8682(27) 0.9010(23) 1.2136(25) 1.2449(19)
0.0020 0.8384(64) 0.8419(33) 0.8735(35) 0.9000(30) 1.2078(31) 1.2414(21)
0.0030 0.8376(49) 0.8410(26) 0.8741(33) 0.9028(28) 1.2139(25) 1.2438(19)

TABLE XV. Octet and decuplet baryon masses in lattice units with the associated statistical error.

aμl amΛ amΣ amΞ amΔ amΣ� amΞ�

β ¼ 1.90
0.0030 0.5972(46) 0.6420(60) 0.6906(50) 0.7090(100) 0.7481(95) 0.8046(61)
0.0040 0.5978(46) 0.6335(52) 0.6888(38) 0.6924(145) 0.7339(89) 0.7918(73)
0.0050 0.6051(60) 0.6552(52) 0.6949(69) 0.7097(101) 0.7600(91) 0.8044(144)

β ¼ 1.95
0.0025 0.5217(59) 0.5586(66) 0.6077(38) 0.6340(100) 0.6677(89) 0.7093(87)
0.0035 0.5341(50) 0.5633(50) 0.6090(48) 0.6329(102) 0.6614(92) 0.6987(84)
0.0055 0.5529(43) 0.5800(60) 0.6126(50) 0.6525(88) 0.6841(77) 0.7189(68)
0.0075 0.5640(52) 0.5937(39) 0.6125(72) 0.6691(74) 0.6862(80) 0.7199(62)

β ¼ 2.10
0.0015 0.3904(37) 0.4167(37) 0.4537(28) 0.4614(71) 0.5000(48) 0.5359(39)
0.0020 0.4021(43) 0.4250(49) 0.4540(35) 0.4749(98) 0.5052(63) 0.5308(53)
0.0030 0.4041(40) 0.4253(46) 0.4543(32) 0.4749(81) 0.5024(71) 0.5330(58)
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TABLE XVIII. Charm spin-1=2 baryon masses in physical units with the associated statistical error.

aμl mΣc
mΞc

mΞ0
c

mΩ0
c

mΞcc
mΩþ

cc

β ¼ 1.90
0.0030 2.5020(560) 2.4921(374) 2.5890(412) 2.6663(350) 3.5829(344) 3.6631(268)
0.0040 2.4820(551) 2.4856(384) 2.5796(410) 2.6518(345) 3.5784(340) 3.6611(265)
0.0050 2.5342(552) 2.4896(384) 2.6221(410) 2.6831(350) 3.6072(341) 3.6794(267)

β ¼ 1.95
0.0025 2.5042(492) 2.4865(334) 2.6102(363) 2.6713(311) 3.5687(300) 3.6461(235)
0.0035 2.5114(489) 2.4912(332) 2.5946(364) 2.6623(310) 3.5687(299) 3.6408(234)
0.0055 2.5509(490) 2.5168(330) 2.6228(364) 2.6771(310) 3.5921(301) 3.6554(238)
0.0075 2.5558(485) 2.5161(329) 2.6160(360) 2.6538(309) 3.5818(300) 3.6378(239)

β ¼ 2.10
0.0015 2.4816(387) 2.4746(261) 2.5766(286) 2.6585(242) 3.5867(239) 3.6686(186)
0.0020 2.4927(421) 2.4921(269) 2.5927(294) 2.6557(249) 3.5690(245) 3.6581(188)
0.0030 2.4902(401) 2.4891(262) 2.5944(292) 2.6643(247) 3.5877(239) 3.6652(186)

TABLE XIX. Charm spin-3=2 baryon masses in lattice units with the associated statistical error.

aμl amΣ�
c

amΞ�
c

amΩ�0
c

amΞ�
cc

amΩ�þ
cc

amΩþþ
ccc

β ¼ 1.90
0.0030 1.2828(103) 1.3333(78) 1.3780(58) 1.8464(71) 1.8941(47) 2.3788(37)
0.0040 1.2812(76) 1.3337(57) 1.3846(48) 1.8407(100) 1.9034(38) 2.3845(48)
0.0050 1.3057(65) 1.3543(57) 1.3953(51) 1.8665(52) 1.9092(41) 2.3857(42)

β ¼ 1.95
0.0025 1.1296(90) 1.1757(52) 1.2049(46) 1.6084(54) 1.6400(41) 2.0486(29)
0.0035 1.1295(53) 1.1588(63) 1.1999(46) 1.6037(45) 1.6394(35) 2.0537(27)
0.0055 1.1435(63) 1.1767(54) 1.2028(51) 1.6153(42) 1.6451(36) 2.0578(29)
0.0075 1.1471(54) 1.1608(64) 1.2016(43) 1.6107(39) 1.6386(38) 2.0570(28)

β ¼ 2.10
0.0015 0.8591(41) 0.8951(32) 0.9239(28) 1.2380(26) 1.2669(21) 1.5958(20)
0.0020 0.8612(73) 0.8928(53) 0.9277(30) 1.2377(40) 1.2702(26) 1.5928(20)
0.0030 0.8596(55) 0.8909(44) 0.9296(29) 1.2384(33) 1.2665(26) 1.5946(16)

TABLE XX. Charm spin-3=2 baryon masses in physical units with the associated statistical error.

aμl mΣ�
c

mΞ�
c

mΩ�0
c

mΞ�
cc

mΩ�þ
cc

mΩþþ
ccc

β ¼ 1.90
0.0030 2.5529(709) 2.6263(552) 2.7461(402) 3.6555(497) 3.7362(335) 4.7432(263)
0.0040 2.5496(694) 2.6271(541) 2.7599(396) 3.6435(518) 3.7556(330) 4.7552(270)
0.0050 2.6012(689) 2.6704(541) 2.7824(397) 3.6978(486) 3.7680(332) 4.7576(266)

β ¼ 1.95
0.0025 2.5928(631) 2.6778(479) 2.7677(354) 3.6756(436) 3.7361(298) 4.7049(231)
0.0035 2.5927(607) 2.6373(487) 2.7557(353) 3.6642(430) 3.7347(293) 4.7171(229)
0.0055 2.6261(612) 2.6803(481) 2.7626(357) 3.6921(428) 3.7481(294) 4.7268(231)
0.0075 2.6349(607) 2.6422(488) 2.7600(351) 3.6810(427) 3.7327(295) 4.7250(230)

β ¼ 2.10
0.0015 2.5515(482) 2.6459(377) 2.7459(277) 3.6679(336) 3.7469(230) 4.7443(183)
0.0020 2.5581(517) 2.6388(398) 2.7576(279) 3.6669(349) 3.7568(234) 4.7350(184)
0.0030 2.5530(495) 2.6329(387) 2.7632(278) 3.6694(342) 3.7457(234) 4.7406(180)
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APPENDIX C: HBχPT NEXT-TO-LEADING
ORDER EXPRESSIONS FOR THE OCTET

AND DECUPLET BARYONS

For the octet baryons the NLO expressions read

mNLO
Λ ðmπÞ ¼ mð0Þ

Λ − 4cð1ÞΛ m2
π −

g2ΛΣ
ð4πfπÞ2

F ðmπ;ΔΛΣ; λÞ

−
4g2ΛΣ�

ð4πfπÞ2
F ðmπ;ΔΛΣ� ; λÞ

mNLO
Σ ðmπÞ ¼ mð0Þ

Σ − 4cð1ÞΣ m2
π −

2g2ΣΣ
16πf2π

m3
π

−
g2ΛΣ

3ð4πfπÞ2
F ðmπ;−ΔΛΣ; λÞ

−
4g2Σ�Σ

3ð4πfπÞ2
F ðmπ;ΔΣΣ� ; λÞ

mNLO
Ξ ðmπÞ ¼ mð0Þ

Ξ − 4cð1ÞΞ m2
π −

3g2ΞΞ
16πf2π

m3
π

−
2g2Ξ�Ξ

ð4πfπÞ2
F ðmπ;ΔΞΞ� ; λÞ ðC1Þ

and for the decuplet baryons

mNLO
Δ ðmπÞ ¼ mð0Þ

Δ − 4cð1ÞΔ m2
π −

25

27

g2ΔΔ
16πf2π

m3
π

−
2g2ΔN

3ð4πfπÞ2
F ðmπ;−ΔNΔ; λÞ

mNLO
Σ� ðmπÞ ¼ mð0Þ

Σ� − 4cð1ÞΣ� m2
π −

10

9

g2Σ�Σ�

16πf2π
m3

π

−
2

3ð4πfπÞ2
½g2Σ�ΣF ðmπ;−ΔΣΣ� ; λÞ

þ g2ΛΣ�F ðmπ;−ΔΛΣ� ; λÞ�

mNLO
Ξ� ðmπÞ ¼ mð0Þ

Ξ� − 4cð1ÞΞ� m2
π −

5

3

g2Ξ�Ξ�

16πf2π
m3

π

−
g2Ξ�Ξ

ð4πfπÞ2
F ðmπ;−ΔΞΞ� ; λÞ

mNLO
Ω ðmπÞ ¼ mð0Þ

Ω − 4cð1ÞΩ m2
π: ðC2Þ

The nonanalytic function F ðm;Δ; λÞ is of the form [58]

F ðm;Δ; λÞ ¼ ðm2 − Δ2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 −m2 þ iϵ

p

× log

�
Δ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 −m2 þ iϵ

p

Δþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 −m2 þ iϵ

p
�

−
3

2
Δm2 log

�
m2

λ2

�
− Δ3 log

�
4Δ2

m2

�
ðC3Þ

depending on the threshold parameter ΔXY ¼ mð0Þ
Y −mð0Þ

X
and on the scale λ of chiral perturbation theory, fixed to
λ ¼ 1 GeV. For Δ > 0 the real part of the function
F ðm;Δ; λÞ has the property

F ðm;−Δ;λÞ¼
	
−F ðm;Δ;λÞ m<Δ
−F ðm;Δ;λÞþ2πðm2−Δ2Þ3=2 m>Δ

ðC4Þ

which corrects a typo in the sign of the second term
in Ref. [73].
A noticeable result of this expansion is the absence of a

cubic term in the expressions for the Λ andΩ baryons given
in Eqs. (C1) and (C2). In the case of Ω it follows from the
absence of light valence quarks. However, the absence of a
cubic term in the NLO expression for Λ, although a
consequence of χPT, is nevertheless a questionable result,
since it relies on the assumption that mπ ≪ MΣ −MΛ. In
the limit Δ → 0 the nonanalytic function of Eq. (C3)
becomes

F ðmπ;Δ → 0; λÞ ¼ πm3
π; ðC5Þ

which generates a cubic term for the Λ and slightly
modifies the existing one for Σ. The corresponding expres-
sions are given by

mΛðmπÞ ¼ mð0Þ
Λ − 4cð1ÞΛ m2

π −
g2ΛΣ

16πf2π
m3

π

mΣðmπÞ ¼ mð0Þ
Σ − 4cð1ÞΣ m2

π −
2g2ΣΣ þ g2ΛΣ=3

16πf2π
m3

π: ðC6Þ
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