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We present an update of our determination of the strong coupling αs from the quantum chromodynamics
static energy. This updated analysis includes new lattice data, at smaller lattice spacings and reaching
shorter distances, the use of better suited perturbative expressions to compare with data in a wider distance
range, and a comprehensive and detailed estimate of the error sources that contribute to the uncertainty of
the final result. Our updated value for αs at the Z-mass scale, MZ, is αsðMZÞ ¼ 0.1166þ0.0012

−0.0008 , which
supersedes our previous result.
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I. INTRODUCTION

The strong coupling, αs, is the only free parameter of
quantum chromodynamics (QCD) in the massless quark
limit. The knowledge of its value with good precision and
accuracy is of vital importance for the study of any process
that involves the strong interactions [1]. It has, for instance, a
big impact on cross-section calculations for the Large
Hadron Collider, where its uncertainty is often one of the
limiting factors on the precision reached by theoretical
predictions. The present world average by the Particle
Data Group (PDG) [2] quotes an uncertainty of about
�0.5% for αs at the scale of the Z-boson mass, MZ. But,
when one looks at the individual values that enter in the
average, one realizes that the uncertainties of many of the
individual measurements are dominated by errors of theo-
retical origin. These errors are often difficult to precisely
assess, and in fact some of the individual measurements are
not in good agreement with each other. A flagrant example
of that is given, for instance, by comparing the lattice result
obtained in Ref. [3] with the value obtained from analyses
of the event-shape variable thrust in eþe− collisions of
Ref. [4]. Disagreements like that question, to some extent, if
the uncertainty quoted in the world average really reflects
our current understanding of the value of αs. In that sense it
is crucial to have an increasing corroboration of the value of
αs, by extracting it from different independent quantities, and
at different energy ranges, and to critically and exhaustively
analyze all the theoretical errors that enter in each of
the determinations. In Ref. [5] we presented a novel

determination of αs, based on the comparison of lattice
data for the energy between two static sources in the
fundamental representation of QCD, i.e. the QCD static
energy, at short distances with perturbative expressions. This
extraction was possible due to recent progress both in the
lattice evaluation and the perturbative computation of the
static energy. It provided a competitive determination of αs
that stemmed from a perturbative calculation at three-loop
order, including resummations of logarithmically enhanced
terms. In this paper we present an update of the result of
Ref. [5]. The main new ingredients are (i) we include new
lattice data, with smaller lattice spacings and reaching
shorter distances, (ii) we use perturbative expressions that
are better suited to compare with lattice data in this wider
distance range, and (iii) we include a more detailed assess-
ment of the different error sources that can contribute to the
uncertainty of the final result; the discussion of the different
error sources comprises, in fact, the bulk of the present paper.
The rest of the paper is organized as follows. In Sec. II we

describe the lattice data we use, in particular explaining in
detail the lattice systematic errors at short distances.
Section III displays the perturbative expressions we employ.
The bulk of the paper is contained in Sec. IV, where we
explain in detail the analysis to extract αs and discuss all the
error sources that can affect our result. Section V contains
some discussion of our results, as well as comparison with
previous related works. Finally, in Sec. VI we present a short
summary of the main results and conclude.

II. LATTICE DATA

In this paper we use 2þ 1-flavor lattice QCD data on the
static quark-antiquark energy, E0ðrÞ, obtained using tree-
level improved gauge action and highly improved
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staggered quark action, procured by the HotQCD
Collaboration [6]. The strange-quark mass ms was fixed
to its physical value, while the light-quark masses were
chosen to beml ¼ ms=20. These correspond to a pion mass
of about 160 MeV in the continuum limit, which is very
close to the physical value. More precisely, we use lattice
QCD data corresponding to the lattice gauge couplings
β ¼ 10=g2 ¼ 7.150; 7.280; 7.373; 7.596, and 7.825. The
largest gauge coupling, β ¼ 7.825, corresponds to lattice
spacings of a ¼ 0.041 fm. One may worry about the
evolution of the topological charge on such fine lattices,
but, as was demonstrated in Ref. [6], the Monte Carlo
evolution of the topological charge is acceptable even for
β ¼ 7.825. The lattice spacing was fixed using the r1 scale
defined as

r2
dE0ðrÞ
dr

����
r¼r1

¼ 1.0: ð1Þ

The values of r1=a for each of the above gauge couplings
have been determined in Ref. [6] and are summarized in
Table I. The errors on the values of r1=a in the table are the
combined statistical and systematic errors. The details of
the lattice spacing determination, including the error
estimates, are presented in Ref. [6], where also additional
checks on the lattice spacing determination using different
physical observables are performed. Since we are interested
in the behavior of the static energy at short distances the
effect of finite volume in lattice calculations is negligible.
However lattice artifacts can be significant. Therefore, it is
important to remove these artifacts and to estimate the
corresponding systematic errors before comparing the
lattice results with perturbation theory. Since we are
interested in the cutoff effects at short distances, we could
use lattice perturbation theory to estimate these effects, due
to asymptotic freedom in QCD. In the simplest case we
could use the tree-level result. At tree level the static energy
on the lattice is given by

Elat;tree
0 ðrÞ ¼ −CFg2

Z
d3k
ð2πÞ3D00ðk0 ¼ 0;kÞeikr

≕ − CFg2
1

4πrIðrÞ
; ð2Þ

where D00ðk0 ¼ 0;kÞ is the temporal gluon propagator on
the lattice,

D−1
00 ðk0 ¼ 0;kÞ ¼ 4

X3
i¼1

�
sin2

ki
2
þ cwsin4

ki
2

�
; ð3Þ

which depends on the choice of the gauge action, and CF is
the Casimir of the fundamental representation. Equation (3)
is given in lattice-spacing units. For unimproved gauge
action cw ¼ 0, while for the improved gauge action cw ¼
1=3 [7,8]. The integral in Eq. (2) has to be evaluated
numerically. Equation (2) defines the so-called improved
distances rIðrÞ (for simplicity, from now on we omit the
dependence on r and just write rI), which renders the lattice
Coulomb potential to be continuumlike and will be used
below to reduce lattice artifacts. In Fig. 1 we show the ratio
of the lattice static energy to the continuum static energy at
tree level. As one can see, the discretization effects are
small, at the level of a few percent, even at the distance
r=a ¼ 1. For the improved gauge action the discretization
effects are below 1% level for r=a > 2, while they are still
significant for the standard gauge action. To estimate the
cutoff effects in the actual lattice calculations we need a
continuum estimate of the static energy. Based on the free-
theory result we assume that the cutoff effects are negligible
for distances r=a > 2, and fit the lattice results at β ¼
7.825 in this region to Coulomb plus linear plus constant
form to obtain a continuum estimate. To reduce the cutoff
effects we replace the distance r by rI in the fit (see below).
The fit can be used as a continuum estimate for distances
r > 0.3r1. In order to compare results at different β values
to the continuum estimate, we normalize the static energy
in units of the r1 scale using the normalization procedure
described in Ref. [5]. In Fig. 2 we show the ratio of the
static energy at different lattice spacings (β) to the con-
tinuum estimate described above for r > 0.3r1. In terms of
r in lattice units we cover the distance range r=a >

ffiffiffi
2

p
.

Obviously, the range in r=a extends to smaller values for
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FIG. 1 (color online). The ratio of the lattice and the continuum
static energy at tree level.

TABLE I. The values of r1=a and the lattice volumes for the
different gauge couplings considered in this paper. The errors are
the combined statistical and systematic errors.

β 7.150 7.280 7.373 7.596 7.825
r1=a 4.212(42) 4.720(33) 5.172(34) 6.336(56) 7.690(58)
Volume 483 × 64 483 × 64 483 × 64 644 644
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smaller values of β. As one can see, the discretization
effects are similar to the free theory, although slightly larger
in some cases. Thus, the tree-level result gives us a fair
estimate on the size of discretization effects, as expected.
We can use the free-theory result to correct for the lattice
artifacts at short distances, i.e. implement a tree-level
improvement of the static energy. One way to correct for
the lattice artifacts is to replace the distance r by the
improved distance rI defined in Eq. (2). Wewill refer to this
improvement scheme as improvement 1. Alternatively, we
can fit the static energy to the form

VðrÞ ¼ −
a
r
þ σrþ Cþ a0

�
1

r
−

1

rI

�
; ð4Þ

and correct the lattice data by subtracting a0ð1=r − 1=rIÞ.
We call this improvement scheme improvement 2. We see
from Fig. 2 that the tree-level corrections reduce the
discretization errors to the level of 1.5% or smaller.
Furthermore, the deviations from the continuum estimate
are roughly independent of β in the considered range of the
gauge couplings. From the figure, one can also see that the
two improvement schemes give similar results. We adopt
improvement scheme 1 and try to correct for the residual

cutoff effects by dividing the value of the static energy
calculated on the lattice with the correction factors given in
Table II. The correction factors have been estimated using
an iterative procedure as follows. First we calculate the
ratios of the static energy to the above continuum estimate
for r=a ¼ ffiffiffi

2
p

and β ¼ 7.280, r=a ¼ ffiffiffi
3

p
and β ¼ 7.373,

and r=a ¼ 2 and β ¼ 7.596, and divide the lattice results
on the static energy for β ¼ 7.825 for r=a ¼ ffiffiffi

2
p

;
ffiffiffi
3

p
, and 2

by the corresponding ratios, i.e. we use the lattice data at the
closest value of β to estimate the correction factor.
Furthermore, we assign a systematic error of 0.5% to these
data points and fit the corrected data points for β ¼ 7.825
by a Coulomb plus linear plus constant form to obtain the
improved continuum estimate of the static energy, which
now extends to smaller distances, namely down to distance
r ¼ 0.186r1. With this continuum estimate we calculate the
correction factor for the smallest distance r=a ¼ 1 by
dividing the β ¼ 7.373 data at r=a ¼ 1 by the correspond-
ing value. Using this correction factor for the β ¼ 7.825
static energy at r=a ¼ 1, and assigning a systematic error of
1% to that point, we could extend the fit to the smallest
lattice distance to obtain our final continuum estimate for
the static energy for distances 0.12 < r=r1 < 0.6 (note that
the upper limit of the fit range was kept fixed in all the
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FIG. 2 (color online). The ratio of the static energy at β ¼ 7.150; 7.280; 7.373; 7.596 to the continuum estimate. The bursts correspond
to the uncorrected static energy.

DETERMINATION OF αs FROM THE QCD STATIC … PHYSICAL REVIEW D 90, 074038 (2014)

074038-3



iterative steps), and also obtain the correction factors given
in Table II. We assign a systematic error of 1% for all the
corrected lattice data at distance r=a ¼ 1 and a systematic
error of 0.5% for all the remaining five shortest distances.
The corrected lattice data for the static energy with the
statistical and systematic errors added in quadrature is
shown in Fig. 3. The figure clearly shows that, within
estimated errors, all the lattice data on the static energy
agree with the continuum estimate, i.e. our final error
estimates are sufficiently large to included all possible
residual discretization effects.
We have also calculated the force from the lattice data at

the three smallest lattice spacings. The calculation of the
derivative of the static energy from a discrete set of lattice
data is nontrivial, since both discretization errors and
statistical fluctuations result in a nonsmooth behavior of
the static energy as function of the distance r, and sub-
sequently in nonmonotonic behavior of the force. To avoid
problems with the lattice artifacts, we calculate the force only
for distances r=a > 2, for which discretization effects are
expected to be small. To obtain a result for the force from the
lattice data on the static energy which is monotonic, we fit
the latter with smoothing splines. The smoothing spline is
determined by minimizing the χ2 plus the integral of the
second derivative of the fit function in the considered interval
times a real parameter λ. The spline fit is performed using the
R statistical package [9]. The errors on the spline are
calculated using standard bootstrap method, i.e. for each

data point on the static energy we generate a set of synthetic
data according to a Gaussian distribution, with the width and
mean given by the statistical error and central value of the
lattice data, perform the spline fit on the synthetic data, and
finally perform the statistical analysis of the resulting splines.
Furthermore, we consider several values of the smoothing
parameter λ in the standard range 0 < λ < 1. We find that,
within statistical errors, there is little dependence on the
smoothing parameter. For the distances where the depend-
ence on λ was larger than the statistical errors, the final error
estimate was increased to accommodate the difference
between different splines. In Fig. 4 we show the lattice
results on the force for β ¼ 7.373; 7.596, and 7.825 from the
spline fit evaluated at distances separated by a=8 in the
interval 0.32 < r=r1 < 0.7, with the corresponding statis-
tical errors. As one can see from the figure, the values for the
force obtained for different β agree well within the estimated
errors, confirming our expectation that cutoff effects are
small for r=a > 2. The data points for the force shown in
Fig. 4 will be used in the analysis presented in Sec. IV C 1.

III. PERTURBATIVE EXPRESSIONS

In this section we detail the perturbative expressions that
are used in our analyses.
Let us start by recalling that our goal is to compare with

the lattice data for the static energy. An important point to
remember, to that effect, is that the normalization of the
static energy computed on the lattice is not physical, but
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FIG. 3 (color online). The ratio of the corrected static energy at
β ¼ 7.150; 7.280; 7.373; 7.596, and 7.825 to the continuum
estimate.

TABLE II. The correction factors for the static energy for the six smallest lattice distances.

β r=a ¼ 1 r=a ¼ ffiffiffi
2

p
r=a ¼ ffiffiffi

3
p

r=a ¼ 2 r=a ¼ ffiffiffi
5

p
r=a ¼ ffiffiffi

6
p

7.150 0.980 0.995 1.007 0.988 1.000 1.010
7.280 0.980 0.997 1.008 0.992 1.000 1.013
7.373 0.980 0.998 1.009 0.994 0.995 1.005
7.596 0.980 0.995 1.005 0.994 1.000 1.001
7.825 0.968 0.992 1.005 0.994 0.998 1.001
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only its slope is. At the same time, care needs to be taken
with the so-called renormalon singularities, present in the
perturbative expressions. At the end of the day, the
renormalon has no practical effect in the extraction, i.e.
the comparisons, and any fits to the lattice data involved in
the analyses, can always be done in a way such that they are
not affected by the presence of the renormalon. This is
again due to the fact that the overall normalization of the
energy is affected by the renormalon, but the slope, which
is what matters for the extraction of αs, is renormalon free.
It is nevertheless convenient to keep track of the presence of
the renormalon in intermediate expressions, and to always
work with a scheme where the renormalon is subtracted
explicitly. We can schematically write the static energy as

E0ðrÞ ¼ Vsðr; ν; μÞ þ δUSðr; ν; μÞ þ RSðρÞ þ ΛsðρÞ; ð5Þ

where Vsðr; ν; μÞ is the static potential, δUSðr; ν; μÞ repre-
sents the ultrasoft contributions to the energy [which first
appear at three-loop order, see Eq. (10) below], RSðρÞ
generically represents a term that cancels the leading
renormalon singularity in Vsðr; ν; μÞ, and ΛsðρÞ contains
the residual mass term that is necessary to define the static
limit of QCD. The ν dependence in Vs and δUS cancels
order by order in perturbation theory. We mention that μ is
the ultrasoft factorization scale, but it does not play a
relevant role for the discussion in this paragraph. For
concreteness, we adopt the Renormalon Subtracted (RS)
scheme [10]. The expression for Vsðr; ν; μÞ is given as a
series in αsðνÞ and contains lnðrνÞ terms, starting at order
α2sðνÞ lnðrνÞ. The expression for RSðρÞ is given as a series
in αsðρÞ. In order to cancel the renormalon order by order,
αsðρÞ needs to be expanded in terms of αsðνÞ (or vice
versa); when one does that, RSðρÞ is given as well as a
series in αsðνÞ and contains lnðρ=νÞ terms, starting at order
α3sðνÞ lnðρ=νÞ. If one sets ν ¼ 1=r in Eq. (5), one resums the
lnðrνÞ logarithms in Vsðr; ν; μÞ, but on the other hand the
RS-subtraction term is not constant. Since the normaliza-
tion of the renormalon singularity, which enters in RSðρÞ,
can only be computed approximately, that would introduce
additional uncertainties in the perturbative expression that
would hinder any precise αs extraction. One can also set ν
constant in Eq. (5), in which case the RS-subtraction term is
itself constant, and gets absorbed in the additive constant
needed to compare with lattice data [see Eq. (9) below], but
one has lnðrνÞ terms left in Vsðr; ν; μÞ. If one only
compares with lattice data in a restricted distance range,
one is free to set ν at the center of that distance range and
the logarithms never become large. This last option is the
approach that was taken in Ref. [5]. Alternatively, one can
also take a derivative of Eq. (5), and compute the force. We
can take the derivative before resumming the lnðrνÞ terms,
i.e. from Eq. (5) with constant ν, so that the RS-subtraction
term, and Λs, completely disappear. That is the procedure
we follow here.

By taking a derivative, with respect to r, of Eq. (5) we
obtain the force,

Fðr; νÞ ¼ dE0

dr
¼ CF

r2
½αEðr; νÞ − rα0Eðr; νÞ�; ð6Þ

where α0Eðr; νÞ denotes the derivative of αEðr; νÞ with
respect to r, and where we define

Vsðr; ν; μÞ þ δUSðr; ν; μÞ≕−
CF

r
αEðr; νÞ: ð7Þ

At this point the expression for the force Fðr; νÞ is given as
a series in αsðνÞ and contains lnðrνÞ terms, starting at order
α2sðνÞ lnðrνÞ. We can now resum these logarithms by setting
ν ¼ 1=r, i.e. we reorganize the perturbative expansion for
the force as a series in αsð1=rÞ. Having obtained this
expression, one can either directly compare Fðr; ν ¼ 1=rÞ
with lattice data for the force, or numerically integrate
Fðr; ν ¼ 1=rÞ and compare with lattice data for the energy,
that is, to numerically compute

E0ðrÞ ¼
Z

r

r�
Fðr; ν ¼ 1=rÞdr; ð8Þ

where the lower limit of integration, r�, is irrelevant because
the constant contribution coming from it gets absorbed in
the additive constant used to compare with lattice data; i.e.
when we compare with lattice data we need to plot

E0ðrÞ − E0ðrrefÞ þ Elatt
0 ðrrefÞ ¼ E0ðrÞ þ const; ð9Þ

where rref is the reference distance where we make the
perturbative expression coincide with the lattice data, and
Elatt
0 ðrrefÞ is the value of the static energy computed on the

lattice at that distance. As will be further explained in
Sec. IV, we will use the comparison with the lattice data for
the energy, through Eqs. (8)–(9), for our main analyses, and
leave the direct comparison ofFðr; ν ¼ 1=rÞwith the lattice
data for the force as a cross check of our results.
The perturbative expansion of Fðr; ν ¼ 1=rÞ is explicitly

given by

F

�
r;
1

r

�
¼ CF

r2
αsð1=rÞ

�
1

þ αsð1=rÞ
4π

ð ~a1 − 2β0Þ

þ α2sð1=rÞ
ð4πÞ2 ð ~a2 − 4~a1β0 − 2β1Þ

þ α3sð1=rÞ
ð4πÞ3

�
~a3 − 6~a2β0 − 4~a1β1 − 2β2

þ aL3 ln
CAαsð1=rÞ

2

�
þOðα4s ; α4s ln2αsÞ

�
; ð10Þ

where tree-level accuracy corresponds to taking the first
line of the equation, and i-loop order to taking terms up to

DETERMINATION OF αs FROM THE QCD STATIC … PHYSICAL REVIEW D 90, 074038 (2014)

074038-5



order αis in the square brackets. The coefficients ~ai in the
equation above have been calculated over the years, and are
currently known up to three-loop order, i.e. i ¼ 3 [11–19].
The existence of the ln αs terms was noticed a long time ago
[20], and the aL3 coefficient was computed in Refs. [21,22];
the corresponding coefficient at the next order, aL4 , is also
known [23]. These ln αs terms, so-called ultrasoft loga-
rithms, have also been resummed, to subleading accuracy;
we present the ultrasoft-resummed expressions in Sec. III
A. The values of the ~ai, aLi coefficients have been collected
in Ref. [24], and we will not copy the expressions here. We
refer to that reference, which uses exactly the same notation
we employ here, for the concrete expressions; βi are the
coefficients of the beta function and their expressions, as
well as those of the color factors, are also collected there.
As mentioned above, we will use Eqs. (8)–(10) for our

analyses. Note again that all reference to the renormalon is
gone in those expressions. These are essentially the same
expressions that are used in related analyses by, for
instance, the ALPHA Collaboration [25,26], where no
explicit mention to renormalons is made at all. Keeping
track of the presence of the renormalon is just a convenient
way to identify which quantities have a well-behaved
perturbative expansion, and are adequate for a precise αs
extraction. Recall that, in our previous analysis [5] we used
the perturbative expression coming from Eq. (5) with ν
constant. In that case the renormalon got absorbed in the
additive constant that is added to E0ðrÞ to compare with
lattice, and did not affect the fits either. The advantage of
the method pursued in the present analysis, with respect to
the one in Ref. [5], is that lnðrνÞ terms are completely
absent. When one compares with lattice data in a restricted
r range, one can always choose ν at the middle of the range,
and the logs do not become large, but since in the present
analysis we reach shorter distances than in Ref. [5], it is
better suited to use an expression that completely avoids all
lnðrνÞ terms, as we do now. All these different options, in
treating the perturbative expressions when comparing with
lattice data, were already explained in Ref. [10]; the method
we use here, through Eqs. (8)–(10), was mentioned but not
really employed, though, presumably because the aim of
that paper was mostly to study the presence of the
renormalon, rather than a precise determination of a
parameter.
We also mention that we explicitly checked that finite

strange-quark mass effects can be neglected when compar-
ing with lattice data, therefore we will safely ignore them in
the present analysis. Finally we note that we use four-loop
accuracy for the running of αs everywhere.

A. Resummation of the ultrasoft logarithms

The ultrasoft logarithms, i.e. the ln αs terms, in the static
energy, were resummed at leading order in Ref. [27] and at
subleading order in Ref. [28]. We also employ the ultrasoft-
resummed expressions in our analyses here.

These ultrasoft terms can be conveniently resummed
by solving renormalization group (RG) equations in the
effective theory potential nonrelativistic QCD (pNRQCD)
[29,30]. The RG equations in pNRQCD have been written at
the level of thematching coefficients, i.e.Vs andΛs in Eq. (5).
Therefore, to obtain the expressionswe need to compare with
lattice data, what we do is the following: We first resum
the ultrasoft logarithms for the potential, i.e. Vs and Λs, by
solving the RG equations in pNRQCD from an initial
scale μ0 ¼ ν to a scale μ. We then take the derivative of
the static energy with the ultrasoft-resummed expressions
to obtain the force. Finally, we reorganize the perturbative
expansion for the force as a series in αsð1=rÞ.
After doing that, the perturbative expression for the force

is given by

F

�
r;
1

r

�
¼ CF

r2
αsð1=rÞ

�
1

þ αsð1=rÞ
4π

ð ~a1 − 2β0Þ

þ α2sð1=rÞ
ð4πÞ2 ð ~a2 − 4~a1β0 − 2β1Þ

þ α3sð1=rÞ
ð4πÞ3 ð ~a3 − 6~a2β0 − 4~a1β1 − 2β2Þ

−
α2sð1=rÞ
ð4πÞ2

aL3
2β0

ln
αsðμÞ
αsð1=rÞ

−
α2sð1=rÞ
ð4πÞ2

4C3
Aπ

2η0
3

ðαsðμÞ − αsð1=rÞÞ

þ α3sð1=rÞ
ð4πÞ3 8C3

Aπ
2

�
2 −

~a1
β0

�
ln

αsðμÞ
αsð1=rÞ

þ α2sð1=rÞαsðμÞ
ð4πÞ3 aL3 ln

CAαsð1=rÞ
2rμ

þOðα4s ; α5s ln αsÞ
�
; ð11Þ

where we refer again to Ref. [24] for a concrete expres-
sion of the coefficient η0. The terms that are displayed in
Eq. (11) account for all the contributions that
are needed up to order α4þn

s lognαs (n ≥ 0), which is
what we call next-to-next-to-next-to-leading logarithmic
(N3LL) accuracy; accordingly, next-to-next-to-leading
logarithmic (N2LL) accuracy includes the contributions
up to order α3þn

s logn αs, and corresponds to the
first, second, third, and fifth lines in Eq. (11). Note
that the scheme-dependent constant K2 that was
present at N3LL accuracy in the analysis of Ref. [5] is
absent in the scheme we use in the present analysis.
Recall that μ is the ultrasoft factorization scale, which
takes a natural value μ ∼ ðCAαsÞ=ð2rÞ, and that the
apparent μ dependence in Eq. (11) is of higher order
in αs.
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IV. ANALYSES FOR αs EXTRACTION

Our aim is to compare the lattice data with the perturbative
expressions, as presented in the previous sections, with the
goal of obtaining a determination of αs. The general concept
of performing such an analysis was suggested long ago
[31,32], but it is only the recent progress in the evaluation of
the static energy, as summarized in the previous sections, that
allowed for a practical realization [5]. The basic idea we
follow here is very simple: the perturbative expressions
depend on ΛMS, where ΛMS is the QCD scale (which fixes
αs), and we can use the comparison to find the values of
r1ΛMS that are allowed by lattice data. Here, r1 is the
reference scale used in the lattice computation, its value has
also been independently computed on the lattice, and using it
we obtain ΛMS in physical units. To find the values of r1ΛMS
allowed by lattice data, one goes to the short-distance region,
where it is expected that perturbation theory is enough to
describe the lattice results. The guiding principle we follow,
to find the allowed αs values, is that the agreement of the
theoretical predictions with lattice data should improve when
the perturbative order of the computation is increased. At the
same time, the error that one assigns to the result should be
such that it reflects the uncertainties due to unknown higher
perturbative orders.
As explained in the previous sections, to perform such an

analysis, it is important to remember that the normalization
of the lattice result is not physical, but only the slope is.
Therefore one must either normalize the energy to a certain
value at a given distance, as specified by Eq. (9), or
compare directly with the force. Additionally, since we
have lattice results for several different lattice spacings, see
Sec. II, one can either put all the lattice data together, or
perform an analysis for each lattice spacing separately and
then take the average. Our previous analysis in Ref. [5]
employed the procedure devised in Ref. [33] to implement
the guiding principle of improved agreement with increas-
ing perturbative orders, used all lattice data together, and
compared with lattice according to Eq. (9).
One of the crucial aspects in this kind of analysis is always

to know whether the current lattice data has really reached
the purely perturbative regime, and with enough precision to
perform the extraction, or not. It is not an easy task to
undoubtedly state this point. In that sense, the fact that the
analysis of Ref. [5] showed that the agreement with lattice
indeed improved when increasing the perturbative order, and
that the perturbative curves were able to describe the lattice
data quite well, can be seen as positive evidence that this was
the case. Thanks to the enlarged lattice data set that we have
in the present paper, which reaches shorter distances, we can
now perform a more detailed analysis of this issue.

A. Procedure to extract αs
With the main motivation of further testing if the lattice

data has reached the purely perturbative regime, we modify

the procedure we used in Ref. [5] for the extraction of αs,
and proceed as we describe next.
First of all, we use now the data for each value of the

lattice spacing separately, and at the end perform an average
of the different obtained values of αs. The reason for
proceeding this way is that, when onewants to put all lattice
data together, one needs to normalize the results calculated
at different lattice spacings to a common value at a certain
distance, due to the additive ultraviolet renormalization of
the static energy. There is some uncertainty related to this
normalization procedure, and in fact, the errors on the
lattice data due to the normalization are larger than the
lattice systematic errors. On the other hand, if one uses
the data for each lattice spacing separately, there is no need
to normalize it, and the data errors are, therefore, smaller.
The downside of this option is that, of course, one has less
data in each analysis. With the enlarged data set we use in
this paper, we have enough data at short distances to
perform analyses for each lattice spacing separately. This
was not quite the case with the data set used in Ref. [5].
The procedure used in Ref. [5] was devised to provide a

faithful estimate of the central value and error of the result
[33]. Here we modify it to be able to further test if we have
reached the purely perturbative regime, while maintaining
the reliability of the outcome. At the same time, we try to
keep the whole procedure as simple and straightforward as
possible. In Ref. [5] we used the distance region r < 0.75r1
for all our analyses and fits. We now use r < 0.75r1 as the
largest distance range we reach, but also perform analyses
with points at shorter distance ranges only. We proceed as
follows:
(1) Perform fits to the lattice data for the static energy,

according to Eqs. (8)–(9), at different orders of
perturbative accuracy. The parameter of the fits isΛMS.

(2) Repeat the above fits for each of the following
distance ranges: r < 0.75r1, r < 0.7r1, r < 0.65r1,
r < 0.6r1, r < 0.55r1, r < 0.5r1, and r < 0.45r1.

(3) Use the ranges where the reduced χ2 of the fits either
decreases (or remains almost constant, i.e. it does not
increase by more than one unit) when increasing the
perturbative order, or is smaller than 1.

(4) To estimate the perturbative uncertainty of the result,
we repeat the fits in two ways: (i) by varying the
scale in the perturbative expansion, from ν ¼ 1=r to
ν ¼ ffiffiffi

2
p

=r and ν ¼ 1=ð ffiffiffi
2

p
rÞ, and (ii) by adding/

subtracting a term �ðCF=r2Þαnþ2
s to the expression

at n loops.
As mentioned, we use the data for each lattice spacing
separately. This means that, in order to have a significant
number of data points for each of the distance ranges above,
we only use the β ¼ 7.373; 7.596; 7.825 sets. To illustrate
how many points enter in each range, we show these data
sets, with the distance ranges marked, in Fig. 5; note that
this figure just aims at showing how many points we have,
and, therefore, everything is displayed in units of the scale
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r1 and the different data sets are normalized, but no error
associated to that is shown. The actual fits are performed
with the data for each set in units of the corresponding
lattice spacing, a, and then the result is translated to units of
r1 using the corresponding value of r1=a and its error, as
given in Table I. We always use fits that consider the lattice
data for a given β to be uncorrelated. This is sufficient since
we mostly consider the static energy at off-axis values of r,
for which the off-diagonal elements of the correlation
matrix are small. Note that the two sets of fits in point 4
of the list above both provide an estimate of the uncertainty
due to unknown higher-order perturbative terms; we will
take whichever of the two gives a larger uncertainty as the
perturbative-error estimate. In addition, the fits using
different distance ranges probe αs at different scales, and
agreement among their results would be an indication that
perturbative uncertainties are properly estimated.

B. Outcomes of the analyses

We present in this section the outcomes of the fits
described above. We compare with lattice data for the static
energy according to Eq. (9). For that we need to choose
which lattice point defines rref . In principle one would
choose rref as the shortest distance where lattice data is
available, since the perturbative expressions should be
more reliable there. In practice though, as discussed in
detail in Sec. II, the lattice points at shorter distances have
larger systematic discretization errors. Since when we
normalize the perturbative curves to rref we effectively
put the error of that lattice point to zero, it would not be
appropriate to use one of the points with larger systematic
errors to define rref . Therefore, we do not use any of the first
six points at each lattice spacing to define rref . Also, to
make sure that the results of the fits are not sensitive to the
point we choose to define rref , one should perform analyses
with different choices of rref . According to these discus-
sions, we choose the seventh, eighth, or ninth point at each

lattice spacing to define rref ; if for some data set at some
distance range there are not enough points to do that, we
choose the point preceding it in distance instead, i.e. if, for
example, in a given distance range there were only six
points we would choose the sixth point to define rref .
We perform the fits at tree-level, one-, two-, and three-

loop accuracy. The reduced χ2 of the fits, for the β ¼
7.373; 7.596; 7.825 sets, in each of our distance ranges are
shown in Figs. 6–8. From these figures we see that in the
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FIG. 5 (color online). Data sets used in the analyses, with the
different distance ranges that we use in the fits marked as the
vertical lines (ranges are from each of the vertical lines to the left).
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FIG. 6 (color online). Reduced χ2 of the fits at different orders
of perturbative accuracy, and for several distance ranges. The
dashed blue line marks χ2=d:o:f: ¼ 1 for reference. All three
panels correspond to the β ¼ 7.825 data set. Nref is the lattice
point that defines rref in Eq. (9), counting from the point at
shortest distance.
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largest distance range we considered, i.e. r < 0.75r1, the
reduced χ2’s do not decrease when we increase the
perturbative order. When we reduce the distance range,
the χ2 curves move in the correct direction in order to
satisfy the requirements in Sec. IVA. For r < 0.6r1 and
shorter distance ranges, in all cases (with the only exception
of the case β ¼ 7.596 with Nref ¼ 9), the χ2 curves are
either almost flat (i.e. if they increase it is by one unit or
less), or are at χ2=d:o:f:≲ 1. Therefore, these distance
ranges satisfy our conditions in Sec. IVA and are adequate
for the αs determination.
For illustration, we show the results we obtain for aΛMS

from the r < 0.5r1 distance range, at different orders of
perturbative accuracy, in Fig. 9. The figure is for Nref ¼ 7,

but the other cases look quite similar. The error bars in the
figure are obtained by repeating the fits, with the scale
variation and addition of a higher-order term, as specified in
the previous section. For each perturbative order, the point
to the left corresponds to the ν variation and the point to the
right to the addition of a generic higher-order term. (We
note that, for some numerical coincidence, the downward
error bars from ν variation at one loop are very small.) Both
error bars reflect the perturbative uncertainty at a given
order, and we take the largest of the two as our perturbative-
uncertainty estimate. As we can clearly see in the figure, the
central value at any given order is always nicely contained
within the error bars of the previous order. This fact gives us
confidence that the perturbative uncertainty is faithfully
estimated. Note also the big error reduction in the
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FIG. 7 (color online). Same as Fig. 6 for β ¼ 7.596.
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FIG. 8 (color online). Same as Fig. 6 for β ¼ 7.373.
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determination of aΛMS that the knowledge of high-order
terms brings about.
We show in Fig. 10 the results we obtain for r1ΛMS for

the r < 0.6r1 and shorter distance ranges, which are the
ones that passed our criteria in Sec. IVA, at three-loop
accuracy. We converted the results for aΛMS for each lattice
spacing to r1ΛMS using the corresponding value of r1=a
and its error, see Sec. II; we added the perturbative error and
the error in r1=a in quadrature in the error bars of Fig. 10.
We note that the numbers obtained for the different distance
ranges are perfectly compatible with each other. We will
use the numbers for r < 0.5r1 in our final results, since

the fits in this distance range always have reduced χ2’s
around 1. The effect of changing Nref produces very small
variations in the result; compare the three panels in Fig. 10.
We use in any case the range spanned by our three choices
of Nref , at each lattice spacing, to determine the corre-
sponding result for aΛMS. Then we can perform a weighted
average of the results at the three different lattice spacings
to obtain our final number for r1ΛMS. Finally we convert it
to physical units using the value of r1 given in Sec. II. All
these numbers and our final result for αs are collected in
Sec. IV D below. In Fig. 10 we also displayed, for
comparison, our previous result in Ref. [5] as the pink
band. We can see that the present results are perfectly
compatible with Ref. [5], and have a smaller error.

r 0.5r1r 0.5r1

tree level 1 loop 2 loop 3 loop
0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11
a

M
S

7.825 Nref 7

r 0.5r1r 0.5r1

tree level 1 loop 2 loop 3 loop

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.06

0.07

0.08

0.09

0.10

0.11

0.12

a
M

S

7.596 Nref 7

r 0.5r1r 0.5r1

tree level 1 loop 2 loop 3 loop

0.08

0.10

0.12

0.14

0.16

0.08

0.10

0.12

0.14

0.16

a
M

S

7.373 Nref 7

FIG. 9 (color online). Results for aΛMS from the fits to the
lattice data at different orders of perturbative accuracy. For each
order, the error bars of the point to the left correspond to the ν
variation, while the ones of the point to the right correspond to the
addition of a generic higher-order term, see Sec. IVA. The three
panels correspond to the three different lattice spacings.
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FIG. 10 (color online). Results for r1ΛMS at three-loop accu-
racy. The three panels correspond to different choices of
Nref . For reference and comparison, the band shows our previous
result in Ref. [5].
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1. Statistical errors of the fit parameters

In addition to the perturbative errors due to unknown
higher-order terms (and the error due to the uncertainty in
the values of r1=a) that we showed above, there is also an
uncertainty in the values of aΛMS due to the fit parameter
errors. We estimate these errors, which we call statistical,
by taking the values of ΛMS at one χ2 unit above the
minimum. Figure 11 shows these statistical errors for the
different distance ranges we consider (black [darker] error
bars), together with the perturbative errors (magenta
[lighter] error bars) for reference. The figure is for
Nref ¼ 7, but the other cases look quite similar. We can
see that the statistical errors are always smaller than the
perturbative ones. They are not completely negligible,

though, as was the case in our previous analysis in
Ref. [5]. We include these statistical errors in our final
tables and results in Sec. IV D. We also note that the
statistical errors for the r < 0.5r1 ranges are comparable in
size with the errors due to the uncertainty in r1=a. The final
tables in Sec. IV D detail each one of the errors individu-
ally, and one can easily compare their relative sizes.

2. Ultrasoft resummation

As mentioned in Sec. III A, the ultrasoft, i.e. ln αsð1=rÞ,
terms have been resummed at subleading accuracy. The
numerical importance of these terms, and the necessity or
not to include their resummation, depends on the distance r
we are studying. It is clear that their size grows when we go
to shorter distances, since αsð1=rÞ → 0. In this section we
want to study their numerical size in the range of distances
where we compare with lattice. Note that, since in principle
we do not know if it is necessary or not to include ultrasoft
resummation (and at which order), it is more suitable to
perform the study in the previous section (testing if the
lattice data has reached or not the perturbative regime)
before including the ultrasoft resummed expressions, as we
have presented.
To visualize the importance of the ultrasoft terms, we

plot in Fig. 12 the aL3 lnðCAαs=2Þ term (solid blue [darker]
line), together with the rest of the three-loop term for the
force, i.e. ~a3 − 6~a2β0 − 4~a1β1 − 2β2 (dashed blue [darker]
line); see Eq. (10). From the figure we see that the ultrasoft
log is much smaller than the nonlogarithmic term for
r ∼ 0.75r1, but it grows quite rapidly as r decreases; it
becomes comparable to it for r ∼ 0.2r1, and it is larger than
the nonlogarithmic part for the shortest distances where we
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FIG. 11 (color online). Values for aΛMS with statistical (black
[darker] error bars) and perturbative (magenta [lighter] error bars)
errors for the different distance ranges. The three panels corre-
spond to the three different lattice spacings.
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FIG. 12 (color online). Comparison of different perturbative
terms for the force. The solid blue (darker) line corresponds to
the ultrasoft logarithm at three loops, ðCF=ð4πÞ3ÞaL3 lnðCAαs=2Þ,
the dashed blue (darker) line is the rest of the three-loop
term, i.e. ðCF=ð4πÞ3Þð ~a3 − 6~a2β0 − 4~a1β1 − 2β2Þ. The dashed
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the solid curves (the dashed ones do not depend on αs).
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have lattice data. We also notice that the ultrasoft logarithm
and the nonlogarithmic part have opposite signs, and
largely compensate each other for distances around
0.2r1. Therefore, although the size of the ultrasoft loga-
rithm at three loops is never much larger than the non-
logarithmic part, it is certainly suitable to include leading-
ultrasoft resummation in our analyses. Consequently,
results including leading-ultrasoft resummation are also
collected in Sec. IV D below. One would not expect,
though, a big difference between the results at three loop
with and without ultrasoft resummation.
In principle one could also argue that the leading

ultrasoft resummation should be included together with
the two-loop term, which would correspond to counting
ln αs ∼ 1=αs. Figure 12 also shows the two-loop term ~a2 −
4~a1β0 − 2β1 (dashed magenta [lighter] line), and compares
it with ðαs=4πÞaL3 lnðCAαs=2Þ (solid magenta [lighter]
line). We can see that the solid magenta line is never
comparable in size with the two-loop term. Therefore, in
our present comparison with lattice, it is better not to
include the leading-ultrasoft resummation with the two-
loop term. Instead it is more consistent to include it with the
three-loop term, as we did in the previous paragraph. One
could also consider including the subleading ultrasoft
resummation in the analysis, since one of the reasons that
motivated its computation was that the α5s ln αs terms,
computed in Ref. [23], were found to be quite large.
Nevertheless, given the behavior of the three-loop terms
shown in Fig. 12, it cannot be excluded that a similar
compensation, in the range of distances we are studying in
this paper, between the four-loop α5s ln αs terms and the
unknown ~a4 coefficient takes place. This means that if we
were to include subleading ultrasoft resummation in the
analysis, we would have to allow for generous perturbative
uncertainties for the four-loop terms, to reflect for the
aforementioned possible cancellations, and therefore the
extraction of αs would not really benefit much.
We have, in any case, performed the analyses with

leading-ultrasoft resummation included along with the two-
loop term (N2LL accuracy), with leading-ultrasoft resumma-
tion included along with the three-loop term, and with
sub-leading-ultrasoft resummation included along with the
three-loop term (N3LL accuracy). These studies allow us to
verify the expectations described in the previous paragraph.
What we find is that (i) the N2LL fits tend to give similar but a
bit larger χ2 values than the corresponding two-loop fits,
(ii) the fits with leading-ultrasoft resummation at three loops
tend to give χ2 values that are very close to the three-loop
ones, and (iii) the N3LL fits tend to give larger χ2 values than
the other fits with three-loop accuracy. This behavior is
consistent with the observations in the previous paragraphs
about the size of the ultrasoft terms. For these reasons, and as
already mentioned above, we only present the numbers with
leading-ultrasoft resummation included along with the three-
loop terms in our final results in Sec. IVD. We use the value

μ ¼ 1.26r−11 ∼ 0.8 GeV, for the ultrasoft factorization scale,
in all our analyses. We have checked that variations of μ only
produce small effects on the results, as could be expected
since the impact of the ultrasoft resummation itself was
already small, as we just discussed.

C. Additional cross checks

Before presenting and collecting our final numbers in
Sec. IV D below, we describe in this section several cross-
checks that we have performed. They serve to further verify
the reliability of our procedure and results.
A first natural question is what would have happened if

we had used our previous procedure in Ref. [5] with the
current enlarged lattice data set. We have repeated that
analysis, and obtained r1ΛMS ¼ 0.48� 0.05 (at three-loop
plus leading-ultrasoft-resummation accuracy). This number
is perfectly compatible with the result quoted in Ref. [5],
and has an error of similar size. The fact that the error did
not really decrease, with respect to Ref. [5], may be seen as
an indication that, to really benefit from the extended data
set and the shorter distances reached, one should really
employ expressions that completely avoid all lnðrνÞ terms,
as we have done now. The previous figure is also
compatible with the results obtained in the present paper
with our modified analysis.

1. Comparison with lattice data for the force

One can also obtain lattice data for the force, and directly
compare the perturbative expressions for the force with it.
The problem in obtaining the lattice data for the force is that
one needs to perform a numerical derivative of the lattice
result for the energy, which is a nontrivial task. There are
several uncertainties related to this numerical derivation;
see Sec. II for details. Since we need to introduce
smoothing splines, and use synthetic data, to compute
the derivative and obtain the force and its error, the
resulting data we have for the force does not fluctuate
independently. For this reason the χ2 analyses that we
perform in our study may be seen as not completely
adequate, or a bit unreliable. This fact led us to use the
comparison with the energy, which does not suffer from
this shortcoming, in our main analyses. It must nevertheless
be checked what the outcome is if one compares with the
force directly, which is what we do here.
To compare with the lattice data for the force, we can put

the three data sets that we are using together, since the issue
about the normalization that affected the energy is absent
when we take the derivative. Apart from that, we follow the
same procedure described in the previous sections, except
that now we fit the perturbative expressions for r2Fðr; 1=rÞ
to the lattice data for the force. In Fig. 13 we show the
values of the reduced χ2’s for the different distance ranges.
As we can see from the figure, for distances r < 0.6r1,
which are the ones that passed our criteria when doing the
analyses with the energy in the previous sections, the χ2’s
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are below one, confirming therefore that we can perform
the extraction of αs in these distance ranges. Actually, from
Fig. 13, it would seem that an even larger distance range,
something like r < 0.7r1, could be used. The results we
obtain for r1ΛMS at three-loop accuracy, for r < 0.6r1 and
shorter distance ranges, are shown in Fig. 14. As we can
see, the results are in very good agreement with what we
obtained in the previous sections; compare with Fig. 10.
This agreement is an important cross-check of the result,

since, we recall again, it is only the slope of E0ðrÞ, which is
what the force encodes, that matters for the αs extraction.
We could have used this force data for our main analysis,
but we preferred to leave it as a cross-check because of the
issues discussed above.

2. Analyses without lattice points with larger
systematic uncertainties

The lattice points for E0ðrÞ at the shortest distances have
larger discretization errors, which is part of the reason why

we could not obtain reliable lattice data for the force at
these distances. The way we estimate these errors was
described in detail in Sec. II. As explained there, our error
estimates for these points should correctly reflect the size of
the residual discretization errors in the data. Nevertheless,
the points at larger distances, where the discretization errors
are negligible, could be seen as more reliable than the ones
at the shortest distances. With that in mind, we have
repeated our analyses but dropping the first six points
for each lattice spacing, which are the ones with larger
systematic errors. We use Nref ¼ 7 for this analysis. We
find that the χ2 curves present a behavior similar to that in
Sec. IV B; in particular the region r < 0.6r1 is suitable for
the αs extraction. We show the results for r1ΛMS at three-
loop accuracy obtained with this reduced data set in Fig. 15.
Note that we can only perform the fits when there are at
least three data points. In particular no fits with the β ¼
7.373 data set are possible in the r < 0.6r1 region; see
Fig. 5. The results in Fig. 15 are compatible and in good
agreement with those of the previous sections. This shows
that the inclusion of the points with larger systematic errors
does not distort the result for αs, and can be seen as an
indication that our estimation of the discretization errors is
reliable.

3. Analyses with only points at shorter distances

One can also take the opposite point of view, with respect
to the preceding section, and take for granted that our
estimation of the systematic errors correctly reflects the
residual discretization uncertainty. Then, the points at
shortest distances should be the best ones for the αs
extraction, since this is the most perturbative region.
With this view in mind, we repeated the analyses but
now including only the second to seventh point at each
lattice spacing; note that we chose to still omit the first point
at each lattice spacing, which corresponds to a distance
r ¼ a, since for this point the reliability of the error
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FIG. 13 (color online). Reduced χ2 of the fits at different orders
of perturbative accuracy, and for several distance ranges, when
comparing directly with the lattice data for the force. The dashed
blue line marks χ2=d:o:f: ¼ 1 for reference.
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FIG. 14 (color online). Results for r1ΛMS at three-loop accu-
racy, when comparing directly with the lattice data for the force.
For reference and comparison, the band shows our previous result
in Ref. [5].
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FIG. 15 (color online). Results for r1ΛMS at three-loop accu-
racy, when omitting the first six points for each lattice spacing.
For reference and comparison, the band shows our previous result
in Ref. [5].
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estimate may be more questionable. We use Nref ¼ 2 for
this analysis. There is only one distance range for each data
set to perform fits in this case, i.e. that spanned by the
second to seventh points. We find that the χ2’s in this case
are always below 1, which is perhaps not too surprising,
since the errors for these points are larger than for the rest.
We show in Fig. 16 the values of r1ΛMS obtained at three-
loop accuracy in this case. As one can see from the figure,
the results are compatible with those in the previous
sections. Note that, in particular, they are compatible with
the results in Sec. IV C 2 above, where we did the opposite
than here, and omitted the first six points at each lattice
spacing.

4. Analyses with extended distance ranges

For completeness, in this section we present the results
one obtains when using larger distance ranges in the fits, up
to r < 0.75r1. Recall that distances r < 0.6r1 are the ones
that passed our χ2 criteria, and were therefore deemed as
suitable for the αs extraction. The point of showing here the
results from larger distance ranges is to illustrate that
nothing dramatic happens beyond that point. Figure 17

shows the results for r1ΛMS at three-loop accuracy, in all the
distance ranges we have analyzed. As one can see from the
figure, the fits that use distances larger than 0.6r1 give
results for r1ΛMS that are compatible with those used in our
main analysis. The error bars, which, remember, come from
unknown higher-perturbative orders, are larger in the
extended distance ranges. This may be attributed to the
fact that those fits involve lower-energy scales and there-
fore larger values of αs.

5. Analyses of possible influence from
non-perturbative-condensate terms

As discussed in previous sections, our χ2 criteria made
manifest that we can safely use perturbation theory to
describe the lattice data in the r < 0.6r1 distance ranges.
Consequently, we used a purely perturbative expression in
all our fits, and neglected any possible, parametrically
suppressed, nonperturbative contributions to the static
energy at these distances. Nevertheless, one might ask
whether or not the presence of some nonperturbative term,
which should necessarily be small, could distort the out-
come of our fits in a significant way. To quantitatively
address this question, we repeated the fits adding a
monomial term, with a coefficient to be fitted, to our
perturbative expression at three-loop accuracy. We consid-
ered r3 and r2 monomials, which could be associated with
gluon and quark local condensates, and also an r mono-
mial. Our new fits contain therefore two parameters, which
are ΛMS and the coefficient of the monomial term. From the
outcome of these fits, we do not find any evidence for a
significant nonperturbative term in any of the cases.
Furthermore, the values we obtain for ΛMS, at the r <
0.6r1 distance ranges, in these modified fits are perfectly
consistent with the outcome of our previous fits. For
illustration, we show the results for ΛMS from the fits with
an r3 monomial, together with the outcome of our default
fits, in Fig. 18. The red stars in the figure are the results
from the fit including the r3 term, and the points with error

7.8257.825
7.5967.596
7.3737.373

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54
r 1

M
S

3 loop 2nd to 7th points at each

FIG. 16 (color online). Results for r1ΛMS at three-loop accu-
racy, using only the second to seventh point for each lattice
spacing. For reference and comparison, the band shows our
previous result in Ref. [5].
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FIG. 17 (color online). Results for r1ΛMS at three-loop accu-
racy, also showing the outcome of analyses with extended
distance ranges. For reference and comparison, the band shows
our previous result in Ref. [5].

r 0.75r1 r 0.7r1 r 0.65r1 r 0.6r1 r 0.55r1 r 0.5r1 r 0.45r1

0.060

0.062

0.064

0.066

0.060

0.062

0.064

0.066

a
M

S

7.825 Nref 7 3 loop r3 term

FIG. 18 (color online). Values for aΛMS from the fits including
an r3 monomial, red stars (see text), together with our default
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bars are the results from our default fits. We can clearly see
from the figure that adding a monomial term, which could
encode nonperturbative effects, does not distort our results
for ΛMS. This fact provides further evidence that our
extraction of αs is robust.
It is worth stressing again that the goal of this section

was to check that our perturbative analyses at short
distances are stable and robust. A different question is
how should one include nonperturbative effects to the
perturbative expressions, in the form of local condensates,
nonlocal condensates, etc., in order to extend their range of
validity to larger distances. This is a very interesting
question in itself, but it does not fall within the scope of
the present paper, which is obtaining a precise determi-
nation of αs from the short-distance region of the static
energy. We leave these studies for future work.

D. Final result for αs
In this section we collect the numbers we obtained from

the analyses described in Secs. IVA and IV B and give our
final result for αs.
Table III summarizes the results we obtain at three-loop

accuracy, for the r < 0.5r1 fit range. For each value of the
lattice spacing, we present the result for aΛMS, for each of
the three points we use to define Nref , in the second to
fourth columns in the table. As described in the previous
sections, we take the range spanned by these three Nref
choices to get our result for aΛMS at each lattice spacing.
This is shown in the fifth column of the table, the central
value here is the average of the three previous columns. We
then convert the result to r1 units using the values of r1=a
given in Sec. II, and display it in the sixth column of the
table. In all cases, the first error is the perturbative one,
the second error is the one from statistical uncertainties in
the fit, and, for the sixth column, the third error corresponds
to the one coming from the value of r1=a. We added the
errors in quadrature on the right-hand side of the sixth
column. Finally, we take a weighted average, with the
inverse of the total error as the weight, of the results for the
three different β values to obtain our final number for
r1ΛMS. We added the errors linearly in this average, since
the error at each β value is dominated by the perturbative
uncertainties, which are common to all data sets. This final
number is shown on the bottom-right corner of the table.
As explained in Sec. IV B 2, we also include here the

results we obtain at three-loop plus leading-ultrasoft-
resummation accuracy. These results are shown in
Table IV, with the same format as the previous table. As
we can see, the final results for r1ΛMS in Tables III and IV
are quite similar, as we expected from the discussion in
Sec. IV B 2. We take the number at three-loop plus leading-
ultrasoft-resummation accuracy as our best and final result.
The final figure for r1ΛMS, which we recall is for nf ¼ 3
light-quark flavors and uses lattice data in the 1.3–5.1 GeV
energy range, is therefore TA
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r1ΛMS ¼ 0.495þ0.028
−0.018 : ð12Þ

We now convert this result to physical units by using
the value r1 ¼ 0.3106� 0.0008� 0.0014� 0.0004 fm ¼
0.3106� 0.0017 fm, obtained in Ref. [34] from the pion
decay constant fπ (where we added the errors in quadrature
on the right-hand side). We obtain

ΛMS ¼ 314.5þ17.6
−11.7 � 1.7 MeV ¼ 315þ18

−12 MeV; ð13Þ

where the first error corresponds to the one in Eq. (12), and
the second to the value of r1, we added the two errors in
quadrature on the right-hand side. This value of ΛMS gives

αsð1.5 GeV; nf ¼ 3Þ ¼ 0.336þ0.012
−0.008 ; ð14Þ

which corresponds to

αsðMZ; nf ¼ 5Þ ¼ 0.1166þ0.0012
−0.0008 ; ð15Þ

where we used the Mathematica package RunDec [35] to
obtain the numbers in Eqs. (14) and (15).1 Equation (15)
constitutes the main result of the paper. This number is
perfectly compatible with our previous result in Ref. [5],
which was αsðMZÞ ¼ 0.1156þ0.0021

−0.0022 , and supersedes it.

V. DISCUSSION AND COMPARISON WITH
OTHER WORKS

Having obtained our result for αs, we can now show how
well the perturbative expressions describe the lattice data,
when this number is used. To illustrate this, we show, in the
upper panel of Fig. 19, the lattice data for the smaller lattice
spacing we used, i.e. β ¼ 7.825 (blue points), together with
the perturbative prediction at three loop plus leading-
ultrasoft-resummation accuracy. The black curve corre-
sponds to our central value for ΛMS, and the (barely visible
in that scale) grey band is obtained by varying ΛMS within
our obtained range. Note that the plot is in units of r1, but
no error associated to normalization of the lattice data is
shown, since that error is irrelevant when only one lattice
set is used and the perturbative expression is normalized to
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1Four-loop running, with the charm quark mass equal to
1.6 GeV and the bottom quark mass equal to 4.7 GeV. In more
detail, we first convert ΛMS to αs at the highest scale we used in
the extraction, i.e. 5.1 GeV, then evolve this value of αs down to
1.5 GeV with a fixed nf ¼ 3 number of flavors, and then evolve
up to the scaleMZ including the decoupling relations at the quark
thresholds. We would like to emphasize that the actual outcome
of our analyses is Eq. (13). We quote αsðMZÞ because it has
become customary for the sake of comparison with other
approaches. We do not include errors associated to the truncation
of the beta function to four loops in the current version of
RunDec. The effects of higher-order terms in the running have
been estimated, and are negligible with the current accuracies, but
may become relevant if the precision of αsðMZÞ can be eventually
reliably reduced to the per mil level [36].
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it, as we do in this plot. For illustration, the figure also
shows the lattice data before correcting it with the factors in
Table II (green triangles), and, in addition to that, without
using tree-level improvement (red circles). The error bars in
these two last sets of data are statistical only, since the
systematic errors due to discretization are estimated as part
of the correction procedure. To see more clearly how well
the theoretical expression describes the lattice data, we also
show, in the lower panel of the figure, the result of
subtracting the perturbative prediction from the lattice
data. The error bars in that plot are obtained by adding
in quadrature the errors of the lattice data and the band in
the theoretical expression (which was due to the variation
of ΛMS). Figure 19 clearly shows that the perturbative
expression can perfectly describe the corrected lattice data
in that distance range. (We recall that it is more difficult to

reliably assess discretization errors for the point at shortest
distance; see Sec. II.) In Fig. 20 we put together the data for
all the lattice spacings we have, including those used in
Ref. [5], i.e. from β ¼ 6.664 to β ¼ 7.825, and compare
them with the perturbative expressions at different orders of
accuracy. The uncertainties due to the normalization of the
lattice data to a common scale are now included in the error
bars, as is appropriate when putting together data from
different lattice spacings. To visualize more easily the
differences among the different perturbative orders, we
also show in Fig. 21 the ratio of the lattice data over the
theoretical prediction. Finally, Fig. 22 shows, for com-
pleteness, the direct comparison of the perturbative expres-
sions with the lattice data for the force presented in Sec. II.
It is worth stressing at this point that the knowledge of

the static energy at three-loop accuracy was crucial in order
to obtain our precise extraction of αs in Eq. (15). Although
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FIG. 20 (color online). Comparison of the lattice data for the
static energy with perturbative expressions at different orders of
accuracy. r1ΛMS ¼ 0.495 is used for all the curves. The grey band
corresponds to the variation r1ΛMS ¼ 0.495þ0.028

−0.018 for the three-
loop plus leading-ultrasoft-resummation accuracy curve. See text
for additional explanations.
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FIG. 21 (color online). Ratio of the lattice data over the
theoretical prediction, at different orders of perturbative accuracy.
r1ΛMS ¼ 0.495 is used in all cases. The red error bars correspond
to the errors of the lattice data. See text for additional explan-
ations.
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FIG. 19 (color online). (Upper panel) Comparison of the lattice
data for β ¼ 7.825 (blue squares) with the perturbative expression
at three-loop plus leading-ultrasoft-resummation accuracy (black
line). Our result in Eq. (12), i.e. r1ΛMS ¼ 0.495þ0.028

−0.018 , is used for
the perturbative expression, and the grey band corresponds to the
variation of r1ΛMS within that interval. For illustration we also
show the data points before correcting with the factors in Table II
(green triangles), and before tree-level improvement (red circles);
see text for additional explanations. (Lower panel) Result of
subtracting the perturbative expression from the lattice data. The
error bars are obtained by adding, in quadrature, the errors of the
lattice data and the uncertainty of the perturbative expression due
to the variation of r1ΛMS.
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the fits at lower orders of perturbative accuracy can already
give low χ2 values, see Figs. 6–8, the uncertainty that one
should associate to a value of αs extracted at lower orders is
much larger. This was clearly illustrated in Fig. 9, where the
dramatic reduction of the error bars when increasing the
perturbative accuracy of the prediction is manifest. We also
recall that the different perturbative orders always refer to
the corrections to the potential, i.e. the ~ai coefficients in
Eq. (10), but we always use four-loop accuracy for the
running of αs. If one does not do that, and uses the running
of αs at lower accuracies, the χ2 values resulting from lower
orders in perturbation theory are much higher.
Let us now compare our result for ΛMS with other recent

extractions of the strong coupling. The present analysis,
together with our preceding paper [5], constitutes, at
present, the only extraction of ΛMS from the QCD static
energy with at least three flavors; therefore, the only one
that can be used to obtain αsðMZÞ. Other analyses aiming at
extracting ΛMS from the static energy with less than three
flavors include Refs. [25,32,33,37–40]. In particular, let us
mention that the nf ¼ 2 analysis of Ref. [25] concludes that
smaller lattice spacings than those currently available to
them would be needed to extract ΛMS. This reference uses
Wilson fermions. The data for the force that they use
contains only three points below r ¼ 0.75r1, with none
below r ¼ 0.5r1. Our analyses show that we would not
have been able to obtain ΛMS with that amount of data. In
this sense, we do agree with the findings of Ref. [25].
Regarding lattice αs extractions from other observables, the
FLAG collaboration recently presented, in Ref. [41], a
comprehensive and critical review of all the available αs
lattice determinations, and provided an average. We show
this lattice average, together with our new result, in
Fig. 23 (note that the FLAG average includes the result
from Ref. [5]). We also show in the figure a few other

individual lattice determinations of αs, a few selected
recent nonlattice determinations, and the PDG average
excluding lattice results [2]. Further determinations of αs,
as well as discussions about them, can be found, for
instance, in the summary reports of recent dedicated
workshops [36,42].

VI. SUMMARY OF RESULTS AND CONCLUSIONS

We have improved our previous extraction of αs, in
Ref. [5], from the comparison of lattice data with pertur-
bative expressions for the static energy of a heavy
quark-antiquark pair. This has been possible because a
considerable amount of new lattice data at shorter distances
has become available [6], which has allowed us to carry out
an extra number of cross-checks and hence to considerably
reduce the systematic errors. In particular we have been
able to correct for cutoff effects in the shorter-distance
points, to analyze the dependence on the fit range, and to
carry out separate analyses for different lattice spacings.
Thus we could, for instance, discard points which are not in
the perturbative regime, points which suffer from large
cutoff effects and, very importantly, avoid the lattice
normalization errors that dominated our previous extrac-
tion. On the other hand, we have used improved perturba-
tive expressions, in which not only the first renormalon is
avoided, and the ultrasoft logarithms resummed, but also
the soft logarithms are summed up. This appears to be
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FIG. 23 (color online). Comparison of our result for αsðMZÞ in
Eq. (15) (red point) with a few other recent determinations (blue
points). We include the lattice determinations of the HPQCD [3],
PACS-CS [43] (we take the number quoted in Ref. [41]), and
ETM [44] collaborations (the latter paper uses nf ¼ 2þ 1þ 1
simulations while the other two use nf ¼ 2þ 1 simulations).
Nonlattice determinations from τ decays in Refs. [45,46]; from
thrust in eþe− collisions in Refs. [4,47]; the recent H1 reanalysis
of Ref. [48]; and the parton distribution function–fit ABM13
result of Ref. [49] (note that the error bars in this case do not
include effects from higher unknown perturbative orders). We
also show the lattice average by the FLAG Collaboration [41] and
the PDG average excluding lattice results [2] (black points).
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loop plus leading-ultrasoft-resummation accuracy curve. See text
for additional explanations.
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necessary because the lattice data covers a relatively large
range of distance values now. Our final result reads

r1ΛMS ¼ 0.495þ0.028
−0.018 ; ð16Þ

which corresponds to

αsðMZ; nf ¼ 5Þ ¼ 0.1166þ0.0012
−0.0008 : ð17Þ

This updated result reduces the errors by roughly a factor of
2 with respect to our previous extraction. It displays a
higher central value, which is, nevertheless, perfectly
compatible with our previous result.
The errors of the αs extraction presented here can in

principle be reduced by just incorporating more lattice data
at shorter distances, with no further modification of the
perturbative expressions, which are already at the three-
loop level. Notice that with the lattice data available at
present, there is still little sensitivity to the ultrasoft
resummation, and hence we do not expect much sensitivity
to the yet unknown four-loop contribution. We have also
checked that there is no sensitivity to other possible
nonperturbative effects, like for instance those due to gluon
or quark condensates.
We conclude that the method first outlined in Ref. [33],

and further developed in the present paper, is not only able

to produce competitive extractions of αs when confronted
with realistic lattice data [5], but also to consistently
improve on the outcome upon the incorporation of new
shorter-distance data. For the future, to further corroborate
the result obtained here, it would be important to determine
αs from the static energy calculated using other lattice
actions.
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