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Small-x QCD evolution of 2r Wilson line correlator: The weak field limit
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We write down explicit expressions for the x evolution (equivalent to energy or rapidity evolution) of 2n
(n=1,2,---) Wilson lines using the IMWLK equation and the color glass condensate formalism. We
investigate the equation in the weak gluon field limit (linear regime) by expanding the Wilson lines in
powers of the gluon field and show that it reduces to the BJKP equation describing the evolution of a state
of 2n Reggeized gluons with energy. We also make available for download a Mathematica program which

provides this expression for any value of n.
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I. INTRODUCTION

Gluon saturation is expected to play a dominant role in
high energy scattering processes where there is at least one
hadron/nucleus in the initial state of the collision [1]. At
high center-of-mass collision energy and as long as the
transverse momenta involved in the process are not too
large, the biggest contribution to the cross section comes
from the small xp j kinematics, where the wave function of
the incoming hadron/nucleus consists mostly of gluons.
The color glass condensate (CGC) formalism is an effective
theory approach to QCD at high energy that includes two
effects which are expected to be significant and are not
contained in the leading twist perturbative QCD (pQCD)
approach to hadronic scattering. First, multiple scatterings
(in the target frame) become important when the target
hadron/nucleus becomes a dense system of gluons. Second,
large logarithms of energy become more important than the
not-so-large logarithms of transverse momentum.

The inclusion of high gluon density effects is accom-
plished by introducing a color current Jj; that represents the
large x degrees of freedom in the hadron/nucleus. The color
charges p“ generate a color field Ay representing the small x
gluons in the target. In the original McLerran—Venugopalan
model [2] of a large nucleus, the color charges are assumed
to be random and are described by a local Gaussian profile
in the two-dimensional transverse plane. It is also possible
to include the longitudinal structure of the color sources [3]
as well as higher-order terms (beyond Gaussian distribu-
tions) in the effective action [4] describing the large x color
charges. On the other hand, the inclusion of large
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logarithms of energy is accomplished via a Wilsonian
renormalization group equation, known as the JIMWLK
equation [5], which describes the change in the distri-
bution of the color charges as one goes to smaller x (larger
rapidities or energies). This equation can also be used to
compute the x evolution of any observable of theory. It
is a nonclosed functional equation which is equivalent to
Balitsky hierarchy and reduces to the Balitsky—Kovchegov
(BK) equation in the large N, and mean field limit [6]. The
most important aspect of the CGC formalism is the
appearance of a dynamically generated semihard scale,
called the saturation scale Q,, which grows with decreasing
x, increasing nucleon number A, and centrality. Q, can be
much larger than Aycp, which warrants a weak coupling
(yet nonperturbative) approach to problems which have
been traditionally thought to be outside the realm of weak
coupling techniques. The analysis of multiparton produc-
tion and produced parton multiplicity distributions in
hadronic/nuclear collisions is the prime example of appli-
cability of the CGC approach where leading twist pQCD is
not applicable.

The CGC formalism has been applied to deep inelastic
scattering (DIS), proton-proton, proton (deuteron)-nucleus,
and nucleus-nucleus scattering processes at high energy
colliders such as HERA, RHIC, and the LHC. A very
interesting question in nucleus-nucleus collisions of
whether the produced partons thermalize (or become
isotropic) can be investigated using the CGC formalism
[7]. In addition, distributions of produced partons in high
energy heavy-ion collisions can also be obtained, with

© 2014 American Physical Society


http://dx.doi.org/10.1103/PhysRevD.90.074037
http://dx.doi.org/10.1103/PhysRevD.90.074037
http://dx.doi.org/10.1103/PhysRevD.90.074037
http://dx.doi.org/10.1103/PhysRevD.90.074037

ALEJANDRO AYALA et al.

some approximations, from the CGC formalism and used
as initial conditions for hydrodynamic/transport description
of the produced quark-gluon plasma [8]. On the other hand,
if one is solely interested in probing CGC and its properties,
DIS offers the best environment since many theoretical
complications can be avoided due to the color singlet nature
of the virtual photon in the initial state. One can consider
inclusive and diffractive structure functions, single and
double inclusive particle production, as well as diffractive
particle production [9]. A complementary channel is particle
production in high energy proton-nucleus (pA) collisions in
the forward rapidity region at RHIC and the LHC. In the
absence of a high energy electron-ion collider, this is perhaps
the best context in which to study CGC and gluon saturation.
A typical particle production cross section in pA collisions
involves correlations of multiple Wilson lines at different
transverse coordinates. For instance, single inclusive photon
and hadron production [10] involve two-point functions of
Wilson lines (in fundamental or adjoint representation), the
so-called dipole, which also appears in DIS structure
functions. Less inclusive processes such as dihadron pro-
duction [11] involve correlators of higher numbers of
Wilson lines such as quadrupoles, sextuples, etc., with their
energy dependence given by the JIMWLK equation [5].

The energy dependence of the dipole, a two-point
function of Wilson lines, has been extensively studied.
At large N, and mean field, it is governed by the BK
equation, next-to-leading-order (NLO) corrections to which
have been recently computed. Numerical solutions to the
BK equation have been extensively used to investigate
particle production in pA collisions [12]. On the other hand,
higher-point functions of Wilson lines, odderons, quadru-
poles, etc., appear only in less inclusive processes and are
much less studied than dipoles [13]. One exception is the
kinematic region where the gluon field is weak so that
Wilson lines can be expanded in powers of the gluon fields
and only the first few terms are kept. This corresponds to
investigating multiparticle production in the kinematic
region where the produced particles have transverse
momenta higher than the saturation scale in the problem.
It has been shown that in this limit the evolution equation
for the dipole is the well-known BFKL equation [14],
whereas the evolution equation for the odderon and
quadrupole reduces to the BJKP equation for the energy
dependence of a state of three or four Reggeized gluons
[15—17] (see also Ref. [18] for a nice discussion of gluon
Reggeization). It should be noted that this problem has also
been investigated using a dual approach known as the
KLWMIJ equation [19].

Our goal in this paper is to show, via an explicit
calculation, that this reduction is in general true for the
correlator of any 2n (n = 1,2,3,---) Wilson lines in the
dilute limit, i.e., when it is justifiable to keep the lowest
nontrivial term in the expansion of the Wilson line. This
formally establishes the equivalence of the BJKP equation
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with the dilute limit of the IMWLK equation. The work is
organized as follows. In Sec. II we recall the basics of the
JIMWLK evolution equation and derive an explicit equa-
tion for the evolution of the 2n Wilson line correlator. The
automatic implementation of this procedure is performed
using a Mathematica [20] program which returns the
desired evolution equation after an integer value for n is
inserted [21]. We make the code available for download. In
Sec. III we study the dilute or linear regime of this equation
and give the general expression for the correlator of 2n
Wilson lines in momentum space and show that it agrees
with the BJKP equation [17]. We finally summarize and
conclude in Sec. IV. Explicit expressions for the evolution
equation are given in the Appendix.

II. JIMWLK EVOLUTION EQUATION FOR
THE 2r WILSON LINE CORRELATOR

The JIMWLK equation describes the x (or energy)
evolution of any observable O in the CGC formalism. It
reads

O0)y
aY

= (HO)y, (1)
where the Hamiltonian H is given by
1
H=—-—— [ &xd’yd*
1673 reyas
x M,,.(1 + UiU, - ULU. - UiU,)*
6 o
X ——F, 2
o sl @)
where x, y, z are two-dimensional vectors on the transverse
plane, a and b are color indices, and the dipole kernel M .,
is defined as

_ (e=yp?
N P e

In our notation the expression for the Wilson line V is given
by

(3)

V(x) = e 0", (4)

with t“ a SU(N) matrix in the fundamental representation.
We use the notation where U represents the analogous
Wilson line in the adjoint representation. The gluon field
a“(x) is related to the color charge density p?(x) (in the
covariant gauge) via

& ' (x) = —gp° (x). (5)

In this paper we are interested in the evolution equation
for the 2n Wilson line correlator §) (in the fundamental
representation) defined as
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N 1
S(2n)2” = N—Tr(vx| Vlz VX3 VL T Vin_| V-IZn)' (6)

( k=1 ) c

In our notation the upper index 2n of S represents the
number of Wilson lines in this operator, and the lower index
127, x; represents the coordinates of the Wilson lines, with
x;, being two-dimensional vectors on the transverse plane.
Since the Wilson lines do not commute, the order in which
the coordinates appear in S is important; it is exactly the
order in which the Wilson lines appear inside the trace. For
example, in Eq. (6) it is understood that []3", x; would be
written out explicitly in increasing order in x;:
X1XpX3 - - - Xp,. To be specific, when n =1 the operator
5@ js the dipole operator, whereas for n = 2 it is the
quadrupole operator, and so on. Explicit evolution equa-
tions for the dipole (2n = 2), quadrupole (2n = 4), and
sextuple (2n = 6) have been derived [13]. Here we derive
and provide an explicit expression for the evolution of the
§@) correlator of 2n Wilson lines for any n.

The first step is to successively apply the functional
double derivative on the operator 5@ [see the rhs of
Eq. (2)]. The functional derivatives acting on $C" can be
brought inside the trace and act directly on the Wilson lines
V and V' in the following way:

5
Vi =igs?(x; — x)tVL
5&“()(:) i lg (xl x) i
oy g8 (x; — x)V, 19 (7)
=—i X;—X .
5aa(x) X; g i X

The next step is to contract the indices a and b [see the rhs
of Eq. (2)]. The first term inside the parentheses of Eq. (2) is
the identity matrix, 1° = 5%, The second, third, and fourth
terms inside the parentheses may have their indices con-
tracted with the ¢ matrices just after a small manipulation.
Since each of these terms is a product of two Wilson lines in
the adjoint representation, we need to decompose them
before they can be brought inside the trace. For the second
term inside the parentheses of Eq. (2), we have

(ULU,)® = (U (U,). (8)
The elements (U})* and (U ,)¢? are mere numbers and can
be moved freely inside the trace to contract with the * and ¢*
matrices through the relations
(U =viev,  (U)Pt =Viev,  (9)
Similar manipulations are done to contract the indices of the
third and fourth terms inside the parentheses of Eq. (2) with
1% and t* matrices.

The third step is to integrate the rhs of Eq. (2) with
respect to x and y in order to eliminate the delta functions
originated after applying the functional derivatives [see
Eq. (7)]. Since the Wilson lines do not depend on x nor on
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v, the integration in these variables will only change the
kernel.

The last step is to use the Fierz identity to manipulate the
traces and eliminate the ¢ matrices as follows:

TelreBre CA] = %Tr[B]Tr[AC] - 2]1V TH{ABC).  (10)

c

Our final result can be written as

HS‘(Zn) _ %/(HIS(ZH) + HZSV(2n)
Z

— H38C" — g, 80Cm), (11)

where §@" is defined in Eq. (6), with @ = a,N,/z and
a, = g*/4x. The explicit expressions for the action of
{H,,H,,H;,H,} on SCm on the right-hand side of
Eq. (11) are given in the Appendix. We have checked that
our result is finite in the limit z — x; for any external
coordinate x;. It is worth noting that all N, suppressed
terms in Eq. (11) cancel. We also make available for
download a Mathematica [20] program which returns this
expression after an integer value for n is inserted [21].

III. DILUTE REGIME: 2n REGGEIZED
GLUON EXCHANGE

In this paper our goal is to establish a formal equivalence
between the JIMWLK evolution equation in the dilute
regime and the BJKP equation. Therefore, we need to write
Eq. (2) in the dilute regime, i.e., when nonlinear terms in
the equation are ignored. This is most conveniently done by
switching from the S to T matrices, defined by § = 1 — 7.
This substitution makes it easier to distinguish the linear
terms from the nonlinear ones since the linear regime is
defined as T < 1. After switching from § to 1—7,
the terms quadratic in S will become S48 —
(1=T9(1=TP)=1-T9—-TP 4 T9TP. We can then
disregard the quadratic terms 7977 because these are taken
as negligible in the linear regime. One can also verify that
all kernels multiplying 1 will add up to zero. Equation (11)
then becomes

fww:i/mmw+mww
4z J,
— H3T® — H,70C), (12)

To proceed further we expand each Wilson line in the 7'
matrix to first order in the gluon field @ and keep terms of
order O(a?") for T in both sides of Eq. (12). The expansion
of the Wilson lines is given by

Vi, =1—iga, +---

Vi =14iga, +--- (13)
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Keeping only first-order terms in a, the expanded T
operator is defined as

1
=g"—Trla, a, - a

?(2n) N X2n—1
c

a
2n
(L5

)Cz,,} :

%) (14)

There is another contribution of order 0( ") that we need
to consider, namely those terms coming from takmg o?
terms in the expansion of the Wilson line V, (or VZ) In thls
case we have to set one of the remaining Wllson lines equal
to 1 (V. =~ 1) and take the first-order term in the «a
expansion for the remaining Wilson lines. All other
combinations either vanish or lead to external gluon fields
with zero transverse momenta which are disregarded.

4 g
d 2n l]\

J
(Pt (Pt +l

)

[ -1, l oy \ ~(2n
pt l_pt 2n 1" %n T(Z)

5 (2n

(
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We now Fourier transform our equation for 7”s with 2n

components to momentum space. The Fourier transform of
(2n)

( 2n

the operator 7'
o1 )

to momentum space is defined as

2n

7(2n ol o Lexy) A(2n)
T 2n lk / |:1_[d xk:| Zk* e T(Hzn

ot )

(15)

where [; is the external momentum conjugate to the
coordinate x;. The final expression for the Fourier trans-

form of the equation for 7n)

2n lk}

to momentum space is

i/
a [ 5
+2”/dpt<t

12 p,zl%n 1212 (li+p) Hk S 1) (ba=p1)
2n —
a 2 po-lice pecly Loy -l (2n)
+, 3 2ﬂ/dp’< t+ . 22 lf 113 (L2 wGatpd @G- T2 00 [ (16)

The last term inside parenthesis in the second and third
lines of Eq. (16) comes from taking the second order in the
a, expansion. We emphasize that 7" above represents the
expanded (in powers of the gluon field o) Wilson lines.
Finally we need to rewrite the operators 7" in terms
of the charge density p rather than the gauge field a.
For this we need to rewrite the kernel of the third line of
Eq. (16) as

A similar expression is used to rewrite the kernel of the
second line of Eq. (16). We now use the relation between
the gauge field a and the color charge density p,

p(p:)

a(p) ~—5~. (18)
Pt

We also define the operator T>"), which depends on p
rather than a,

i_'_pt l'—l _ P lj _ lj 1 lj HZn L) ——TT[HP Iy ] (19)
v e LD
2n  J2
Iz _1 I )2 Then, by multiplying both sides of Eq. (16) with ([ [:*, [;)
:1 {(p, ngf“) (ps - 2’) - U2 ;Jrz ) ] (17)  and using the relation given in Eq. (18), we make some
21 pili pil; li 5 final algebraic manipulations and obtain
d on) & / [ I }
I n = T 5 d2 / n
ay (Inw — 2 ; Ppe? + (p— 1) Hz k)
a L2 12 (I + Lpy)? )
4+ = d2 |: 1 + 2n n :| T( n) N
4 / P+ 02 T 02— 5 (o - 102 (P — L)) epd [T 10
_ o 2 2
3 [ e e -
4 =2 p,z(pt + 1]__1)2 pi(p:i = lj)z (pi + lj—l)z(l?z - lj)z (L Ly W mtpo=pa) (] [ 1)

(20)
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Equation (20) is our final result. We have checked that it is
infrared finite (p, — 0) due to the cancellation of infrared
divergent terms between the virtual (first line) and real
(second and third lines) corrections. It reduces to the
previously known results for n = 2, 3, and 4 [15,16]. This
formally establishes the equivalence of the JIMWLK
equation for the x evolution of the correlator of 2n Wilson
lines in the dilute regime with the BJKP equation for the
evolution of the 2n Reggeized gluon state [17].

IV. SUMMARY AND CONCLUSIONS

In this work we have shown the equivalence of the
JIMWLK equation for the x evolution of the 2n Wilson line
correlator in the dilute regime with the BJKP equation for
the evolution of the 2n Reggeized gluon state. While our
result is new in the sense that it explicitly shows the
equivalence of the two approaches, it is not unexpected.
The equivalence of the two approaches has already been
established for the three and four Reggeized gluon
exchange [15,16]. The more interesting and useful result
is that the expansion of Wilson lines to a given order in the
gluon field is the systematic way of recovering the physics
of BJKP equation, and it suggests that one can use this
expansion to derive other more interesting results. For
example, the expansion of Wilson lines in powers of the
gluon fields has already been used to derive the 3-pomeron
vertex (two Reggeized gluons going into four Reggeized
gluons) from the JIMWLK equation [22]. We expect that

|

n n—1
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similar expressions can be derived explicitly for all other
n — m vertices. Work in this direction is in progress and
will be reported elsewhere. Another aspect which would be
interesting to pursue is to derive NLO corrections to the
BJKP equation in the CGC formalism. This is now possible
due to the recent computation of NLO corrections to the
JIMWLK equation [23]. We plan to take this up in the near
future.
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APPENDIX: EVOLUTION EQUATION FOR THE
2n WILSON LINE CORRELATOR

Here we give the explicit expressions for the individual
contributions in the right-hand side of Eq. (11):

n
o2n) _ _ § (2n E E o(2j=2i)  o(2n=2j+2i)
HIS - [szi—lxh’Z]S 2n Xz: %212 xz: 1%z~ Mxgixajogz +M X2iX2;Z ]S 2j-1 )S( 2i~ lxk)( 2n x)
i—1 k=1 =2y i k=2i ™ k=1 k=2j
(21)
n n n—1
2;1 o S‘,(Zn 2) S\Z/ 21) S‘,(Zn 2j+2i)
- Xoi_1X 2i-2 2n Xoi1X0j z 2i-2 2n
; 1: 2i-1X2i% xz, 122:) ( ) ([T, ) = ;:l: 2i-1%2j-1 k ,L ) (LS 0 Ll xe)
n n—1 ( ) ( ) n n— 1 ) ( )
o(2j- 21+2 o(2n— 2j+2l =2 j : &(2j=2i-2 o2n=2j+2i+2
B [MXZi’lxzf ]S( X )S( ([ XZ'XZJ ‘7 S 2 )S( 2o (T,
=2y i=1 k 2i—1 7k k=1 "k k=2j+1% =2y i 1:1 k=241 k k=2j-1
n—1
2 : 2 2 o(2n=2j+2
+ X9 X j I) S( i 21 ! l) 2n (22)
& 2’ x) (] [, x( )
=i i=1 k 2i+1 k=2j+1
n n
) S<2") _ )S(Z”)
E X = E Sax ;
= i Mz, Z 2 i:lzxk i ¥ Py i IXZI (L 11 x)z( iizmxk)
ZH L c@2i42)  g2n-2j+2)
(2j-2i42)  §(2n=2j+2i
+ [Mx ic1%212 ~ Mxx -z] By 2j-1 S 2i-2 2n
j=25j>i i=1 e BRI § RETREDRRY § PSIERLS § MR
n n—1 1 ( ) (
(25— 21 2 2n—2)+21+2
+ [- My, .+ M, }—S S
J i< 2 xXi) H X1z H .
]:2,j>l i=1 k 21+1 k=1 k= j
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I o2) 2 §n-242i42)
+ M, . .—M,. — Sz S ,]
j=2;j>i;[ e T ]2 ([T PR Hk 2j-1%
LS 1 y2j-2i42) a(2n—2j+2i)
-M M —S e S s A 23
Jrj=2;j>t i=1 [ A * xszZiZ] 2 il 2 %K) il:_]l xi)z( Zizjﬂ ) @3)
1,520 _ z"]M 1150 gen Z 115 gem
4 - - X2i-1X2;Z 2 X9; ( i: )z A pr ¥ — Xoi— 1le 2 X2i-1 ( k:ka)z( in:ﬁxk)
n n—1
I c2jm2i)  p2n—2j12i42)
M - 58T ST
+j:§;j:>,' P [ X2i-1X2j-1% x2iX2j_|Z] 2 i/ 221x,\) ( fl 11 Xk) ( kiz/'flxk)
n n—1
1 cj-2i12) a(2n—2j+2i)
-M M B e i
+j:%~:>,~ izl[ vyt F Mune 350 ST oy %)
n n—1
1 52 2:+2) a(2n=2j+2i)
M -M 58, h ST
+j:§;j:>i i=1 [ e XZIXZHZ] 2 k 2i- 1x’<) ( i:lzxk)z( iizjx")
n n—1
1. N
+ [_Mx2.71x7l.z +Mx2 o }_S(Zj 2t) S(2n 2j+2i42) (24)
j=2y>i i=1 e ! 2 k 2:+1 ) Hk | )z Hk 2j

Note that the summation in j is always restricted by the
condition j > i. Moreover, as described above, the upper
index attached to S represents the number of Wilson
lines that make up this operator, and the lower index

represents the coordinate dependence of these Wilson
o(2n— 2]+21+2)

x" Hk 2j )

given by the normalized trace of “2n —2j+2i+2"

lines. For example, the operator S

|
Wilson lines. From these, the first “2i” Wilson lines
have coordinates x;x;---x,;, being followed by one
Wilson line with coordinate z and then by “2n —2j + 17
Wilson lines with coordinates x,jxyj, -+ Xy,

We make available for download a Mathematica [20]
program which returns the right-hand side of Eq. (11) after
an integer value for n is inserted [21].

[1] E. Iancu and R. Venugopalan, in The Color glass condensate
and high-energy scattering in QCD, edited by R. C. Hwa and
X.-N. Wang, Quark Gluon Plasma 3 (World Scientific,
Singapore, 2010) p. 249; H. Weigert, Prog. Part. Nucl. Phys.
55,461 (2005); J. Jalilian-Marian and Y. V. Kovchegov, Prog.
Part. Nucl. Phys. 56, 104 (2006); F. Gelis, E. Iancu, J. Jalilian-
Marian, and R. Venugopalan, Annu. Rev. Nucl. Part. Sci. 60,
463 (2010); J. Jalilian-Marian and Y. V. Kovchegov, Prog.
Part. Nucl. Phys. 56, 104 (2006); J.L. Albacete and
C. Marquet, Prog. Part. Nucl. Phys. 76, 1 (2014).

[2] L. D. McLerran and R. Venugopalan, Phys. Rev. D 49, 2233
(1994); 49, 3352 (1994).

[3] J. Jalilian-Marian, A. Kovner, L.D. McLerran, and
H. Weigert, Phys. Rev. D 55, 5414 (1997); C.S. Lam
and G. Mahlon, Phys. Rev. D 62, 114023 (2000);
S. Ozonder and R. J. Fries, Phys. Rev. C 89, 034902 (2014).

[4] S. Jeon and R. Venugopalan, Phys. Rev. D 71, 125003
(2005); A. Dumitru, J. Jalilian-Marian, and E. Petreska,

Phys. Rev. D 84, 014018 (2011); A. Dumitru and E.
Petreska, Nucl. Phys. A879, 59 (2012); J. Jalilian-Marian,
S. Jeon, and R. Venugopalan, Phys. Rev. D 63, 036004
(2001).

[5] J. Jalilian-Marian, A. Kovner, L.D. McLerran, and H.
Weigert, Phys. Rev. D 55, 5414 (1997); J. Jalilian-Marian,
A. Kovner, A. Leonidov, and H. Weigert, Nucl. Phys. B504,
415 (1997); Phys. Rev. D 59, 014014 (1998); 59, 034007
(1999); J. Jalilian-Marian, A. Kovner, and H. Weigert, Phys.
Rev. D 59, 014015 (1998); A. Kovner, J. G. Milhano, and
H. Weigert, Phys. Rev. D 62, 114005 (2000); A. Kovner and
J. G. Milhano, Phys. Rev. D 61, 014012 (1999); E. lancu,
A. Leonidov, and L. D. McLerran, Nucl. Phys. A692, 583
(2001); Phys. Lett. B 510, 133 (2001); E. Ferreiro, E. Iancu,
A. Leonidov, and L. McLerran, Nucl. Phys. A703, 489
(2002); H. Weigert, Nucl. Phys. A703, 823 (2002);
J.-P. Blaizot, E. Iancu, and H. Weigert, Nucl. Phys.
A713, 441 (2003).

074037-6


http://dx.doi.org/10.1016/j.ppnp.2005.01.029
http://dx.doi.org/10.1016/j.ppnp.2005.01.029
http://dx.doi.org/10.1016/j.ppnp.2005.07.002
http://dx.doi.org/10.1016/j.ppnp.2005.07.002
http://dx.doi.org/10.1146/annurev.nucl.010909.083629
http://dx.doi.org/10.1146/annurev.nucl.010909.083629
http://dx.doi.org/10.1016/j.ppnp.2005.07.002
http://dx.doi.org/10.1016/j.ppnp.2005.07.002
http://dx.doi.org/10.1016/j.ppnp.2014.01.004
http://dx.doi.org/10.1103/PhysRevD.49.2233
http://dx.doi.org/10.1103/PhysRevD.49.2233
http://dx.doi.org/10.1103/PhysRevD.49.3352
http://dx.doi.org/10.1103/PhysRevD.55.5414
http://dx.doi.org/10.1103/PhysRevD.62.114023
http://dx.doi.org/10.1103/PhysRevC.89.034902
http://dx.doi.org/10.1103/PhysRevD.71.125003
http://dx.doi.org/10.1103/PhysRevD.71.125003
http://dx.doi.org/10.1103/PhysRevD.84.014018
http://dx.doi.org/10.1016/j.nuclphysa.2012.02.006
http://dx.doi.org/10.1103/PhysRevD.63.036004
http://dx.doi.org/10.1103/PhysRevD.63.036004
http://dx.doi.org/10.1103/PhysRevD.55.5414
http://dx.doi.org/10.1016/S0550-3213(97)00440-9
http://dx.doi.org/10.1016/S0550-3213(97)00440-9
http://dx.doi.org/10.1103/PhysRevD.59.014014
http://dx.doi.org/10.1103/PhysRevD.59.034007
http://dx.doi.org/10.1103/PhysRevD.59.034007
http://dx.doi.org/10.1103/PhysRevD.59.014015
http://dx.doi.org/10.1103/PhysRevD.59.014015
http://dx.doi.org/10.1103/PhysRevD.62.114005
http://dx.doi.org/10.1103/PhysRevD.61.014012
http://dx.doi.org/10.1016/S0375-9474(01)00642-X
http://dx.doi.org/10.1016/S0375-9474(01)00642-X
http://dx.doi.org/10.1016/S0370-2693(01)00524-X
http://dx.doi.org/10.1016/S0375-9474(01)01329-X
http://dx.doi.org/10.1016/S0375-9474(01)01329-X
http://dx.doi.org/10.1016/S0375-9474(01)01668-2
http://dx.doi.org/10.1016/S0375-9474(02)01299-X
http://dx.doi.org/10.1016/S0375-9474(02)01299-X

SMALL-x QCD EVOLUTION OF 2n WILSON LINE ...

[6] 1. Balitsky, Nucl. Phys. B463, 99 (1996); Y. V. Kovchegov,
Phys. Rev. D 60, 034008 (1999); 61, 074018 (2000).

[7] R. Venugopalan, arXiv:1404.6976 and references therein.

[8] A. Monnai and T. Hirano, Phys. Lett. B 703, 583 (2011) and
references therein.

[9] L.D. McLerran and R. Venugopalan, Phys. Rev. D 59,
094002 (1999); Y. V. Kovchegov and K. Tuchin, Phys. Rev.
D 65, 074026 (2002); J.L. Albacete, N. Armesto, J. G.
Milhano, P. Quiroga-Arias, and C. A. Salgado, Eur. Phys. J.
C 71, 1705 (2011); A.H. Rezaeian and I. Schmidt, Phys.
Rev. D 88, 074016 (2013); N. Armesto and A. H. Rezaeian,
Phys. Rev. D 90, 054003 (2014); V.P. Gongalves, M. S.
Kugeratski, and F. S. Navarra, Int. J. Mod. Phys. E 16, 2375
(2007); E.R. Cazaroto, F. Carvalho, V.P. Gongalves, and
F. S. Navarra, Phys. Lett. B 671, 233 (2009); H. Kowalski,
T. Lappi, C. Marquet, and R. Venugopalan, Phys. Rev. C 78,
045201 (2008); C. Marquet, R.B. Peschanski, and
G. Soyez, Phys. Rev. D 76, 034011 (2007).

[10] A. Dumitru and J. Jalilian-Marian, Phys. Rev. Lett. 89,
022301 (2002); D. Kharzeev, Y.V. Kovchegov, and K.
Tuchin, Phys. Rev. D 68, 094013 (2003); J. L. Albacete,
N. Armesto, A. Kovner, C. A. Salgado, and U. A. Wiede-
mann, Phys. Rev. Lett. 92, 082001 (2004); J. Jalilian-
Marian, J. Phys. G 30, S751 (2004); Nucl. Phys. A748,
664 (2005); Phys. Rev. C 70, 027902 (2004); Nucl. Phys.
A739, 319 (2004); A. Dumitru, A. Hayashigaki, and J.
Jalilian-Marian, Nucl. Phys. A765, 464 (2006); A. Dumitru,
A. Hayashigaki, and J. Jalilian-MarianNucl. Phys. A770, 57
(20006); F. Gelis and J. Jalilian-Marian, Phys. Rev. D 76,
074015 (2007); D. Boer, A. Utermann, and E. Wessels,
Phys. Rev. D 77, 054014 (2008); E.R. Cazaroto, V.P.
Gongalves, and F.S. Navarra, Nucl. Phys. A872, 196
(2011); J. Jalilian-Marian and A.H. Rezaeian, Phys. Rev.
D 85,014017 (2012); J. Jalilian-Marian and A. H. Rezaeian,
Phys. Rev. D 86, 034016 (2012); A. H. Rezaeian, Phys. Rev.
D 86, 094016 (2012); J. L. Albacete, A. Dumitru, H. Fujii,
and Y. Nara, Nucl. Phys. A897, 1 (2013); T. Altinoluk and
A. Kovner, Phys. Rev. D 83, 105004 (2011); G. A. Chirilli,
B.-W. Xiao, and F. Yuan, Phys. Rev. Lett. 108, 122301
(2012); G. A. Chirilli, B.-W. Xiao, and F. YuanPhys. Rev. D
86, 054005 (2012); Z. -B. Kang, L. Vitev, and H. Xing, Phys.
Rev. Lett. 113, 062002 (2014).

[11] J. Jalilian-Marian and Y. V. Kovchegov, Phys. Rev. D 70,
114017 (2004) [71, 079901(E) (2005)]; A. Kovner and M.
Lublinsky, J. High Energy Phys. 11 (2006) 083; Phys. Rev.
D 84,094011 (2011); 83, 034017 (2011); J. Jalilian-Marian,
Nucl. Phys. A770, 210 (2006); C. Marquet, Nucl. Phys.
A796, 41 (2007); J. L. Albacete and C. Marquet, Phys. Rev.
Lett. 105, 162301 (2010); F. Dominguez, C. Marquet, B.-W.
Xiao, and F. Yuan, Phys. Rev. D 83, 105005 (2011); A.
Stasto, B.-W. Xiao, and F. Yuan, Phys. Lett. B 716, 430
(2012); F. Dominguez, C. Marquet, A. M. Stasto, and

PHYSICAL REVIEW D 90, 074037 (2014)

B.-W. Xiao, Phys. Rev. D 87, 034007 (2013); T. Lappi
and H. Mantysaari, Nucl. Phys. A908, 51 (2013); E. Iancu
and D.N. Triantafyllopoulos, J. High Energy Phys. 11
(2013) 067.

[12] Y. V. Kovchegov and H. Weigert, Nucl. Phys. A784, 188
(2007); 1. Balitsky and G. A. Chirilli, Phys. Rev. D 77,
014019 (2008); J. L. Albacete and Y. V. Kovchegov, Phys.
Rev. D 75, 125021 (2007); V. P. Gongalves, B. D. Moreira,
and F. S. Navarra, Phys. Rev. C 90, 015203 (2014).

[13] Y. V. Kovchegov, J. Kuokkanen, K. Rummukainen, and
H. Weigert, Nucl. Phys. A823, 47 (2009); C. Marquet and
H. Weigert, Nucl. Phys. A843, 68 (2010); A. Dumitru and
J. Jalilian-Marian, Phys. Rev. D 82, 074023 (2010); 81,
094015 (2010); A. Dumitru, J. Jalilian-Marian, T. Lappi, B.
Schenke, and R. Venugopalan, Phys. Lett. B 706, 219
(2011); E. Iancu and D.N. Triantafyllopoulos, J. High
Energy Phys. 11 (2011) 105.

[14] L.N. Lipatov, Yad. Fiz. 23, 642 (1976) [Sov. J. Nucl.
Phys. 23, 338 (1976)]; E. A. Kuraev, L. N. Lipatov, and
V.S. Fadin, Zh. Eksp. Teor. Fiz. 72, 377 (1977) [Sov. Phys.
JETP 45, 199 (1977)]; I.1. Balitsky and L.N. Lipatov,
Yad. Fiz. 28, 1597 (1978) [Sov. J. Nucl. Phys. 28, 822
(1978)]1.

[15] Y. V. Kovchegov, L. Szymanowski, and S. Wallon, Phys.
Lett. B 586, 267 (2004); Y. Hatta, E. Iancu, K. Itakura, and
L. McLerran, Nucl. Phys. A760, 172 (2005); A. Kovner and
M. Lublinsky, J. High Energy Phys. 02 (2007) 058; 1.
Balitsky and A. V. Grabovsky, arXiv:1405.0443.

[16] F. Dominguez, A. H. Mueller, S. Munier, and B.-W. Xiao,
Phys. Lett. B 705, 106 (2011); J. Jalilian-Marian, Phys. Rev.
D 85, 014037 (2012).

[17] J. Bartels, Nucl. Phys. B175, 365 (1980); T. Jaroszewicz,
Acta Phys. Pol. B 11, 965 (1980); J. Kwiecinski and
M. Praszalowicz, Phys. Lett. 94B, 413 (1980); Z. Chen
and A. H. Mueller, Nucl. Phys. B451, 579 (1995).

[18] S. Caron-Huot, arXiv:1309.6521.

[19] T. Altinoluk, N. Armesto, A. Kovner, E. Levin, and
M. Lublinsky, J. High Energy Phys. 08 (2014) 007; T.
Altinoluk, A. Kovner, E. Levin, and M. Lublinsky, J. High
Energy Phys. 04 (2014) 075; T. Altinoluk, C. Contreras, A.
Kovner, E. Levin, M. Lublinsky, and A. Shulkin, J. High
Energy Phys. 09 (2013) 115.

[20] Wolfram Research, Inc., Mathematica, Version 10.0,
Champaign, IL (2014).

[21] The code may be downloaded from faculty.baruch
.cuny.edu/naturalscience/physics/Jalilian-Marian/ or from
paginas.fisica.uson.mx/elena.tejeda/code.nb.

[22] G. A. Chirilli, L. Szymanowski, and S. Wallon, Phys. Rev.
D 83, 014020 (2011).

[23] I. Balitsky and G. A. Chirilli, Phys. Rev. D 88, 111501
(2013); A. Kovner, M. Lublinsky, and Y. Mulian, Phys. Rev.
D 89, 061704 (2014).J. High Energy Phys. 08, (2014) 114.

074037-7


http://dx.doi.org/10.1016/0550-3213(95)00638-9
http://dx.doi.org/10.1103/PhysRevD.60.034008
http://dx.doi.org/10.1103/PhysRevD.61.074018
http://arXiv.org/abs/1404.6976
http://dx.doi.org/10.1016/j.physletb.2011.08.049
http://dx.doi.org/10.1103/PhysRevD.59.094002
http://dx.doi.org/10.1103/PhysRevD.59.094002
http://dx.doi.org/10.1103/PhysRevD.65.074026
http://dx.doi.org/10.1103/PhysRevD.65.074026
http://dx.doi.org/10.1140/epjc/s10052-011-1705-3
http://dx.doi.org/10.1140/epjc/s10052-011-1705-3
http://dx.doi.org/10.1103/PhysRevD.88.074016
http://dx.doi.org/10.1103/PhysRevD.88.074016
http://dx.doi.org/10.1103/PhysRevD.90.054003
http://dx.doi.org/10.1142/S0218301307007969
http://dx.doi.org/10.1142/S0218301307007969
http://dx.doi.org/10.1016/j.physletb.2008.12.036
http://dx.doi.org/10.1103/PhysRevC.78.045201
http://dx.doi.org/10.1103/PhysRevC.78.045201
http://dx.doi.org/10.1103/PhysRevD.76.034011
http://dx.doi.org/10.1103/PhysRevLett.89.022301
http://dx.doi.org/10.1103/PhysRevLett.89.022301
http://dx.doi.org/10.1103/PhysRevD.68.094013
http://dx.doi.org/10.1103/PhysRevLett.92.082001
http://dx.doi.org/10.1088/0954-3899/30/8/014
http://dx.doi.org/10.1016/j.nuclphysa.2004.12.001
http://dx.doi.org/10.1016/j.nuclphysa.2004.12.001
http://dx.doi.org/10.1103/PhysRevC.70.027902
http://dx.doi.org/10.1016/j.nuclphysa.2004.04.103
http://dx.doi.org/10.1016/j.nuclphysa.2004.04.103
http://dx.doi.org/10.1016/j.nuclphysa.2005.11.014
http://dx.doi.org/10.1016/j.nuclphysa.2006.02.009
http://dx.doi.org/10.1016/j.nuclphysa.2006.02.009
http://dx.doi.org/10.1103/PhysRevD.76.074015
http://dx.doi.org/10.1103/PhysRevD.76.074015
http://dx.doi.org/10.1103/PhysRevD.77.054014
http://dx.doi.org/10.1016/j.nuclphysa.2011.09.017
http://dx.doi.org/10.1016/j.nuclphysa.2011.09.017
http://dx.doi.org/10.1103/PhysRevD.85.014017
http://dx.doi.org/10.1103/PhysRevD.85.014017
http://dx.doi.org/10.1103/PhysRevD.86.034016
http://dx.doi.org/10.1103/PhysRevD.86.094016
http://dx.doi.org/10.1103/PhysRevD.86.094016
http://dx.doi.org/10.1016/j.nuclphysa.2012.09.012
http://dx.doi.org/10.1103/PhysRevD.83.105004
http://dx.doi.org/10.1103/PhysRevLett.108.122301
http://dx.doi.org/10.1103/PhysRevLett.108.122301
http://dx.doi.org/10.1103/PhysRevD.86.054005
http://dx.doi.org/10.1103/PhysRevD.86.054005
http://dx.doi.org/10.1103/PhysRevLett.113.062002
http://dx.doi.org/10.1103/PhysRevLett.113.062002
http://dx.doi.org/10.1103/PhysRevD.70.114017
http://dx.doi.org/10.1103/PhysRevD.70.114017
http://dx.doi.org/10.1103/PhysRevD.71.079901
http://dx.doi.org/10.1088/1126-6708/2006/11/083
http://dx.doi.org/10.1103/PhysRevD.84.094011
http://dx.doi.org/10.1103/PhysRevD.84.094011
http://dx.doi.org/10.1103/PhysRevD.83.034017
http://dx.doi.org/10.1016/j.nuclphysa.2006.02.013
http://dx.doi.org/10.1016/j.nuclphysa.2007.09.001
http://dx.doi.org/10.1016/j.nuclphysa.2007.09.001
http://dx.doi.org/10.1103/PhysRevLett.105.162301
http://dx.doi.org/10.1103/PhysRevLett.105.162301
http://dx.doi.org/10.1103/PhysRevD.83.105005
http://dx.doi.org/10.1016/j.physletb.2012.08.044
http://dx.doi.org/10.1016/j.physletb.2012.08.044
http://dx.doi.org/10.1103/PhysRevD.87.034007
http://dx.doi.org/10.1016/j.nuclphysa.2013.03.017
http://dx.doi.org/10.1007/JHEP11(2013)067
http://dx.doi.org/10.1007/JHEP11(2013)067
http://dx.doi.org/10.1016/j.nuclphysa.2006.10.075
http://dx.doi.org/10.1016/j.nuclphysa.2006.10.075
http://dx.doi.org/10.1103/PhysRevD.77.014019
http://dx.doi.org/10.1103/PhysRevD.77.014019
http://dx.doi.org/10.1103/PhysRevD.75.125021
http://dx.doi.org/10.1103/PhysRevD.75.125021
http://dx.doi.org/10.1103/PhysRevC.90.015203
http://dx.doi.org/10.1016/j.nuclphysa.2009.03.006
http://dx.doi.org/10.1016/j.nuclphysa.2010.05.056
http://dx.doi.org/10.1103/PhysRevD.82.074023
http://dx.doi.org/10.1103/PhysRevD.81.094015
http://dx.doi.org/10.1103/PhysRevD.81.094015
http://dx.doi.org/10.1016/j.physletb.2011.11.002
http://dx.doi.org/10.1016/j.physletb.2011.11.002
http://dx.doi.org/10.1007/JHEP11(2011)105
http://dx.doi.org/10.1007/JHEP11(2011)105
http://dx.doi.org/10.1016/j.physletb.2004.02.036
http://dx.doi.org/10.1016/j.physletb.2004.02.036
http://dx.doi.org/10.1016/j.nuclphysa.2005.05.163
http://dx.doi.org/10.1088/1126-6708/2007/02/058
http://arXiv.org/abs/1405.0443
http://dx.doi.org/10.1016/j.physletb.2011.09.104
http://dx.doi.org/10.1103/PhysRevD.85.014037
http://dx.doi.org/10.1103/PhysRevD.85.014037
http://dx.doi.org/10.1016/0550-3213(80)90019-X
http://dx.doi.org/10.1016/0370-2693(80)90909-0
http://dx.doi.org/10.1016/0550-3213(95)00350-2
http://arXiv.org/abs/1309.6521
http://dx.doi.org/10.1007/JHEP08(2014)007
http://dx.doi.org/10.1007/JHEP04(2014)075
http://dx.doi.org/10.1007/JHEP04(2014)075
http://dx.doi.org/10.1007/JHEP09(2013)115
http://dx.doi.org/10.1007/JHEP09(2013)115
faculty.baruch.cuny.edu/naturalscience/physics/Jalilian-Marian/
faculty.baruch.cuny.edu/naturalscience/physics/Jalilian-Marian/
faculty.baruch.cuny.edu/naturalscience/physics/Jalilian-Marian/
faculty.baruch.cuny.edu/naturalscience/physics/Jalilian-Marian/
paginas.fisica.uson.mx/elena.tejeda/code.nb
http://dx.doi.org/10.1103/PhysRevD.83.014020
http://dx.doi.org/10.1103/PhysRevD.83.014020
http://dx.doi.org/10.1103/PhysRevD.88.111501
http://dx.doi.org/10.1103/PhysRevD.88.111501
http://dx.doi.org/10.1103/PhysRevD.89.061704
http://dx.doi.org/10.1103/PhysRevD.89.061704
http://dx.doi.org/10.1007/JHEP08(2014)114

