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The AdS/CFT correspondence may offer new and useful insights into the nonperturbative regime of
strongly coupled gauge theories such as QCD. We present an AdS/CFT-inspired model that describes
the spectra of light mesons. The conformal symmetry is broken by a background dilaton field, and chiral
symmetry breaking and linear confinement are described by a chiral condensate field. These background
fields, along with a background glueball condensate field, are derived from a potential. We describe the
construction of the potential, and the calculation of the meson spectra, which match experimental data well.
We argue that the presence of the third background field is necessary to properly describe the meson
spectra.
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I. INTRODUCTION

The AdS/CFT correspondence is a useful mathematical
tool for the analysis of strongly coupled gauge theories.
This correspondence establishes a connection between a
d-dimensional super Yang Mills theory and a weakly
coupled gravitational theory in dþ 1 dimensions [1–3].
Calculations that are analytically intractable in the field
theory can be related to results from the gravity theory
using an effective dictionary developed over the past
decade. QCD is a strongly coupled gauge theory at
hadronic scales, making it a candidate for the application
of the gauge/gravity correspondence. It is not known
whether a gravitational dual to QCD exists, but there
has been much work on models that capture its key
features. The bottom-up approach assumes the existence
of such a dual, modeling features of QCD by an effective
five-dimensional gravity theory. Linear confinement in
QCD sets a scale that is encoded in a cutoff of the fifth
dimension in the anti–de Sitter (AdS)/QCD model [4,5].
So-called soft-wall models use a dilaton field as an effective
cutoff to limit the penetration of the meson fields into the
bulk [6]. The simplest soft-wall models use a quadratic
dilaton to recover the linear Regge trajectories, while
models that modify the UV behavior of the dilaton more
accurately model the ground-state masses [7–10].
The soft-wall models typically include at least two

background fields: the aforementioned dilaton, and a chiral
condensate field that corresponds to the chiral symmetry
breaking in the gauge theory. These models use para-
metrizations for the background dilaton and chiral fields
that are not derived as the solution to any equations
of motion. A well-defined action would provide a set of
background equations from which these fields can be
derived, and may suggest how the model can be derived
from a top-down approach. In addition, this action provides
access to the thermal properties of the model through
perturbation of the geometry [11–13].

In this paper, we expand upon previous work to find a
suitable potential for the background fields of a soft-wall
AdS/QCD model [13–20]. After demonstrating the limi-
tations of models including a dilaton and chiral field alone,
we suggest the inclusion of a background glueball field.
We then construct a potential that satisfies the necessary
UV and IR limits, and use this potential to generate
numerically the background fields and calculate the result-
ing meson spectra.

II. REVIEW AND MOTIVATION

We assume that four-dimensional QCD can be modeled
by the following five-dimensional action, written in the
string frame:

S ¼ 1

16πG5

Z
d5x

ffiffiffiffiffiffi
−g

p
e−2Φ

�
Rþ 4∂MΦ∂MΦ

− Tr

�
jDXj2 þ ∂MG∂MGþ 1

2g25
ðF2

A þ F2
VÞ

þ VmðΦ; X2;GÞ
��

: ð1Þ

Here Φ is the dilaton and the metric is pure AdS, gMN ¼
z−2ηMN , with the AdS curvature defined to be unity.
The constant g25 ¼ 12π2=Nc, where Nc is the number of
colors. The covariant derivative is defined as DM ¼ ∂M þ
i½VM; X� − ifAM; Xg. The scalar field X, which is dual to
the q̄q operator, obtains a z-dependent vacuum expectation
value (VEV),

hXi ¼ χðzÞ
2

I; ð2Þ

where I is the 2 × 2 identity matrix. The glueball field G
similarly obtains a z-dependent VEV, GðzÞ. We examine
the background dynamics of the fields
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S ¼ 1

16πG5

Z
d5x

ffiffiffiffiffiffi
−g

p
e−2Φ

�
Rþ 4∂MΦ∂MΦ

−
1

2
∂Mχ∂Mχ −

1

2
∂MG∂MG − VðΦ; χ; GÞ

�
; ð3Þ

where V ¼ Tr½Vm�. The scalar fields Φ; χ; G are
dimensionless.
It is easier to search for the background fields in the

Einstein frame, where the vacuum action takes the canoni-
cal form

SE ¼ 1

16πG5

Z
d5x

ffiffiffiffiffiffi
−~g

p �
~R −

1

2
∂Mϕ∂Mϕ −

1

2
∂Mχ∂Mχ

−
1

2
∂MG∂MG − ~Vðϕ; χ; GÞ

�
: ð4Þ

The tilde distinguishes the two frames, with ~V ¼ e4Φ=3V,
and the dilaton is rescaled for a canonical action
ϕ ¼ ffiffiffiffiffiffiffiffi

8=3
p

Φ. The string and Einstein-frame metrics are
related by the conformal transformation

gMN ¼ e2ϕ=
ffiffi
6

p
~gMN: ð5Þ

Previous work showed how to construct a potential for
a gravity-dilaton-chiral system without the glueball con-
densate. We examine the behavior assuming that the fields
have a power-law behavior, which is accurate in both the
UV and IR limits [15]. One of the equations of motion is
independent of the choice of potential,

_χ2 ¼
ffiffiffi
6

p

z2
d
dz

ðz2 _ϕÞ: ð6Þ

Here, the dot represents differentiation with respect to the z
coordinate. To obtain linear confinement, the dilaton should
have quadratic behavior in the IR limit, ΦðzÞ ¼ λz2.
The chiral field should have linear behavior in the IR,
χðzÞ ¼ Az, where A sets the mass splitting between the
axial-vector and vector mesons for large radial quantum
numbers n. This constant mass splitting at large n occurs
because of the nonrestoration of chiral symmetry [21].
Inserting this IR behavior for the dilaton and chiral field
into Eq. (6), we find that the chiral field behaves as

χðz → ∞Þ ¼ 2
ffiffiffiffiffi
6λ

p
z; ð7Þ

linking the IR behavior of the chiral condensate with the
parameter that determines the radial Regge trajectories.
However, the IR behavior of the chiral field determines the
constant mass splitting between the axial-vector and vector
mesons for large radial quantum numbers n [7],

Δm2 ≡ ðm2
An

−m2
Vn
Þ
n→∞ ¼ g25

z2
χ2ðz → ∞Þ ¼ 24g25λ: ð8Þ

Thus, there is no independent parameter in the model
that controls this mass splitting. Using the value of
λ ¼ 0.1831=2 GeV2 found Ref. [7] (our definition of λ
differs from theirs by a factor of 2), we find a value for
Δm2 ¼ 87 GeV2, which is much larger than the exper-
imental value of 1.42 GeV2. Because this problem arises in
the equation that is independent of the potential, it cannot
be resolved by the choice of potential in models that do not
consider the glueball condensate. Models that derive the
field behavior using the superpotential method suffer from
the same problem.
To resolve this problem, we consider the effects of the

glueball condensate G on the background equations. This
field must be linear in the IR for linear confinement,
and behave as G ∼ z4 in the UV to match the operator
dimension in the AdS/CFT dictionary.
It is noted that the model proposed by Huang and Li

[18,19] accurately represents the nonrestoration of chiral
symmetry using a model with only two background fields,
but their model differs from the work presented here in
several respects. They place the meson fields and chiral
dynamics in the open-string sector of the model. For linear
confinement, this requires that the chiral field approach a
constant in the IR, which necessitates a modified metric to
obtain the correct chiral dynamics. Our model allows the
metric to remain purely AdS in the string frame. Finally,
they do not determine an explicit form of the potential,
which is the central goal of this work.

III. CONSTRUCTION OF POTENTIAL

Consider the action in the Einstein frame (4). To simplify
the equations of motion, we use a transformed potential,

V ¼ e−2ϕ=
ffiffi
6

p
~V: ð9Þ

This is simply the potential in the string frame. We rewrite
it as

V ¼ −12þ 4
ffiffiffi
6

p
ϕþ a0ϕ2 þm2

X

2
χ2 þU: ð10Þ

Here U is more than quadratic in the fields. The AdS/CFT
dictionary sets the mass for the fields according to the
dimension of the dual operator,

m2L2 ¼ ΔðΔ − 4Þ; ð11Þ

where L is the AdS curvature which we set to unity. The
dimension of the qq̄ operator is three, som2

X ¼ −3=L2. The
dilaton mass is undetermined and is not connected to
the dimension of the corresponding operator, as discussed
in Ref. [15]. It is related to the parameter a0 by
a0 ¼ 1

2
½ðmϕLÞ22 − 8�. The potential should be an even

function of χ.
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The equations of motion can be written as

_χ2 þ _G2 ¼
ffiffiffi
6

p

z2
d
dz

ðz2 _ϕÞ; ð12Þ

U ¼ 1

2

ffiffiffi
6

p
z2ϕ̈ −

3

2
ðz _ϕÞ2 − 3

ffiffiffi
6

p
z _ϕ − 4

ffiffiffi
6

p
ϕ − a0ϕ2 þ 3

2
χ2;

ð13Þ
∂U
∂ϕ ¼ 3z _ϕ − 2a0ϕ; ð14Þ

∂U
∂χ ¼ z2χ̈ − 3z_χ

�
1þ z _ϕffiffiffi

6
p

�
þ 3χ; ð15Þ

∂U
∂G ¼ z2G̈ − 3z _G

�
1þ z _ϕffiffiffi

6
p

�
: ð16Þ

We assume that the potential has no explicit dependence
on the coordinate z, so Eqs. (14)–(16) are not independent,
and we can eliminate one.

A. Infrared limit

The requirement of linear confinement requires a sol-
ution in the large-z limit of the form

ϕ ¼
ffiffiffi
8

3

r
λz2; ð17Þ

χ ¼ Az; ð18Þ

G ¼ Bz: ð19Þ

Substituting this into Eq. (12) gives

A2 þ B2 ¼ 24λ: ð20Þ
The parameter λ is fixed by the slope of the linear trajectory
and A is fixed by the axial vector–vector mass difference.
It is useful to write these as

A ¼ 2
ffiffiffiffiffi
6λ

p
cos θ; B ¼ 2

ffiffiffiffiffi
6λ

p
sin θ; ð21Þ

where θ now becomes the parameter controlling the axial
vector–vector mass splitting. Inserting Eq. (19) into
Eqs. (13)–(16) suggests the following terms in our ansatz
for the potential:

U ¼ a1ϕχ2 þ a2ϕG2 þ a3χ4 þ a4G4 þ a5χ2G2

þ a6G2 tanhðgϕÞ: ð22Þ

We see that there must be a G2 term in the IR limit, but
this is forbidden in the weak-field limit because the
glueball condensate field is massless. To circumvent this,

we propose the term G2 tanhðgϕÞ with g > 0. In the weak-
field limit this goes to gϕG2, which is acceptable. The tanh
is suggested by Eq. (9), and it provides a rapid exponential
transition from the weak-field to the strong-field limit that
is supported by phenomenology. By substitution one finds
the following constraints on the parameters:

U → 6þ a0 þ 6
ffiffiffi
6

p
ðcos2θa1 þ sin2θa2Þ;

þ 63ðcos4θa3 þ sin4θa4 þ cos2θsin2θa5Þ ¼ 0; ð23Þ

∂U
∂χ → 2a1 þ 24

ffiffiffi
6

p
cos2θa3 þ 12

ffiffiffi
6

p
sin2θa5 þ

ffiffiffi
6

p
¼ 0;

ð24Þ

∂U
∂G → 2a2 þ 24

ffiffiffi
6

p
sin2θa4 þ 12

ffiffiffi
6

p
cos2θa5 þ

ffiffiffi
6

p
¼ 0;

ð25Þ

∂U
∂G → a6 ¼ −

3

2
: ð26Þ

We have chosen to exclude Eq. (14) because it is not
independent. The parameter a6 is determined, and the others
will be determined by an examination of the UV limit.

B. Ultraviolet limit

Next we look for a solution in the small-z limit. The
AdS/CFT dictionary dictates that the leading-order UV
behavior of the chiral and glueball condensate fields is
determined by their dimension. Note also that we are
working in the chiral limit where the quark mass is zero.
We start by examining only the leading-order terms,

χ ¼ Σ0z3; ð27Þ

G ¼ G0z4: ð28Þ

Substituting this into Eq. (12) and imposing the boundary
condition ϕð0Þ ¼ 0 gives

ϕ ¼
ffiffiffi
6

p

28
Σ2
0z

6 þ
ffiffiffi
6

p

27
G2

0z
8: ð29Þ

Using only this leading-order behavior in Eqs. (13)–(16),
the system of equations is inconsistent, as there are more
equations from matching powers of z than unknown
parameters.
To solve this problem, we consider adding a term Σnzn

to χ. By substituting this into Eq. (12) and keeping only
the lowest-order cross term we find the additional term in ϕ,

Δϕ ¼
ffiffiffi
6

p
nΣ0Σn

ðnþ 4Þðnþ 3Þ z
nþ3: ð30Þ
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From Eq. (13) we find that

U ¼ −
3

2
ðz _ϕÞ2 − a0ϕ2 þ 3

n3 − 13nþ 12

ðnþ 4Þðnþ 3ÞΣ0Σnznþ3:

ð31Þ

Since the ϕ2 terms start out as z12, z14, z16, and so do the
terms in the potential, the n can only take the values 9, 11,
etc. This term contributes only to the equation for ∂U=∂χ,
∂U
∂χ ¼ −9Σ0

�
3

14
Σ2
0 þ

8

27
G2

0z
2

�
z9 þ ðn − 3Þðn − 1ÞΣnzn:

ð32Þ

By power counting both n ¼ 9 and n ¼ 11 can contribute.
There could also be higher-order terms in G such as

Gmzm. This leads to the additional term in ϕ,

Δϕ ¼ 8mG0Gmffiffiffi
6

p ðmþ 5Þðmþ 4Þ z
mþ4: ð33Þ

It contributes to the equation for ∂U=∂G as

∂U
∂G ¼ −12G0

�
3

14
Σ2
0 þ

8

27
G2

0z
2

�
z10 þmðm − 4ÞGnzm:

ð34Þ

The choice m ¼ 8 is not possible as there is no term of the
same order to balance it. Terms with m ¼ 10 and m ¼ 12
are possible. These new terms cannot affect the equation
for ∂U=∂ϕ nor can they contribute to the equation for
∂U=∂χ. Considering higher-order terms in both χ and G
leads to

U ¼ −
3

2
ðz _ϕÞ2 − a0ϕ2 þ 3

n3 − 13nþ 12

ðnþ 4Þðnþ 3ÞΣ0Σnznþ3

þ 4mðm − 4Þ
mþ 4

G0Gmzmþ4: ð35Þ

The appearance of these terms can be understood by
writing the following schematic expansions:

χ ∼ Σ0z3 þ Σ3
0z

9 þG2
0Σ0z11 þ � � � ;

G ∼G0z4 þ Σ2
0G0z10 þG3

0z
12 þ � � � :

That is, χ is an odd function of Σ0 and G is an odd function
ofG0. These are the symmetries in the equations of motion.
They also follow the spirit of the AdS/CFT correspondence
in terms of the dimensionality of the operators and the
powers of z.
Including now m ¼ 10 and 12, and n ¼ 9 and 11, we

have the following set of equations in the small-z limit,

where LHS and RHS refer to the left and right sides of the
respective equations:

ULHS ¼ 3Σ4
0z

12

�
4
Σ9

Σ3
0

−
ð54þ a0Þ
23 · 72

�

þ 1

7
Σ2
0G

2
0z

14

�
120

G10

Σ2
0G0

þ 120
Σ11

Σ0G2
0

−
ð72þ a0Þ

9

�

þ 2G4
0z

16

�
12

G12

G3
0

−
ð96þ a0Þ

35

�
; ð36Þ

URHS ¼ Σ4
0z

12

� ffiffiffi
6

p

28
a1 þ a3

�

þ Σ2
0G

2
0z

14

� ffiffiffi
6

p

27
a1 þ

ffiffiffi
6

p

28
ða2 þ ga6Þ þ a5

�

þ G4
0z

16

� ffiffiffi
6

p

27
ða2 þ ga6Þ þ a4

�
; ð37Þ

�∂U
∂χ

�
LHS

¼ 3Σ3
0z

9

�
−

9

14
þ 16

Σ9

Σ3
0

�

þ 8Σ0G2
0z

11

�
−
1

3
þ 10

Σ11

Σ0G2
0

�
; ð38Þ

�∂U
∂χ

�
RHS

¼ Σ3
0z

9

� ffiffiffi
6

p

14
a1 þ 4a3

�

þ Σ0G2
0z

11

�
2

ffiffiffi
6

p

27
a1 þ 2a5

�
; ð39Þ

�∂U
∂G

�
LHS

¼ 6Σ2
0G0z10

�
−
3

7
þ 10

G10

Σ2
0G0

�

þ 32G3
0z

12

�
−
1

9
þ 3

G12

G3
0

�
; ð40Þ

�∂U
∂G

�
RHS

¼ Σ2
0G0z10

� ffiffiffi
6

p

14
ða2 þ ga6Þ þ 2a5

�
ð41Þ

þ G3
0z

12

�
2

ffiffiffi
6

p

27
ða2 þ ga6Þ þ 4a4

�
: ð42Þ

Altogether, from both the UVand IR limits, there are ten
independent equations for the twelve parameters a0 − a6,
Σ9, Σ11, G10, G12, and g. We take g as the free parameter
to use as the rate of transition from small z to large z.
The parameters in the potential are found to be

a0 ¼
3

2

1

6þ sin2θ

h
120þ 62sin2θ þ 63

ffiffiffi
6

p
gsin2θ

i
; ð43Þ

a1 ¼ −
3

ffiffiffi
6

p

4

1

6þ sin2θ

h
12þ 8sin2θ þ 9

ffiffiffi
6

p
gsin2θ

i
; ð44Þ
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a2 ¼ −
ffiffiffi
6

p

4

1

6þ sin2θ

h
32þ 24sin2θ þ 3

ffiffiffi
6

p
gð9sin2θ − 2Þ

i
;

ð45Þ

2a3cos2θ þ a5sin2θ

¼ 1

24

1

6þ sin2θ

h
24þ 22sin2θ þ 27

ffiffiffi
6

p
g sin2θ

i
; ð46Þ

2a4sin2θ þ a5cos2θ

¼ 1

24

1

6þ sin2θ

h
20þ 22sin2θ þ 3

ffiffiffi
6

p
gð9sin2θ − 2Þ

i
;

ð47Þ

a6 ¼ −
3

2
: ð48Þ

The coefficients a0, a1, a2 and a6 are determined, while
there are two equations for the three coefficients a3, a4 and
a5. That leaves a5 as a free parameter, to be fit numerically,
along with g, θ, G0, Σ, and λ.

IV. NUMERICAL SOLUTION

Using the potential discussed above, we seek a numerical
solution that simultaneously satisfies the UVand IR limits.
We use Eqs. (12), (15), and (16), which allows for an
additional term in the potential, ΔU, such that

∂
∂χ ΔU ¼ ∂

∂GΔU ¼ 0; ð49Þ

which will be determined from the numerical solution.
The differential equations represent a stiff system, and

treating the problem as an initial value problem leads to
numerical instabilities. We treat it instead as a boundary
value problem, using Dirichlet boundary conditions at both
boundaries. A relaxation method is used in combination
with input approximations for the background fields,
which are then iterated to find a stable solution to the
system with the given boundary conditions. Because the
system is nonlinear, the solution found is not guaranteed to
be unique.
The IR boundary is chosen to be sufficiently large to

capture the infrared behavior and to give accurate Regge
behavior for the large-n radial excitations of the mesons.
The UV boundary should approach zero, but it cannot reach
zero because of the singularity in the equations of motion.
This becomes a problem because Eq. (12) allows constant
and divergent terms,

ΔϕðzÞ ¼ c1 þ c2z−1: ð50Þ
Symbolically, these terms can be set to zero by enforcing
the Dirichlet boundary condition ϕð0Þ ¼ 0, but this is
impossible to enforce numerically. A creative choice of UV

boundary conditions can eliminate one, but not both, of
these unwanted terms without affecting the chiral and
glueball fields. The behavior of the numerical solutions
suggests that the desired UV behavior is an unstable
solution to the equations, and therefore difficult or impos-
sible to find with this iterative method.
As an alternative to a direct solution, we parametrize the

fields as follows:

ΨðzÞ ¼ ψðzÞUVfðzÞ þ ψðzÞIRð1 − fðzÞÞ: ð51Þ

Here fðzÞ is some function that transitions smoothly from 1
at small values of z to 0 at large z, while ψðzÞxy represents
the known UV and IR limits of the fields ϕ; χ, and G.
The switching functions need not be the same for each
field. We choose

fϕðzÞ ¼ e−ðβ1zÞ10 ; ð52Þ

fχðzÞ ¼ e−ðβ2zÞ4 ; ð53Þ

fGðzÞ ¼ e−ðβ3zÞ5 : ð54Þ

The powers of the exponential are chosen to be greater
than the known power-law behavior of the fields in the UV
limit so as to not interfere with this behavior. The βi will be
determined by numerical fitting. The switching functions
are not unique, but do allow for an accurate solution to the
differential equations, as explained below.
The potential U, because it is a function of the back-

ground fields, will change depending upon the behavior of
the fields. In particular, the additional ΔU term is numeri-
cally determined such that Eqs. (13) and (14) are solved by
the background fields. A numerical nonlinear optimization
routine, namely the interior point algorithm [22], is used to
select the parameters that minimize the error in the finite-
difference approximations to Eqs. (12), (15), and (16), thus
ensuring that the parametrized fields are solutions to the
background fields, within numerical tolerances. In this
analysis, the fields ϕ, χ, and G solve Eqs. (12)–(16) to an
accuracy of one part in 104.
The chiral condensate Σ is set using the Gell-Mann–

Oakes–Renner relation:

ðmu þmdÞΣ ¼ f2πm2
π: ð55Þ

Using mπ ¼ 139.6 MeV, fπ ¼ 92 MeV, and mu þmd ¼
7.0 MeV yields a value of Σ ¼ ð286 MeVÞ3.
In all, we have eight parameters to be determined

numerically. In addition to obtaining solutions that solve
the background equations, we also wish to achieve the best
possible global visual fit to the vector and axial-vector
meson spectra. We do not simply do a chi-squared fitting to
the experimental data because the measurement error for
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the ground-state ρ meson is so much smaller than for the
others that this would effectively act as the only constraint.
Three of the parameters are most phenomenologically

relevant: λ, which controls the slope of the meson spectra
in the large-n limit; θ, which controls the mass splitting
between the a1 and ρ mesons at large n; and β2, which
controls the location of the “bend” in the a1 spectrum.
For each set of these parameters, the other parameters are
determined by a routine that minimizes the error in the
equations of motion. The parameters found are shown in
Table I.
The background fields that are obtained from this

analysis are shown in Figs. 1–3. The asymptotic power-
law behavior of the fields is evident in the linear portions of
the log-log scale plots shown. The “transition” behavior is
most evident in the dilaton because of the large value of β1,
which controls the value of z at which the field transitions
from the UV limit to the IR limit.
We now analyze the “extra” term in the potential,

ΔU. We obtain this term numerically by subtracting the
right-hand side of Eq. (13) from its left-hand side. This term
can be approximated numerically as a function of the
dilaton field,

ΔUðϕÞ ¼ α1ϕ
2e−ðϕ−γ1Þ2=δ1 þ α2ϕ

2e−ðϕ−γ2Þ2=δ2 : ð56Þ

The best-fit values for these parameters are shown in
Table II. The ΔU as a function of ϕ is shown in Fig. 4.

V. VECTOR AND AXIAL-VECTOR SPECTRA

To calculate the spectra of the radial excitations of the
mesons, we examine the relevant terms from the string-
frame action (1),

TABLE I. Best-fit parameters for the phenomenological model.
The parameters λ; θ, and β2 are chosen for the best visual fit to the
ρ and a1 data, with the rest set by minimizing the error in the
equations of motion (12), (15), and (16).

λ1=2 304 MeV β1 3.04 GeV
G1=4

0 552 MeV β2 274 MeV
θ 1.44 β3 558 MeV
g 3.20 a5 1.63
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φ

FIG. 1. A plot of the dilaton field Φ generated by the para-
metrization (52). The UVand IR asymptotic behavior is apparent.
The coordinate x is a dimensionless rescaling of the conformal
coordinate, x ¼ ffiffiffi

λ
p

z.
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FIG. 2. A plot of the chiral field χ generated by the para-
metrization (53). The UVand IR asymptotic behavior is apparent,
with a rapid transition between them. The coordinate x is a
dimensionless rescaling of the conformal coordinate, x ¼ ffiffiffi
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FIG. 3. A plot of the glueball field G generated by the
parametrization (54). The UV and IR asymptotic behavior
is apparent, with a rapid transition between them. The
coordinate x is a dimensionless rescaling of the conformal
coordinate, x ¼ ffiffiffi

λ
p
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Smeson ¼ −
1

16πG5

Z
d5x

ffiffiffiffiffiffi
−g

p
e−2ΦTr

×

�
jDXj2 þ VmðΦ; X2;GÞ þ 1

2g25
ðF2

A þ F2
VÞ
�
:

ð57Þ

The 2 × 2 field X contains the scalar and pseudoscalar
fields ðS; πÞ, as well as the VEV. We will use the
exponential representation for the scalar field discussed
in Ref. [8],

Xe ¼
�
Sðx; zÞ þ χðzÞ

2

�
Ie2iπ

a
eðx;zÞta ; ð58Þ

where I is the 2 × 2 identity matrix.
We find the equations of motion for the various meson

fields by varying the meson action. For the vector and axial-
vector fields, we assume that the Kaluza-Klein modes are
separable from the four-dimensional parts of the fields. The
equation of motion in the axial gauge Ψ5 ¼ 0 is given by

−Ψ̈n þ _ω _Ψn þM2
ΨðzÞΨn ¼ m2

Ψn
Ψn; ð59Þ

where ω ¼ 2ΦðzÞ þ ln z. The z-dependent mass term
coefficient M2

V ¼ 0 for the vector field, and

M2
A ¼ g25χ

2

z2
ð60Þ

for the axial-vector field. The equation can be put in
the Schrödinger form with the substitution Ψn ¼ eω=2ψn,
resulting in

−ψ̈n þ
�
1

4
_ω2 −

1

2
ω̈þM2

ψ

�
ψn ¼ m2

Ψn
ψn: ð61Þ

These equations are analytically solvable in the IR limit,1

but full analysis requires the use of a numerical shooting
method to find the mass eigenvalues. The results for the
axial-vector mesons are shown in Fig. 5 and in Table III.
The results for the vector mesons are shown in Fig. 6 and in
Table IV. This model finds a better phenomenological fit
than the results presented in Ref. [7], particularly for the
ground-state ρ meson. The scalar mesons are expected to
mix with the scalar glueball field of this model; that
analysis is deferred to a future publication.

VI. PSEUDOSCALAR SECTOR

When using the exponential representation for the scalar
field, the terms from the potential do not contribute to
the equations of motion for the pion field. This can be
easily seen by noting that jXejn does not contain any terms
involving the pion field πe when n is even. We have
required the potential to be an even function of X, so there
are no such terms. This would seem to suggest that we use
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FIG. 4. Plot of the “extra” term in the potential, ΔUðϕÞ. The
solid line represents the numerical result, while the dashed line is
the fitting of Eq. (56) using the parameters of Table II.
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FIG. 5. Comparison of the predicted mass eigenvalues for the
axial-vector sector with the experimental a1-meson spectrum [23].

TABLE II. The dimensionless parameters for the fitting to ΔU.

α1 −3.043 × 101 α2 2.671 × 10−4

γ1 7.086 × 10−5 γ2 2.213 × 10−2

δ1 9.699 × 10−5 δ2 1.471 × 10−2

1The analytical solution gives a large-n spectrum with a slope
of 8λ, differing from the slope of 4λ found in other AdS/QCD
models. This difference arises because of the expð−2ΦÞ prefactor
in the action (1) compared to the prefactor of expð−ΦÞ used in
other models [6,7]. This factor of 2 is compensated by the
numerical value of λ shown in Table I, which is half the value
used in other models. Thus, the notational choice does not affect
the resulting meson spectra.
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the exponential representation to calculate the pion mass
spectrum. However, as noted in Ref. [8], πe is extremely
sensitive to boundary conditions, and the numerical results
are not reliable. For this reason, we seek to work with an
equation of motion written in the linear representation.
For convenience, we begin by deriving the equations of

motion in the exponential representation. Working in the
axial gauge Az ¼ 0, we rewrite the axial meson field in
terms of its perpendicular and longitudinal components:
Aμ ¼ Aμ⊥ þ ∂μφ. Only the longitudinal component of the
axial field, φ, contributes to the pion equations of motion.
We use Eq. (57), keeping only the relevant terms,

L ¼ e−2Φ
ffiffiffiffiffiffi
−g

p �
χ2ð∂μπe∂μπe þ ∂μφ∂μφ − 2∂μπ∂μφ

þ ∂zπe∂zπeÞ þ
1

g25
∂z∂μφ∂z∂μφ

�
: ð62Þ

Varying with respect to φ yields

e2Φ
d
dz

�
e−2Φ

z
_φ

�
þ g25χ

2

z3
ðπe − φÞ ¼ 0; ð63Þ

while varying πe gives

e2Φz3

χ2
d
dz

�
e−2Φχ2

z3
_πe

�
þm2

nðπe − φÞ ¼ 0: ð64Þ

It was shown in Ref. [8] that the equations of motion
are equivalent under the substitution πe → πl=χðzÞ, so
we make the appropriate substitution and expand the
equations:

−φ̈þ
�
2 _Φþ 1

z

�
_φ ¼ g25χ

z2
ðχφ − πlÞ; ð65Þ

−π̈l þ
�
2 _Φþ 3

z

�
_πl þ

�
χ̈ − 2_χ _Φ−

3_χ

z

�
πl
χ

¼ m2
nðπl − χφÞ: ð66Þ

We can put these equations into Schödinger-like form with
the following substitutions:

φ ¼ eω=2φn; ð67Þ

πl ¼ eωs=2πn; ð68Þ

with ω ¼ 2Φþ ln z and ωs ¼ 2Φþ 3 lnðzÞ. This yields

−φ̈n þ
�
1

4
_ω2 −

1

2
ω̈þ g25χ

2

z2

�
φn ¼

g25χ
z

πn; ð69Þ

−π̈n þ
�
1

4
_ω2
s −

1

2
ω̈s þ

χ̈

χ
−
2_χ _Φ
χ

−
3_χ

zχ
−m2

n

�
πn

¼ −m2
n
χ

z
φn: ð70Þ

The dependence of these equations of motion on the scalar
potential can be made explicit by using the background
equation for the chiral field, written here in the string frame,

z2χ̈ − 3z_χ

�
1þ z _Φffiffiffi

6
p

�
¼ m2

Xχ þ
∂U
∂χ : ð71Þ
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FIG. 6. Comparison of the predicted mass eigenvalues for the
vector sector with the experimental ρ-meson spectrum. The
included resonances are based upon Ref. [24] with the n ¼ 2
resonance as suggested by Ref. [25].
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FIG. 7. Comparison of the predicted mass eigenvalues for the
pseudoscalar sector with the experimental π-meson spectrum
[23]. The states plotted here with n ¼ 4 and n ¼ 6 are identified
as radial excitations of the pion only in the further states of the
PDG. The unconfirmed state X(2210), with unknown quantum
numbers, is plotted here as the n ¼ 5 state of the pion.
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Substituting, we can rewrite Eq. (70) as

−π̈n þ
�
1

4
_ω2
s −

1

2
ω̈s þ

m2
X

z2
þ 1

z2
∂U
∂χ −m2

n

�
πn ¼ −m2

n
χ

z
φn:

ð72Þ

The results are shown in Fig. 7 and in Table V. It should
be emphasized that all parameters were previously deter-
mined, so these are truly predictions of the model. The
states with mass 2070 and 2360 MeV are listed by the
Particle Data Group (PDG) as further states, with less
certainty assigned to them. We assume that these should
be identified as the n ¼ 4 and n ¼ 6 states, leaving a
vacancy at n ¼ 5 for a state still to be observed in future

experiments. On the other hand, the PDG has two further
states listed as X(2210) with unknown quantum numbers,
either of which could be the n ¼ 5 state. We include this
state in the figure and in the table, but it should be
recognized that nothing in our work depends on this very
speculative identification.

VII. CONCLUSION

In this paper we discussed the construction of a potential
for the background fields of a soft-wall AdS/QCD model.
We showed the limitation of a model that contains only
the dilaton and chiral condensate fields, and suggested a
solution by adding a glueball condensate to the model. We
analytically constructed a general potential Uðϕ; χ; GÞ that
recovers the necessary asymptotic behavior of the back-
ground fields. Using this as a basis, we numerically
constructed a potential that solves the selected background
equations to within an accuracy of 10−4. There is an
additional allowed term in the potential, ΔUðϕÞ, that does
not affect the equations that were used in the numerical
procedure. This term was found numerically, and fit as a
function of the dilaton field. These background fields were
then used to find the spectra of the radial Regge mass
spectra of the vector and axial-vector mesons. The model
shows good phenomenological agreement with the exper-
imental data for these spectra. With the parameters thusly
determined, we computed the radial Regge mass spectrum
for the pseudoscalar mesons (pions). Again there was
good agreement, except for the most massive state, which
perhaps should be identified with the radial quantum
number n ¼ 6 instead of n ¼ 5.
The potential as constructed here is not guaranteed to

be unique. If a different set of the background equations
were chosen, the extra term would be expressed as a
function of fields other than the dilaton. The parametriza-
tion in Eqs. (52)–(54) could also be chosen differently,
resulting in a different potential but making little difference
to the resulting meson spectra. Finally, terms can be added
that do not affect the equations of motion at all, namely,
terms which satisfy

ΔU ¼ Δ
∂U
∂ϕ ¼ Δ

∂U
∂χ ¼ Δ

∂U
∂G ¼ 0: ð73Þ

This work demonstrates the construction of a potential
for the background fields of a soft-wall AdS/QCD
model that captures several key features of QCD observed
through meson spectra. The radially excited states of the
light mesons have linear Regge trajectories. Chiral sym-
metry is not restored for highly excited mesons, as seen in
the constant mass splitting of the vector and axial-vector
mesons. Working as we are in the limit of zero up- and
down-quark masses, the pion is massless.
Future improvements to this model could include incor-

porating the light-quark masses by adding a linear term to

TABLE III. The experimental [23] and predicted values for the
masses of the axial-vector mesons.

n a1 experimental (MeV) a1 model

1 1230� 40 1280
2 1647� 22 1723
3 1930þ30−70 1904
4 2096� 122 2078
5 2270þ55−40 2254

TABLE IV. The experimental and predicted values for the
masses of the vector mesons. The included resonances are based
upon Ref. [24] with the n ¼ 2 resonance as suggested by
Ref. [25].

n ρ experimental (MeV) ρ model

1 775.5� 1 860
2 1282� 37 1216
3 1465� 25 1489
4 1720� 20 1720
5 1909� 30 1923
6 2149� 17 2107
7 2265� 40 2276

TABLE V. The experimental [23] and predicted values for the
masses of the pseudoscalar mesons. The states marked with a �
appear only in the further states of the PDG. The state marked
with a † is an unconfirmed resonance X(2210) with unknown
quantum numbers. Whether it really represents the n ¼ 5 state is
pure speculation.

n π experimental (MeV) π model

1 140 0
2 1300� 100 1580
3 1816� 14 1868
4 2070� 35

* 2078
5 2210þ79−21

† 2230
6 2360� 25

* 2389
7 � � � 2544
8 � � � 2686

DYNAMICAL THREE-FIELD ADS/QCD MODEL PHYSICAL REVIEW D 90, 074034 (2014)

074034-9



the UV limit of the chiral condensate field. The scalar
mesons and glueballs will mix, and this analysis is left for
future work. This potential also opens the possibility of
exploring the thermal properties of a model that has the
correct chiral symmetry breaking behavior.
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