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We investigate the order of the finite temperature chiral symmetry restoration transition for QCD with
two massless fermions, by using a novel method, based on simulating imaginary values of the quark
chemical potential μ ¼ iμi, μi ∈ R. Our method exploits the fact that, for low enough quark mass m and
large enough chemical potential μi, the chiral transition is decidedly first order, then turning into crossover
at a critical mass mcðμÞ. It is thus possible to determine the critical line in the m − μ2 plane, which can be
safely extrapolated to the chiral limit by taking advantage of the known tricritical indices governing its
shape. We test this method with standard staggered fermions and the result of our simulations is that
mcðμ ¼ 0Þ is positive, so that the phase transition at zero density is definitely first order in the chiral limit,
on our coarse Nt ¼ 4 lattices with a≃ 0.3 fm.
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I. INTRODUCTION

Quantum chromodynamics is known to undergo a
finite temperature “transition” at which both partial decon-
finement and partial chiral symmetry restoration take
place. Because of its relevance to heavy ion collisions,
the early universe and astrophysics, the nature of this QCD
transition is the subject of intense numerical studies.
Present results show the absence of a true nonanalytic
phase transition in the case of physical quark masses [1–3],
so that deconfinement would just correspond to a rapid
analytic change of the effective degrees of freedom (cross-
over). This is consistent with the fact that the global
symmetries of QCD associated with the transition are only
exact in the limits of infinite quark masses (center sym-
metry) or of massless quarks (chiral symmetry): only in

these limits is a true phase transition expected a priori,
representing a change in the realization of the correspond-
ing symmetry.
However, a full understanding of the QCD phase diagram,

and in particular of the interplay between center symmetry
and chiral symmetry, requires us to study the phase transition
as a function of the quark masses. The current state of
knowledge at zero baryon density is summarized in Fig. 1.
For three degenerate flavors, QCD displays a first order
phase transition in the limits of zero and infinite quark
masses, associated with the breaking of the chiral and center
symmetries, respectively. For finite quark masses, instead,
these symmetries are broken explicitly; the associated first
order transitions weaken away from these limits, until they
disappear at critical points, belonging to the Ising (Z2)
universality class. The chiral [4,5] and deconfinement [6–8]
critical lines are known on coarse Nt ¼ 4 lattices, based on
simulationswith staggeredandWilsonfermions, respectively.
A still open issue is the order of the transition in the limit

of two massless flavors (upper left corner of Fig. 1). This is
in fact a longstanding problem, with a history of conflicting
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lattice results between Wilson [9,10] and staggered, and
even within staggered [11–19] fermions. The possibilities
for continuum QCD have been discussed systematically in
Refs. [20–22]. The classical action has a global SUð2ÞR ×
SUð2ÞL ×UAð1Þ chiral symmetry, with the UAð1Þ under-
going anomalous breaking and expected to be effectively
restored at high temperature. Since the phase transition is
associated with a change in the realization of an exact
symmetry, an analytic crossover is ruled out, leaving room
for either a first order or second order transition. In the case
of a second order transition, the corresponding universality
class is fixed by the critical behavior of the associated
effective chiral model: that can be SUð2ÞL × SUð2ÞR≃
Oð4Þ, or Uð2ÞR ×Uð2ÞL=Uð2ÞV [21,22], depending on the
strength of the axial anomaly at the transition temperature.
A first order transition, instead, can be present independ-
ently of the critical behavior of the chiral effective model,
though it is generally believed that a vanishing strength
of the axial anomaly could make it more likely [20–23].
In fact, the presence or absence of a first order transition
is something which depends on the interplay among the
degrees of freedom of the strong interactions which are
effective around the transition, and can be decided only on
the basis of direct numerical simulations of QCD. Once
finite quarkmasses are switched on, a second order transition
disappears immediately, while a first order transition gets

gradually weakened, until it disappears at a Z2 critical point.
The two possible cases are sketched in Fig. 2.
Unfortunately, distinguishing between these two scenar-

ios (first or second order transition) by lattice simulations is
notoriously difficult. Since massless fermions cannot be
directly simulated, the standard strategy is to perform
simulations at a number of finite quark masses, trying to
approach the chiral limit. If the transition is second order,
then one should observe the scaling relations expected
near the critical point. If the transition is first order, one
possibility is to directly detect the first order line at finite
quark mass, by observing the associated discontinuities and
metastabilities. Alternatively, if the critical quark mass mc
at which the first order disappears is too small to be probed
directly, one should look for the Z2 critical behavior near
the critical endpoint.
Various studies have found no signs of metatabilities in

the range of masses explored up to now, thus failing a direct
detection of first order. On the other hand, as we discuss in
the following, the analysis of the critical behavior is still
not conclusive. Most scaling relations are given in terms of
the symmetry breaking parameter, i.e., the quark mass m.
Examples are given by the divergent part of the suscep-
tibility of the order parameter (i.e., the chiral susceptibility):

χðmÞ ∼ Bmð1−δÞ=δ ð1Þ

or, alternatively, by the pseudocritical temperature as a
function of the quark mass:

TcðmÞ ¼ Tcð0Þ þ Am1=ðβδÞ: ð2Þ

Unfortunately, the critical behavior turns out to be very
similar for the various universality classes which could be
relevant. For instance, the behavior of the chiral suscep-
tibility turns out to be consistent with the Oð4Þ scenario
(1 − 1=δ≃ 0.79, see [24,25]), but it is hardly possible to
distinguish it from that predicted by the Uð2ÞR ×
Uð2ÞL=Uð2ÞV universality class (whose critical indices
are almost identical to that of the Oð4Þ case, see [22]),
from other OðNÞ universality classes (e.g., Oð2Þ, see [26]),
or even from the Z2 critical behavior associated with a
critical endpoint mass mc close to zero (1 − 1=δ≃ 0.79 for
Z2, see [27]).
The same is true for the behavior of the pseudocritical

temperature, as noted both for staggered [18] and Wilson
[28] fermions, since the critical exponents are very close,
e.g., 1=ðβδÞ≃ 0.537, 0.639 for Oð4Þ, Z2, respectively (see
[24,25,27]), so that there is no way of distinguishing the
correct scenario within the range of currently explorable
quark masses. A more sensitive quantity would be the
specific heat [18], whose critical exponent is α≃ −0.24,
0.11, 1 for Oð4Þ, Z2 and first order respectively (see
[24,25,27]), but unfortunately determining α by lattice

FIG. 2. Possible scenarios for the chiral phase transition as
function of the pion mass.

FIG. 1. Schematic behavior of the order of the finite temperature
phase transition forNf ¼ 2þ 1 QCD as a function of the up/down
and strange quark masses (mu;d, ms), at zero baryon chemical
potential. Oð4Þ and Z2 denote transitions of the second order in
the universality class of the 3dOð4Þ and Isingmodels, respectively.
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simulations is made difficult by the presence of large
nonsingular contributions.
In the present paper, we propose an alternative approach

to solve this problem, which is based on the investigation of
the phase diagram in the presence of a purely imaginary
quark chemical potential μ ¼ iμi. This is usually exploited
to partially circumvent, via analytic continuation, the sign
problem which is met in QCD at finite baryon density.
However, the phase diagram at imaginary μ turns out to be
quite interesting by itself and, by exploiting its peculiar
features, we can extract useful information for the problem
at hand.
Our approach is based on the clear evidence of the first

order nature of the transition at large enough imaginary
chemical potentials and low quark masses. The nature of
the transition in the chiral limit can be explored by
determining the maximal quark mass necessary to keep
the transition first order while driving the chemical poten-
tial to zero. While answering this question might appear as
difficult as (or even harder than) the original problem, the
issue is greatly simplified by taking advantage of the
universal tricritical scaling, which imposes strong con-
straints on the boundary of the first order region, as
discussed below.
The paper is organized as follows. In Sec. II we discuss

the general form of the QCD phase diagram at imaginary
chemical potential. Some of its properties are used in
Sec. III to propose our new method to assess the problem of
the determination of the order of the Nf ¼ 2 chiral
transition at μ ¼ 0. In Sec. IV we describe our numerical
setting and the results obtained by using the introduced
method. Finally in Sec. V we present our conclusions and
perspectives for future studies. Preliminary results have
been presented in [29].

II. PHASE DIAGRAM FOR IMAGINARY
CHEMICAL POTENTIAL

When the chemical potential is considered as a generic
complex parameter entering the definition of the partition
function Z, the two following exact symmetries emerge
([30])

ZðμÞ ¼ Zð−μÞ; Z
�
μ

T

�
¼ Z

�
μ

T
þ i

2πn
3

�
n ∈ Z;

ð3Þ

which imply reflection symmetry in the imaginary μ
direction about the “Roberge-Weiss” values μ ¼ iπT=
3ð2nþ 1Þ. Along these lines a Z2 exact symmetry is present
[30], which can be explicitly realized or spontaneously
broken, different sectors corresponding to different preferred
orientations of the Polyakov loop. Transitions between
neighboring sectors are of first order for high T [30] and

analytic crossovers for low T [31–33]. The first order
transition lines at μ ¼ iπT=3ð2nþ 1Þ may end with a
second order critical point or with a triple point, branching
off into two first order lines. One of these may continue to
zero and real chemical potential and represents the analytic
continuation of the chiral or deconfinement transition.
For the deconfinement transition this has been explicitly
demonstrated in [6], for the chiral transition it is demon-
strated in the present work. Which of these possibilities
occurs depends on the number of quark flavors and on their
masses. From these considerations, it follows that the phase
diagram in the T − μi plane is of the form indicated in Fig. 3.
Recent numerical studies have shown that the triple

point case is found for heavy and light quark masses,
while for intermediate masses one finds a second order
endpoint (this happens both for Nf ¼ 2 [34,35] and for
Nf ¼ 3 [36]). As a function of the (increasing) quark
masses, the finite temperature transition for the theory
with fixed μ=T ¼ iπ=3 thus switches from being first
order to second order and then to first order again. The
points at which the change of the order takes place are
tricritical points and a sketch of this dependence of the
order of the transition on the quark masses is depicted in
Fig. 4. Results have first been obtained within a staggered
fermion formulation of QCD, but efforts have been
undertaken to confirm their universality also within a
Wilson fermion approach [35,37–39] leading to the same
qualitative phase diagram [35]. The Roberge-Weiss end-
point transition, or variants of it, also has been studied
in many other different contexts and QCD-like theories
[40–51].
Let us now consider the analogue of the phase diagram of

Fig. 1, but at the Roberge-Weiss value of the imaginary
chemical potential: μ=T ¼ iπ=3. It is important to stress that
in this case the finite temperature transition corresponds to
the breaking of a Z2 symmetry, thus the possibility of an

FIG. 3. Generic phase diagram as a function of imaginary
chemical potential and temperature. Solid lines are first order
Roberge-Weiss transitions. The behavior along dashed lines
depends on the number of flavors and the quark masses.
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analytic crossover can be excluded a priori. The simplest
expectation is that the tricritical points observed for Nf ¼ 2
and Nf ¼ 3 are connected to each other in the (mu;d, ms)
quark mass plane, the resulting phase diagram being
depicted in Fig. 5: two tricritical lines separate regions of
first order and of second order transitions. Note that the
assumption of continuity of the tricritical lines can be
checked directly by numerical simulations, since there is
no sign problem for imaginary μ.
We now have to connect the two phase diagrams in

Fig. 1 and Fig. 5 to obtain the complete phase diagram in
the three dimensional space (mu;d, ms, μ2). When there are
no symmetry constraints second order transitions are
expected to be washed out by perturbations, while first

order transitions are robust. As a consequence, we can
expect the Z2 region at μ=T ¼ iπ=3 to be connected with
the crossover region at μ ¼ 0, while the two regions of
first order transitions at small and large masses become
nontrivial three dimensional volumes, which extend from
the μ ¼ 0 plane to the Roberge-Weiss μ2 value.
We thus expect a phase diagram of the type depicted in

Fig. 6, in which the three dimensional first order regions are
bounded by surfaces of second order phase transitions in
the universality class of the 3d Ising model. Besides the
first order regions and the critical surfaces, one or possibly
two planar regions of second order transitions are present:
one is in the bottom plane of Fig. 6 (and corresponds to the
second order region in Fig. 5), the possible other is in the
plane mu;d ¼ 0, where the relevant symmetry is chiral
symmetry.

III. THE NF ¼ 2 CHIRAL TRANSITION AND
TRICRITICAL SCALING

Let us take a look at the Nf ¼ 2 section of the phase
diagram in Fig. 6, i.e., at the plane ms ¼ ∞, and, in
particular, at its first order region present for small values
of mu;d, which is shown in Fig. 7. This picture (as well as
Fig. 1 and Fig. 6) is drawn by assuming the Nf ¼ 2 chiral
transition to be second order for μ ¼ 0, so that two tricritical
points are present: the one at ðμ=TÞ2 ¼ −ðπ=3Þ2,
mu;d ¼ mtric, which is labeled “A” and is just the upper
point of the tricritical line shown in Fig. 5, and the one
located at mu;d ¼ 0, ðμ=TÞ2 ¼ ðμ=TÞ2tric < 0, which is con-
nected to the tricritical point present at μ ¼ 0 (see Fig. 6) and
is labeled “B”.

FIG. 4. Schematic picture of the phase diagram for Nf ¼ 2 and
Nf ¼ 3 at the Roberge-Weiss point μi=T ¼ π=3. Solid lines
denote first order transitions, the dashed line indicates a second
order transition of the 3d Ising universality class and the two dots
represent the tricritical points, at which the order of the transition
changes.

FIG. 5. The behavior of the order of the finite temperature
transition in Nf ¼ 2þ 1 QCD at the Roberge-Weiss point
μi=T ¼ π=3. The regions denoted by 1st and Z2 represent,
respectively, regions where first order transitions and second
order transitions of the universality class of the 3d Ising model
take place. The solid lines are lines of tricritical points and the
dashed line is the line ms ¼ mu;d corresponding to Nf ¼ 3 QCD.
The dots represent the tricritical points found in previous Nf ¼ 2
([34,35]) and Nf ¼ 3 ([36]) simulations.

FIG. 6. The same as in Fig. 1, with the quark chemical potential
μ as an additional parameter. The critical boundary lines sweep
out surfaces as μ is turned on. At μ=T ¼ iπ=3 (value denoted by
RW), as well as at mu;d ¼ 0, the critical surfaces terminate in
tricritical lines (represented by bold dashed lines), which fix the
curvature of the surfaces through tricritical scaling.
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We can now come back to our original aim, that is the
determination of the order of the Nf ¼ 2 chiral transition at
zero density: the two possible cases correspond to
ðμ=TÞ2tric < 0 (second order) and ðμ=TÞ2tric > 0 (first order).
Our strategy to attack this problem is thus:
(1) map the line of Z2 second order transition at

mu;d > 0 and ðμ=TÞ2 < 0,
(2) extrapolate this line to mu;d ¼ 0 and check if its

intersection with the axis happens at positive or
negative values of ðμ=TÞ2.

The first task can be accomplished by using standard
tools of finite size scaling theory. The location of the
transition line can be conveniently determined by looking
at the crossing points of renormalization group invariant
quantities measured for different values of the parameters
and on different volumes.
The extrapolation to the chiral limit of the curve obtained

in this way appears at a first sight a much more delicate
point. However, the critical line, in the proximity of a
tricritical point, has to follow a power law with known
critical indices (see [52]). For the case studied here the
scaling law of the critical line is given by

m2=5
u;d ¼ C

��
μ

T

�
2

−
�
μ

T

�
2

tric

�
: ð4Þ

The same constraint imposed by tricritical scaling has been
used, e.g., in [53,54] to predict the shape of the Z2 critical
line in the proximity of the tricritical point in the phase
diagram at μ ¼ 0 (see Fig. 1).
By checking the agreement of our data with the scaling

relation Eq. (4) we can estimate the size of the scaling
region and, if we have enough data in the scaling region, we
can use Eq. (4) to safely estimate C and ðμ=TÞ2tric.

IV. NUMERICAL RESULTS

In this section we present the numerical results obtained
using the method introduced in Sec. III. The present study
is limited to the use of unimproved staggered fermions and
lattices with temporal extentNt ¼ 4, however the method is
clearly general and it can be used to approach the
continuum limit with no particular technical difficulties.
Numerical computations have been carried out on standard
CPU farms and on graphics processing units (GPUs),
exploiting the GPU code developed in Ref. [55].
To map out the critical line shown in Fig. 7, we used the

crossing method for the fourth order cumulant

B4ðm; μÞ ¼ hðδXÞ4i
hðδXÞ2i2 ; ð5Þ

where δX ¼ X − hXi is the fluctuation of the variable of
interest [56,57]. Since we investigated the region of small
masses, it was natural to take for X the chiral conden-
sate: X ¼ ψ̄ψ .
For the application of this method various simulations

were performed for several values of the masses (amu;d),
of the (imaginary) chemical potential ððaμÞ2Þ and of the
bare coupling (β). For each couple of ðamu;d; ðaμÞ2Þ values
we identified (by the vanishing of the third moment,
hðδXÞ3i ¼ 0) the pseudocritical value of the coupling,
denoted by βpcðamu;d; ðaμÞ2Þ, that is the value which in
the thermodynamic limit converges to the critical value
separating the low and high-temperature phases. We then
computed the value of the fourth order cumulant

B4ðamu;d; ðaμÞ2Þ≡ B4ðamu;d; ðaμÞ2; βpcÞ; ð6Þ

which is, in the thermodynamical limit, a discontinuous
function of the parameters. Indeed B4 ¼ 1 if a first order
transition is present (i.e., if the distribution of X is strongly
peaked around two values), B4 ¼ 3 when there is no
transition (i.e., the X distribution is Gaussian) while
the value of the B4 parameter at a second order transition
is universal and depends on the scaling form of the X
distribution. In the particular case of the three dimensional
Ising model universality class this value is B4 ≈ 1.604
(see e.g., [27]).
Discontinuities are smeared out in a finite volume and

B4ðamu;d; ðaμÞ2Þ passes continuously through the critical
value. At fixed amu;d and in the neighborhood of the
critical chemical potential, denoted by ðaμcÞ2, the function
B4ðamu;d; ðaμÞ2Þ can be expanded to leading order,
obtaining (see e.g., [57])

B4ðamu;d; ðaμÞ2Þ
≈ bð0Þ4 ðamu;dÞ þ bð1Þ4 L1=νðamu;dÞððaμÞ2 − ðaμcÞ2Þ; ð7Þ

with bð0Þ4 ðamu;dÞ ≈ 1.604 and ν ≈ 0.63.

FIG. 7. The Nf ¼ 2 (i.e., ms ¼ ∞) section of Fig. 6. The two
tricritical points at mu;d ¼ 0 and μ ¼ iπT=3 are connected by a
Z2 critical line. As in Fig. 6 this picture is plotted assuming the
Nf ¼ 2 finite temperature transition to be second order in the
chiral limit.
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By using this expression we can, for each value of the
bare quark mass amu;d, find the corresponding critical
value ðaμcÞ2. An example from our data is shown in Fig. 8,
where (at fixed bare mass amu;d ¼ 0.005) we scanned in
imaginary chemical potential using up to four different
volumes in order to identify the critical point and in all
cases we reached lattice sizes such thatmπL≳ 3 (in fact for
all but the lightest mass used we arrived to mπL≳ 4).
The fit is performed simultaneously on all the data
at different volumes and bð0Þ4 is fixed to its infinite volume
limit.
This procedure was carried out for six different values of

the quark mass and the results are shown Fig. 9. The quark
mass axis is rescaled with the appropriate critical exponent

in order to display the scaling and extrapolation more
clearly, as a straight line. Four data points accurately follow
the tricritical scaling curve, which can then be used to
estimate the position of the tricritical point “B” in the chiral
limit, for which we find the large positive value

�
μ

T

�
2

tric
¼ 0.85ð5Þ: ð8Þ

This definitely implies a first order behavior for the
two-flavor chiral phase transition on Nt ¼ 4 lattices. A
crude estimate (obtained by using the interpolating formula
for the masses of Ref. [58]) puts the critical pion mass
corresponding to the second order point at μ ¼ 0
to mc

π ∼ 60 MeV.

V. CONCLUSIONS

We have presented a new approach for the determination
of the order of the chiral transition for Nf ¼ 2 QCD, based
on the investigation of the phase diagram extended to
imaginary chemical potential. In this approach, the chiral
limit extrapolation is controlled and constrained by scaling
considerations which follow from the universal behavior
around a tricritical point. Present results show that, for
QCD discretized onNt ¼ 4 lattices with standard staggered
fermions, the transition is first order in the chiral limit. This
is consistent with some earlier lattice investigations [18]
and with expectations from the fate of the Uð1ÞA anomaly
using overlap fermions [59].
It should be stressed that the explored Nt ¼ 4 lattice is

quite coarse, corresponding to a ∼ 0.3 fm, and that results
for mcðμÞ on finer lattices are needed before a continuum
limit can be taken. For μ ¼ 0 it is known that the three-flavor
chiral first order region inFig. 1 (left) shrinks significantlyon
finer lattices [60] or with improved actions [61]. Therefore,
the issue about the presence of a first order chiral transition
for Nf ¼ 2 QCD in the continuum remains nontrivial.
We have shown that the proposed approach is able to

provide definite answers and constitutes a solid framework
for future studies on the subject.
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