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We study ground and radial excitations of flavor singlet and flavored pseudoscalar mesons within the
framework of the rainbow-ladder truncation using an infrared massive and finite interaction in agreement
with recent results for the gluon-dressing function from lattice QCD and Dyson-Schwinger equations.
Whereas the ground-state masses and decay constants of the light mesons as well as charmonia are well
described, we confirm previous observations that this truncation is inadequate to provide realistic
predictions for the spectrum of excited and exotic states. Moreover, we find a complex conjugate pair of
eigenvalues for the excited DðsÞ mesons, which indicates a non-Hermiticity of the interaction kernel in the
case of heavy-light systems and the present truncation. Nevertheless, limiting ourselves to the leading
contributions of the Bethe-Salpeter amplitudes, we find a reasonable description of the charmed ground
states and their respective decay constants.
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I. INTRODUCTION

Bound states are a fascinating subject as they teach us a
great deal about the nature of interactions between con-
stituents of a given field theory. In the case of quantum
chromodynamics (QCD), this fascination is augmented by
the empirical fact that no asymptotically free states, i.e.,
colored quarks and gluons, are observed. While studies of
the analytic structure of colored Green functions are very
instructive and were indeed crucial to get insight on their
infrared behavior [1–27] and associated confinement mech-
anisms, they do not offer direct access to experimental tests.
Nonetheless, their precise form may be studied indirectly
via electromagnetic probes of the bound states formed by
the theory’s constituents [28–31] and many dedicated
experiments at existing and future accelerator facilities
will serve exactly this purpose.
In QCD, the simplest possible bound state is given

by the pion which plays a pivotal role in the understanding
of the low-energy domain, being the lightest strongly
bound antiquark-quark state as well as the Goldstone
bosons associated with chiral symmetry breaking. Model-
independent properties of the Goldstone boson were
derived long ago [32] and express the intimate connection
between the pion’s Bethe-Salpeter amplitude (BSA) and
the quark propagator in the chiral limit.
Heavy mesons, on the other hand, provide a formidable

opportunity to study additional nonperturbative features of
QCD and can be used to test simultaneously all manifes-
tations of the Standard Model, namely, the interplay
between electroweak and strong interactions. In the infi-
nitely heavy quark limit, the heavy-quark velocity becomes
a conserved quantity and the momentum exchange with

surrounding light degrees of freedom is predominantly soft.
Since the heavy-quark spin decouples in this limit, light
quarks are blind to it. In essence, they do not experience
any different interactions with a much heavier quark in a
pseudoscalar or vector meson. In practice, however, heavy-
flavor and heavy-spin breaking effects are important and
while dynamical chiral symmetry breaking (DCSB) hardly
plays a role in charmonium and bottonium states, it cannot
be ignored in heavy-light systems, such as in D and B
mesons. A daunting challenge is presented by the disparate
energy scales and asymmetric momentum distribution
within these flavor nonsinglet mesons, i.e., the simulta-
neous treatment of heavy-quark symmetry breaking effects
and DCSB, as the interactions of a heavy with a light quark
are governed by the nonperturbative dynamics of the order
ΛQCD. Incidentally, this is also the heavy meson’s size
scale.
Numerical solutions of the heavy meson’s BSA with

renormalization-group improved ladder truncation, follow-
ing work on the kaon BSA [33,34], proved to be unsuc-
cessful: the truncations do not yield the Dirac equation
when one of the quark masses is much larger. To circum-
vent these problems, the Dyson-Schwinger equation (DSE)
for the heavy quark was solved for an infrared-suppressed
gluon momentum as described in Ref. [35]; no such
infrared suppression was applied to the dressing of the
light quark and the binding kernel. This approach repro-
duces well the masses for ground-state pseudoscalar and
vector heavy-light mesons, but overestimates experimental
weak decay constants by ∼20% in the case of the D meson
and ∼40% for the B meson. Alternatively, in the heavy-
quark propagation the mass function is approximated by a
momentum-independent constituent mass. This is justified
for the b quark and reasonable for the c quark given the
modest variation in its functional behavior over a wide*bruno.bennich@cruzeirodosul.edu.br
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momentum range and the constituent-quark mass is fitted to
the lightest meson, the D and B mesons in the case of
pseudoscalars [35,36]. The resulting BSA yields again
ground-state pseudoscalar and vector meson masses which
compare very well with experimental values but strongly
underestimate the leptonic decay constants. The situation
improves when one uses a complex conjugate pole repre-
sentation (with three poles) instead of a heavy-quark
constituent propagator to compute the normalization and
weak decay constant, though omitting a simultaneous
application to the Bethe-Salpeter kernel seems inconsistent
[36]. Nevertheless, in the latter case the decay constants are
overestimated by about 15% for the D, Ds, and B mesons
compared with experimental averages.
Aside from an unfavorable comparison with experimen-

tal data, one may object that the constituent-quark approach
neglects valuable information of the quark’s dressed
mass function, namely, its imaginary part, Im Mðp2Þ ∼ 0
[37–40]. Thus, in solving the Bethe-Salpeter equation
(BSE), one approximates the complex mass function by
a flat surface on the complex plane. Our motivation is to
verify whether a fully consistent, simultaneous numerical
solution of the heavy-quark DSE and heavy-light pseudo-
scalar meson BSE can be obtained with a modern approach
to the rainbow-ladder (RL) truncation based on the inter-
action proposed by Qin et al. [41]. This Ansatz produces an
infrared behavior of the interaction, commonly described
by a “dressing function” Gðk2Þ [32], congruent with the
decoupling solution found in DSE and lattice studies of the
gluon propagator [7–17,21]. Indeed, the gluon propagator
is found to be a bounded and regular function of spacelike
momenta with a maximum value at k2 ¼ 0.
Obviously, the cause for the difficulties encountered in

solving the BSE for heavy-light mesons may not solely lie
in the infrared behavior of the interaction but also in the
truncation employed. In particular, hadron properties are
not much affected by the deep infrared of the interaction;
rather, they seem to be sensitive to the support and strength
of the interaction at the scales of a few hundred MeV
[29,42]. As known from a long series of BSE studies, the
RL truncation is successful for equal-mass mesons, for
instance light q̄q mesons, such as the pion, kaon, and ρ
[32], but also for Q̄Q charmonia and bottonium [43–46]
where subtle cancellations between contributions from the
quark-gluon and antiquark-gluon vertices are in order. Due
to the very different momentum and energy-scale distribu-
tions, the dressing of the quark-gluon vertex becomes
important for heavy-light systems. Progress to go beyond
RL truncation has been made and is under way [47–53] and
the consistent inclusion of a dressed quark-gluon vertex
which satisfies the relevant Ward-Takahashi identities
(WTI) can be realized by a general form of the BSE [54].
Nonetheless, we here focus on the interaction proposed

in Ref. [41] within the RL approximation to describe the
properties of the light, strange, and charmed flavor singlet

and nonsinglet pseudoscalar mesons, such as their mass
spectrum, that of the first radial excitation and related weak
decay constants. As we demonstrate, recent improved
numerical techniques [55,56] and a careful numerical
treatment of the flavored DSE and BSE in conjunction
with a particular infrared behavior of the interaction is able
to satisfactorily reproduce the aforementioned observables.
In particular, we compute the decay constants of the radial
excitations of the kaon, ηc, and a fictitious s̄s state. We
recall that this was not possible for the heavy-light mesons
within the conventional RL framework of Ref. [35]. In the
present work, solutions for theD andDs mesons are found,
though the truncation leads to complex eigenvalues of their
excited states if higher moments of the Chebyshev expan-
sion of the BSA are included. We thus confirm that an
accurate and veracious description of the heavy-light
flavored mesons requires BSE solutions beyond the RL
approximation.

II. PSEUDOSCALAR BOUND STATES

A. Dyson-Schwinger equation

We work in a continuum approach of QCD based on the
RL truncation of the quark DSE and of the quark-antiquark
kernel of the meson’s BSE, which is the leading term in a
systematic symmetry-preserving truncation scheme. The
quark’s gap equation is described by the following DSE,1

S−1ðpÞ ¼ Z2ðipþmbmÞ þ Σðp2Þ; ð1Þ

where the dressed-quark self-energy contribution is
(q ¼ k − p),

Σðp2Þ ¼ Z1g2
Z

Λ

k
DμνðqÞ λ

a

2
γμSðkÞΓa

νðk; pÞ: ð2Þ

The mnemonic shorthand
R
Λ
k ≡ R

Λ d4k=ð2πÞ4 represents a
Poincaré-invariant regularization of the integral with the
regularization mass scale, Λ, and where Z1;2ðμ;ΛÞ are the
vertex and quark wave-function renormalization constants.
The nonperturbative interactions contribute to the self-
energy, Σðp2Þ, which corrects the current-quark bare mass,
mbmðΛÞ. The integral is over the dressed gluon propagator,
DμνðqÞ, and the dressed quark-gluon vertex, Γa

νðk; pÞ, and
the color matrices λa are in the fundamental representation
of SU(3). In Landau gauge the gluon propagator is purely
transversal,

Dab
μνðqÞ ¼ δab

�
gμν − kμkν

q2

�
Δðq2Þ
q2

; ð3Þ

1We employ throughout a Euclidean metric in our notation:
fγμ;γνg¼ 2δμν; γ

†
μ ¼ γμ; γ5 ¼ γ4γ1γ2γ3, tr½γ4γμγνγργσ � ¼−4ϵμνρσ ;

σμν ¼ ði=2Þ½γμ; γν�; a ·b¼
P

4
i¼1aibi; and Pμ timelike ⇒ P2 < 0.
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where Δðk2Þ is the gluon-dressing function. The quark-
gluon vertex in this truncation is simply given by

Γa
μðk; pÞ ¼

λa

2
γμ: ð4Þ

Following Ref. [41] and suppressing color indices, we write

Z1g2DμνðqÞΓμðk; pÞ → Z2
2

Gðq2Þ
q2

TμνðqÞγμ; ð5Þ

with the transverse projection operator TμνðqÞ≔ gμν −
qμqν=q2 and the effective coupling is the sum of two terms:

Gðq2Þ
q2

¼ 8π2

ω4
D exp

�
− q2

ω2

�
þ 8π2γmF ðq2Þ
ln ½τ þ ð1þ q2=Λ2

QCDÞ2�
:

ð6Þ
In Eq. (6), γm ¼ 12=ð33 − 2NfÞ, Nf ¼ 4, ΛQCD ¼
0.234 GeV; τ ¼ e2 − 1; and F ðq2Þ ¼ ½1 − expð−q2=
4m2

t Þ�=q2, mt ¼ 0.5 GeV. The parameters ω and D,
respectively, control the width and strength of the inter-
action and appropriate values will be discussed in Sec. IV.
The second term is a bounded, monotonically decreasing
and regular continuation of the perturbative-QCD running
coupling for all spacelike values of k2, whereas the first
term is an Ansatz for the interaction at infrared momenta.
It is crucial that the form of this Ansatz provides enough
strength to realize DCSB and/or confinement. For momenta
k2 ≳ 2 GeV2, the perturbative contributions markedly
dominate the interaction.
With this, the solutions for spacelike momenta, p2 > 0,

to the gap equation (1) for a given flavor, f, are generally

SfðpÞ ¼ ½ipAfðp2Þ þ IDBfðp2Þ�−1; ð7Þ

where one imposes the renormalization condition,

Zfðp2Þ ¼ 1=Afðp2Þjp2¼μ2 ¼ 1; ð8Þ

at large spacelike μ2 ≫ Λ2
QCD. The mass function,

Mfðp2Þ ¼ Bfðp2; μ2Þ=Afðp2; μ2Þ, is independent of the
renormalization point μ. In order to make quantitative
matching with pQCD, another renormalization condition,

S−1f ðpÞjp2¼μ2 ¼ ipþmfðμÞID; ð9Þ

is imposed, wheremfðμÞ is the renormalized running quark
mass,

Zf
mðμ;ΛÞmfðμÞ ¼ mbm

f ðΛÞ; ð10Þ

where Zf
mðμ;ΛÞ ¼ Zf

4ðμ;ΛÞ=Zf
2ðμ;ΛÞ is the flavor depen-

dent mass-renormalization constant and Zf
4ðμ;ΛÞ is the

renormalization constant associated with the Lagrangian’s
mass term. In particular, mfðμÞ is nothing else but the
dressed-quark mass function evaluated at one particular
deep spacelike point, p2 ¼ μ2, namely,

mfðμÞ ¼ MfðμÞ: ð11Þ

The renormalization-group invariant current-quark mass
can be inferred via

m̂f ¼ lim
p2→∞

Mfðp2Þ
�
1

2
ln

�
p2

Λ2
QCD

��
γm
: ð12Þ

B. Bethe-Salpeter equation

The homogeneous BSE for a q̄q bound state with relative
momentum p and total momentum P can be written as

Γfg
mnðp;PÞ ¼

Z
Λ

k
Kkl

mnðp; k; PÞ½SfðkþÞΓfgðk; PÞSgðk−Þ�lk;
ð13Þ

where m; n; k; l collect Dirac and color indices; f; g are
flavor indices; and kþ¼kþηþP;k−¼k−η−P;ηþþη−¼1.
Since we work within the RL truncation, the BSE kernel is
given by

Kkl
mnðp; k; PÞ ¼ −Z2

2Gðq2Þ
q2

�
λa

2
γμ

�
kn
TμνðqÞ

�
λa

2
γν

�
ml
;

ð14Þ
which satisfies the axial-vector WTI [32] and therefore
ensures a massless pion in the chiral limit. Equations (13)
and (14) define an eigenvalue problem with physical
solutions at the mass-shell points, P2 ¼ −M2, where M
is the bound-state mass.
In the following, we consider the spectrum of flavor

singlet and nonsinglet pseudoscalar mesons, which are
exhibited as a pole contribution to the axial-vector and
pseudoscalar vertices (omitting regular terms in the neigh-
borhood of the poles),

Γfg
5μðp;PÞjP2þM2

n≃0 ¼
fPn

Pμ

P2 þM2
n
Γfg
Pn
ðp;PÞ; ð15Þ

iΓfg
5 ðp;PÞjP2þM2

n≃0 ¼
ρPn

P2 þM2
n
Γfg
Pn
ðp;PÞ; ð16Þ

where Γfg
Pn
ðp; PÞ≡ ½Γfg

mnðp; PÞ�Pn
is the bound state’s BSA.

The principal quantum number is n ¼ 0 for the ground state
and n ≥ 1 for the radial excitations with bound-state mass,
Mn. In Eqs. (15) and (16), the expressions for ρPn

and fPn

are defined in Eqs. (A4) and (A5), respectively. The
properties of the excited states are expected to be sensitive
to details of the long-range component of the interaction in
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Eq. (6), which provides more support at large interquark
separation than, e.g., the Maris-Tandy model [34]. The
present study thus allows for a test of the interaction of
strange- and charm-flavored 0− mesons and their excited
states, in addition to those considered in Ref. [41], via
comparison with experimental values where available.
As mentioned in Sec. I, it is most likely that beyond-RL

contributions are important in heavy-light mesons. In fact,
the RL truncation with the interaction in Eq. (6) should
work best for heavy-heavy (Q̄Q) systems. Consider for
instance the Ball-Chiu Ansatz to the nonperturbative quark-
gluon vertex, Γμðk; pÞ, which is fully determined with the
knowledge of Aðp2Þ and Bðp2Þ [57,58]: for heavier flavors,
f ¼ c; b, the scalar function Bcðp2Þ and even more so
Bbðp2Þ remain constant over a wide momentum range,
while for the vector functions Ac;bðk2Þ≃ Ac;bðp2Þ≃ 1. The
heavy-quark gluon vertex can therefore reasonably be
approximated by a bare vertex.
Thus, the RL approximation ought to work better for

heavy mesons such as the charmonia and bottonium, which
is indeed confirmed in numerical studies [29,44,46]. The
effects of DSCB and the importance of other tensor
structures in the quark-gluon vertex become increasingly
more important for lighter quarks, where, for example,
mass splittings between parity partners are only satisfac-
torily described by including the tensor structure which
corresponds to the chromomagnetic moment [59].
Nonetheless, a hallmark of the RL is the successful
description of the pion, the key point being that the
axial-vector WTI be preserved and likewise the
Goldstone-boson character of the pion.

III. NUMERICAL IMPLEMENTATION

A. DSE on the complex plane

We follow Refs. [50,55,56] and choose the gluon
momentum, q, to be real. This implies that when the
external DSE momentum (1) is complex, so is the internal
quark’s momentum. It is the case in Eq. (13) which requires
DSE solutions for Sðp�Þ in the complex plane with

p2
� ¼ p2 − η2�M

2
n � 2i

ffiffiffiffiffi
p2

q
η�Mn; ð17Þ

where p is collinear with P ¼ ð~0; iMnÞ in the meson’s rest
frame and in the quark’s DSE we employ η� ¼ 1=2. As we
add P to the quark’s external momentum, p, the internal
quark momentum becomes k� ¼ k� η�P, k ∈ Rþ, and it
follows that q ¼ k� − p� ¼ k − p is real. The internal
quark’s squared momentum is given by

k2� ¼ k2 − η2�M
2
n � 2i

ffiffiffiffiffi
k2

p
η�Mnz; ð18Þ

with the angle, −1 ≤ z ≤ þ1, and is also bounded by a
parabola whose vertex is ð0;−η2�M2

nÞ. Within the parabola,
the real integration variable, k, is limited by Λ as follows.

We denote the regularization mass scale in Eq. (13) by
ΛBSE and relate it to the one in Eq. (2) with

Λ2
DSE ¼ Λ2

BSE þ
1

4
M2

f ¼ Λ2
BSE þ η2fM

2
P; ð19Þ

for f ¼ u; d; s; c. This procedure is best illustrated with an
example, e.g., for a meson with strangeness, ūs; we
determine ηs and ηu pushing in each case Mf¼u;s to the
limit at which we encounter poles while solving the DSE on
the complex plane. From the latter equality in Eq. (19), we
obtain ηs and ηu and imposing ηs þ ηu ¼ 1 we find

1

2
Ms ¼ ηsMP;

1

2
Mu ¼ ηuMP ⇒

Ms þMu

2
¼ MP;

ð20Þ

whereMP is the “maximal meson mass” (not to be confused
with Mn) for which the DSE can be solved for each
flavor and respective parameters, ηs ¼ Ms=ðMu þMsÞ
and ηu ¼ Mu=ðMu þMsÞ. The latter are used as momen-
tum partitioning parameters η� in the BSE. Of course, this
is done for computational convenience and we have
checked that our results are stable under variations of
η�, as expected from a Poincaré-invariant approach. In
solving the BSE, Eq. (20) imposes an upper boundary on
the mass of the meson and its excited states:Mn < MP. For
flavor singlet equal-mass q̄q mesons we simply choose
ηf ¼ ηþ ¼ η− ¼ 1=2.
The solution of Eq. (1) for a complex value of p2

�
requires the simultaneous iteration on a complex 2d grid
bounded by the parabola of Eq. (18). Alternatively, we can
exploit the information from the contour of the parabola via
the Cauchy theorem [56]. To proceed with the integration,
we parametrize the contour (counterclockwise) in the
upper complex plane, Cþ∶p2þ, with p≔ z þ ðtÞ ¼ tpmin þ
ð1 − tÞΛDSE; in the lower plane, C−∶p2−, with p∶ ¼
z−ðtÞ ¼ tΛDSE þ ð1 − tÞpmin; and we close the parabola
with the path Cy∶p2

y ≔ Λ2
DSE − y2ðtÞ þ 2iyðtÞΛDSE with

yðtÞ ¼ Mnt − η−Mn, t ∈ ½0; 1�. More precisely, we use a
linear parametrization given by

dp2þ ¼ 2ðzþðtÞþ iηþMnÞdzþðtÞ; 0≤ zþðtÞ<ΛDSE;

dp2
y ¼ 2ð−yðtÞþ iΛDSEÞdyðtÞ; −η−Mn ≤ yðtÞ≤ ηþMm;

dp2− ¼ 2ðzþðtÞ− iηþMnÞdz−ðtÞ; 0≤ z−ðtÞ<ΛDSE:

ð21Þ

The DSE for the quark is solved for 128 complex momenta,
p�, on each contour section using 128 momenta, k�, and
128 angles, z, in the interior of the parabola parametrized
by Eq. (21), where the values for Aðk2�Þ and Bðk2�Þ are
obtained via the Cauchy theorem and simultaneous iter-
ation of their values on the contour. For numerical
precision, the points on the contour are skewed towards
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the vertex of the parabola near k2� ∼ −η2�M2
n. We use a

quadrature method for the integral evaluation and cross-
check the results with the numerical integration library
CUBA [60]. The BSE (13) is solved for 64 external
momenta, p, 64 internal momenta, k, and 20 angles.
The renormalization condition in Eqs. (8) and (9) are

imposed on the DSE solutions at the spacelike real-axis
point, μ ¼ 19 GeV, a value chosen to match the bulk of
extant studies [43,61]. The current-quark masses are fixed
by requiring that the pion and kaon BSEs produce
mπ ≈ 0.138 GeV and mK ≈ 0.493 GeV. We thus use
mu;dðμÞ ¼ 3.4 MeV, msðμÞ ¼ 82 MeV [41], and mcðμÞ ¼
0.905 GeV [62]. However, in computing the values of
Aðp2Þ and Bðp2Þ for the momenta on the parabola (17), we
are numerically limited by the appearance of conjugate
poles and cannot use an arbitrarily large cutoff Λ in Eq. (1).
This implies that we impose the renormalization condi-
tions, Eqs. (8) and (9), at a lower momentum value, ξ < μ,
and thus obtain new renormalization constants, Zf

m and Zf
4 .

The details of our renormalization procedure are discussed
in the Appendix and our complex solutions for Aðp2Þ and
Bðp2Þ with the interaction in Eq. (6) are plotted for the u
quark in Fig. 3 of Ref. [63], where the real parts of Aðp2Þ
and Bðp2Þ on the parabola are described by equipotential
lines with decreasing magnitude for increasing values of
spacelike Re k2 > 0. The imaginary components of Aðp2Þ
and Bðp2Þ are negative valued and decreasing for Im
k2 > 0 and positive and increasing for Im k2 < 0, while for
real momenta, Im k2 ¼ 0 and Re k2 > 0, both functions are
naturally real.
Alternatively, we cross-checked our renormalization

procedure by setting Aðμ2Þ ¼ 1 for μ ¼ 2 GeV and
imposing in the ultraviolet the condition (12) following
Refs. [41,61]. We also reproduce our results using a
complex pole representation for the quarks with three poles
[64] to which we fit the DSE solutions on the real axis
renormalized at 19 GeV. The numerical differences with the
masses and decay constants obtained with the solutions of
the DSE on the complex plane are negligible.

B. Solving the BSE with Arnoldi factorization

The general Poincaré-invariant form of the solutions of
Eq. (13) for the pseudoscalar channel JP ¼ 0− and the
trajectory, P2 ¼ −M2

n, in a nonorthogonal base with
respect to the Dirac trace, Aαðp;PÞ ¼ γ5fiID; P; pðp · PÞ;
σμνpμPνg, is given by

ΓPn
ðp; PÞ ¼ γ5½iIDEPn

ðp;PÞ þ PFPn
ðp;PÞ

þ pðp · PÞGPn
ðp;PÞ þ σμνpμPνHPn

ðp;PÞ�;
ð22Þ

where we have suppressed color, Dirac, and flavor
indices for the sake of visibility. The functions
F α

Pn
ðp;PÞ¼ fEPn

ðp;PÞ;FPn
ðp;PÞ;GPn

ðp;PÞ;HPn
ðp;PÞg

are Lorentz-invariant scalar amplitudes. We solve the BSE
by projecting on the functions F α

Pn
ðp;PÞ with the appro-

priate projectors,

Pαðp;PÞ ¼
X4
β¼1

Pαβðp; PÞAβðp;PÞ

1

4

X4
β¼1

Pαβðp;PÞTrD½Aαðp; PÞAγðp; PÞ� ¼ δαγ; ð23Þ

which allows for an extraction of F α
Pn
ðp; PÞ from the BSA,

F α
Pn
ðp; PÞ ¼ 1

4
trCD½Pαðp;PÞΓPðp; PÞ�: ð24Þ

This leads to the eigenvalue equation (α; β ¼ 1;…; 4),

λnðP2ÞF α
Pn
ðp; PÞ ¼

Z
Λ

k
Kαβðp; k; PÞF β

Pn
ðk; PÞ; ð25Þ

where Kαβðp; k; PÞ is obtained using Eq. (14):

Kαβðp; k; PÞ ¼ −Z2
2

4

Gðq2Þ
q2

TμνðqÞtrCD½Pαðp; PÞ

× γμλ
aSðkþÞAβðk; PÞSðk−Þγνλa�: ð26Þ

The propagators and functions F α
Pn
ðp;PÞ in Eq. (25)

are expanded in Chebyshev polynomials of the second
kind, UmðzkÞ and UmðzpÞ, with the angles, zk ¼ P · k=
ðpP2

p
k2Þ and zp ¼ P · p=ðpP2

p
p2Þ, and the momenta,

k and p, are discretized, e.g.,

F α
Pn
ðpi; PÞ ¼

X∞
m¼0

F α
Pn;m

ðpi; PÞUmðzpÞ ð27Þ

where we define F α
mi ≡ F α

Pn;m
ðpi; PÞ. We employ three

Chebyshev polynomials for the ground states and five
Chebyshev polynomials for the excited states.
We solve the eigenvalue problem posed in Eq. (25) by

means of Arnoldi factorization implemented in the
ARPACK library [65,66] which computes the eigenvalue
spectrum for a given N × N matrix. Practical implementa-
tion implies a transcription of the BSE kernel Kαβðp; k; PÞ
in Eq. (26) as

F α
mi ¼ ðKαβÞmi

njF
β
nj; ð28Þ

which depends on six indices. In order to cast Eq. (28) as
an N × N matrix,

F I ¼ KIJF J; I; J ¼ 1;…; N; ð29Þ
we relate the two sets of indices, I; J and α; β; m; n; i; j,
with the condition,
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Iðα; m; iÞ ¼ αðmþ 1Þi; ð30Þ

Jðβ; n; jÞ ¼ βðnþ 1Þj: ð31Þ

To recover the components of the BSA, F α
Pðp;PÞ, one

simply identifies F α
mi ¼ F I , where I is given by Eq. (30).

As mentioned, the factorization with ARPACK yields
the eigenvalue spectrum, λnðP2Þ, of the kernel, KIJ, and
therefore we obtain eigenvectors, F I , or equivalently the
BSA, F α

Pn
ðp;PÞ, for each λnðP2 ¼ −M2

nÞ ¼ 1.2 These
numerical results are presented and discussed in Sec. IV.
For the sake of completeness, we mention that all BSA

are normalized canonically as

2Pμ ¼
Z

Λ

k
TrCD

�
Γ̄Pn

ðk;−PÞ ∂SðkþÞ∂Pμ
ΓPn

ðk; PÞSðk−Þ

þ Γ̄Pn
ðk;−PÞSðkþÞΓPn

ðk; PÞ ∂Sðk−Þ∂Pμ

�
; ð32Þ

where we have omitted a third term that stems from the
derivative of the kernel, ∂Kkl

mnðp; k; PÞ=∂Pμ, as it does
not contribute in the RL truncation of Eq. (14).3 In
Eq. (32), the charge-conjugated BSA is defined as
Γ̄ðk;−PÞ≔CΓTð−k;−PÞCT , where C is the charge con-
jugation operator. We shall discuss the peculiarities of
charge symmetry in the case of heavy-light mesons
in Sec. IV.

IV. DISCUSSION OF RESULTS

We summarize our results for the mass spectrum and
weak decay constants of the pseudoscalar flavor singlet and
nonsinglet mesons in Tables I, II, and III, where the DSE
and BSE are solved for two parameter sets of the interaction
in Eq. (6), denoted by models 1 and 2 in all tables, and also
discussed in Ref. [61]. In Table I, we list the masses and
decay constants, adopting the Particle Data Group (PDG)
conventions [69], of the π; K; πð1300Þ; Kð1460Þ; ηcð1SÞ,
and ηcð2SÞ. We also include the mass and decay constant of
a pure s̄s state which cannot be related to the η or η0 but
whose study is worthwhile to elucidate the trajectory of the
weak decay constants as a function of the current quark
mass. We remind that the ηc and s̄s are neutral particles
which do not undergo a purely leptonic decay as in
Eq. (A5), yet they are useful quantities to calculate [70].

A direct comparison of the mass and decay constant
entries in both model columns reveals that the values
obtained with model 1 are in much better agreement with
experimental values of the 0− ground states, namely,
the π, K, and ηc, whose ω dependence in the range
ω ∈ ½0.4; 0.6� GeV is rather weak. Conversely, model 2
reproduces well the masses of the radially excited
states, πð1300Þ, Kð1460Þ, and ηcð2SÞ, where for

TABLE I. Mass spectrum and decay constants for flavor singlet
and nonsinglet JP ¼ 0− mesons, where we follow Particle Data
Group conventions [69]. Both models refer to the interaction
Ansatz in Ref. [41], where we use the values ω ¼ 0.4 GeV
and ωD ¼ ð0.8 GeVÞ3 for model 1 and ω ¼ 0.6 GeV and
ωD ¼ ð1.1 GeVÞ3 for model 2. Dimensioned quantities are
reported in GeV and reference values in the last column include
experimental averages and lattice-QCD predictions when known.

Model 1 Model 2 Reference

mπ 0.138 0.153 0.139 [69]
fπ 0.139 0.189 0.1304 [69]
mπð1300Þ 0.990 1.414 1.30� 0.10 [69]
fπð1300Þ −1.1 × 10−3 −8.3 × 10−4 � � �
fGMOR
πð1300Þ −1.4 × 10−3 −4.0 × 10−4 � � �

mK 0.493 0.541 0.493 [69]
fK 0.164 0.214 0.156 [69]
fGMOR
K 0.162 0.214 � � �

mKð1460Þ 1.158 1.580 1.460 [69]
fKð1460Þ −0.018 −0.017 � � �
fGMOR
Kð1460Þ −0.018 −0.017 � � �

ms̄s 1.287 1.702 � � �
fs̄s −0.0214 −0.0216 � � �
fGMOR
s̄s −0.0215 −0.0218 � � �

mηcð1SÞ 3.065 3.210 2.984 [69]
fηcð1SÞ 0.389 0.464 0.395 [70]

fGMOR
ηcð1SÞ 0.380 0.451 � � �

mηcð2SÞ 3.402 3.784 3.639 [69]
fηcð2SÞ 0.089 0.105 � � �
fGMOR
ηcð2SÞ 0.088 0.103 � � �

TABLE II. List of exotic states with “unnatural time parity,”
J ¼ 0−−. In the case of the ūs meson, C ¼ −1 must be under-
stood as approximate, since jūsi is not an eigenstate of charge
conjugation. Models 1 and 2 are as in Table I and dimensioned
quantities are in GeV. The decay constants of flavorless states are
of the order 10−6 GeV.

Model 1 Model 2

mūu 0.733 1.049
ms̄s 0.856 1.351
mc̄c 3.243 3.515
mūs 0.917 1.225
fūs 0.0152 0.0098

fGMOR
ūs 0.0150 0.0097

2To find the root Mn of the equation λnðP2 ¼ −M2
nÞ − 1 ¼ 0,

we made use of the numerical recipe subroutines ZBRENT and
RTSEC [67]. We cross-checked the ARPACK solutions for the
ground states of the pseudoscalar channel with the commonly
used iterative procedure and find excellent agreement of the
order 10−16.

3We verify the values obtained with Eq. (32) with the
equivalent normalization condition [50,68]: ðd ln λn=dP2Þ−1 ¼
tr
R
Λ
k 3Γ̄ðk;−PÞSðkþÞΓðk; PÞSðk−Þ.
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ωD ¼ ð1.1 GeVÞ3 the ground states are no longer insensi-
tive to ω variations [61]. In order to obtain
mπ ¼ 0.138 GeV, ω must increase beyond our reference
value, ω ¼ 0.6 GeV, for the excited spectrum.
Nonetheless, the ground states are noticeably less de-

pendent on the ωD values than the radial excitations, where
large mass differences are observed between both columns.
This agrees with the observations made in Ref. [61] and
extends them to the strange and charm sector: the quantity
rω≔1=ω is a length scale that measures the range of the
infrared component of the interaction, Gðq2Þ, in Eq. (6).
The radially excited states or exotics are expected to be
more sensitive to long-range characteristics of Gðq2Þ than
ground states and we confirm that all radially excited states
increase in mass if the range, or strength, of the strong piece
of the interaction is reduced (note that for ω ¼ 0 the range
is infinite).
In summary, we do not find a parameter set that describes

equally well the entire mass spectrum of ground and
excited states which hints at the insufficiency of this
truncation. However, model 2 uniformly overestimates
all masses by 6%–10% in Table I, where the masses are
more “inflated" for the pion and the kaon. It is plausible that
radiative and hadronic corrections return them to the
observed values [48]. In the mass spectrum, we also find
states with unnatural time parity, J ¼ 0−−, referred to as
exotics and presented in Table II. The mass difference
pattern of these states parallels the ones observed in Table I.
However, as they are not experimentally observed and
expected to have masses above 2 GeV [69], their appear-
ance in the spectrum is likely an artifact of the current
truncation; see, e.g., discussion in Ref. [71].
The weak decay constants are obtained via Eq. (A5) and

verified by means of the Gell-Mann–Oakes–Renner
(GMOR) relation (A3), a relation valid for every 0− meson
irrespective of the magnitude of the current-quark mass,
mf;gðμÞ. In the chiral limit,

ρ0Pn
ðμÞ≔ lim

m̂→0
ρPn

ðμÞ < ∞; ∀ n; ð33Þ

owing to the ultraviolet behavior of the quark-antiquark
scattering kernel in QCD which guarantees that ρPn

ðμÞ in
Eq. (A4) is cutoff independent. A necessary corollary is that

in the chiral limit the decay constant of excited states
vanishes identically [62]:

f0Pn
ðμÞ≡ 0; n ≥ 1: ð34Þ

We provide numerical verification of Eq. (34) in the case of
the first radial excitation of the pion, i.e., the parity partner
πð1300Þ, in Table I from which it can also be read that the
decay constant of the parity partner of the kaon, the
Kð1460Þ, is strongly suppressed. Analogously, the decay
constant value of the s̄s state is very small. On the other
hand, we note that all weak decay constants of the excited
states but the ηcð2sÞ are negative with model 1, slightly less
so when using model 2, which is consistent with the
discussion in Ref. [61]. As it becomes clear from Fig. 1,
for ω ≥ 0.5 and p2 ≳ 1 GeV2, the leading amplitude’s
lowest Chebyshev projection, 0EP1

ðp2Þ, is negative definite
in the case of the first radial excitations, πð1300Þ
and s̄s, whereas it remains positive for the ground states,
which parallels the pattern of wave functions in quantum
mechanics. A necessary consequence is then fπ > 0 and
fπð1300Þ < 0, also observed for the kaon and its first radial
excitation and for the ηð1760Þ. The negative value for
fπð1300Þ is consistent with lattice-QCD simulations [72].
The equality in Eq. (34) is only valid in the chiral limit and
for increasing current-quark masses the excited pseudo-
scalar meson’s decay constant first remains negative, but
after a minimum, which occurs between the strange and
charm-quark mass, it steadily increases and becomes
positive before reaching the charm quark mass. We there-
fore find for the ηcð2SÞ a positive decay constant for both
model parameters. We note that our turning point is
below that observed in Ref. [73], which is about the
charm-quark mass.

TABLE III. Charmed meson observables computed in the
lowest-order Chebyshev moment approximation (see text for
explanations). Models 1 and 2 are as in Table I. Dimensioned
quantities are reported in GeV and experimental values are
averages from the Particle Data Group.

Model 1 Model 2 Experiment [69]

mD 2.115 2.255 1.869
fD 0.204 0.281 0.2067� 0.0085� 0.0025
mDs

2.130 2.284 1.968
fDs

0.249 0.320 0.260� 0.005
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FIG. 1 (color online). Lowest Chebyshev moment, 0EP1
ðp2Þ,

associated with the leading Dirac structure EP1
ðp2Þ of the

meson’s BSA (22) for the first radial excitations πð1300Þ,
ηð1760Þ, and ηcð2SÞ. The interaction parameters are ω ¼ 0.6
and ωD ¼ ð1.1 GeVÞ3.
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We now turn our attention to the charmed pseudoscalars,
in particular the D and Ds mesons. Before discussing the
results, a few technical comments are in order. Besides
being bounded from above, the eigenvalue spectrum of
the BSE should be positive definite [74] owing to the
Hermiticity requirement of physical operators. However,
this is not generally true for flavored mesons with unequal
masses, in particular heavy-light systems in the rainbow-
ladder truncation. For example, in solving the BSE for
the D and Ds mesons, we find a complex conjugate pair
of eigenvalues for the excited DðsÞ states if we include
contributions from higher Chebyshev polynomials,
Um>1ðzpÞ. This occurs for either parameter set of the
interaction and indicates a non-Hermiticity of the
Hamiltonian in the case of jc̄ui and jc̄si bound states.4

We have verified that our solutions converge; i.e., they are
independent of the amount of Chebyshev moments in the
expansion and the ground state and excited D meson
masses do not vary for UmðzpÞ; m ≥ 4.
We remind the reader that nonequal mass mesons, such

as the K and D, are not eigenstates of the charge-
conjugation operator and thus Γ̄ðk; PÞ ¼ λcΓðk; PÞ does
not imply λc ¼ �1 for the charge parity. On the other hand,
for equal-mass (ūu; d̄d; s̄s; c̄c) pseudoscalar mesons with
JPC ¼ 0−þ, the constraint that the Dirac base satisfies λc ¼
þ1 requires the dressing functions, F α

Pn
ðp; PÞ, to be even

in the angular variable zp. In the case of the D and Ds
mesons, however, we do observe that also odd Chebyshev
moments contribute and they acquire an imaginary part in
the ground and excited states. The ground-state eigenvalues
of the D mesons remain real and though the associated
eigenstate is a solution of the BSE, it cannot be interpreted
as a physical solution for the D mesons due to the non-
Hermiticity invoked above. If we limit the Chebyshev
expansion to the lowest order, the BSA is independent of
the angle, zp, and therefore remains real in all cases as are
the eigenvalues. Hence, it is the angular-dependent higher-
order terms of the Chebyshev expansion that lead to
complex eigenvalues for the charmed excited states within
the RL truncation. On the other hand, this does not occur
for the kaon where flavor-symmetry and charge-parity
breaking are still negligible.
The mass and decay constant entries in Table III are all

obtained in the lowest-order Chebyshev approximation
which is independent of the angle, zp. Incidentally, this
approximation bears similarity with common phenomeno-
logical Ansätze to the BSA for D mesons [76–80] and this

is exactly what the values in Table III represent: masses and
decay constants obtained with a model based on the lowest-
order approximation for which the eigenvalues and BSA
are real. The mass difference, Δm≃ 15–30 MeV, between
the D and Ds mesons is smaller than experimentally
observed, i.e., Δm ∼ 100 MeV. On the other hand, the
weak decay constants are in good agreement with exper-
imental averages for model 1 which again provides the
preferred interaction for the ground states. We also stress
that the results in Table III were obtained without any
modification of the interaction (6) in the RL truncation,
such as suppression of the infrared domain [35] or use of
a constituent-quark mass [36]. Nevertheless, as has been
realized previously [35], the RL approximation is an
inadequate truncation scheme for heavy-light mesons.

V. CONCLUSION

We computed the BSAs for the ground and first excited
states of the flavor singlet and flavored pseudoscalar
mesons with an interaction Ansatz that is massive and
finite in the infrared and massless in the ultraviolet domain.
This interaction is qualitatively in accordance with the so-
called decoupling solutions of the gluon’s dressing function
and thus represents an improvement on the Maris-Tandy
model [34]. In conjunction with the RL truncation, the
latter proves to be a successful interaction model for the
light meson spectrum, M ≲ 1 GeV, but fares less well in
applications to heavy-light systems where infrared mod-
ifications of the interaction are required in order to obtain
numerical results which are still not satisfactory [35].
Motivated by the successful application of the interaction

Ansatz of Eq. (6) to the mass spectrum of light mesons as
well as some of their excited states in Ref. [61], we extend
this study to the strange and charm sectors and obtain the
masses of ground states and resonances as well as decay
constants, as presented in Table I. These numerical results
are in good agreement with experimental averages for the
ground states, yet we confirm the earlier observation that
no single parametrization of Eq. (6) is able to reproduce
the mass spectrum of both the ground and excited states in
the RL truncation. The case of the D and Ds mesons
remains equally unresolved and clearly shows that the mass
asymmetry and disparate scales in heavy-light systems
require corrections beyond the leading truncation. We
postpone the treatment of heavy-flavored mesons with a
BSE Ansatz valid for any symmetry-preserving dressed
quark-gluon vertex [54] to a future publication. We stress
that the merit of BSE solutions for heavy-light systems
goes beyond a successful description of the heavy meson’s
mass spectrum and decay constants and that the light-front
projection of the meson’s Bethe-Salpeter wave function
allows us to extract its light cone distribution amplitudes
[64,81]. The latter, commonly expanded in Gegenbauer
polynomials, encode the relevant nonperturbative informa-
tion in QCD factorization of heavy-meson weak decays

4A discussion of complex eigenvalues and their origin in the
crossing of normal and abnormal (which have vanishing binding
energy) eigenstates can be found in Ref. [74]. Note that in
quantum mechanics even non-Hermitian operators yield real and
positive eigenvalues provided that PT symmetry is conserved,
whereas if it is broken the eigenvalue spectrum is complex [75].
Yet, an analogical observation in quantum field theory and more
precisely in nonperturbative QCD is not straightforward.
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and their calculation represents a big step beyond the
usually employed asymptotic form, ϕðxÞ ∝ 6xð1 − xÞ.
Indeed, in the case of D and B mesons, very little is
known about the nonperturbative nature of these distribu-
tion amplitudes.
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APPENDIX: RENORMALIZATION CONDITIONS

In order to eliminate the cutoff dependence, it is
necessary to impose renormalization conditions. The usual
procedure is to relate bare and renormalized masses as in
Eq. (10) and for the fermion fields one writes, analogously,

qbmf ðp2Þ ¼ ðZf
2ðμ;ΛÞÞ

1
2qfðp2; μÞ: ðA1Þ

The renormalization constants Zm and Z2 are determined
by imposing the conditions,

Bðμ; μÞ ¼ mfðμÞ and Aðμ; μÞ ¼ 1: ðA2Þ

For arbitrary flavors and using Eqs. (10) and (A2), the
GMOR expression can be generally written as

fPn
M2

Pn
¼ðmbm

f þmbm
g ÞρbmPn

¼−ðmbm
f þmbm

g Þh0jq̄bmg γ5qbmf jPni
¼−ðZf

mmgðμÞþZg
mmfðμÞÞðZf

2Z
g
2Þ1=2h0jq̄gγ5qfjPni

¼

0
B@

ffiffiffiffiffiffi
Zf
m

Zg
m

s
mgðμÞþ

ffiffiffiffiffiffi
Zg
m

Zf
m

s
mfðμÞ

1
CAρPn

ðμÞ; ðA3Þ

where we have

ρPn
ðμÞ ¼ −ðZf

4Z
g
4Þ

1
2h0jq̄gγ5qfjPni

¼ −iðZf
4Z

g
4Þ

1
2TrCD

Z
Λ

k
γ5SfðkþÞΓfg

Pn
ðk; PÞSgðk−Þ;

ðA4Þ

with Zf
4ðμ;ΛÞ ¼ Zf

2ðμ;ΛÞZf
mðμ;ΛÞ. The weak decay

constant can, of course, be directly inferred from

fPn
Pμ ¼ −ih0jq̄bmg γ5γμqbmf jPni

¼ ðZf
2Z

g
2Þ

1
2TrCD

Z
Λ

k
γ5γμSfðkþÞΓfg

Pn
ðk; PÞSgðk−Þ:

ðA5Þ

In solving the DSE within a complex parabola as
discussed in Sec. III A, it is convenient to compute the
renormalization constants at a momentum scale, ξ, different
from μ > ξ while still demanding that Eq. (A2) be satisfied.
Once we know the solutions of and Aðp2Þ and Bðp2Þ
renormalized at p2 ¼ μ2, the values for Bðξ; μÞ and Aðξ; μÞ
are readily inferred. One may as well calculate Zf

mðμ;ΛÞ
and Zf

2ðμ;ΛÞ at a point, p2 ¼ ξ2, using the condition,

Bðξ; μÞ ¼ Z4ðμ;ΛÞmfðμÞ þ ΠBðξ;ΛÞ;
Aðξ; μÞ ¼ Z2ðμ;ΛÞ þ ΠAðξ;ΛÞ; ðA6Þ

where ΠB and ΠA are the expressions inferred from the
appropriate projections of the quark self-energy correction
in Eq. (2). Solving the DSE starting by imposing new
renormalization conditions, namely, Bðp2; ξÞ and Aðp2; ξÞ,
in Eq. (A6), one verifies that the conditions in Eq. (A2) are
satisfied with high precision. We check the stability of all
results from Λ ¼ 4 GeV up to Λ ¼ 10 GeV, in which case
Z2ðξ;ΛÞ and Z4ðξ;ΛÞ are modified in order to absorb the
cutoff dependence; our results prove to be stable and show
no cutoff dependence. The GMOR relation (A3) provides
us with an additional cross-check.
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