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Within the framework of the perturbative QCD approach, we study the two-body charmless decays
B → K1ð1270ÞðK1ð1400ÞÞπðKÞ. We find the following results: (i) The decays B̄0 → K1ð1270Þþπ−,
K1ð1400Þþπ− are incompatible with the present experimental data. There exists a similar situation for the
decays B̄0 → a1ð1260ÞþK−, b1ð1235ÞþK−, which are usually considered that the nonperturbative
contributions are needed to explain the data. But the difference is that the nonperturbative contributions
seem to play opposite roles in these two groups of decays. (ii) The pure annihilation type decays
B̄0 → K�

1 ð1270ÞK∓, K�
1 ð1400ÞK∓ are good channels to test whether an approach can be used to calculate

correctly the strength of the penguin-annihilation amplitudes. Their branching ratios are predicted at 10−7

order, which are larger than the QCDF results. (iii) The dependence of the direct CP-violating asymmetries
of these decays on the mixing angle θK1

are also considered.
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I. INTRODUCTION

In general, the mesons are classified in JPC multiplets.
There are two types of orbitally excited axial-vector
mesons, namely 1þþ and 1þ−. The former includes
a1ð1260Þ, f1ð1285Þ, f1ð1420Þ and K1A, which compose
the 3P1-nonet, and the latter includes b1ð1235Þ, h1ð1170Þ,
h1ð1380Þ and K1B, which compose the 1P1-nonet. Except
a1ð1260Þ and b1ð1235Þ, other axial-vector mesons exist
mixing problem, which makes their inner structure become
more ambiguous, for example, K1A and K1B can mix with
each other and form two physical mass eigenstates
K1ð1270Þ, K1ð1400Þ. Various values about the mixing
angle θK1

can be found in different literatures, which will be
examined in more detail in Sec. III. For the mixings of
the SU(3)-singlet and SU(3)-octet mesons, specifically,
the f1ð1285Þ − f1ð1420Þ mixing angle θ3P1

and the
h1ð1170Þ − h1ð1380Þ mixing angle θ1P1

, there also exist
several values in the phenomenal analysis. Certainly, these
two angles can associate with θK1

through the Gell-Mann-
Okubo mass formula. For the lack of sufficient exper-
imental data, none of them can be accurately determined up
to now. So the decays involving these mesons become more
ambiguous compared with the decays involving a1ð1260Þ
or/and b1ð1235Þ meson(s), which have been discussed in
the previous works [1–6].
In this paper, we would like to discuss the

decays B → K1ð1270ÞπðKÞ, K1ð1400ÞπðKÞ. On the
theoretical side, many approaches have been used to study
these decays, such as the naive factorization [4], the
generalized factorization [5], and the QCD factorization
approach [6]. From the predictions of these approaches,
One can find that the branching ratios of the decays
B → K1ð1270Þπ, K1ð1400Þπ are in the order of 10−6,
for example, BrðB0 → K1ð1270Þþπ−Þ ¼ ð3–8Þ × 10−6,

BrðB0 → K1ð1400Þþπ−Þ ¼ ð2–5Þ × 10−6, those of almost
all the decays B → K1ð1270ÞK, K1ð1400ÞK are in the
order of 10−8–10−7. While on the experimental side, the
large upper limits are given for the decays B0 →
K1ð1400Þþπ− and Bþ → K1ð1400Þ0πþ at the 90% level
(C.L.) of 1.1 × 10−3 and 2.6 × 10−3, respectively [7], and
the Heavy Flavor Averaging Group (HFAG) gives the
following results [8]:

BrðBþ → K1ð1270Þ0πþÞ < 40 × 10−6;

BrðBþ → K1ð1270Þ0πþÞ < 39 × 10−6; ð1Þ

BrðB0 → K1ð1270Þþπ−Þ ¼ ð17þ8
−11Þ × 10−6;

BrðB0 → K1ð1400Þþπ−Þ ¼ ð17þ7
−9Þ × 10−6: ð2Þ

The preliminary data are given by BABAR [9],

BRðB0 → Kþ
1 ð1270Þπ−Þ ¼ ð12.0� 3.1þ9.3

−4.5Þ × 10−6; ð3Þ

BRðB0 → Kþ
1 ð1400Þπ−Þ ¼ ð16.7� 2.6þ3.5

−5.0Þ × 10−6: ð4Þ

Furthermore,BABARhas alsomeasured the branching ratios
BrðB0 → K1ð1270Þþπ− þK1ð1400Þþπ−Þ ¼ 3.1þ0.8

−0.7 × 10−5

and BrðBþ→K1ð1270Þ0πþþK1ð1400Þ0πþÞ¼2.9þ2.9
−1.7×10

−5

with 7.5σ and 3.2σ significance, respectively. In the paper
[10], the two sided intervals for some of the decays
B → K1ð1270Þπ, K1ð1400Þπ are evaluated at 68% proba-
bility (×10−5):

BRðB− → K̄1ð1270Þ0π−Þ ∈ ½0.0; 2.1�;
BRðB− → K̄1ð1400Þ0π−Þ ∈ ½0.0; 2.5�; ð5Þ
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BRðB0 → K1ð1270Þþπ−Þ ∈ ½0.6; 2.5�;
BRðB0 → K1ð1400Þþπ−Þ ∈ ½0.8; 2.4�: ð6Þ

In view of the differences between the theories and
experiments, we are going to use the PQCD approach to
explore these decays and analyze whether the nonperturb-
tive contributions are necessary to explain the experimental
data. In the following, K1ð1270Þ and K1ð1400Þ are denoted
as K1 in some places for convenience. The layout of this
paper is as follows. In Sec. II, the decay constants and the
light-cone distribution amplitudes of the relevant mesons
are introduced. In Sec. III, we then analyze these decay
channels by using the PQCD approach. The numerical
results and the discussions are given in Sec. IV. The
conclusions are presented in the final part.

II. DECAY CONSTANTS AND
DISTRIBUTION AMPLITUDES

For the wave function of the heavy B meson, we take

ΦBðx; bÞ ¼
1ffiffiffiffiffiffiffiffi
2Nc

p ðPB þmBÞγ5ϕBðx; bÞ: ð7Þ

Here only the contribution of Lorentz structure ϕBðx; bÞ is
taken into account, since the contribution of the second
Lorentz structure ϕ̄B is numerically small [11] and has been
neglected. For the distribution amplitude ϕBðx; bÞ in
Eq. (7), we adopt the following model:

ϕBðx; bÞ ¼ NBx2ð1 − xÞ2 exp
�
−
M2

Bx
2

2ω2
b

−
1

2
ðωbbÞ2

�
; ð8Þ

where ωb is a free parameter, we takeωb ¼ 0.4� 0.04 Gev
in numerical calculations, and NB ¼ 101.4 is the normali-
zation factor for ωb ¼ 0.4.
The distribution amplitudes of the axial-vector K1 are

written as:

hK1ðP; ϵ�LÞjq̄2βðzÞq1αð0Þj0i

¼ iγ5ffiffiffiffiffiffiffiffi
2Nc

p
Z

1

0

dxeixp·z½mK1
ϵ�LϕK1

ðxÞ þ ϵ�LPϕ
t
K1
ðxÞ

þmK1
ϕs
K1
ðxÞ�αβ;

hK1ðP; ϵ�TÞjq̄2βðzÞq1αð0Þj0i

¼ iγ5ffiffiffiffiffiffiffiffi
2Nc

p
Z

1

0

dxeixp·z½mK1
ϵ�Tϕ

v
K1
ðxÞ þ ϵ�TPϕK1

ðxÞ

þmK1
iϵμνρσγ5γμϵ�vT nρvσϕa

K1
ðxÞ�αβ; ð9Þ

where K1 refers to the two flavor states K1A and K1B, and
the corresponding distribution functions can be calculated
by using light-cone QCD sum rule and listed as follows:

8>>>>><
>>>>>:

ϕK1
ðxÞ ¼ fK1

2
ffiffiffiffiffiffi
2Nc

p ϕ∥ðxÞ; ϕT
K1
ðxÞ ¼ fK1

2
ffiffiffiffiffiffi
2Nc

p ϕ⊥ðxÞ;

ϕt
K1
ðxÞ ¼ fK1

2
ffiffiffiffiffiffi
2Nc

p hðtÞ∥ ðxÞ; ϕs
K1
ðxÞ ¼ fK1

2
ffiffiffiffiffiffi
4Nc

p d
dx h

ðsÞ
∥ ðxÞ;

ϕv
K1
ðxÞ ¼ fK1

2
ffiffiffiffiffiffi
2Nc

p gðvÞ⊥ ðxÞ; ϕa
K1
ðxÞ ¼ fK1

8
ffiffiffiffiffiffi
2Nc

p d
dx g

ðaÞ
⊥ ðxÞ:

ð10Þ

Here we use fK1
to present both the longitudinally and

transversely polarized statesK1AðK1BÞ by assuming fTK1A
¼

fK1A
¼ fK1

for K1A and fK1B
¼ fTK1B

¼ fK1
for K1B,

respectively. It is similar for the case of a1ðb1Þ states,
and the difference is that here K1A and K1B are not the mass
eigenstates. In Eq. (10), the twist-2 distribution functions
are in the first line and can be expanded as:

ϕ∥;⊥ ¼ 6xð1 − xÞ
�
a∥;⊥0 þ 3a∥;⊥1 tþ a∥;⊥2

3

2
ð5t2 − 1Þ

�
; ð11Þ

the twist-3 light-cone distribution amplitudes (LCDAs) are
used the following forms for K1A and K1B states:

hðtÞ∥ ðxÞ ¼ 3a⊥0 t2 þ
3

2
a⊥1 tð3t2 − 1Þ;

hðsÞ∥ ðxÞ ¼ 6xð1 − xÞða⊥0 þ a⊥1 tÞ;
gðaÞ⊥ ðxÞ ¼ 6xð1 − xÞða∥0 þ a∥1tÞ;

gðvÞ⊥ ðxÞ ¼ 3

4
a∥0ð1þ t2Þ þ 3

2
a∥1t

3; ð12Þ

where t ¼ 2x − 1 and the Gegenbauer moments [12]
a⊥0 ðK1AÞ¼ 0.26þ0.03

−0.22 , a
∥
0ðK1BÞ¼−0.15�0.15, a∥0ðK1AÞ ¼

a⊥0 ðK1BÞ ¼ 1, a⊥1 ðK1AÞ ¼ −1.08� 0.48, a⊥1 ðK1BÞ ¼
0.30þ0.00

−0.31 , a
∥
1ðK1AÞ¼−0.30þ0.26

−0.00 , a
∥
1ðK1BÞ¼−1.95�0.45,

a∥2ðK1AÞ ¼ −0.05� 0.03, a∥2ðK1BÞ ¼ 0.09þ0.16
−0.18 .

The wave functions for the pseudoscalar (P) mesonsK, π
are given as:

ΦKðπÞðP; x; ζÞ≡ 1ffiffiffiffiffiffiffiffiffi
2NC

p γ5½PϕA
KðπÞðxÞ þm0ϕ

P
KðπÞðxÞ

þ ζm0ðvn − v · nÞϕT
KðπÞðxÞ�; ð13Þ

where the parameter ζ is either þ1 or −1 depending on the
assignment of the momentum fraction x. The chiral scale

parameter m0 is defined as m0 ¼ m2
π

muþmd
for π meson and

m0 ¼ m2
K

muþms
for K meson. The distribution amplitudes are

expanded as:

ϕA
KðπÞðxÞ ¼

3fKðπÞffiffiffi
6

p xð1 − xÞ½1þ a1KðπÞC
3=2
1 ðtÞ

þ a2KðπÞC
3=2
2 ðtÞ þ a4KðπÞC

3=2
4 ðtÞ�; ð14Þ

ZHANG et al. PHYSICAL REVIEW D 90, 074023 (2014)

074023-2



ϕP
KðπÞðxÞ ¼

3fKðπÞ
2

ffiffiffi
6

p
�
1þ

�
30η3 −

5ρ2KðπÞ
2

�
C1=2
2 ðtÞ − 3

�
η3ω3 þ

9ρ2KðπÞ
20

ð1þ 6a2KðπÞÞ
�
C1=2
4 ðtÞ

�
; ð15Þ

ϕT
KðπÞðxÞ ¼

−fKðπÞt
2

ffiffiffi
6

p
�
1þ 6

�
5η3 −

η3ω3

2
−
7ρ2KðπÞ
20

−
3ρ2KðπÞa2KðπÞ

5

�
ð1 − 10xþ 10x2Þ

�
; ð16Þ

where the decay constants fK ¼ 0.16 GeV, fπ ¼
0.13 GeV and the Gegenbauer moments, Gegenbauer
polynomials are defined as:

a1K ¼ 0.17� 0.17; a1π ¼ 0;

a2K ¼ a2π ¼ 0.115� 0.115; a4K ¼ a4π ¼ −0.015;

C3=2
1 ðtÞ ¼ 3t; C3=2

2 ðtÞ ¼ 3

2
ð5t2 − 1Þ;

C3=2
4 ðtÞ ¼ 15

8
ð1− 14t2 þ 21t4Þ; C1=2

2 ðtÞ ¼ 1

2
ð3t2 − 1Þ;

C1=2
4 ðtÞ ¼ 1

8
ð3− 30t2 þ 35t4Þ; ð17Þ

and the constants η3 ¼ 0.015, ω3 ¼ −3, the mass ratio
ρKðπÞ¼mKðπÞ=m0KðπÞ with mK¼0.49GeV, m0K¼1.7GeV,
mπ ¼ 0.135 GeV, m0π ¼ 1.4 GeV.

III. THE PERTURBATIVE QCD CALCULATION

The PQCD approach is an effective theory to handle
hadronic B decays [13–15]. Because it takes into account
the transverse momentum of the valence quarks in the
hadrons, one will encounter the double logarithm diver-
gences when the soft and the collinear momenta overlap.
Fortunately, these large double logarithm can be resummed
into the Sudakov factor [16]. There also exist another type
of double logarithms which arise from the loop corrections
to the weak decay vertex. These double logarithms can also
be resummed and resulted in the threshold factor [17]. This
factor decreases faster than any other power of the
momentum fraction in the threshold region, which removes
the endpoint singularity. It is often parametrized into a
simple form which is independent on channels, twists and
flavors [18]. Certainly, when the higher order diagrams
only suffer from soft or collinear infrared divergence, it is
ease to cure by using the eikonal approximation [19].
Controlling these kinds of divergences reasonably makes
the PQCD approach more self-consistent.
For these two axial vector mesons, their mass eigenstates

and flavor eigenstates are not the same with each other, and
the former can be obtained by the latter through a mixing
angle θK1

:

K1ð1270Þ ¼ K1A sin θK1
þ K1B cos θK1

;

K1ð1400Þ ¼ K1A cos θK1
− K1B sin θK1

: ð18Þ

Unfortunately, there are many uncertainties about this
mixing angle. From various phenomenological analysis
and experimental data on the masses of these two physical
states, it indicates that this mixing angle is around either
33° or 58° [20–29]. Certainly, the author of [30] stresses
that the sign of θK1

depends on the relative sign of flavor
states K1A and K1B, which can be determined by fixing the
relative sign of the decay constants of K1A and K1B. If the
decay constants f1A, f1B are the same in sign (it means
that the transitions B → K1A and B → K1B have the
opposite signs), then the mixing angle θK1

defined in
(18) is positive. It is noticed that the mixing angle for the
antiparticle states K̄1ð1270Þ, K̄1ð1400Þ, which is denoted
as θK̄1

, is of opposite sign to that for the particle states
K1ð1270Þ, K1ð1400Þ. But even so, we cannot confirm
whether θK1

is larger or less than 45° up to now. Different
approaches and models are used and different values of
the mixing angle are obtained. In order to pin down
it, Cheng [30] advocates to determine the mixing
angles θ3P1

and θ1P1
between f1ð1285Þ − f1ð1420Þ and

h1ð1170Þ − h1ð1380Þ, respectively, which in turn depend
on the K1A − K1B mixing angle θK1

through the mass
relation. Through analyzing the present data of the h1, f1
mesons’ strong/radiative decay modes, the author prefers
θK1

∼ 33° over 58°. In view of the present limited data,
we will still include the mixing angle θK1

∼ 58° in our
calculations.
It is just because of the ambiguous mixing angle that

makes the study very difficult. Here we take the decay
B̄0 → K̄1ð1270Þ0π0 as an example, which is contributed by
the decays B̄0 → K̄0

1Aπ
0 and B̄0 → K̄0

1Bπ
0. Figure 1 is for

the Feynman diagrams of the decay B̄0 → K̄0
1Aπ

0 (it is
similar to the decay B̄0 → K̄0

1Bπ
0), through which the

amplitudes can be calculated directly, and the total ampli-
tudes of the decay B̄0 → K̄1ð1270Þ0π0 can be obtained by
combining the two sets of flavor state amplitudes according
to Eq. (18):
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ffiffiffi
2

p
AðK̄1ð1270Þ0π0Þ

¼ −ξtðfK1A
sin θK1

þ fK1B
cos θK1

ÞFLL
eπ

�
a4 −

1

2
a10

�
− ξtðMLL;K1A

eπ sin θK1
þMLL;K1B

eπ cos θK1
Þ
�
C3 −

1

2
C9

�

− ξtðMLR;K1A
eπ sin θK1

þMLR;K1B
eπ cos θK1

Þ
�
C5 −

1

2
C7

�
− ξtðMLL;K1A

aπ sin θK1
þMLL;K1B

aπ cos θK1
Þ
�
C3 −

1

2
C9

�

− ξtðMLR;K1A
aπ sin θK1

þMLR;K1B
aπ cos θK1

Þ
�
C5 −

1

2
C7

�
− ξtfBðFLL;K1A

aπ sin θK1
þ FLL;K1B

aπ cos θK1
Þ
�
a4 −

1

2
a10

�

− ξtfBðFSP;K1A
aπ sin θK1

þ FSP;K1B
aπ cos θK1

Þ
�
a6 −

1

2
a8

�
þ fπðFLL

eK1A
sin θK1

þ FLL
eK1B

cos θK1
Þ
�
ξua1 − ξt

�
3C9

2
þ C10

2

−
3C7

2
−
C8

2

��
þ ðMLL;π

eK1A
sin θK1

þMLL;π
eK1B

cos θK1
Þ
�
ξuC2 − ξt

3C10

2

�
− ξtðMSP;π

eK1A
sin θK1

þMSP;π
eK1B

cos θK1
Þ 3C8

2
; ð19Þ

where ξu ¼ VubV�
us, ξt ¼ VtbV�

ts, FM2

eðaÞM1
and MM2

eðaÞM1

denote the amplitudes of factorizable and nonfactorizable
emission (annihilation) diagrams, where the subscript
meson M1 is involved in the B̄0 meson transition, the
superscript meson M2 is the emitted particle. The other
superscript in each amplitude denotes different current
operators, ðV − AÞðV − AÞ, ðV − AÞðV þ AÞ and ðS −
PÞðSþ PÞ corresponding to LL, LR and SP, respectively.
If exchanging the positions of K1A and π0 in Figs. 1(a),
1(b), 1(c) and 1(d), we will get the new Feynman diagrams,
which can also contribute to the decay B̄0 → K̄0

1Aπ
0, and the

corresponding amplitudes are given in the last three lines of
Eq. (19). The amplitudes for the decay B̄0 → K̄0

1AðK̄0
1BÞπ0

can be obtained from those for the decay B → Kπ which
can be found in [31], only changing the variables of K
meson with those of K0

1AðK0
1BÞmeson. So we do not list the

analytic expressions for these amplitudes. Certainly, it is
noticed that if the axial-vector meson K1AðK1BÞ is on the
emitted position in the factorizable emission diagrams,
there is no scalar or pseudoscalar current contribution. The
total amplitudes for the other three B → K1ð1270Þπ decay
modes can also be written out similarly:

AðK1ð1270Þ−πþÞ
¼ ðfK1A

sin θK1
þ fK1B

cos θK1
ÞFLL

eπ ðξua1 − ξtða4 þ a10ÞÞ þ ðMLL;K1A
eπ sin θK1

þMLL;K1B
eπ cos θK1

ÞðξuC1 − ξtðC3 þ C9ÞÞ

− ξtðMLR;K1A
eπ sin θK1

þMLR;K1B
eπ cos θK1

ÞðC5 þ C7Þ − ξtðMLL;K1A
aπ sin θK1

þMLL;K1B
aπ cos θK1

Þ
�
C3 −

1

2
C9

�

− ξtðMLR;K1A
aπ sin θK1

þMLR;K1A
aπ cos θK1

Þ
�
C5 −

1

2
C7

�
− ξtfBðFLL;K1A

aπ sin θK1
þ FLL;K1B

aπ cos θK1
Þ
�
a4 −

1

2
a10

�

− ξtfBðFSP;K1A
aπ sin θK1

þ FSP;K1B
aπ cos θK1

Þ
�
a6 −

1

2
a8

�
; ð20Þ

ffiffiffi
2

p
AðK1ð1270Þ−π0Þ
¼ ðfK1A

sin θK1
þ fK1B

cos θK1
ÞFLL

eπ ½ξua1 − ξtða4 þ a10Þ� þ ðMLL;K1A
eπ sin θK1

þMLL;K1B
eπ cos θK1

Þ½ξuC1 − ξtðC3 þ C9Þ�
− ξtðMLR;K1A

eπ sin θK1
þMLR;K1B

eπ cos θK1
ÞðC5 þ C7Þ þ ðMLL;K1A

aπ sin θK1
þMLL;K1B

aπ cos θK1
Þ½ξuC1 − ξtðC3 þ C9Þ�

− ξtðMLL;K1A
aπ sin θK1

þMLL;K1B
aπ cos θK1

ÞðC5 þ C7Þ þ fBðFLL;K1A
aπ sin θK1

þ FLL;K1B
aπ cos θK1

Þ½ξua2 − ξtða4 þ a10Þ�

− fBðFSP;K1A
aπ sin θK1

þ FSP;K1B
aπ cos θK1

Þξtða6 þ a8Þ þ fπðFLL
eK1A

sin θK1
þ FLL

eK1B
cos θK1

Þ
�
ξua1 − ξt

�
3C9

2
þ C10

2

−
3C7

2
−
C8

2

��
þ ðMLL;π

eK1A
sin θK1

þMLL;π
eK1B

cos θK1
Þ
�
ξuC2 − ξt

3C10

2

�
− ξtðMSP;π

eK1A
sin θK1

þMSP;π
eK1B

cos θK1
Þ 3C8

2
; ð21Þ
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AðK̄1ð1270Þ0π−Þ

¼ −ξtðfK1A
sin θK1

þ fK1B
cos θK1

ÞFLL
eπ

�
a4 −

1

2
a10

�
− ξtðMLL;K1A

eπ sin θK1
þMLL;K1B

eπ cos θK1
Þ
�
C3 −

1

2
C9

�

− ξtðMLR;K1A
eπ sin θK1

þMLR;K1B
eπ cos θK1

Þ
�
C5 −

1

2
C7

�
þ ðMLL;K1A

eπ sin θK1
þMLL;K1B

eπ cos θK1
Þ½ξuC1 − ξtðC3 þ C9Þ�

− ξtðMLR;K1A
eπ sin θK1

þMLR;K1B
eπ cos θK1

ÞðC5 þ C7Þ þ fBðFLL;K1A
aπ sin θK1

þ FLL;K1B
aπ cos θK1

Þ½ξua2 − ξtða4 þ a10Þ�
− ξtfBðFSP;K1A

aπ sin θK1
þ FSP;K1B

aπ cos θK1
Þða6 þ a8Þ: ð22Þ

It is easy to get the total amplitudes for the decay
modes including K̄1ð1400Þ0=K1ð1400Þ− by making the
replacements with sin θK1

→ cos θK1
, cos θK1

→ − sin θK1

in Eqs. (19)–(22), respectively. The total amplitudes for
each B → K1ð1270ÞK, K1ð1400ÞK decay are given in the
Appendix.

IV. NUMERICAL RESULTS AND DISCUSSIONS

The input parameters in the numerical calculations
[32,33] are listed as follows:

fB ¼ 210MeV; fK1A
¼ 250MeV; f⊥K1B

¼ 190MeV

ð23Þ

τB� ¼ 1.638 × 10−12 s; τB0 ¼ 1.525 × 10−12 s; ð24Þ

jVudj¼0.974; jVtdj¼8.67×10−3; jVubj¼3.51×10−3;

ð25Þ

jVtsj ¼ 0.0404; jVusj ¼ 0.22534; jVtbj ¼ 0.999:

ð26Þ

Using the input parameters and the wave functions as
specified in this section and Sec. II, it is easy to get the
branching ratios for the considered decays which are listed
in Table I, where the first error comes from the uncertainty
in the B meson shape parameter ωb ¼ 0.40� 0.04 GeV,
the second error is from the hard scale t, which we vary
from 0.8t to 1.2t, and the third error is from the combined
uncertainties of the Gegenbauer moments a⊥1 ðK1AÞ ¼
−1.08� 0.48 and a∥1ðK1BÞ¼−1.95�0.45. From Table I
we can find that the branching ratios of B → K1ð1270Þπ,
K1ð1400Þπ decays fall in 10−6 order. The experimental
data for the branching ratios of the decays
B̄0 → K1ð1270Þ−πþ, K1ð1400Þ−πþ, which are given as
ð12.0� 3.1þ9.3

−4.5Þ × 10−6 and ð16.7� 2.6þ3.5
−5.0Þ × 10−6,

respectively, are large and incompatible with all the
present theory predictions. Even for the two sided
intervals BrðB̄0 → K1ð1270Þ−πþÞ ∈ ½0.6; 2.5� × 10−5 and
BrðB̄0 → K1ð1270Þ−πþÞ ∈ ½0.8; 2.4� × 10−5, they almost
cannot contain the different theoretical results. While
the branching ratios of the charged B decays can be
explained by the theories for the large uncertainties of
the intervals BrðB− → K̄1ð1270Þ0π−Þ ∈ ½0.0; 2.1� × 10−5,
BrðB− → K̄1ð1400Þ0π−Þ ∈ ½0.0; 2.5� × 10−5. The large
differences between theories and experiments do not
happen to the decays B̄0 → a1ð1260Þ�π∓, which are
tree-dominated. If the decay constants fa1 , fπ and the

form factors VB→a1
0 , FB→π

0 can be well determined, it is not
difficult for us to predict the branching ratios of the decays
B̄0 → a1ð1260Þ�π∓ accurately, because the penguin con-
tributions can be neglected and there are fewer uncertain-
ties. For the considered decays B̄0 → K�

1 π
∓, the tree

operators are suppressed by the CKM matrix elements
VubV�

us=ðVcbV�
csÞ ∼ 0.02, and the penguin operators willFIG. 1. Diagrams contributing to the decay B̄0 → K̄0

1Aπ
0.
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play a significant role. If the future data are really larger
than the present predictions for here considered decays, the
authors [6] claimed that there are two possible reasons: one
is because the larger corrections from the weak annihilation
and the hard spectator contributions, the other is from the
charming penguin contributions. In our calculations,
the hard spectator contributions which correspond to the
nonfactorization emission diagram ones are very small.
Although the factorizable annihilation contributions are
more important, they cannot promote the branching ratios
too much. So we consider that the charming penguins are
more likely to explain the large data. Unfortunately, the
charming penguins are nonperturbative in nature and
remain untouched by many theory approaches. While it
is helpful to consider these decays by using the soft-
collinear-effective-theory (SECT) [34], where the charm-
ing penguin contributions from loop diagrams are included.
Certainly, these contributions can also be incorporated
in the final-state interactions [35]. There exists the
similar situation for the decays B̄0 → a1ð1260ÞþK−,
b1ð1235ÞþK− [1], where the PQCD predictions are larger
than the data. The nonperturbative contributions, such as
the final state interactions or the charming penguins, are
suggested to explain the data. The penguin contributions
from the factorization annihilation diagrams in the K1Bπ
modes are much larger than those in the K1Aπ modes. So
we can find that the branching ratios of B → K1Bπ decays

are always larger than those of B → K1Aπ decays, which is
shown in Table II.
For the decays B → K1ð1270ÞK, K1ð1400ÞK, there are

no experimental data or upper limits up to now. Although
the decays B̄0 → K�

1 K
∓ can occur only via annihilation

type diagrams, their branching ratios might not be so small
as those predicted by the QCDF approach. If our predic-
tions can be confirmed by the future LHCb or the super B
experiments, one can say that the PQCD approach is one of
the few methods, which can be used to quantitatively
calculate the annihilation type contributions. In the pre-
vious years both the experimenters and the theorists
considered that the branching ratio of B0 → KþK− was
at 10−8 order, but two years ago the CDF and LHCb
collaborations gave their first measurements of this decay
by ð2.3� 1.0� 1.0Þ × 10−7 [36] and ð1.3þ0.6

−0.5 � 0.7Þ ×
10−7 [37], respectively. Later, these results are confirmed
by the PQCD recalculated result 1.56 × 10−7 [38] without
introducing too much uncertainties. It shows that the PQCD
approach can determine correctly the strength of penguin-
annihilation amplitudes. Whether the PQCD approach can
give reasonable predictions for the pure annihilation decays
B̄0 → K1ð1270Þ�K∓, K1ð1400Þ�K∓ also deserves our
attention and research. For the decay B̄0 → K0

1BK̄
0 cannot

receive a large emission factorization amplitude, because of
the small decay constant fK1B

compared with fK1A
, while it

TABLE I. Branching ratios (in units of 10−6) for the decays B → K1ð1270Þπ, K1ð1400Þπ and B → K1ð1270ÞK, K1ð1400ÞK for
mixing angle θK̄1

¼ −33°. Other model predictions are also presented here for comparison. It is noticed that the results of [4] and [5] are
obtained for mixing angle 32°, while those in [6] are obtained for mixing angle −37°.

[4] [5] [6] This work

B̄0 → K−
1 ð1270Þπþ 4.3 7.6 3.0þ0.8þ1.5þ4.2

−0.6−0.9−1.4 4.6þ0.3þ0.9þ1.5
−0.1−0.8−1.2

B̄0 → K̄0
1ð1270Þπ0 2.3 0.4 1.0þ0.0þ0.6þ1.7

−0.0−0.3−0.6 1.4þ0.1þ0.7þ0.6
−0.1−0.5−0.5

B− → K̄0
1ð1270Þπ− 4.7 5.8 3.5þ0.1þ1.8þ5.1

−0.1−1.1−1.9 3.5þ0.4þ1.9þ1.6
−0.2−1.1−1.2

B− → K−
1 ð1270Þπ0 2.5 4.9 2.7þ0.1þ1.1þ3.1

−0.1−0.7−1.0 3.9þ0.9þ1.0þ1.1
−0.5−0.7−1.0

B̄0 → K−
1 ð1400Þπþ 2.3 4.0 5.4þ1.1þ1.7þ9.9

−1.0−1.3−2.8 3.0þ0.5þ0.1þ0.9
−0.3−0.1−0.7

B̄0 → K0
1ð1400Þπ0 1.7 3.0 2.9þ0.3þ0.7þ5.5

−0.3−0.6−1.7 3.3þ0.9þ0.1þ1.0
−0.7−0.0−0.8

B− → K̄0
1ð1400Þπ− 2.5 3.0 6.5þ1.0þ2.0þ11.6

−0.9−1.6−3.6 5.0þ1.3þ1.0þ1.4
−0.7−0.8−1.1

B− → K−
1 ð1400Þπ0 0.7 1.0 3.0þ0.4þ1.1þ5.2

−0.4−0.7−1.3 1.8þ0.3þ0.1þ0.4
−0.2−0.2−0.3

B̄0 → K−
1 ð1270ÞKþ 0.01þ0.01þ0.00þ0.02

−0.00−0.00−0.01 0.13þ0.01þ0.00þ0.23
−0.01−0.01−0.08

B̄0 → Kþ
1 ð1270ÞK− 0.06þ0.01þ0.00þ0.46

−0.01−0.00−0.06 0.26þ0.02þ0.05þ0.19
−0.02−0.04−0.12

B− → K0
1ð1270ÞK− 0.22 0.25þ0.01þ0.15þ0.39

−0.01−0.08−0.09 1.11þ0.01þ0.19þ0.43
−0.01−0.03−0.35

B− → K−
1 ð1270ÞK0 0.02 0.05þ0.02þ0.07þ0.10

−0.02−0.03−0.04 1.84þ0.37þ0.29þ0.65
−0.28−0.25−0.42

B̄0 → K̄0
1ð1270ÞK0 0.02 2.30þ0.16þ1.13þ1.43

−0.15−0.61−0.61 1.71þ0.34þ0.27þ0.51
−0.26−0.23−0.43

B̄0 → K0
1ð1270ÞK̄0 0.20 0.24þ0.01þ0.11þ0.33

−0.01−0.07−0.13 0.26þ0.03þ0.17þ0.14
−0.06−0.01−0.08

B̄0 → K−
1 ð1400ÞKþ 0.09þ0.01þ0.00þ0.23

−0.01−0.00−0.09 0.64þ0.14þ0.00þ0.13
−0.06−0.01−0.08

B̄0 → Kþ
1 ð1400ÞK− 0.02þ0.00þ0.00þ0.04

−0.00−0.00−0.00 0.31þ0.02þ0.11þ0.12
−0.00−0.01−0.09

B− → K0
1ð1400ÞK− 0.12 0.48þ0.08þ0.15þ0.81

−0.08−0.12−0.26 0.90þ0.13þ0.11þ1.21
−0.08−0.09−0.16

B− → K−
1 ð1400ÞK0 4.4 0.01þ0.00þ0.01þ0.14

−0.00−0.00−0.01 1.33þ0.14þ0.31þ0.33
−0.10−0.22−0.22

B̄0 → K̄0
1ð1400ÞK0 4.1 0.08þ0.01þ0.17þ0.59

−0.01−0.06−0.08 1.46þ0.16þ0.31þ0.33
−0.13−0.25−0.28

B̄0 → K0
1ð1400ÞK̄0 0.11 0.50þ0.08þ0.13þ0.92

−0.07−0.11−0.32 0.14þ0.04þ0.04þ0.07
−0.03−0.03−0.02
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has a large annihilation factorization amplitude, which
makes its branching ratio slightly larger than that of
B̄0 → K0

1AK̄
0. The branching ratios of these two decays

are at the order of 10−7. But it is very different to the decay
B̄0 → K̄0

1BK
0: Except having a large annihilation factoriza-

tion amplitude, it can also obtain a large emission
factorization amplitude at the same time, because here the
emission meson is K0 with a larger decay constant
fK ¼ 0.16. So this decay gets a large branching ratio, which
amounts to 2.71 × 10−6. Even though the decay B̄0 →
K̄0

1AK
0 has a small branching ratio, the physical final states

K̄1ð1200Þ0K0, K̄1ð1400Þ0K0, which are mixes of the former
two group flavor states, still might get a large branching

ratio. It has been verified by the different theories, which are
shown in Table I. But the branching ratio of the decay B̄0 →
K̄1ð1400Þ0K0 predicted by the QCDF approach seems too
small compared with the results given by the PQCD and the
naive factorization approaches, which can be clarified by
the future experiments. There exists the similar situation for
the decay B− → K1ð1400Þ−K0. Another decay channel,
where exists large divergence between the predictions, is
B− → K1ð1200Þ−K0. The Feynman diagrams of this
decay can be obtained from those of the decay B̄0 →
K̄1ð1200Þ0K0 by replacing the spectator quark d with u,
so the difference of the branching ratios of these two decays
should not be so large. In a word, the branching ratios of the

TABLE II. Branching ratios (in units of 10−6) for the decays B → K1Aπ, K1Bπ and B → K1AK, K1BK. The errors for these entries
correspond to the uncertainties from ωB ¼ 0.4� 0.04 GeV, the hard scale t varying from 0.8t to 1.2t, and the Gegenbauer moments
a⊥1 ðK1AÞ ¼ −1.08� 0.48 for K1A meson, a∥1ðK1BÞ ¼ −1.95� 0.45 for K1B meson, respectively.

B̄0 → K−
1Aπ

þ 2.1þ1.0þ0.1þ0.0
−0.6−0.1−0.3 B̄0 → K−

1Bπ
þ 5.6þ0.1þ0.8þ2.1

−0.2−0.9−1.9
B̄0 → K̄0

1Aπ
0 1.3þ0.7þ0.2þ0.9

−0.5−0.2−0.6 B̄0 → K̄0
1Bπ

0 3.4þ0.1þ1.0þ1.1
−0.1−0.7−0.9

B− → K̄0
1Aπ

− 3.9þ1.9þ0.6þ1.7
−1.3−0.5−1.5 B− → K̄0

1Bπ
− 4.7þ0.2þ2.2þ1.8

−0.3−1.5−1.6
B− → K−

1Aπ
0 2.1þ0.9þ0.2þ0.6

−0.7−0.2−0.8 B− → K−
1Bπ

0 3.7þ0.1þ0.7þ1.2
−0.2−0.8−1.1

B̄0 → K−
1AK

þ 0.47þ0.03þ0.00þ0.28
−0.04−0.00−0.04 B̄0 → K−

1BK
þ 0.34þ0.04þ0.01þ0.14

−0.03−0.01−0.07
B̄0 → Kþ

1AK
− 0.14þ0.01þ0.01þ0.11

−0.00−0.01−0.13 B̄0 → Kþ
1BK

− 0.38þ0.03þ0.03þ0.26
−0.03−0.02−0.19

B− → K0
1AK

− 1.24þ0.13þ0.08þ1.74
−0.12−0.07−0.65 B− → K0

1BK
− 0.60þ0.04þ0.19þ0.13

−0.04−0.12−0.08
B− → K−

1AK
0 0.29þ0.02þ0.05þ1.26

−0.01−0.03−0.03 B− → K−
1BK

0 2.65þ0.53þ0.48þ0.67
−0.34−0.41−0.57

B̄0 → K̄0
1AK

0 0.10þ0.00þ0.05þ0.10
−0.00−0.03−0.04 B̄0 → K̄0

1BK
0 2.71þ0.30þ0.52þ0.66

−0.30−0.43−0.58
B̄0 → K0

1AK̄
0 0.16þ0.12þ0.06þ0.18

−0.06−0.03−0.10 B̄0 → K0
1BK̄

0 0.17þ0.01þ0.08þ0.09
−0.01−0.05−0.06

TABLE III. Same as Table I except for the mixing angle θK̄1
¼ −58°.

[4] [5] [6] This work

B̄0 → K−
1 ð1270Þπþ 4.3 7.6 2.7þ0.6þ1.3þ4.4

−0.5−0.8−1.5 3.2þ0.7þ0.5þ0.8
−0.5−0.5−0.8

B̄0 → K̄0
1ð1270Þπ0 2.1 0.4 0.8þ0.1þ0.5þ1.7

−0.1−0.3−0.6 0.5þ0.2þ0.0þ0.4
−0.0−0.2−0.2

B− → K̄0
1ð1270Þπ− 4.7 5.8 3.0þ0.2þ0.1þ2.7

−0.2−0.2−2.2 3.2þ1.3þ1.2þ1.3
−0.9−0.8−1.2

B− → K−
1 ð1270Þπ0 1.6 4.9 2.5þ0.1þ1.0þ3.2

−0.1−0.7−1.0 3.3þ1.1þ0.7þ0.8
−0.8−0.6−1.1

B̄0 → K−
1 ð1400Þπþ 2.3 4.0 2.2þ1.1þ0.7þ2.6

−0.8−0.6−1.3 4.5þ0.0þ0.3þ1.5
−0.0−0.5−1.3

B̄0 → K0
1ð1400Þπ0 1.6 1.7 1.5þ0.4þ0.3þ1.7

−0.3−0.3−0.9 4.1þ0.8þ0.7þ1.2
−0.4−0.4−0.8

B− → K̄0
1ð1400Þπ− 2.5 3.0 2.8þ1.0þ0.9þ3.0

−0.8−0.9−1.7 5.4þ0.3þ1.6þ1.5
−0.2−1.2−1.4

B− → K−
1 ð1400Þπ0 0.6 1.4 1.0þ0.4þ0.4þ1.2

−0.3−0.4−0.5 2.5þ0.0þ0.3þ0.8
−0.0−0.4−0.7

B̄0 → K−
1 ð1270ÞKþ 0.01þ0.00þ0.00þ0.02

−0.00−0.00−0.01 0.19þ0.01þ0.00þ0.37
−0.01−0.00−0.09

B̄0 → Kþ
1 ð1270ÞK− 0.04þ0.01þ0.00þ0.27

−0.01−0.00−0.04 0.16þ0.00þ0.02þ0.12
−0.02−0.03−0.06

B− → K0
1ð1270ÞK− 0.22 0.22þ0.01þ0.12þ0.39

−0.01−0.07−0.12 1.47þ0.10þ0.16þ1.59
−0.06−0.10−0.58

B− → K−
1 ð1270ÞK0 0.75 0.05þ0.02þ0.09þ0.10

−0.01−0.03−0.04 0.78þ0.17þ0.09þ0.97
−0.13−0.08−0.19

B̄0 → K̄0
1ð1270ÞK0 0.70 2.10þ0.13þ1.23þ1.31

−0.13−0.65−0.57 0.46þ0.13þ0.07þ0.17
−0.09−0.05−0.13

B̄0 → K0
1ð1270ÞK̄0 0.20 0.26þ0.10þ0.12þ0.47

−0.01−0.08−0.17 0.23þ0.09þ0.13þ0.18
−0.06−0.08−0.16

B̄0 → K−
1 ð1400ÞKþ 0.07þ0.02þ0.00þ0.16

−0.02−0.00−0.06 0.58þ0.06þ0.01þ0.15
−0.06−0.01−0.13

B̄0 → Kþ
1 ð1400ÞK− 0.01þ0.00þ0.00þ0.16

−0.02−0.00−0.06 0.42þ0.03þ0.01þ0.22
−0.02−0.00−0.16

B− → K0
1ð1400ÞK− 0.12 0.22þ0.07þ0.07þ0.24

−0.07−0.07−0.13 0.54þ0.04þ0.14þ0.76
−0.02−0.11−0.13

B− → K−
1 ð1400ÞK0 3.9 0.01þ0þ0.02þ0.04

−0−0.00−0.00 2.39þ0.34þ0.50þ0.48
−0.25−0.39−0.48

B̄0 → K̄0
1ð1400ÞK0 3.6 0.10þ0.02þ0.21þ0.15

−0.02−0.08−0.10 2.24þ0.36þ0.40þ0.59
−0.28−0.34−0.51

B̄0 → K0
1ð1400ÞK̄0 0.11 0.25þ0.07þ0.08þ0.31

−0.07−0.07−0.15 0.21þ0.02þ0.13þ0.09
−0.01−0.07−0.07
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chargedB decays are at or near the order of 10−6, those of the
pure annihilation decays are at the order of 10−7 by taking
the mixing angle θK1

¼ 33°.
In order to compare with other theoretical predictions,

we also list the branching ratios with the mixing angle
θK̄1

¼ −58° shown in Table III. One can find that the
branching ratios of the decays B− → K−

1 ð1270ÞK0,
B̄0 → K̄0

1ð1270ÞK0 have a remarkable decrease from the
mixing angles −33° to −58∘, while those of the decays
B− → K−

1 ð1400ÞK0, B̄0 → K̄0
1ð1400ÞK0 have a remarkable

increase.
Now we turn to the evaluations of the CP-violating

asymmetries in the PQCD approach. For the neutral B̄0 (the
charged B−) decays the direct CP-violating asymmetries
can be defined as

Adir
CP ¼ ΓðB̄0ðB−Þ → fÞ − ΓðB0ðBþÞ → f̄Þ

ΓðB̄0ðB−Þ → fÞ þ ΓðB0ðBþÞ → f̄Þ
¼ 2z sin θ sin δ

ð1þ 2z cos θ cos δþ z2Þ ; ð27Þ

where δ is the relative strong phase between the tree and
penguin amplitudes, and θ the CKM weak phase θ ¼ α for
b → d transition, θ ¼ γ for b → s transition. Certainly, if
the final states are the same for B0 and B̄0, that is f ¼ f̄, the
CP-asymmetries may be time-dependent, including not
only the direct CP violation but also the mixing-induced
CP violation. Using the input parameters and the wave
functions as specified in this section and Sec. II, it is easy to
get the PQCD predictions (in units of 10−2) for the direct
CP-violating asymmetries of B decaying to each flavor
final state, which are listed in Table IV. For the real physical
final states, which are mixes of the corresponding flavor
states, their direct CP-violating asymmetries will be de-
pendent on the mixing angle θK̄1

. As has been emphasised
before, θK̄1

for the antiparticle states K̄1ð1270Þ, K̄1ð1400Þ
is of opposite sign to that for the particle states K1ð1270Þ,
K1ð1400Þ. For taking the convention of decay constant
fK1B

in this work, so θK1
is positive and θK̄1

is negative. In
Figs. 2–4, we give the dependence of the direct CP-
violating asymmetries on the mixing angle θK̄1

for each
decay. Here taking θK̄1

¼ −33° or θK̄1
¼ −58°, we can read

each direct CP-violating asymmetry from these figures.

FIG. 2 (color online). The dependence of the direct CP-violating asymmetries on the mixing angle θK̄1
: the solid lines represent the

decays B̄0 → K1ð1270Þ0π0 (left), B̄0 → K1ð1270Þ−πþ (right), and the dashed lines are for the decays B̄0 → K1ð1400Þ0π0 (left), B̄0 →
K1ð1400Þ−πþ (right), respectively.

TABLE IV. Direct CP violation (in units of %) for the decays B → K1Aπ, K1Bπ and B → K1AK, K1BK. The errors for these entries
correspond to the uncertainties from ωB ¼ 0.4� 0.04 GeV, the hard scale t varying from 0.8t to 1.2t, and the Gegenbauer moment
a⊥1 ðK1AÞ ¼ −1.08� 0.48 for K1A meson, a∥1ðK1BÞ ¼ −1.95� 0.45 for K1B meson, respectively.

B̄0 → K−
1Aπ

þ 9.1þ2.4þ0.8þ3.0
−2.0−0.8−3.4 B̄0 → K−

1Bπ
þ −14.7þ1.2þ0.0þ1.1

−1.4−0.2−1.6
B̄0 → K̄0

1Aπ
0 −6.6þ1.3þ0.9þ2.8

−1.4−1.0−8.4 B̄0 → K̄0
1Bπ

0 −9.2þ1.0þ3.3þ1.6
−0.7−3.5−1.9

B− → K̄0
1Aπ

− −2.3þ0.8þ0.8þ1.5
−1.2−0.6−6.8 B− → K̄0

1Bπ
− 3.3þ0.1þ0.6þ1.9

−0.1−0.6−1.3
B− → K−

1Aπ
0 17.7þ4.1þ3.0þ17.1

−3.5−3.1−7.4 B− → K−
1Bπ

0 3.4þ1.2þ0.0þ0.0
−1.4−4.6−6.8

B̄0 → K−
1AK

þ 43.9þ1.7þ0.5þ0.0
−1.3−3.1−35.6 B̄0 → K−

1BK
þ −13.9þ2.5þ1.8þ0.4

−2.6−2.0−0.4
B̄0 → Kþ

1AK
− 46.5þ0.5þ4.4þ40.3

−1.3−3.3−29.5 B̄0 → Kþ
1BK

− −3.3þ1.1þ6.8þ1.6
−0.7−4.1−1.7

B− → K0
1AK

− 6.6þ1.6þ3.1þ4.9
−1.7−3.8−1.8 B− → K0

1BK
− −80.7þ1.3þ4.4þ11.1

−1.7−3.5−2.9
B− → K−

1AK
0 −29.4þ7.6þ2.6þ86.7

−6.3−1.8−0.0 B− → K−
1BK

0 0.8þ2.7þ0.4þ4.0
−3.6−0.5−2.9
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It is noticed that for the decays B̄0 → K1ð1270ÞþK−,
K1ð1400ÞþK−, B−→K1ð1270Þ0K−, K1ð1400Þ0K−, which
include the particle states, their direct CP-violating asym-
metry values are still read at −33° or −58° for θK1

¼ −θK̄1

and so the corresponding mixing angle is positive. The
signs of the direct CP-violating asymmetries of B →
K1ð1270ÞKðπÞ and B → K1ð1400ÞKðπÞ are opposite at
the mixing angle θK̄1

¼ −33° for most of these decays
except only two groups, whose direct CP-violating asym-
metries are predicted asAdir

CPðB̄0→K̄1ð1270Þ0π0Þ¼−12.6%,
Adir

CPðB̄0 → K̄1ð1400Þ0π0Þ ¼ −6.7% and Adir
CPðB̄0→

K1ð1270ÞþK−Þ¼12.2%, Adir
CPðB̄0→K1ð1400ÞþK−Þ¼9.6%,

respectively. From Table IV, one can find that the direct
CP-violating asymmetries of each decay B → K1Aπ, K1Bπ
are not large, while those for some real physical final states

become very large. For example, the direct CP-violating
asymmetries of the decays B̄0 → K1ð1270Þ−πþ,
K1ð1400Þ−πþ are about −58.1% and 68.4% at the mixing
angle −33°, respectively. Certainly, we only learn phenom-
enally about the mixing angle θK1

at present and have no
accurate calculations or measurements. Furthermore, the
direct CP-violating asymmetries are sensitive to the mixing
angle. It is much more complex for some considered decays
where the nonperturbative contributions, such as charming
penguins, give large corrections, and the corresponding
direct CP-violating asymmetries may also change. So we
cannot confirm that these decays must have so large
direct CP-violating asymmetries. As for the decays
B̄0 → K̄1ð1270Þ0K0, K̄1ð1400Þ0K0, there is no tree contri-
bution at the leading order, so the direct CP-violating
asymmetry is naturally zero.

FIG. 4 (color online). The dependence of the direct CP-violating asymmetries on the mixing angle θK̄1
: the solid lines represent the

decays B− → K1ð1270Þ−K0 (left), B̄0 → K1ð1270Þ−Kþ (right), the dashed lines are for the decays B− → K1ð1270Þ0K− (left), B̄0 →
K1ð1270ÞþK− (right), the dot lines are for the decays B− → K1ð1400Þ−K0 (left), B− → K1ð1400Þ−Kþ (right), and the dash-dot lines
represent the decays B− → K1ð1400Þ0K− (left), B̄0 → K1ð1400ÞþK− (right), respectively.

FIG. 3 (color online). The dependence of the direct CP-violating asymmetries on the mixing angle θK̄1
: the solid lines represent the

decays B− → K1ð1270Þ0π− (left), B− → K1ð1270Þ−π0 (right), and the dashed lines are for the decays B− → K1ð1400Þ0π− (left),
B− → K1ð1400Þ−π0 (right), respectively.
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V. CONCLUSION

In this paper, by using the decay constants and the light-
cone distribution amplitudes derived from the QCD sum-
rule method, we research the decays B → K1ð1270ÞπðKÞ,
K1ð1400ÞπðKÞ in the PQCD approach and find that

(i) All the theoretical predictions for the branching
ratios of the decays B̄0 → K1ð1270Þþπ−,
K1ð1400Þþπ− are incompatible with the present
experimental data. There exists the similar situation
for the decays B̄0 → a1ð1260ÞþK−, b1ð1235ÞþK−,
where the nonperturbative contributions, such as the
final state interactions or the charming penguins, are
needed to explain the data. But the difference is that
the nonperturbative contributions seem to play
opposite roles in these two groups of decays. If
the future data are really larger than the present
predictions for some considered decays, it might
indicate that the nonperturbative contributions have
pronounced corrections for some decay channels
which include the higher resonances in the final
states.

(ii) The pure annihilation type decays B̄0 →
K�

1 ð1270ÞK∓, K�
1 ð1400ÞK∓ are good channels to

test whether an approach can be used to calculate
correctly the strength of the penguin-annihilation
amplitudes. Their branching ratios are predicted at
10−7 order.

(iii) In the four final neutral flavor states K0
1AK̄

0, K0
1BK̄

0,
K̄0

1AK
0, K̄0

1BK
0, the decay B̄0 → K̄0

1BK
0 have the

largest branching ratio which is of 10−6 order, while
the other decays with the branching ratios at
10−7 order. So the decays B̄0 → K̄1ð1200Þ0K0,

K̄1ð1400ÞK0 which include the real physical
states can have large branching ratios at the mixing
angle θK̄1

¼ −33° compare with the decays
B̄0 → K1ð1200Þ0K̄0, K1ð1400ÞK̄0.

(iv) The signs of the direct CP-violating asymmetries
are opposite between almost of the decays
B → K1ð1270ÞKðπÞ and B → K1ð1400ÞKðπÞ at
mixing angle θK1

¼ −33° except only two groups,
whose direct CP-violating asymmetries are pre-
dicted as Adir

CPðB̄0 → K̄1ð1270Þ0π0Þ ¼ −12.6%,
Adir

CPðB̄0 → K̄1ð1400Þ0π0Þ ¼ −6.7% and Adir
CPðB̄0→

K1ð1270ÞþK−Þ¼12.2%, Adir
CPðB̄0→K1ð1400ÞþK−Þ¼

9.6%, respectively.
(v) The strong phase introduced by the nonperturbative

contributions might produce dramatic effects on
some of the considered decays, such as B̄0 →
K1ð1270Þ−πþ, K1ð1400Þ−πþ, K1ð1270Þ−π0,
K1ð1270Þ−π0, and these effects could exceed those
from the parametric uncertainties in the case of the
CP asymmetries.
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APPENDIX: ANALYTIC FORMULAS FOR THE DECAY AMPLITUDES

AðK1ð1270Þ0K̄0Þ

¼ −ξtðfK1A
sin θK1

þ fK1B
cos θK1

ÞFLL
eK

�
a4 −

1

2
a10

�
− ξtðMLL;K1A

eK sin θK1
þMLL;K1B

eK cos θK1
Þ
�
C3 −

1

2
C9

�

− ξtðMLR;K1A
eK sin θK1

þMLR;K1B
eK cos θK1

Þ
�
C5 −

1

2
C7

�
− ξtðMLL;K1A

aK sin θK1
þMLL;K1B

aK cos θK1
Þ
�
C3 −

1

2
C9

�

− ξtðMLL;K1A
aK sin θK1

þMLL;K1B
aK cos θK1

Þ
�
C4 −

1

2
C10

�
− ξtðMLR;K1A

aK sin θK1
þMLR;K1B

aK cos θK1
Þ
�
C5 −

1

2
C7

�

− ξtðMSP;K1A
aK sin θK1

þMSP;K1B
aK cos θK1

Þ
�
C6 −

1

2
C8

�
− ξtfBðFLL;K1A

aK sin θK1
þ FLL;K1B

aK cos θK1
Þ
�
a3 −

1

2
a9

�

− ξtfBðFLL;K1A
aK sin θK1

þ FLL;K1B
aK cos θK1

Þ
�
a4 −

1

2
a10

�
− ξtfBðFLL;K1A

aK sin θK1
þ FLL;K1B

aK cos θK1
Þ
�
a5 −

1

2
a7

�

− ξtfBðFSP;K1A
aK sin θK1

þ FSP;K1B
aK cos θK1

Þ
�
a6 −

1

2
a8

�
− ξtðMLL;K

aK1A
sin θK1

þMLL;K
aK1B

cos θK1
Þ
�
C4 −

1

2
C10

�
ðA1Þ
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− ξtðMSP;K
aK1A

sin θK1
þMSP;K

aK1B
cos θK1

Þ
�
C6 −

1

2
C8

�
− ξtfBðFLL;K

aK1A
sin θK1

þ FLL;K
aK1B

cos θK1
Þ
�
a3 −

1

2
a9

�

− ξtfBðFLL;K
aK1A

sin θK1
þ FLL;K

aK1B
cos θK1

Þ
�
a5 −

1

2
a7

�
; ðA1Þ

AðK1ð1270Þ0K−Þ

¼ −ξtðfK1A
sin θK1

þ fK1B
cos θK1

ÞFLL
eK

�
a4 −

1

2
a10

�
− ξtðMLL;K1A

eK sin θK1
þMLL;K1B

eK cos θK1
Þ
�
C3 −

1

2
C9

�

− ξtðMLR;K1A
eK sin θK1

þMLR;K1B
eK cos θK1

Þ
�
C5 −

1

2
C7

�
þ ðMLL;K1A

aK sin θK1
þMLL;K1B

aK cos θK1
ÞðξuC1 − ξtðC3 þ C9ÞÞ

− ξtðMLR;K1A
aK sin θK1

þMLR;K1B
aK cos θK1

ÞðC5 þ C7Þ þ fBðFLL;K1A
aK sin θK1

þ FLL;K1B
aK cos θK1

Þðξua2 − ξtða4 þ a10Þ
− ξtfBðFSP;K1A

aK sin θK1
þ FSP;K1B

aK cos θK1
Þða6 þ a8Þ: ðA2Þ

In the upper two formulas, if changing the first term as −ξtfKðFLL
eK1A

sin θK1
þ FLL

eK1B
cos θK1

Þða4 − 1
2
a10ÞÞ−

ξtfKðFSP
eK1A

sin θK1
þ FSP

eK1B
cos θK1

Þða6 − 1
2
a8Þ, and at the same time exchanging the positions of K1AðK1BÞ and K in

other terms, we will get the decay amplitudes of B̄0 → K̄1ð1270Þ0K0 and B− → K1ð1270Þ−K0, respectively.

AðK1ð1270ÞþK−Þ ¼ ðMLL;K1A
aK sin θK1

þMLL;K1B
aK cos θK1

ÞðξuC2 − ξtðC4 þ C10ÞÞ
− ξtðMSP;K1A

aK sin θK1
þMSP;K1B

aK cos θK1
ÞðC6 þ C8Þ

þ fBðFLL;K1A
aK sin θK1

þ FLL;K1B
aK cos θK1

Þðξua1 − ξtða3 þ a5 þ a7 þ a9ÞÞ

− ξtfBðFLL;K1A
aK sin θK1

þ FLL;K1B
aK cos θK1

Þ
�
a3 þ a5 −

1

2
a7 −

1

2
a9

�

− ξtðMLL;K
aK1A

sin θK1
þMLL;K

aK1B
cos θK1

Þ
�
C4 −

1

2
C10

�

− ξtðMSP;K
aK1A

sin θK1
þMSP;K

aK1B
cos θK1

Þ
�
C6 −

1

2
C8

�
: ðA3Þ

In Eq. (A3), if exchanging the positions of K1AðK1BÞ and K, we will get the total amplitude of the decay
B̄0 → K1ð1270Þ−Kþ. The total amplitudes of the decays B → K1ð1400ÞK can be obtained by making the replacements
with sin θK1

→ cos θK1
, cos θK1

→ − sin θK1
in Eqs. (A1)–(A3), respectively.
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