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We update the theoretical framework for the QCD calculation of transition form factors γ�γ → η and
γ�γ → η0 at large photon virtualities including full next-to-leading order analysis of perturbative
corrections, the charm quark contribution, and taking into account SUð3Þ-flavor breaking effects and
the axial anomaly contributions to the power-suppressed twist-four distribution amplitudes. The numerical
analysis of the existing experimental data is performed with these improvements.
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I. INTRODUCTION

During the last years, properties of the light pseudoscalar
η and η0 mesons, their quark-gluon structure and hard
processes involving these particles, e.g. electromagnetic
transition form factors (FFs) and weak decays B → ηðη0Þ,
were the subject of numerous experimental and theoretical
studies. Especially the recent measurements of the electro-
magnetic transition FFs γ�γ → η and γ�γ → η0 at spacelike
momentum transfers in the interval 4–40 GeV2 [1] and at
the very large timelike momentum transfer 112 GeV2 [2]
by the BABAR Collaboration caused much excitement.
These measurements and their comparison to the spacelike
data for γ�γ → π0 FF in the similar range by BABAR and
Belle collaborations [3,4] stimulated a flurry of theoretical
activity; see e.g. [5–8]. This debate focuses on the question
of whether hard exclusive hadronic reactions are under
theoretical control, which is highly relevant for all future
high-intensity, medium-energy experiments like, e.g.,
Belle II and PANDA.
In the exact flavor SUð3Þ limit the η meson is part of the

flavor octet whereas η0 is a pure flavor singlet whose
properties are intimately related to the celebrated axial
anomaly [9,10]. However, it is known empirically that the
SUð3Þ breaking effects are large and have a nontrivial
structure. These effects are usually described in terms of a
certain mixing scheme that considers the physical η; η0
mesons as a superposition of fundamental (e.g. flavor
singlet and octet) fields in the low-energy effective theory;
see e.g. [11] and references therein. It is not obvious
whether and to what extent the approach based on state
mixing is adequate for the description of hard processes
that are dominated by meson wave functions at small
transverse separations, dubbed distribution amplitudes
(DAs); however, it can be taken as a working hypothesis
to avoid proliferation of parameters.
One particularly important issue is that eta mesons, in

difference to the pion, can contain a significant admixture
of the two-gluon state at low scales, hence a comparably
large two-gluon DA. Several different reactions were

considered in an effort to extract or at least constrain these
contributions. Nonleptonic exclusive isosinglet decays [12]
and central exclusive production [13] act as prominent
probes for the gluonic Fock state since the gluon production
diagram enters already at leading order (LO). Exclusive
semileptonic decays of heavy mesons were calculated in
the framework of light-cone sum rules (LCSRs) [14,15]
and kT factorization [16]. From a calculational point of
view these decays are simpler but the interesting gluon
contribution enters only at next-to-leading order (NLO).
Numerically it was shown that the gluonic contributions to
η production are negligible while they can reach a few
percent in the η0 channel. Up to now experimental data are
not conclusive in all these decays, with a vanishing gluonic
DA being possible at a low scale. On the other hand, a large
gluon contribution was advocated in [17] from the analysis
of Bd → J=Ψηð0Þ transitions (see also [18]).
In this paper we consider electromagnetic transition form

factors γ�γ → η; η0 that are the simplest relevant processes
and are best understood from the theory side. Also in this
case we will find that the present experimental data are
insufficient to draw definite conclusions. However, the
forthcoming upgrade of the Belle experiment and the
KEKB accelerator [19], which aims to increase the exper-
imental data set by the factor of 50, will allow one to
measure transition form factors and related observables
with unprecedented precision.
The special role of the transition FFs as the “gold plated”

observables for the study of meson DAs is widely recog-
nized. To leading power accuracy in the photon virtuality
these FFs can be calculated rigorously in QCD in the
framework of collinear factorization (pQCD) [20–23]. The
main advantage of transition FFs in comparison to other
hard reactions with the same property is that the leading
hard contribution starts already at tree level and is not
suppressed by the usual perturbative penalty factor
αs=π ∼ 1=10. For the leading-twist collinear factorization
to hold, the pQCD contribution has to win against the
power-suppressed (end-point or higher-twist) corrections,
and this is expected to happen for transition FFs already at
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moderate photon virtualities that are accessible in present
experiments. One more advantage is that soft contributions
are simpler and can be modeled to a reasonable accuracy
using, e.g., LCSRs.
The theory of γ�γ → ηð0Þ decays is, on the one hand,

similar to the QCD description of the γ�γ → π0 transition FF,
but contains specific new issues due to the two-gluon state
admixture, contributions of heavy quarks, and also poten-
tially large meson mass corrections. Our goal is to present a
state-of-the-art treatment of these special issues using a
combination of perturbative QCD for the calculation of the
leading terms and LCSRs for the estimate of power
corrections, complementing our study [24,25] of γ�γ→π0.
For earlier work related to this program, see [6,26–29].
An alternative approach to the calculation of transition

form factors makes use of transverse momentum-dependent
(TMD) meson wave functions (TMD or kT factorization
[30]). This is a viable technique that has been advanced
recently to NLO, see e.g. [31,32] for the electromagnetic
pion form factor and γ�γ → π0, and which can be applied
to the γ�γ → ηð0Þ transitions as well. Because of a more
complicated nonperturbative input, interpretation of the
corresponding results in terms of DAs is, however, not
straightforward so that we prefer to stay within the collinear
factorization framework in what follows.
The theoretical updates implemented in this work are the

following:
(i) the c-quark contribution to the coefficient function

of the two-gluon DA;
(ii) complete NLO treatment of the scale dependence of

DAs including quark-gluon mixing;
(iii) consistent treatment of the corrections due to the

strange quark mass to OðmsÞ accuracy including
an update of the SUð3Þ-breaking corrections in
twist-four DAs;

(iv) partial account of the anomalous contributions
and implementation of η − η0 mixing schemes in
the twist-four DAs.

We further use these improvements for a numerical analysis
of the existing spacelike and timelike data, including a
careful analysis of the uncertainties, and the prospects to
constrain the two-gluon ηð0Þ DAs if more precise data on
transition FFs become available.
The presentation is organized as follows. Section II is

introductory. We collect here the definitions for twist-two
and twist-three DAs and introduce necessary notation in
both the quark-flavor and singlet-octet bases. Different
mixing schemes are introduced and discussed. Section III is
devoted to the calculation of the γ�γ → η; η0 electromag-
netic transition FFs in the collinear factorization frame-
work. Complete NLO expressions for the leading-twist
contributions are given. We also demonstrate the cancella-
tion of the end-point divergences in twist-four contributions
at the tree (LO) level. The necessity to distinguish between
the notion of “power-suppressed” and “higher-twist”

contributions is emphasized. A separate subsection con-
tains the discussion of the difference of timelike and
spacelike FFs in pQCD; the results are compared to data
[2]. In Sec. IV we start by explaining why the twist
expansion of the product of electromagnetic currents does
not provide the complete result for the FFs if one of the
photons is real, and present the calculation of the remaining
soft contributions within the LCSR framework that is
based on dispersion relations and quark-hadron duality.
A detailed numerical analysis of the spacelike experimental
data in this framework is presented in Sec. V. The final
Sec. VI is reserved for a summary and outlook.
The paper contains two appendixes where more techni-

cal material and/or long expressions are collected.
Appendix A is devoted to the two- and three-particle
twist-four DAs of the η; η0 mesons. It contains an update
of the existing expressions [33–35] taking into account
SUð3Þ-breaking effects, and also a partial calculation of
anomalous contributions to the higher-twist DAs that arise
from the axial anomaly. In Appendix B complete NLO
expressions for the scale dependence of the leading-twist
DAs are presented.

II. η, η0 MIXING AND DISTRIBUTION
AMPLITUDES

The description of the transition FFs γ�γ → η; η0 requires
knowledge of the momentum fraction distributions of
valence quarks in the mesons at small transverse separa-
tions, the meson distribution amplitudes. We define the
leading-twist DA for a given quark flavor at a given scale
μ as

h0jq̄ðz2nÞnγ5qðz1nÞjMðpÞi

¼ iFðqÞM ðpnÞ
Z

1

0

due−iz
u
21
ðpnÞϕðqÞM ðu; μÞ;

h0js̄ðz2nÞnγ5sðz1nÞjMðpÞi

¼ iFðsÞM ðpnÞ
Z

1

0

due−iz
u
21
ðpnÞϕðsÞM ðu; μÞ; ð1Þ

where q ¼ u or d, nμ is an auxiliary lightlike vector,
n2 ¼ 0, and we use a notation

zu21 ¼ ūz2 þ uz1; ū ¼ 1 − u: ð2Þ

In the following we also abbreviate

z21 ¼ z2 − z1: ð3Þ

The gauge links between the quark fields are implied. In all
equations M ¼ η; η0 denotes the physical pseudoscalar
meson state. We assume exact isospin symmetry and
identify
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mq ¼
1

2
ðmu þmdÞ: ð4Þ

The normalization is chosen such that

Z
1

0

duϕðq;sÞM ðu; μÞ ¼ 1 ð5Þ

and the couplings FðuÞM ¼ FðdÞM , FðsÞM are the matrix elements
of flavor-diagonal axial vector currents that we also write in
the form

FðuÞM ¼ FðdÞM ¼
fðqÞMffiffiffi
2
p ; FðsÞM ¼ fðsÞM ; ð6Þ

where

h0jJðrÞμ5 jMðpÞi ¼ ifðrÞM pμ; r ¼ q; s; ð7Þ

with the currents

JðqÞμ5 ¼
1ffiffiffi
2
p ½ūγμγ5uþ d̄γμγ5d�; JðsÞμ5 ¼ s̄γμγ5s: ð8Þ

The scale dependence of the DAs can be simplified by
introducing flavor-singlet and flavor-octet combinations

fð8ÞM ϕð8ÞM ¼
ffiffiffi
1

3

r
fðqÞM ϕðqÞM −

ffiffiffi
2

3

r
fðsÞM ϕðsÞM ;

fð1ÞM ϕð1ÞM ¼
ffiffiffi
2

3

r
fðqÞM ϕðqÞM þ

ffiffiffi
1

3

r
fðsÞM ϕðsÞM : ð9Þ

Here

h0jJðiÞμ5 jMðpÞi ¼ ifðiÞM pμ; i ¼ 1; 8; ð10Þ

where Jð1Þμ5 and Jð8Þμ5 denote the SUð3Þ flavor-singlet and
octet currents

Jð1Þμ5 ¼
1ffiffiffi
3
p ½ūγμγ5uþ d̄γμγ5dþ s̄γμγ5s�;

Jð8Þμ5 ¼
1ffiffiffi
6
p ½ūγμγ5uþ d̄γμγ5d − 2s̄γμγ5s�: ð11Þ

Equation (9) can be viewed as an orthogonal transformation
from the quark-flavor (QF) to the singlet-octet (SO) basis

 
fð8ÞM ϕð8ÞM ðu; μÞ
fð1ÞM ϕð1ÞM ðu; μÞ

!
¼ Uðφ0Þ

 
fðqÞM ϕðqÞM ðu; μÞ
fðsÞM ϕðsÞM ðu; μÞ

!
ð12Þ

where

Uðφ0Þ ¼

0
BB@

ffiffi
1
3

q
−

ffiffi
2
3

q
ffiffi
2
3

q ffiffi
1
3

q
1
CCA ¼

�
cosφ0 − sinφ0

sinφ0 cosφ0

�
ð13Þ

with φ0 ¼ arctanð ffiffiffi2p Þ.
The main advantage of this representation is that the

SO couplings and DAs do not mix with each other via

renormalization. In particular the octet coupling fð8ÞM is

scale independent whereas the singlet coupling fð1ÞM evolves
due to the Uð1Þ anomaly [36]:

μ
d
dμ

fð1ÞM ðμÞ ¼ −4nf
�
αs
2π

�
2

fð1ÞM þOðα3sÞ; ð14Þ

or

fð1ÞM ðμÞ ¼ fð1ÞM ðμ0Þ
�
1þ 2nf

πβ0
½αsðμÞ − αsðμ0Þ�

�
; ð15Þ

where nf is the number of light quark flavors.
The DAs can be expanded in terms of orthogonal

polynomials C3=2
n ð2u − 1Þ that are eigenfunctions of the

one-loop flavor-nonsinglet evolution equation:

ϕð1;8ÞM ðu; μÞ ¼ 6uū

�
1þ

X
n¼2;4;…

cð1;8Þn;M ðμÞC3=2
n ð2u − 1Þ

�
:

ð16Þ

The sum inEq. (16) goes over polynomials of even dimension
n ¼ 2; 4;…. This restriction is a consequence ofC-parity that
implies that quark-antiquark DAs are symmetric functions
under the interchange of the quark momenta

ϕð1;8ÞM ðu; μÞ ¼ ϕð1;8ÞM ðū; μÞ: ð17Þ

In addition we introduce a two-gluon leading-twist DA
ϕðgÞM ðu; μÞ,

h0jGnξðz2nÞ ~Gnξðz1nÞjMðpÞi

¼ CF

2
ffiffiffi
3
p fð1ÞM ðpnÞ2

Z
1

0

due−iz
u
21
ðpnÞϕðgÞM ðu; μÞ; ð18Þ

where CF ¼ 4=3, ~Gμν is the dual gluon field strength tensor
~Gμν ¼ ð1=2ÞϵμναβGαβ and Gnξ ¼ Gμξnμ. We use the con-
ventions γ5 ¼ iγ0γ1γ2γ3 and ϵ0123 ¼ 1, following [37]. The
gluon DA is antisymmetric

ϕðgÞM ðu; μÞ ¼ −ϕðgÞM ðū; μÞ ð19Þ

and can be expanded in a series of Gegenbauer polynomials
C5=2
n−1ð2u − 1Þ of odd dimension
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ϕðgÞM ðu; μÞ ¼ 30u2ū2
X

n¼2;4;…
cðgÞn;MðμÞC5=2

n−1ð2u − 1Þ: ð20Þ

The flavor-octet Gegenbauer coefficients cð8Þn;MðμÞ are renor-
malized multiplicatively at LO, and get mixed with the

coefficients cð8Þk;MðμÞ with k < n starting at NLO. The

flavor-singlet coefficients cð1Þn;MðμÞ get mixed with the gluon

coefficients cðgÞn;MðμÞ already at LO, and also with the coef-
ficients of the polynomials with lower dimension starting at
NLO; see Appendix B for details. In what follows we refer to
these coefficients as shape parameters. The values of shape
parameters at a certain scale μ0 encode all nonperturbative
information on the DAs.
In the exact SUð3Þ flavor symmetry limit the η meson is

part of a flavor octet, η ¼ η8, and η0 is a flavor singlet,

η0 ¼ η1. In this limit fðsÞη ¼ −
ffiffiffi
2
p

fðqÞη , fðsÞη0 ¼ 1=
ffiffiffi
2
p

fðqÞη0 and

fðqÞη ¼ fπ where fπ is the pion decay constant; in our nor-
malization fπ ¼ 131 MeV. However, it is known empiri-
cally that the SUð3Þ-breaking corrections are large and
have a rather nontrivial structure. In chiral effective theory
the η0 meson can be included in the framework of the 1=Nc
expansion [38]. In this approach the leading effect is due to
the axial anomaly that introduces an effective mass term for
the η; η0 states that is not diagonal in the SO basis if SUð3Þ
flavor symmetry is broken. In addition, there is also an off-
diagonal contribution to the kinetic term ∂μη8∂μη1 at loop
level [39]. As a result, the relation of physical η; η0 states to
the basic octet and singlet fields in the chiral Lagrangian, η8
and η1, becomes complicated and involves two different
mixing angles, see, e.g., a discussion in Ref. [11]. There is no
reason to expect that these mixing angles are the same for the
matrix elements of all operators of higher dimension that
determine moments of DAs. Thus the classification based on
the SO mixing scheme without additional assumptions does
not seem to be particularly useful in this context as the
number of parameters is not reduced.
In the last years a specific approximation has become

popular that we will refer to as the Feldmann-Kroll-Stech
(FKS) scheme [11]. This construction is motivated by the
observation that the vector mesons ω and ϕ are to a very
good approximation pure ūuþ d̄d and s̄s states and the
same pattern is observed in tensor mesons. The smallness
of mixing is a manifestation of the celebrated Okubo-
Zweig-Iizuka (OZI) rule that is phenomenologically very
successful. If the axial Uð1Þ anomaly is the only effect that
makes the situation in pseudoscalar channels different, it is
natural to assume that physical states are related to the
flavor states by an orthogonal transformation

� jηi
jη0i

�
¼UðφÞ

� jηqi
jηsi

�
; UðφÞ ¼

�
cosφ − sinφ

sinφ cosφ

�
:

ð21Þ

This state mixing is a very strong assumption that implies
that the same mixing pattern applies to the decay constants
and, more generally, to the wave functions so that0

B@ fðqÞη fðsÞη

fðqÞη0 fðsÞη0

1
CA ¼ UðφÞ

�
fq 0

0 fs

�
; ð22Þ

and0
B@ fðqÞη ϕðqÞη fðsÞη ϕðsÞη

fðqÞη0 ϕ
ðqÞ
η0 fðsÞη0 ϕ

ðqÞ
η0

1
CA ¼ UðφÞ

�
fqϕq 0

0 fsϕs

�
; ð23Þ

with the same mixing angle φ.
This is a far reaching conjecture that allows one to reduce

the four DAs of the physical states η; η0 to the two DAs
ϕqðu; μÞ, ϕsðu; μÞ of the flavor states:

ϕðqÞη ðuÞ ¼ ϕðqÞη0 ðuÞ ¼ ϕqðuÞ;
ϕðsÞη ðuÞ ¼ ϕðsÞη0 ðuÞ ¼ ϕsðuÞ: ð24Þ

The singlet and octet DAs in this scheme are given by0
B@ fð8Þη ϕð8Þη fð1Þη ϕð1Þη

fð8Þη0 ϕ
ð8Þ
η0 fð1Þη0 ϕ

ð1Þ
η0

1
CA ¼ UðφÞ

�
fqϕq 0

0 fsϕs

�
UTðφ0Þ

ð25Þ

and the same relation is valid separately for the couplings

fðrÞM and the couplings multiplied by the shape parameters

fðrÞM cðrÞn;M (16). The couplings fq; fs and the mixing angle ϕ
in the FKS scheme have been determined in Ref. [11] from
a fit to experimental data:

fq ¼ ð1.07� 0.02Þfπ;
fs ¼ ð1.34� 0.06Þfπ;
φ ¼ 39.3° � 1.0°: ð26Þ

A newer analysis [40] exploiting more recent data but only
a subset of the processes investigated in [11] yields

fq ¼ ð1.09� 0.03Þfπ;
fs ¼ ð1.66� 0.06Þfπ;
φ ¼ 40.7° � 1.4°; ð27Þ

where the mixing angle is the average of φq and φs from
[40]. The difference between the two sets can be viewed as
an intrinsic uncertainty of the FKS approximation. For
consistency with earlier work, e.g. [6], we will accept by
default the original set of parameters from Ref. [11],
Eq. (26), for numerical calculations in this work. A recent
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discussion of the ongoing investigations of η − η0 mixing
from a more general perspective can be found in [41].
Since the flavor-singlet and flavor-octet couplings have

different scale dependence, Eq. (25) cannot hold at all
scales. It is natural to assume that the FKS scheme refers to
a low renormalization scale μ0 ∼ 1 GeV and the DAs at
higher scales are obtained by QCD evolution (that also
generates nonvanishing OZI-violating contributions).
Figure 1 shows a comparison of the γ�γ → π0 experimental
data with the nonstrange γ�γ → jηqi FF extracted from
the combination of BABAR and CLEO measurements of
γ�γ → η and γ�γ → η0 assuming the FKS mixing scheme.
Were this scheme exact, the two FFs would coincide in the
whole Q2 range, up to tiny isospin breaking corrections.
It is seen that the existing measurements do not contradict
the FKS approximation at low-to-moderateQ2 ≲ 10 GeV2,
whereas at larger virtualities the comparison is inconclusive
because of significant discrepancies between the BABAR
and Belle pion data. The BABAR data taken alone show a
dramatic difference between the γ�γ → π0 and γ�γ → jηqi
FFs at large virtualities that cannot be explained by
perturbative evolution effects. If this difference were con-
firmed, it would be a stark indication that the concept of
state mixing is not applicable to the η and η0 DAs so that the
corresponding relations between higher-order Gegenbauer
coefficients are strongly broken already at a low scale.
Staying with the state mixing picture, for the gluon DA

we have to assume that

h0jGnξðz2nÞ ~Gnξðz1nÞjηqi ¼ h0jGnξðz2nÞ ~Gnξðz1nÞjηsi

and as a consequence

ϕðgÞη ðuÞ ¼ ϕðgÞη0 ðuÞ; ð28Þ

that is similar to Eq. (24).

Two-particle twist-three DAs for the strange quarks can
be defined as

2msh0js̄ðz2nÞiγ5sðz1nÞjMðpÞi ¼
Z

1

0

due−iz
u
21
ðpnÞϕðsÞp3M ðuÞ;

ð29Þ

and

2msh0js̄ðz2nÞσμνγ5sðz1nÞjMðpÞi

¼ iz12
6
ðpμnν − pνnμÞ

Z
1

0

due−iz
u
21
ðpnÞϕðsÞσ3M ðuÞ ð30Þ

with the normalization conditionZ
1

0

duϕðsÞp3M ðuÞ ¼
Z

1

0

duϕðsÞσ3M ðuÞ ¼ HðsÞM ; ð31Þ

where

HðsÞM ¼ m2
MF
ðsÞ
M − aM;

aM ¼ h0j
αs
4π

GA
μν
~GA;μνjMðpÞi; ð32Þ

that follows from the anomaly relation

∂μJðsÞμ5 ¼ 2mss̄iγ5sþ
αs
4π

GA
μν
~GA;μν: ð33Þ

Twist-three DAs for the light q ¼ u; d quarks can be
defined by similar expressions with obvious substitutions

s → q, e.g. HðqÞM ¼ m2
MF
ðqÞ
M − aM. In what follows we also

use the notation, cf. (6),

HðuÞM ¼ HðdÞM ¼
hðqÞMffiffiffi
2
p ; HðsÞM ¼ hðsÞM : ð34Þ

We do not present here the definitions of three-particle
quark-antiquark-gluon twist-three DAs as it turns out
that they do not contribute to the FFs of interest at LO
in perturbation theory.
Assuming the FKS mixing scheme at low scales one can

rewrite the four DAs ϕðq;sÞp3M in terms of two functions as in

Eq. (23), and similar for ϕðq;sÞσ3M , introducing two new
parameters hq and hs [43]

hq ¼ 0.0015� 0.004; hs ¼ 0.087� 0.006: ð35Þ

Note that hq is small and consistent with zero. It is easy to
convince oneself that matrix elements of operators with an
even number of γ matrices enter the calculation of the
γ�γ → η and γ�γ → η0 transition FFs always multiplied by
quark masses, as on the left-hand-side of Eqs. (29) and (30).

5 10 15 20 25 30 35 40
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

BABAR: q

BABAR: 0

BELLE: 0

CLEO: q

CLEO: 0

FIG. 1 (color online). The experimental data on γ�γ → π0

[3,4,42] (open symbols) compared with the nonstrange component
of the eta meson transition FF, γ�γ → jηqi (filled symbols), from
the combination of BABAR and CLEO measurements [1,42] on η
and η0 production in the FKS mixing scheme, Eqs. (22) and (23).
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In this situation the contribution of light q ¼ u; d quarks is
tiny and can safely be neglected. To this accuracy

ϕðsÞp
3η0 ðuÞ ¼ cosφϕp

3sðuÞ; ϕðsÞp3η ðuÞ ¼ − sinφϕp
3sðuÞ;

ϕðsÞσ
3η0 ðuÞ ¼ cosφϕσ

3sðuÞ; ϕðsÞσ3η ðuÞ ¼ − sinφϕσ
3sðuÞ;
ð36Þ

where

ϕp
3sðuÞ ¼ hs þ 60msf3sC

1=2
2 ð2u − 1Þ þ…;

ϕσ
3sðuÞ ¼ 6ūu½hs þ 10msf3sC

3=2
2 ð2u − 1Þ þ…�: ð37Þ

The ellipses stand for the contributions of higher conformal
spin and corrections Oðm2

sÞ which we neglect for consis-
tency with the calculation of twist-four corrections (see the
next section). The coupling f3s is defined as

h0js̄σnξγ5gGnξsjηsðpÞi ¼ 2iðpnÞ2f3s ð38Þ

and we assume that fðsÞ
3η0 ¼ cosφf3s, fðsÞ3η ¼ − sinφf3s.

The corresponding coupling for the charged π meson is
estimated to be (at the scale 1 GeV) [35]

f3π ∼ 0.0045 GeV2: ð39Þ

Lacking any information about the flavor-singlet contribu-
tion, we adopt this number as a (possibly crude) estimate
for f3s. With this choice

2msf3s
hs

∼ 0.01 ð40Þ

and one may hope that the corresponding ambiguity in
FF predictions is not very large. We will return to this
question in the next section. The scale dependence of f3s is
given by [35]

f3sðμÞ ¼ L55=ð9β0Þf3sðμ0Þ þOðmsfsÞ ð41Þ

where L ¼ αsðμÞ=αsðμ0Þ.
Finally, we will need the DAs of twist four that are rather

numerous. The corresponding expressions, including some
new results, are collected in Appendix A.

III. γ�γ → η;η0 FORM FACTORS
IN QCD FACTORIZATION

A. Leading twist

The FFs Fγ�γ�→Mðq21; q22Þ, M ¼ η; η0 describing the
meson transition in two (in general virtual) photons are
defined by the following matrix element of the product of
two electromagnetic currents

Z
d4xeiq1xhMðpÞjTfjemμ ðxÞjemν ð0Þgj0i

¼ ie2εμναβqα1q
β
2Fγ�γ�→Mðq21; q22Þ; ð42Þ

where

jemμ ðxÞ ¼ euūðxÞγμuðxÞ þ edd̄ðxÞγμdðxÞ þ…;

p is the meson momentum and q2 ¼ q1 þ p. We will
mainly consider the spacelike FF, in which case photon
virtualities are negative. In the experimentally relevant
situation one virtuality is large and the second one small
(or zero). For definiteness we take

q21 ¼ −Q2; q22 ¼ −q2; ð43Þ

assuming that q2 ≪ Q2. Most of the following equations
are written for q2 ¼ 0, and we use a shorthand notation

Fγ�γ→MðQ2Þ≡ Fγ�γ�→Mðq21 ¼ −Q2; q2 ¼ 0Þ:

The leading contribution Oð1=Q2Þ to the FFs can be
written in factorized form as a convolution of leading-twist
DAs with coefficient functions that can be calculated in
QCD perturbation theory.
The contribution of heavy (charm) quarks requires some

attention. There are two basic possibilities to take into
account heavy quarks in the QCD factorization formalism
[44–47] which correspond, essentially, to the two choices
of the (physical) factorization scale. It can be smaller,
μ ≪ mh, or larger, μ ≫ mh than the heavy quark mass. If
ΛQCD ≪ μ ≪ mh;Q, i.e. if the (heavy) quark mass mh is
very large, of the order of the photon virtualitymh ∼Q, it is
natural to write the structure function as a convolution
of coefficient functions and parton densities that involve
only light quark flavors u; d; s and gluons. This approach is
usually referred to as the decoupling scheme, or fixed flavor
number scheme (FFNS). Another possibility is to assume
the hierarchy ΛQCD;mh≪μ≪Q (which implies mh ≪ Q)
and write the FFs as a sum involving heavy flavors. This is
usually dubbed variable flavor number scheme (VFNS),
with MS subtraction for all flavors.
In this work we adopt the first scheme which has the

advantage that the complete heavy quark dependence is
retained in the coefficient functions. A potential problem
in this case is that for mh ≪ Q the coefficient functions
involve large logarithms ∼ lnQ2=m2

h which one would like
to resum to all orders. This resummation is naturally done in
the VFNS schemes where it corresponds to the resummation
of collinear logarithms using the Efremov-Radyushkin-
Brodsky-Lepage (ERBL) equation, but the price to pay is
that this can only be done to leading power accuracy in the
m2

h=Q
2 expansion. There exists vast literature devoted to

heavy quark contributions to deep inelastic lepton hadron
scattering (DIS), discussing how the advantages of both
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approaches can be combined by matching at the scale
μ≃mh; see e.g. [46]. We leave such improvements for
future work, as the numerical impact of resummation on the
transition FFs is not likely to be large. For the same reason
we do not take into account terms ∼α2s lnQ=mh in the
coefficient functions of light quark DAs.
Thus we write

Fγ�γ→MðQ2Þ ¼ fð8ÞM

3
ffiffiffi
6
p
Z

1

0

duTð8ÞH ðu;Q2;μ;αsðμÞÞϕð8ÞM ðu;μÞ

þ 2fð1ÞM

3
ffiffiffi
3
p
Z

1

0

duTð1ÞH ðu;Q2;μ;αsðμÞÞϕð1ÞM ðu;μÞ

þ 2fð1ÞM

3
ffiffiffi
3
p
Z

1

0

duTðgÞH ðu;Q2;μ;αsðμÞÞϕðgÞM ðu;μÞ;
ð44Þ

where ϕð8;1;gÞM ðu; μÞ are the light quark octet (singlet), and
gluon DAs defined in the previous section.
The coefficient function for the quark DA is known in the

MS scheme to NLO in the strong coupling [48–50] and is
the same for flavor-octet and flavor-singlet contributions.
Taking into account the symmetry of the quark DAs (17) it
can be written as

TNLO
H ¼ 2

uQ2

�
1þ CF

αsðμÞ
2π

�
1

2
ln2u −

1

2

u
ū
ln u

−
9

2
þ
�
3

2
þ ln u

�
ln
Q2

μ2

��
: ð45Þ

The leading-order gluon coefficient function is calculated
from the diagrams in Fig. 2. The contribution of light u; d; s
quarks reads [6,27]

Tg
Hjlight ¼ − CF

αsðμÞ
2π

2 ln u
ū2Q2

�
1

u
− 3þ 1

2
ln uþ ln

Q2

μ2

�
ð46Þ

and the c-quark contribution is equal to

Tg
Hjcharm ¼ CF

αsðμÞ
2π

2

3

1

uū2Q2

�
ln2
�
βðQ2Þ þ 1

βðQ2Þ − 1

�

− uln2
�
βðuQ2Þ þ 1

βðuQ2Þ − 1

�
− 4βðQ2Þ ln

�
βðQ2Þ þ 1

βðQ2Þ − 1

�

þ 2ð3u − 1ÞβðuQ2Þ ln
�
βðuQ2Þ þ 1

βðuQ2Þ − 1

��
; ð47Þ

where

βðQ2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

c

Q2

s
: ð48Þ

In numerical calculations we use the value mc ¼ 1.42 GeV
for the c-quark pole mass. The b-quark contribution is
given by the same expression with an obvious replacement
of the quark mass mc → mb and extra factor 1=4 from the
electric charge e2c → e2b. It is very small for the whole
experimentally accessible region Q2 ≲ 100 GeV2 and can
safely be neglected.
In the formal Q2 → ∞ limit the transition form factors

have to approach their asymptotic values [51]

lim
Q2→∞

Q2Fγ�γ→MðQ2Þ

¼
ffiffiffi
2

3

r �
fð8ÞM þ 2

ffiffiffi
2
p

fð1ÞM ðμ0Þ
�
1 −

2nf
πβ0

αsðμ0Þ
��

: ð49Þ

Note that the scale dependence of the flavor-singlet axial
coupling (15) gives rise to a finite renormalization factor
∼0.85 which is not negligible. Using nf ¼ 4, μ0 ¼ 1 GeV,
αsð1 GeVÞ ¼ 0.5 and the FKS parameters in (26) we
obtain

Q2Fasy
γ�γ→ηðQ2Þ → 0.173ð0.158Þ GeV;

Q2Fasy
γ�γ→η0 ðQ2Þ → 0.247ð0.270Þ GeV: ð50Þ

The asymptotic FF values corresponding to the parameter
set in (27) are shown in parenthesis for comparison. The
finite renormalization correction to the flavor-singlet con-
tribution is not taken into account in [1,6,27]. It is only a
≲5% effect for the ηmeson but leads to a 20% reduction of
the asymptotic value of the FF for the η0, in which case the
effect is amplified by the cancellation between the flavor-

singlet and flavor-octet contributions, fð1Þη0 ¼ 0.15ð0.17Þ,
fð8Þη0 ¼ −0.06ð−0.08Þ. In this way the discrepancy between
the data [1] and the expected asymptotic behavior of the
γ�γ → η0 FF is removed, see Sec. V.

B. Higher twist corrections

One source of power corrections ∼1=Q2 to the transition
FFs Fγ�γ�→M corresponds to contributions of less singular

FIG. 2. Box diagrams contributing to the gluon coefficient
function.
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terms ∼1=x2, ln x2, etc., as compared to the leading
contribution ∼1=x4 in the operator product expansion of
the two electromagnetic currents in Eq. (42). They can be
calculated in terms of meson DAs of higher twist and will
be referred to as higher-twist corrections in what follows.
To LO in perturbation theory one obtains including the
twist-four contribution

Q2Fγ�γ→MðQ2Þ ¼ 2
X

ψ¼u;d;s
e2ψF

ðψÞ
M

Z
1

0

du
u

�
ϕðψÞM ðuÞ

−
ūm2

M

Q2
ϕðψÞM ðuÞ þ

1

6uQ2
ϕðψÞσ3M ðuÞ

−
1

uQ2
AðψÞ4;MðuÞ

�
; ð51Þ

where the function A4;MðuÞ is written in terms of two-
particle and three-particle DAs of twist-four defined in
Appendix A:

A4;MðuÞ ¼
1

4
ϕ4MðuÞ −

Z
u

0

dα1

Z
ū

0

dα2

�
1

α3
~Φ4MðαÞ

þ 2u − 1 − α1 þ α2
α23

Φ4MðαÞ
�				

α3¼1−α1−α2
: ð52Þ

Using explicit expressions for the twist-four DAs (see
Appendix A), we obtain

Q2Fγ�γ→MðQ2Þ

¼ 2
X

ψ¼u;d;s
e2ψF

ðψÞ
M

(
3ð1þ cðψÞ2;MÞ −

1

Q2

"
hðψÞM

fðψÞM

ð2þ 3cðψÞ2;MÞ

þ 80

9
δ2ðψÞM −

hðψÞM

fðψÞM

�
67

360
−
5

4
cðψÞ2;M

�
−
3

2

mψf
ðψÞ
3M

fðψÞM

#)
;

ð53Þ

where we included, for comparison, the leading-order
leading-twist contribution and ignored the scale depend-
ence. Note the following:

(i) The end-point divergence at u → 0 in the contribu-

tion of the twist-three DA ϕðψÞM ðuÞ exactly cancels
the similar divergence in the twist-four contributions
that are related to twist-three operators by equations
of motion; this cancellation is general and does not
depend on the shape of the twist-three DAs.

(ii) Assuming the FKS mixing scheme the expression
for the 1=Q2 correction (in square brackets) does
not depend on the meson states, η or η0. Using the
numbers quoted in Eqs. (26) and (35) we obtain for
the ratio

hðsÞM =fðsÞM ¼ 0.50� 0.04 GeV2; ð54Þ

whereas the similar ratio for the light u; d quarks is
compatible with zero.

(iii) The higher-twist correction is dominated by the

contribution of δ2ðψÞM ≃ 0.2 GeV2 (see Appendix A)
whereas the contribution of the twist-three quark-

antiquark-gluon matrix element ∼msf
ðsÞ
3M=f

ðsÞ
M is

completely negligible.
Plugging in the numbers we obtain a rough estimate of the
twist-four contribution

Fγ�γ→MðQ2Þ ¼
�
1 −

0.9 GeV2

Q2

�
Ftwist-two
γ�γ→M ðQ2Þ: ð55Þ

This is a small correction. However, one can show that
contributions of arbitrary twist produce a 1=Q2 correction
as well (see a detailed discussion in [24]), indicating that
the light-cone dominance of the transition form factor with
one virtual and one real photon does not hold beyond
leading power accuracy. An estimate of the twist-six
contribution [24] results in a small positive 1=Q2 correc-
tion, enhanced by an additional lnQ2 factor. The mismatch
of twist- and power-counting is due to the fact that to power
accuracy one must consider the contributions of large
light-cone distances between the currents, that are not
“seen” in the twist expansion. To leading order in the
QCD coupling such terms can simply be added and there is
no double counting. An example of such a correction is the
contribution of real photon emission at large distances
calculated in Ref. [24]:

Fγ�γ→π0ðQ2Þ ¼
ffiffiffi
2
p

fπ
3

16παsχhq̄qi2
9f2πQ4

×
Z

1

0

dx
ϕp
3;πðxÞ
x

Z
1

0

dy
ϕγðyÞ
ȳ2

; ð56Þ

where ϕγðyÞ≃ 6yð1 − yÞ is the leading-twist photon DA
[52,53] and χ ≃ 3.5 GeV−2 (at the scale μ ¼ 1 GeV) is the
magnetic susceptibility of the quark condensate [53–57].
The integrals over the quark momentum fractions in (56)
are both logarithmically divergent at the end-points x → 0,
y → 1, which signals that there is an overlap with the soft
region. Such soft contributions are related to the overlap
between the light-cone wave functions of the pseudoscalar
meson and the real photon and can be taken into account in
the framework of LCSRs described in the next section.

C. Timelike form factors

In Ref. [2] the processes eþe− → γ� → ðη; η0Þγ were
studied at a center-of-mass energy of

ffiffiffi
s
p ¼ 10.58 GeV.

The measurements can be interpreted in terms of the
γ�γ → η; η0 FFs at remarkably high timelike photon vir-
tuality Q2 ¼ −s ¼ −112 GeV2:
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jQ2Fγ�γ→ηðQ2ÞjQ2¼−112GeV2 ¼ð0.229�0.031ÞGeV;
jQ2Fγ�γ→η0 ðQ2ÞjQ2¼−112GeV2 ¼ð0.251�0.021ÞGeV; ð57Þ

where we added the statistical and systematic uncertainties
in quadrature. Note that the timelike FFs are complex
numbers, whereas only the absolute value is measured.
To leading-twist accuracy, the timelike FFs can be

obtained from their Euclidean (spacelike) expressions by
the analytic continuation

Q2 ↦ −s − iϵ: ð58Þ

The imaginary parts arise both from the analytic continu-
ation of the hard coefficient functions and the DAs
which become complex at timelike scales μ2 ∼Q2 ¼ −s;
see e.g. [58].
Since transition form factors are linear functions of the

meson DAs, the results of the QCD calculation can be
written as a sum of contributions of different Gegenbauer
polynomials at the low reference scale

Q2Ftwist-two
γ�γ→η ðQ2ÞjQ2¼−112 GeV2

¼ 0.161 GeVþ
X

p¼q;s;g

X
n¼2;4;…

fðpÞη;nc
ðpÞ
n ðμ20Þ;

Q2Ftwist-two
γ�γ→η0 ðQ2ÞjQ2¼−112 GeV2

¼ 0.241 GeVþ
X

p¼q;s;g

X
n¼2;4;…

fðpÞη0;nc
ðpÞ
n ðμ20Þ; ð59Þ

where the asymptotic DA contributions are almost the same
in the timelike and spacelike regions, and the coefficients

fðpÞM;n ≡ fðpÞM;nðQ2=μ2; αsðμ2Þ; μ20Þ absorb all dependence
on Q2. Numerical values of these coefficients with the
choice of factorization scale μ2 ¼ Q2, continued analyti-
cally to the timelike values Q2 ¼ −s, are presented for η
and η0 mesons in comparison with the corresponding
spacelike coefficients for n ¼ 2; 4 in Table I. Note that

the Gegenbauer coefficients at the low scale cðpÞn ðμ0Þ do not
depend on the type of the meson—η or η0—by assumption
of the FKS state mixing. For this calculation we have taken
the set of parameters in Eq. (26). The given numbers
correspond to the choice of the scale μ2 ¼ Q2; they change

by at most 10% if the scale is varied in the inter-
val Q2=2 < μ2 < 2Q2.
We see that the coefficients of higher Gegenbauer

polynomials are in general rather small, which is due to
suppression by the anomalous dimensions. These coeffi-
cients acquire rather large phases; however, for realistic

values of the Gegenbauer coefficients cðqÞ2;4∼cðsÞ2;4≈0.1−0.2
the corresponding contributions to the FF appear to be
marginal as compared to the leading terms in (59). Thus the
overall phase is small and the absolute values of the FF in
the spacelike and timelike regions remain close to each
other. This result is in agreement with the conclusion in
[58] that perturbative corrections cannot generate a sig-
nificant difference between the spacelike and timelike
transition FFs.
Beyond the leading power accuracy the situation is less

clear. Note that the overall 1=Q2 correction to the spacelike
transition form factors is negative (this can be shown in
many ways; see, e.g. [24,25]) and by virtue of the sign
change in Q2 one expects a positive correction to the
timelike form factors if the analytic continuation is justified
to power accuracy which is, however, not obvious. The
higher-twist contributions corresponding to less singular
terms in the light-cone expansion of the product of the two
electromagnetic currents are small and tend to have alter-
nating signs; cf. the discussion in the previous section.
They are unlikely to play any role at jQ2j ∼ 100 GeV2. The
soft contributions can, however, be significant.
Within the LCSR approach to soft contributions dis-

cussed in the next section, their magnitude is correlated
with the shape of the leading-twist DA: broader DAs
generally lead to larger soft corrections and vice verse.
A rough estimate (69) gives

Q2Fγ�γ→ηðQ2Þ≃Q2FQCD
γ�γ→ηðQ2Þ

�
1 −
ð3–7Þ GeV2

Q2

�
; ð60Þ

where the larger number corresponds to a broad DA of
the type [24] required to describe the BABAR data [3] on
γ�γ → π0, and the smaller one is obtained for the asymp-
totic DA. Assuming that the soft correction changes sign
in the timelike region, we conclude that the difference
between the timelike and spacelike form factors at
jQ2j ¼ 112 GeV2 can be of the order of ∼5%–13% for

TABLE I. Coefficients (59) of the contributions of different Gegenbauer polynomials in the expansion of DAs to the transition form
factors at the timelike Q2 ¼ −s ¼ −112 GeV2, assuming validity of the FKS mixing scheme (26) at the low scale μ0 ¼ 1 GeV. The
corresponding spacelike coefficients for Q2 ¼ 112 GeV2 are also given for comparison. All numbers in units of GeV.

Meson Scale fðqÞ2 fðsÞ2 fðgÞ2 fðqÞ4 fðsÞ4 fðgÞ4

η
spacelike 0.126 −0.037 0.010 0.105 −0.030 0.006
timelike 0.113þ 0.032i −0.033 − 0.009i 0.011 − 0.001i 0.086þ 0.039i −0.025 − 0.011i 0.006þ 0.001i

η0 spacelike 0.103 0.045 0.061 0.086 0.037 0.037
timelike 0.093þ 0.026i 0.040þ 0.011i 0.069 − 0.005i 0.070þ 0.032i 0.030þ 0.014i 0.040þ 0.005i
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the “narrow” and “broad” meson DA, respectively. This
difference can further be enhanced by Sudakov-type cor-
rections; see the discussion in [58] and references therein.
It is interesting that the experimental result for γ�γ → η0

at Q2 ¼ −112 GeV2 [2] is very close to the contribution
of the asymptotic η0 meson DA in Eq. (59), whereas the
asymptotic contribution to γ�γ → η is almost 50% below
the data; cf. (57). This result urgently needs verification. If
correct, it can probably only be explained by much larger
soft contributions such as a much broader DA of the η
meson as compared to η0, which would be in conflict with
the state mixing approximation for DAs.

IV. LIGHT-CONE SUM RULES

The LCSR approach was proposed in [52,59–61] and
adapted for the present situation in [62]. This technique is
well known and has been used repeatedly for γ�γ → π0

[24,25,63–70] so that in what follows we will only give
a short introduction and present the necessary NLO
expressions, generalized and/or adapted for the case of
ηð0Þ mesons.
The idea is to consider a more general transition FF for

two nonvanishing photon virtualities, q21 ¼ −Q2 and
q22 ¼ −q2, and perform the analytic continuation to the
real photon limit q2 ¼ 0 employing dispersion relations.
On the one hand, Fγ�γ�→MðQ2; q2Þ satisfies an unsub-

tracted dispersion relation in the variable q2 for fixed Q2.
Separating the contribution of the lowest-lying vector
mesons ρ;ω we can write

Fγ�γ�→MðQ2; q2Þ ¼
ffiffiffi
2
p

fρFγ�ρ→MðQ2Þ
m2

ρ þ q2

þ 1

π

Z
∞

s0

ds
ImFγ�γ�→MðQ2;−sÞ

sþ q2
; ð61Þ

where s0 is some effective threshold. Here, the ρ and ω
contributions are combined in one resonance term assum-
ing mρ ≃mω and the zero-width approximation is used;
fρ ∼ 200 MeV is the usual vector meson decay constant.
Note that since there are no massless states, the real photon
limit is recovered by the simple substitution q2 → 0 in (61).
On the other hand, the same FF can be calculated using

QCD perturbation theory and the operator product expan-
sion (OPE). The QCD result obeys a similar dispersion
relation

FQCD
γ�γ�→MðQ2; q2Þ ¼ 1

π

Z
∞

0

ds
ImFQCD

γ�γ�→MðQ2;−sÞ
sþ q2

: ð62Þ

The basic assumption, usually referred to as quark-hadron
duality, is that the physical spectral density above the
threshold s > s0 coincides with the QCD spectral density
as given by the OPE:

ImFγ�γ�→MðQ2;−sÞ ¼ ImFQCD
γ�γ�→MðQ2;−sÞ: ð63Þ

This equality has to be understood in the sense of
distributions, with both sides integrated with a smooth test
function.
Equating the two representations in (61) and (62) at

q2 → −∞ and subtracting the contributions of s > s0 from
both sides one obtains

ffiffiffi
2
p

fρFγ�ρ→MðQ2Þ ¼ 1

π

Z
s0

0

dsImFQCD
γ�γ�→MðQ2;−sÞ: ð64Þ

This relation explains why s0 is usually referred to as the
interval of duality. The perturbative QCD spectral density
ImFQCD

γ�γ�→MðQ2;−sÞ is a smooth function and does not
vanish at small s → 0. It is very different from the physical
spectral density ImFγ�γ�→MðQ2;−sÞ∼δðs−m2

ρÞ. However,
the integral of the QCD spectral density over a certain
region of energies coincides with the integral of the
physical spectral density over the same region; in this
sense the QCD description of correlation functions in terms
of quark and gluons is dual to the description in terms of
hadronic states.
In practical applications of this method one uses a

trick borrowed from QCD sum rules [71], to reduce the
sensitivity to the duality assumption in Eq. (63) and also to
suppress contributions arising from higher order terms in
the OPE. To this end one attempts to match the “true” and
calculated FF at a finite value q2 ∼ 1–2 GeV2 instead of
the q2 → ∞ limit. This is done by going over to the Borel
representation 1=ðsþ q2Þ→ exp½−s=M2�, the final effect
being the appearance of an additional weight factor under
the integral

ffiffiffi
2
p

fρFγ�ρ→MðQ2Þ ¼ 1

π

Z
s0

0

dse−ðs−m2
ρÞ=M2

× ImFQCD
γ�γ�→MðQ2;−sÞ: ð65Þ

Varying the Borel parameter within a certain window one
may test the sensitivity of the results to a chosen model for
the spectral density.
With this refinement, substituting Eq. (65) in (61) and

using Eq. (63) we obtain for q2 → 0

FLCSR
γ�γ→MðQ2Þ ¼ 1

π

Z
s0

0

ds
m2

ρ
ImFQCD

γ�γ�→MðQ2;−sÞeðm2
ρ−sÞ=M2

þ 1

π

Z
∞

s0

ds
s
ImFQCD

γ�γ�→MðQ2;−sÞ: ð66Þ

This expression contains two nonperturbative parameters,
the vector meson mass m2

ρ, and the effective threshold
s0 ≃ 1.5 GeV2, as compared to the “pure”QCDcalculations.
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Taking into account Eq. (62) one can rewrite the same
result as

FLCSR
γ�γ→MðQ2Þ ¼ FQCD

γ�γ→MðQ2Þ þ 1

π

Z
s0

0

ds
m2

ρ

�
eðm2

ρ−sÞ=M2 −
m2

ρ

s

�

× ImFQCD
γ�γ�→MðQ2;−sÞ; ð67Þ

separating the result of a “pure” QCD calculation and the
correction.
To get an impression of how this modification affects

the QCD result, we insert the leading-order and leading-
twist expression for ImFQCD

γ�γ�→MðQ2;−sÞ and rewrite the
dispersion integral in terms of a variable x ¼ Q2=ðsþQ2Þ
that corresponds to the fraction of the meson momentum
carried by the interacting quark:

FLCSR
γ�γ→MðQ2Þ ¼

X
i¼1;8

CifðiÞM
1

Q2

�Z
1

0

dx
x̄
ϕðiÞM ðxÞ

þ
Z

1

x0

dx
x̄

�
x̄Q2

xm2
ρ
e
xm2

ρ−x̄Q
2

xM2 − 1

�
ϕðiÞM ðxÞ

�
; ð68Þ

where C1 ¼ 4

3
ffiffi
3
p , C8 ¼ 2

3
ffiffi
6
p , x̄ ¼ 1 − x and x0 ¼ Q2

s0þQ2. The

first contribution is the LO perturbative result while the
second part represents the soft end-point correction from
the region x > x0 ¼ 1 −Oðs0=Q2Þ, due to the modification
of the spectral density in the LCSR framework.
For a rough estimate of the soft correction we expand the

integrand for small 1 − x0

FLCSR
γ�γ→MðQ2Þ ≈

X
i¼1;8

CifðiÞM
1

Q2

�Z
1

0

dx
x̄
ϕðiÞM ðxÞ

þ x̄0

�
s0
2m2

ρ
e
m2
ρ−s0
M2 − 1

�
ϕ0ðiÞM ð0Þ

�
; ð69Þ

where ϕ0ðiÞM ð0Þ≡ ðd=dxÞϕðiÞM ðxÞjx¼0 and we assumed that
the DA vanishes linearly at the end points. Using

ϕ0ðiÞM ð0Þ ¼ 3

�
2þ

X
n¼2;4;…

ðnþ 1Þðnþ 2ÞcðiÞn
�
;

Z
1

0

dx
x̄
ϕðiÞM ðxÞ ¼ 3

�
1þ

X
n¼2;4;…

cðiÞn

�
;

and assuming that the numerical values of the Gegenbauer
moments for the singlet and octet DAs are the same, we
arrive at the estimate in Eq. (60).

A. Twist-two contribution

For our purposes it is convenient to write the required
imaginary part of FQCD

γ�γ�→MðQ2; q2Þ as a sum of terms
corresponding to the expansion of the meson DAs

ϕMðx; μÞ in Gegenbauer polynomials. The twist-two quark
components of the spectral densities with NLO accuracy
can be obtained from relevant expressions presented in our
work [24]. Thus we write, for the flavor-octet contribution,

1

π
ImFQCDð8Þ

γ�γ�→MðQ2;−sÞ

¼ fð8ÞM

3
ffiffiffi
6
p
X∞
n¼0

cð8Þn;MðμÞ
�
ρð0Þn ðQ2; sÞ þ CFαs

2π
ρð1Þn ðQ2; s; μÞ

�
:

ð70Þ
The LO partial spectral density is proportional to the
meson DA

ρð0Þn ðQ2; sÞ ¼ 2φnðxÞ
Q2 þ s

; φnðxÞ ¼ 6xx̄C3=2
n ð2x − 1Þ;

ð71Þ
where x ¼ Q2=ðQ2 þ sÞ.
The NLO spectral density can be written in the following

form:

ρð1Þn ðQ2; s; μÞ ¼ 1

Q2 þ s

��
−3½1þ 2ðψð2Þ − ψð2þ nÞÞ�

þ π2

3
− ln2

�
x̄
x

�
−
γð0Þn

CF
ln

�
s
μ2

��
φnðxÞ

þ γð0Þn

CF

Z
x̄

0

du
φnðuÞ − φnðx̄Þ

u − x̄

−
�Z

1

x
du

φnðuÞ − φnðxÞ
u − x

ln

�
1 −

x
u

�

þ ðx → x̄Þ
��

; ð72Þ

where γð0Þn is the flavor-nonsinglet LO anomalous dimen-
sion (B6).
The flavor-singlet quark contribution can be written

similarly as

1

π
ImFQCDð1Þ

γ�γ�→MðQ2;−sÞ

¼ 2fð1ÞM

3
ffiffiffi
3
p

X∞
n¼0

cð1Þn;MðμÞ
�
ρð0Þn ðQ2; sÞ þ CFαs

2π
ρð1Þn ðQ2; s; μÞ

�

ð73Þ

with the same functions ρð0Þn ðQ2; sÞ and ρð1Þn ðQ2; s; μÞ, the
difference being encoded in the decay constants fðiÞM , the

expansion coefficients cðiÞn;M and numerical factors.
In order to find the contribution of the gluon DA one has

to calculate the relevant Feynman diagrams (Fig. 1) for
light quarks in the loop and two nonzero photon virtualities,
Q2 and q2. One obtains, omitting the factor CFαs=4π,
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Tg
Hjlightðu;Q2; q2Þ ¼ −

1

u2ū2ðQ2 − q2Þ2
�
Q2u2 ln

�
uQ2 þ ūq2

Q2

��
ln

�
uQ2 þ ūq2

μ2

�
þ ln

�
Q2

μ2

��

− q2ū2 ln

�
uQ2 þ ūq2

q2

��
ln

�
uQ2 þ ūq2

μ2

�
þ ln

�
q2

μ2

��

þ 2

�
Q2uð3ū − 2Þ ln

�
uQ2 þ ūq2

Q2

�
þ q2ūð2 − 3uÞ ln

�
uQ2 þ ūq2

q2

���
: ð74Þ

It is not difficult to verify that the result in (74) reproduces the known expression (46) in the limit q2 → 0. The
corresponding contribution to the spectral density reads, replacing q2 → −s,

1

π
ImTg

Hjlightðu;Q2;−sÞ ¼ −
2x
Q2

�
1

u2ū2

�
Θðu − xÞ

�
ðxū2 þ x̄u2Þ ln

�
1 −

ū
x̄

�
þ uū

��

þ
�
Θðu − xÞ x

u2
− Θðx − uÞ x̄

ū2

��
ln
Q2

μ2
þ ln

x̄
x
− 2

��
: ð75Þ

A recalculation of the heavy c-quark contribution is not
needed since the corresponding spectral density is not
affected by the LCSR modification. Thus the result in
Eq. (47) obtained for q2 ¼ 0 can be used as it stands.
The contributions of different Gegenbauer polynomials

in the expansion of the two-gluon DA

ωnðuÞ ¼ 30u2ū2C5=2
n−1ð2u − 1Þ ð76Þ

defined as

ρgnðQ2; s; μÞ ¼ 1

π

Z
1

0

duImTg
Hjlightðu;Q2;−sÞωnðuÞ; ð77Þ

can readily be computed from the above expressions. We
obtain for n ¼ 2 and n ¼ 4:

ρg2ðQ2; s; μÞ ¼ 5x
Q2

�
−

gq
γð0Þ2

CF

�
ln
x̄Q2

xμ2
− 2

�
φ2ðxÞ

þ 5

6
x̄2ð65x2 − 30xþ 1Þ

�
;

ρg4ðQ2; s; μÞ ¼ 5x
Q2

�
−

gq
γð0Þ4

CF

�
ln
x̄Q2

xμ2
− 2

�
φ4ðxÞ

þ 14

15
x̄2ð1827x4 − 2457x3 þ 959x2

− 105xþ 1Þ
�
; ð78Þ

where φnðxÞ are defined in (71) and the respective quark-
gluon mixing anomalous dimension appears, because
the coefficient of lnQ2=μ2 in (75) is just the evolution
kernel Vqgðx; uÞ.
Collecting all factors, the final expression for the

contribution of the light quark box diagrams to the spectral
density takes the following form:

1

π
ImFQCDðgÞ

γ�γ�→MðQ2;−sÞ

¼ 2fð1ÞM

3
ffiffiffi
3
p

X∞
n¼2

cðgÞn;MðμÞ
CFαs
2π

ρgnðQ2; s; μÞ: ð79Þ

As mentioned above, the contribution of charm quarks does
not need to be written in this form as it is not affected by the
LCSR subtraction.

B. Higher-twist and meson mass corrections

The bulk of the higher-twist corrections corresponding to
the contributions of two-particle and three-particle twist-
four DAs can be taken into account using the expressions
given in Ref. [24] with the substitution of pion DAs by their
η; η0 counterparts. The latter have been studied previously
in [34,35] but, as we found, the results given there are
not complete. The corresponding update is presented in
Appendix A. We take into account quark mass corrections
in the relations between different matrix elements imposed
by QCD equations of motion (EOM) and also consider, for
the first time, anomalous contributions to the flavor-singlet
twist-four DAs.
In addition, one has to take into account the contribution

of the twist-three DA, which appears due to the non-
vanishing strange quark mass, and an extra meson mass
correction ∼m2

M coming from the expansion of the leading-
order amplitude.
In the expressions given below we collect the results for

the spectral densities for the higher-twist contributions
defined as

ρðiÞM ¼
1

π
ImFQCDðiÞ

γ�γ�→MðQ2;−sÞ: ð80Þ

The superscript i ¼ m; 3; 4 corresponds to the meson
mass, twist-three DA, and twist-four DA contributions,
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respectively. All higher-twist contributions can most con-
veniently be written as a sum of contributions of different
quark flavors

ρðiÞM ðQ2; sÞ ¼ 2e2sρ
ðiÞ;s
M ðQ2; sÞ þ

ffiffiffi
2
p
ðe2u þ e2dÞρðiÞ;qM ðQ2; sÞ:

ð81Þ

The rewriting in terms of the parameters in the FKS scheme
is then done using Eqs. (23) and (36) for the leading twist
and the same transformation rules for the higher-twist

matrix elements fðaÞ3M and fðaÞM δ2ðaÞM where a ¼ q; s.
The meson mass correction to the contribution of the

nth Gegenbauer term in the expansion of the leading-twist
DA, cf. (70), takes the form

ρðmÞ;aM;n ðQ2; sÞ ¼ x2

Q4
haM

�
ξxφnðxÞ − xx̄

d
dx

φnðxÞ
�
: ð82Þ

Here we used a shorthand notation

ξx ¼ 2x − 1

and made a substitution m2
Mf
ðaÞ
M → hðaÞM motivated in

Appendix A, Eq. (A35), for consistency with the calcu-
lation of twist-four contributions.
The contribution of the twist-three DA to NLO accuracy

in the conformal expansion reads

ρð3Þ;aM ðQ2; sÞ ¼ −
x2

Q4
ðhaMξx þ 60mafa3MC

1=2
3 ð2x − 1ÞÞ;

ð83Þ

and the twist-four contribution, to the same accuracy, can
be brought into the form

ρð4Þ;aM ðQ2; sÞ ¼ −
x2ξx
Q4

�
160

3
faMðδaMÞ2xx̄

þmafa3M½60 − 210xx̄ð3 − xx̄Þ�

þ haM

�
1 − xx̄

�
13

6
−
21

2
xx̄

�

þ cðaÞ2Mxx̄ð21 − 135xx̄Þ
��

: ð84Þ

In all expressions a ¼ q; s and x ¼ Q2=ðsþQ2Þ.
The twist-six contributions to the γ�γ → π0 transition FF

have been calculated in the factorization approximation in
Ref. [24]. The extension of these results to γ�γ → η; η0 is
not immediate as in order to include SUð3Þ flavor violation
effects we would have to recalculate all the diagrams
keeping terms linear in the quark masses. These would
lead in the factorization approximation to contributions
proportional to the twist-two distribution amplitude times
quark condensate. We postpone this calculation to a

forthcoming publication and prefer to neglect the twist-
six contributions altogether since at this level we would
only be able to include them consistently for the octet but
not the singlet. Neglecting them amounts to an additional
uncertainty at the level of 2%–3% and we will see that
neither theoretical nor experimental precision are up to now
sufficient to make these terms relevant.

V. NUMERICAL ANALYSIS

A. Sum rule parameters

All numerical results in this work are obtained using the

two-loop running QCD coupling with Λð4ÞQCD ¼ 326 MeV
and nf ¼ 4 active flavors. Validity of the FKS mixing
scheme for the DAs is assumed at the renormalization scale
μ0 ¼ 1 GeV, αsðμ0Þ ¼ 0.494. Unless stated otherwise,
we use the set of FKS parameters specified in Eq. (26).
All given values of nonperturbative parameters refer to the
same scale μ0 ¼ 1 GeV.
A natural factorization and renormalization scale μ in

the calculation of the meson transition FFs with two large
photon virtualities is given by the virtuality of the quark
propagator μ2 ∼ x̄Q2 þ xq2. If q2 → 0, in the LCSR frame-
work the relevant factorization scale becomes μ2 ∼ x̄Q2 þ
xM2 or μ2 ∼ x̄Q2 þ xs0 ifM2 ≫ s0; see e.g. [72]. Note that
the restriction s < s0 in the first integral in (66) translates to
x̄ < s0=ðs0 þQ2Þ and hence the quark virtuality remains
finite μ2 ≃ 2s0 as Q2 → ∞, in agreement with the inter-
pretation of this term as the “soft” contribution. Using
the x-dependent factorization scale is inconvenient so that
we replace x by the average hxi which is varied within a
certain range:

μ2 ¼ hx̄iQ2 þ hxis0; 1=4 < hxi < 3=4: ð85Þ

The choice of the Borel parameter in LCSRs is discussed
in [73,74]. The difference to the classical QCD sum rules is
that the twist expansion in LCSRs goes in powers of
1=ðxM2Þ rather than 1=M2. Hence one has to use somewhat
larger values of M2 compared to the QCD sum rules for
two-point correlation functions in order to ensure the same
hierarchy of contributions. We choose as the “working
window”

1 < M2 < 2 GeV2 ð86Þ

and M2 ¼ 1.5 GeV2 as the default value in our
calculations.
We use the standard value s0 ¼ 1.5 GeV2 for the

continuum threshold, and the range

1.3 < s0 < 1.7 GeV2 ð87Þ

in the error estimates. We did not attempt to consider
corrections due to the finite width of the ρ;ω resonances.
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The estimates in Ref. [68] suggest that such corrections
may result in an enhancement of the form factor by 2%–4%
in the small-to-medium Q2 region where the resonance
part dominates. We believe that such uncertainties are
effectively covered by our (conservative) choice of the
continuum threshold.
Finally, we use the values of the twist-three parameters

hq and hs [43] specified in Eq. (35), and also use δ2ðqÞM ¼
δ2ðsÞM ¼ 0.2� 0.04 GeV2 [65,75] (at the scale 1 GeV) for
the normalization parameter for twist-four DAs (A7).

B. Models of DAs and comparison with the data

The LCSR calculation of the FFs is compared with the
experimental data [1,42] in Fig. 3. The dependence of
the results on the Borel parameter, continuum threshold,
normalization of the higher-twist contributions and, to a
lesser extent, the factorization scale, can be viewed as an
intrinsic irreducible uncertainty of the LCSR method. This
uncertainty is shown in the figures by the dark blue bands.
In this work we use the FKS mixing scheme [11] as the

simplest working hypothesis that allows one to reduce the
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FIG. 3 (color online). Transition form factors γ�γ → η (left panels) and γ�γ → η0 (right panels) [1,42] compared to the LCSR calculation
with three models of the leading-twist DAs specified in Table II. Asymptotic values at large photon virtualities (50) corresponding to the
central values of the FKS parameters in Eq. (26) are shown by the horizontal dashed lines. The dark blue shaded areas correspond to
uncertainties of the calculation due to the choice of the LCSR parametersM2 and s0, factorization scale μ, and the higher-twist parameters
hðq;sÞ; δ2ðq;sÞ; see text. The light blue areas are obtained by adding the uncertainties in the FKS parameters, Eq. (26).

AGAEV et al. PHYSICAL REVIEW D 90, 074019 (2014)

074019-14



number of parameters, assuming that it holds for complete
wave functions, and therefore also for the DAs, at an ad hoc
low scale μ0 ¼ 1 GeV. The error bands corresponding to
adding the uncertainties of the FKS parameters as given in
Eq. (26) to the LCSR uncertainties specified above is
shown by light blue bands. We assume that all errors are
statistically independent and add them in quadrature. We
expect that the bulk of these uncertainties will be eliminated
in the future by using first-principle lattice calculations
of the couplings fη, fη0 that are not bound to any mixing
scheme.
Asymptotic values of the form factors for large photon

virtuality for the central values of the FKS parameters in
Eq. (26) are shown by the horizontal dashed lines; cf.
Eq. (50). The asymptotic value for γ�γ → η0 differs con-
siderably from the one assumed in [1,6,27], which is an
effect of the finite renormalization correction to the flavor-
singlet contribution; see Eq. (49). Note that experimental
measurements for both η and η0 FFs at large virtualities are
consistent with the expected asymptotic behavior.
The remaining nonperturbative input in the calculations

is provided by the shape parameters of the DAs. We do not
view this dependence as “uncertainty.” Indeed, on the one
hand, extraction of the information about DAs is the
primary motivation behind the studies of transition form
factors. On the other hand, lowest nontrivial moments of
DAs can also be studied in lattice QCD [76,77]. Such
calculations are ongoing and the corresponding parameters
will eventually be known to a sufficient precision.
In the FKS approximation the remaining information

about the DAs is encoded in three constants, cðqÞn ðμ0Þ,
cðsÞn ðμ0Þ, and cðgÞn ðμ0Þ, for each Gegenbauer moment

n ¼ 2; 4, etc. The nonstrange coefficients, cðqÞn ðμ0Þ, should
be similar to the corresponding coefficients for the pion
DA. Unfortunately the situation with the pion DA is far
from being settled. Direct calculations using QCD sum
rules and lattice simulations do not have sufficient accuracy
so far, whereas the constraints from the experimental data
on the γ�γ → π0 FF are inconclusive because of the
discrepancy between the BABAR and Belle measurements
[3,4]. A detailed discussion can be found in [24,25].
Because of this uncertainty, we present the results for

three different models of the DAs specified in Table II
where the coefficients cðqÞn ðμ0Þ are chosen in the range that
corresponds to popular models for the pion DA, the SUð3Þ

breaking in these parameters is neglected (see below), and
the gluon coefficients are fitted to describe the data. The
first model corresponds to the pion DA used in Ref. [25]
to describe the Belle data [4] (truncated to n ¼ 2; 4), the
second (simplest) model corresponds to a typical ansatz
used in vast literature on the weak B → π decays, and the
third model with a negative n ¼ 4 coefficient is advocated
by the Bochum-Dubna group; see e.g. [69] and references
therein.
On general grounds one expects [78] that the DAs of

hadrons containing strange quarks are more narrow than
those built of u; d quarks, i.e.

cðsÞn ðμ0Þ < cðqÞn ðμ0Þ; ð88Þ

however, existing numerical estimates of this effect are
rather uncertain. QCD sum rule calculations (see
e.g. [34,35]) and lattice calculations [76,77] do not seem
to indicate any large difference so that we have assumed

cðsÞn ðμ0Þ ¼ cðqÞn ðμ0Þ for the present study. Setting instead

cðsÞn ðμ0Þ ¼ 0, which is probably extreme, the FF γ�γ → η
gets increased by 5%–6% and the FF γ�γ → η0 decreases by
4%–5% forQ2 > 5 GeV2 as compared to the results shown
in Fig. 3.
The gluon DA mainly contributes to the η0 FF, whereas

its effect on the η is small. To illustrate this dependence we

show in Fig. 4 the results of the calculation with cðqÞ2 ¼
cðqÞ4 ¼ 0.1 and cðgÞ2 ¼ 0 corresponding to model I with
gluon contribution put to zero (blue curve), and the shaded

area in light green obtained by varying cðgÞ2 in the range

−0.5 < cðgÞ2 < 0.5. Note that the gluon DA contribution is
significantly enhanced (by a factor 5=3 for large Q2) by
including the c-quark contribution, which is one of the new
elements of our analysis.
The three models in Table II lead to an equally good

description of the experimental data at large Q2 >
10–15 GeV2 but differ at smaller Q2 where model I seems
to be preferred. Unfortunately, the uncertainties of the
calculation also increase in this region, especially for
model III which suffers from a stronger dependence on
the Borel parameter. For this reason we think that none of
the considered models can be excluded and, also in the
future, the experimental data on transition FFs alone will
not be sufficient to pin down the shape of DAs. One needs a
combined effort of theory and experiment, supplementing
FF data with lattice calculations of at least a few key
parameters.
Finally, in Fig. 5 we show the same results on a

logarithmic scale in Q2, where we have also included
the timelike momentum transfer data point [2] at jQ2j ¼
112 GeV2 (red stars) for comparison.
One sees that the measurement of eþe− → γ� → η0γ

appears to be in good agreement with the expected

TABLE II. Gegenbauer coefficients of three sample models of
the leading-twist DAs [u; d quarks (q), s quarks (s), and gluons (g)]
at the scale μ0 ¼ 1 GeV; cf. Fig. 3.

Model cðqÞ2 cðsÞ2 cðqÞ4 cðsÞ4 cðgÞ2
I 0.10 0.10 0.10 0.10 −0.26
II 0.20 0.20 0.0 0.0 −0.31
III 0.25 0.25 −0.10 −0.10 −0.25
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asymptotic behavior in the spacelike region, whereas the
result for eþe− → γ� → ηγ is considerably higher. This
difference is interesting and surprising. The Sudakov
enhancement of the timelike FFs as compared to their
spacelike conterparts, usually quoted in this context, is
universal and should affect both η and η0 production equally
strongly. As already discussed in Sec. III. C, the large
difference can only be attributed to nonperturbative cor-
rections corresponding to the soft (end-point) integration
regions. Although a rigorous connection of such contribu-
tions to the DAs does not exist, one can plausibly argue that
large soft corrections are correlated with the end-point
enhancements in the DAs, of the type that have been
discussed in connection with the large scaling violation in
the γ�γ → π0 form factor reported in [3]. For this reason we
expect that, if the large value of the timelike form factor for
the ηmeson is confirmed, the corresponding spacelike form
factor should exhibit the similar scaling violating behavior
as observed by BABAR for the pion. In fact the existing data
may support such a trend, see Fig. 5, although it is not
statistically significant.

VI. SUMMARY AND CONCLUSIONS

In anticipation for the possibility of high-precision
measurements of the transition form factors γ�γ → η and
γ�γ → η0 at the upgraded KEKB facility, in this work we
update the corresponding theoretical framework. The
presented formalism incorporates several new elements
in comparison to the existing calculations, in particular a
full NLO analysis of perturbative corrections, the charm
quark contribution, and revisited twist-four contributions
taking into account SUð3Þ-flavor breaking and the axial
anomaly. A numerical analysis of the existing experimental
data is performed with these improvements.
For the numerical analysis we have used the FKS state

mixing assumption for the η, η0 DAs at a low scale of 1 GeV
as a working hypothesis to avoid proliferation of param-
eters. This assumption does not contradict the data on the
FFs at small-to-moderate photon virtualities and can be
relaxed in the future, if necessary.
The most important effect of the NLO improvement is

due to the finite renormalization of the flavor-singlet axial
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FIG. 4 (color online). Same as in Fig. 3 for the first model of the leading-twist DAs specified in Table II except for the normalization

parameter of the gluon DA cðgÞ2 which is set to zero. The shaded area in light green shows the effect of the variation of this parameter in

the range cðgÞ2 ¼ �0.5.
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FIG. 5 (color online). Same as in Fig. 3 using a logarithmic scale in Q2. The calculation uses the first model of the leading-twist DAs
specified in Table II. The timelike data point [2] at jQ2j ¼ 112 GeV2 is shown by red stars for comparison.
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current which results in a 20% reduction of the expected
asymptotic value of the γ�γ → η0 form factor at large photon
virtualities. Taking into account this correction brings the
result in agreement with BABAR measurements [1].
We also want to emphasize the importance of taking

into account the charm quark contribution. This effect is
negligible at small Q2, but increases the contribution of the
most interesting two-gluon DA by a factor 5=3 at large
scales, so that a consistent implementation of the c-quark
mass threshold effects is mandatory.
The update of the higher-twist corrections does not have

a large numerical impact, but is necessary for theoretical
consistency with taking into account the meson mass
corrections to the leading-twist diagrams. Identifying the
hadron mass corrections in hard exclusive reactions is in
general a nontrivial problem [79], and it is made even more
difficult by the axial anomaly. We have calculated the
anomalous contribution to the twist-four DA for one
particular case and found a specific mechanism how this
contribution can restore the relations between η, η0 masses
implied by the state-mixing assumption for higher twist.
Our results for the FFs at Euclidean virtualities are, in

general, in good agreement with the experimental data [1],
although the present statistical accuracy of the measure-
ments is insufficient to distinguish between different
models of the DAs specified in Table. II. We expect that
experimental errors will become smaller in the future, and
also that some of the parameters, most importantly the
decay constants fη, fη0 , will be calculated with high
precision on the lattice. In this way the comparison of
the QCD calculation with experiment will allow one to
study the structure of η, η0 mesons at short interquark
separations, encoded in the DAs, on a quantitative level.
We have given a short discussion of the transition form

factors in the timelike region q2 ¼ −Q2 > 0. The result by
BABAR [2] suggesting a large enhancement of the η form
factor in the timelike as compared to the spacelike region,
and at the same time no such enhancement for η0, is rather
puzzling. If confirmed, this difference would imply a
significant difference in the end-point behavior of η and
η0 DAs.
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APPENDIX A: DISTRIBUTION AMPLITUDES
OF TWIST FOUR

This Appendix contains a detailed discussion and an
update of the twist-four DAs of pseudoscalar mesons. To

this end we follow the classification and notations in
Ref. [35] adapted for our present case. The presentation
is divided into two parts. In the first subsection we ignore
anomalous contributions. This part contains the necessary
definitions and an update of the results in [34] and [35]
taking into account quark mass corrections in the relations
between different matrix elements. The given expressions
can be used as written for the flavor-octet contributions but
have to be modified for flavor-singlet ones. Anomalous
contributions to the flavor-singlet twist-four DAs are
considered in the second subsection. This is an entirely
new subject; we are not aware of any related studies beyond
twist-two accuracy. The complete solution requires a full
NLO evaluation of twist-four contributions and goes
beyond the scope of this work. Instead, we formulate a
simple substitution rule that is based on a sample calcu-
lation of the anomaly for one particularly important case,
and is likely to take into account the bulk of the effect.

1. General classification and quark mass corrections

There exist four different three-particle twist-four DAs
that can be defined as, e.g. for the strange quarks

h0js̄ðz2nÞγμγ5gGαβðz3nÞsðz1nÞjMðpÞi

¼ pμðpαnβ − pβnαÞ
1

pn
FðsÞM ΦðsÞ4;Mðz; pnÞ

þ ðpβg⊥αμ − pαg⊥βμÞFðsÞM ΨðsÞ4;Mðz; pnÞ þ…;

h0js̄ðz2nÞγμig ~Gαβðz3nÞsðz1nÞjMðpÞi

¼ pμðpαnβ − pβnαÞ
1

pn
FðsÞM ~ΦðsÞ4;Mðz; pnÞ

þ ðpβg⊥αμ − pαg⊥βμÞFðsÞM ~ΨðsÞ4;Mðz; pnÞ þ…; ðA1Þ

with the shorthand notation

F ðz; pnÞ ¼
Z

Dαe−ipnðα1z1þα2z2þα3z3ÞF ðαÞ;Z
Dα ¼

Z
1

0

dα1dα2dα3δ

�
1 −

X
αi

�
ðA2Þ

and g⊥αμ ¼ gαμ − ðpαnμ þ pμnαÞ=ðpnÞ, etc. The ellipses
stand for contributions of twist higher than four. C-parity
implies that the DAs Φ and Ψ are antisymmetric under the
interchange of the quark momenta, α1 ↔ α2, whereas ~Φ
and ~Ψ are symmetric. The three-particle twist-four DAs for
q ¼ ðu; dÞ quarks are defined by the same expressions with
obvious substitution of the quark fields and the superscripts
ðsÞ → ðqÞ; cf. Eq. (1).
Three-particle DAs can be expanded in orthogonal

polynomials that correspond to contributions of increasing
spin in the conformal expansion. Taking into account
contributions of the lowest and the next-to-lowest spin,
one obtains [33–35]
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ΦðsÞ4;MðαÞ¼120α1α2α3½ϕðsÞ1;Mðα1−α2Þ�;
~ΦðsÞ4;MðαÞ¼120α1α2α3½ ~ϕðsÞ0;Mþ ~ϕðsÞ2;Mð3α3−1Þ�;
~ΨðsÞ4;MðαÞ¼−30α23

�
ψ ðsÞ0;Mð1−α3Þþψ ðsÞ1;M½α3ð1−α3Þ−6α1α2�

þψ ðsÞ2;M

�
α3ð1−α3Þ−

3

2
ðα21þα22Þ

��
;

ΨðsÞ4;MðαÞ¼−30α23ðα1−α2Þ
�
ψ ðsÞ0;Mþψ ðsÞ1;Mα3

þ1

2
ψ ðsÞ2;Mð5α3−3Þ

�
: ðA3Þ

The coefficients ϕðsÞk;M, ψ
ðsÞ
k;M are related by QCD equations

of motion [33]. One such relation is rather nontrivial and
involves the divergence (in the mathematical sense) of the
spin-three conformal operator

Oðs̄sÞμαβ ¼ s̄D
↔

αD
↔

βγμγ5s −
1

5
∂α∂βs̄γμγ5s; ðA4Þ

where the symmetrization in all Lorentz indices and
subtraction of traces are implied. Ignoring possible anoma-
lous contributions to be discussed later, we obtain

6∂μOðs̄sÞμαβ ¼ −24is̄γρðGρβD
!

α − D
 

αGρβÞγ5s

þ 4imss̄D
↔

αD
↔

βγ5s − 16imss̄σαρGρβγ5s

−
16

3
∂βs̄γρ ~Gραs − 8∂ρs̄γβ ~Gαρs

−
4

15
ims∂α∂βs̄γ5s − traces: ðA5Þ

The quark mass corrections in this expression ∼OðmsÞ are
a new result; they have not been taken into account in [34]
and [35].
After some algebra we obtain

~ϕðsÞ0;M ¼ ψ ðsÞ0;M ¼ −
1

3
δ2ðsÞM ; ðA6Þ

where the parameter δ2ðsÞM is defined as

h0js̄γρig ~GρμsjMðpÞi ¼ pμf
ðsÞ
M δ2ðsÞM ; ðA7Þ

and

~ϕðsÞ2M ¼
21

8
δ2ðsÞM ωðsÞ4M;

ϕðsÞ1M ¼
21

8

�
δ2ðsÞM ωðsÞ4M þ

2

45
m2

M

�
1 −

18

7
cðsÞ2M

��
;

ψ ðsÞ1M ¼
7

4

�
δ2ðsÞM ωðsÞ4M þ

1

45
m2

M

�
1 −

18

7
cðsÞ2M

�
þ 4ms

fðsÞ3M
fðsÞM

�
;

ψ ðsÞ2M ¼
7

4

�
2δ2ðsÞM ωðsÞ4M −

1

45
m2

M

�
1 −

18

7
cðsÞ2M

�
− 4ms

fðsÞ3M
fðsÞM

�
;

ðA8Þ

where

h0js̄½iDμ; ig ~Gνξ�γξs −
4

9
i∂μs̄ig ~GνξγξsjMðpÞi

¼ fðsÞM δ2ðsÞM ωðsÞ4M

�
pμpν −

1

4
m2

Mgμν

�
þOðtwist 5Þ: ðA9Þ

The expressions in (A8) differ from those in [34] and [35]
in terms ∼m2

M that arise from the quark mass corrections in
the divergence of the conformal operator (A5) and, sur-

prisingly, also in terms ∼m2
Mc
ðsÞ
2M: The result for such terms

obtained in [34] (and used in [35]) is recovered if in our

expressions m2
Mc
ðsÞ
2M → ð3=2Þm2

Mc
ðsÞ
2M.

In addition one defines the two-particle twist-four DAs
as corrections ∼Oðx2Þ in the light-cone expansions x2 → 0
of the nonlocal matrix element

h0js̄ðz2xÞγμγ5sðz1xÞjMðpÞi

¼ ipμF
ðsÞ
M

Z
1

0

due−iz
u
21
ðpxÞ
�
ϕðsÞM ðuÞ þ

z212x
2

16
ϕðsÞ4MðuÞ

�

þ i
2

xμ
ðpxÞF

ðsÞ
M

Z
1

0

due−iz
u
21
ðpxÞψ ðsÞ4MðuÞ: ðA10Þ

The DAs ϕðsÞ4MðuÞ, ψ ðsÞ4MðuÞ can be calculated in terms of the
three-particle DAs of twist four and the DAs of lower twist
defined in the main text, making use of the operator
identities (see e.g. [35])

∂
∂xμ s̄ðxÞ½x;−x�γμγ5sð−xÞ

¼ −i
Z

1

−1
dvvs̄ðxÞ½x; vx�xαgGαμðvxÞγμγ5½vx;−x�sð−xÞ;

ðA11Þ
and

∂μfs̄ðxÞ½x;−x�γμγ5sð−xÞg

¼ −i
Z

1

−1
dvs̄ðxÞ½x; vx�xαgGαμðvxÞγμγ5½vx;−x�sð−xÞ

þ 2mss̄ðxÞ½x;−x�iγ5sð−xÞ; ðA12Þ

AGAEV et al. PHYSICAL REVIEW D 90, 074019 (2014)

074019-18



where ½x; y� is the straight-line-ordered Wilson line
connecting the points x; y and ∂μ is the total derivative
defined as

∂μfūðxÞΓdð−xÞg

≡ ∂
∂yμ fūðxþ yÞ½xþ y;−xþ y�Γdð−xþ yÞg

			
y→0

:

ðA13Þ

Taking the matrix elements of these identities and putting
x2 → 0 afterwards, one obtains the expressions for two-

particle DAs ψ ðsÞ4MðuÞ and ϕðsÞ4M that can conveniently be
separated in “genuine” twist-four contributions and meson
mass corrections as

ψ ðsÞ4MðuÞ ¼ ψ ðsÞtwist4M ðuÞ þm2
Mψ
ðsÞmass
4M ðuÞ ðA14Þ

with

ψ ðsÞtwist4M ðuÞ ¼ 20

3
δ2ðsÞM C1=2

2 ð2u − 1Þ þ 30ms
fðsÞ3M
fðsÞM

×

�
1

2
− 10uūþ 35u2ū2

�
;

ψ ðsÞmass
4M ðuÞ ¼ 17

12
− 19uūþ 105

2
u2ū2

þ cðsÞ2;M

�
3

2
− 54uūþ 225u2ū2

�
ðA15Þ

and similarly

ϕðsÞ4MðuÞ ¼ ϕðsÞtwist4M ðuÞ þm2
Mϕ
ðsÞmass
4M ðuÞ; ðA16Þ

where

ϕðsÞtwist4M ðuÞ ¼ 200

3
δ2ðsÞM u2ū2 þ 21δ2ðsÞM ωðsÞ4Mfuūð2þ 13uūÞ

þ 2½u3ð10 − 15uþ 6u2Þ ln uþ ðu ↔ ūÞ�g

þ 20ms
fðsÞ3M
fðsÞM

uū½12 − 63uūþ 14u2ū2�;

ϕðsÞmass
4M ðuÞ ¼ uū

�
88

15
þ 39

5
uūþ 14u2ū2

�

− cðsÞ2;Muū
�
24

5
−
54

5
uūþ 180u2ū2

�

þ
�
28

15
−
24

5
cðsÞ2;M

�
½u3ð10 − 15uþ 6u2Þ ln u

þ ðu ↔ ūÞ�: ðA17Þ

These results supersede the corresponding expressions in
Refs. [35] and [80].

2. Anomalous contributions

The general reason why the results in the previous
subsection are incomplete is that the operator identities
(A5), (A11), (A12) are valid in this form only for bare
(unrenormalized) operators. The renormalization Z factor
for the light-ray operator on the left-hand side of, e.g.,
Eq. (A12) can be written as an integral operator acting on
the field coordinates; see [81]. The derivative ∂μ can be
brought inside the integral so that the algebra leading to the
expression on the right-hand side of this equation remains
unchanged. However, the result is not yet written in terms
of renormalized operators. Since the overall expression is
finite (as a derivative of a finite operator) it can further be
reexpanded in contributions of renormalized operators. In
this way the coefficient functions of the operators that are
already present will be modified by αs corrections and all
other operators with proper quantum numbers can appear,
with coefficient functions starting at order OðαsÞ. Whereas
this complication is, generally speaking, only relevant if the
calculation of twist-four corrections is done to NLO
accuracy (in which case the αs corrections to the coefficient
functions of the OPE of the product of two electromagnetic
currents have to be taken into account as well), the
contribution of gluon operators related to the axial anomaly
deserves special attention because of its role in the pattern
of chiral symmetry breaking for pseudoscalar mesons.
To begin with, we recall the derivation of the celebrated

anomaly relation (33) for the axial current:

∂μs̄γμγ5s¼2mss̄iγ5sþ s̄½ð
 
D−imsÞγ5−γ5ð

!
DþimsÞ�s:

ðA18Þ

The EOM terms (Dirac operator applied to a quark field)
can be substituted inside the QCD path integral by a
functional derivative with respect to the corresponding
antiquark field,

ð!Dþ imsÞsðyÞeiSψ ¼ −
δ

δs̄ðyÞ e
iSψ ; ðA19Þ

where Sψ is the fermion part of the action. Such contribu-
tions can usually be dispensed of by partial integration inside
the path integral, producing contact terms. Anomalous
contributions arise when the derivative δ=δs̄ðyÞ acts on
the antiquark field in the same composite operator, in our
case the axial current, producing ill-defined contributions
∼δ4ð0Þ that have to be regularized.
A well-known method to avoid this problem is to use

Schwinger’s split-point regularization

s̄ð0Þγμγ5sð0Þ↦ s̄ðxÞ½x;−x�γμγ5sð−xÞ; ðA20Þ
where xμ should be sent to zero at the end of the calculation.
In this case the EOM terms in the divergence can be
dropped, but an extra contribution appears due to the
Wilson line:
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∂μs̄ðxÞγμγ5sð−xÞ ¼ 2mss̄ðxÞiγ5sð−xÞ
− 2is̄ðxÞxαgGαμð0Þγμγ5sð−xÞ; ðA21Þ

cf. Eq. (A12). Using the standard expression for the short-
distance expansion of the quark propagator in a background
field [82]

(A22)

and the symmetric limit xμ → 0 such that

xρxσ⟶
1

4
gρσx2; ðA23Þ

one arrives after a little algebra at the expression in (33).

The light-ray operators that enter the definitions of DAs
are defined as generating functions of renormalized local
operators so that the same problem with EOM contributions
occurs and can be treated in a similar manner. We start with
a regularized version of the light-ray operator by shifting it
slightly off the light cone

s̄ðz2nÞ½z2n; z1n�γμγ5sðz1nÞ↦ s̄ðx2Þ½x2; x1�γμγ5sðx1Þ
ðA24Þ

where

x1 ¼ z1n − x; x2 ¼ z2nþ x; ðx · nÞ ¼ 0: ðA25Þ

and

Δ2 ¼ ðx1 − x2Þ2 ¼ x2: ðA26Þ

Then

∂μfq̄ðx2Þγμ½x2; x1�γ5qðx1Þg

¼ þi
Z

1

0

dvq̄ðx2ÞΔαgGαμðv̄x1 þ vx2Þγμγ5qðx1Þ

þ 2mqq̄ðx2Þiγ5qðx1Þ: ðA27Þ

The light-cone expansion of the quark propagator reads
[81]

(A28)

where the terms shown by ellipses have at most a
logarithmic singularity lnΔ2 ¼ ln x2 and do not contribute
in the limit x → 0.

The propagator (A28) is traced in (A27) with γμγ5, so
that only the term in ig ~Gρσγ5 is relevant. It has a 1=x2

singularity, hence we need to collect all contributions with
two powers of x in the numerator. They can come either
from factors of Δ, that give rise, in the symmetric limit
(A23), to the term

αs
4π

Z
1

0

dv
Z

1

0

duGA
αμðzv21nÞ ~GA

αμðzu12nÞ

or from the expansion of the gluon fields in powers of the
deviation from the light-cone direction, producing contri-
butions of the type

αs
8π

z12

Z
1

0

dv
Z

1

0

duð2v − 1ÞDαGαμðzv21nÞ ~GA
nμðzu12nÞ:

Using the EOM DαGA
αμ ¼ −g

P
q q̄ t

Aγμq these contribu-
tions can be rewritten in terms of the same quark-antiquark-
gluon operators that enter Eqs. (A11) and (A12), i.e. they
are of the same order as the NLO OðαsÞ corrections to the
coefficient functions of twist-four operators. Hence they
can (should) be neglected if the calculation is done to LO
accuracy. We obtain

∂μfq̄ðz1nÞγμ½z1n; z2n�γ5qðz2nÞg

¼ −iz12
Z

1

0

dvq̄ðz1nÞnαgGαμðzv21nÞγμγ5qðz2nÞ

þ 2mqq̄ðz1nÞiγ5qðz2nÞ

þ αs
4π

Z
1

0

dv
Z

1

0

duGA
αμðzv21nÞ ~GA;αμðzu12nÞ: ðA29Þ

Taking the matrix element of this relation one obtains an

equation for the DA ψ ðsÞ4MðuÞwhich can be solved as in [33]
and [34]

fðsÞM ψ ðsÞ4MðuÞ ¼ 2ϕðsÞp3M ðuÞ − 2m2
Mf
ðsÞ
M ϕðsÞM ðuÞ þ fðsÞM

d
du

×
Z

u

0

dα1

Z
ū

0

dα2
2½ΦðsÞ4MðαÞ − 2ΨðsÞ4MðαÞ�

1 − α1 − α2

þ 2aMδψ
ðsÞ
4MðuÞ; ðA30Þ

where the last term δψ ðsÞ4MðuÞ is new—it stems from the
anomalous contribution in Eq. (A30); aM is defined
in Eq. (32).
This extra term can be expressed in terms of the twist-

four gluon DA

h0j αs
4π

Gðz2nÞ ~Gðz1nÞjMðpÞi ¼ aM

Z
1

0

due−iz
u
21
pnϕðgÞ4MðuÞ;

ðA31Þ
normalized as

R
duϕðgÞ4MðuÞ ¼ 1. After some simple algebra

one obtains the following equation for the moments of
δψ ðsÞ4MðuÞ:
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Z
1

0

duð2u − 1Þnδψ ðsÞ4MðuÞ

¼ 1

4

1þ ð−1Þn
ðnþ 1Þðnþ 2Þ

Z
1

0

du½1 − ð2u − 1Þnþ2�ϕ
ðgÞ
4MðuÞ
uū

;

ðA32Þ

which can be solved for any given twist-four gluon DA.
A remarkable feature of this equation is that the resulting

distribution δψ ðsÞ4MðuÞ depends on the shape of ϕðgÞ4MðuÞ only
very weakly. Using the asymptotic DA ϕðgÞ4MðuÞ ¼ 1 one
obtains

δψ ðsÞ4MðuÞ ¼ −2½u ln uþ ū ln ū�; ðA33Þ

whereas for ϕðgÞ4MðuÞ ¼ 6uð1 − uÞ one gets δψ ðsÞ4MðuÞ ¼
6uð1 − uÞ as well. The numerical difference between the
two expressions is very small; see Fig. 6. The effect of the
anomalous contribution is therefore mainly to redefine
the normalization of the meson mass correction propor-
tional to the twist-two DA, the second term in (A30), to

−2m2
Mf
ðsÞ
M ϕðsÞM ðuÞ þ 2aMδψ

ðsÞ
4MðuÞ

≃ −2ðm2
Mf
ðsÞ
M − aMÞϕðsÞM ðuÞ ¼ −2hðsÞM ϕðsÞM ðuÞ ðA34Þ

so that it matches the normalization of the pseudoscalar

twist-three DA ϕðsÞp3M ðuÞ (29). In this way the conditionR
duψ ðsÞ4MðuÞ ¼ 0 is restored.
The complete calculation of such contributions to the

twist-four DA is complicated as it requires reevaluation of
all operator identities. Hence relations between the param-
eters, e.g. Eq. (A8) will be modified. This is a large
calculation that is beyond the scope of this work.
Instead, we will assume that the same substitution,

m2
Mf
ðsÞ
M ↦ hðsÞM ¼ m2

Mf
ðsÞ
M − aM ðA35Þ

can be applied for all occurrences of pseudoscalar meson
massesm2

M in the flavor-octet higher-twist corrections. The
ansatz (A35) is attractive as it guarantees that the higher-
twist effects and therefore also the transition FFs at low
momentum transfer obey the same FKS mixing scheme as
is assumed for the leading twist. As we demonstrate in the
text, this assumption does not contradict the existing data.

APPENDIX B: SCALE DEPENDENCE O THE
LEADING-TWIST DAs TO NLO ACCURACY

1. Flavor-octet DAs

The scale dependence of the Gegenbauer coefficients in
the expansion of the flavor-octet contributions to the η; η0
DAs is the same as for the pion DA. One obtains [83–89]

cð8Þn ðμÞ ¼ cð8Þn ðμ0ÞENLO
n ðμ; μ0Þ

þ αsðμÞ
2π

Xn−2
k¼0

cð8Þk ðμ0ÞELO
k ðμ; μ0Þdknðμ; μ0Þ: ðB1Þ

The renormalization group (RG) factor ENLO
n ðμ; μ0Þ in this

expression is given by

ENLO
n ðμ; μ0Þ ¼

�
αsðμÞ
αsðμ0Þ

�
γð0Þn =β0

×

�
1þ αsðμÞ − αsðμ0Þ

2πβ0

�
γð1Þn −

β1
2β0

γð0Þn

��
:

ðB2Þ

The corresponding LO factor ELO
n ðμ; μ0Þ is obtained by

keeping the first term only in the braces.

Here β0ðβ1Þ and γð0Þn ðγð1Þn Þ are the LO (NLO) coefficients
of the QCD β function and the anomalous dimensions,
respectively:

βðαsÞ ¼ μ2
dαs
dμ2
¼ −αs

�
β0

αs
4π
þ β1

�
αs
4π

�
2

þ…

�
; ðB3Þ

�
μ2

∂
∂μ2 þ βðαsÞ

∂
∂αs þ

1

2
γnðαsÞ

�
cð8Þn ¼ 0;

γnðαsÞ ¼ γð0Þn
αs
2π
þ γð1Þn

�
αs
2π

�
2

þ…: ðB4Þ

The first two coefficients of the beta function are

β0 ¼ 11 −
2

3
nf; β1 ¼ 102 −

38

3
nf; ðB5Þ

whereas the LO flavor-nonsinglet anomalous dimensions
are given by

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

FIG. 6 (color online). The anomalous contribution to the twist-
four DA ψ ðsÞ4MðuÞ (A33) compared to the asymptotic leading-twist
DA 6uð1 − uÞ (dashed line).
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γð0Þn ¼ CF

�
4ψðnþ 2Þ þ 4γE − 3 −

2

ðnþ 1Þðnþ 2Þ
�
;

ðB6Þ

where ψðxÞ ¼ d lnΓðxÞ=dx.
The NLO anomalous dimensions can most easily be

obtained using the FeynCalc Mathematica package [90].
For convenience we present explicit expressions fo

n ¼ 2; 4 that are used in our calculations (γð1Þ0 ¼ 0):

γð1Þ2 ¼
17225

486
−
415

162
nf;

γð1Þ4 ¼
331423

6750
−
7783

2025
nf: ðB7Þ

The off-diagonal mixing coefficients dkn in Eq. (B1) are
given by the following expression:

dknðμ; μ0Þ ¼ rnkðμ; μ0ÞMk
n;

rnkðμ; μ0Þ ¼
−1

γð0Þn − γð0Þk − β0

�
1 −

�
αsðμÞ
αsðμ0Þ

�γ
ð0Þ
n −γð0Þ

k
−β0

β0

�
:

ðB8Þ

The matrix Mk
n is defined as

Mk
n ¼
ðkþ 1Þðkþ 2Þð2nþ 3Þ
ðnþ 1Þðnþ 2Þ ½γð0Þk − γð0Þn �

×

�
4CFAk

n − γð0Þk − β0
ðn− kÞðnþ kþ 3Þþ 2CF

Ak
n −ψðnþ 2Þþψð1Þ
ðkþ 1Þðkþ 2Þ

�
ðB9Þ

where

Ak
n ¼ ψ

�
nþ kþ 4

2

�
− ψ

�
n − k
2

�
þ 2ψðn − kÞ − ψðnþ 2Þ − ψð1Þ: ðB10Þ

For convenience, we give the numerical values of the
nonvanishing coefficients Mk

n for n ≤ 4:

M0
2 ¼

455

162
−
35

81
nf;

M0
4 ¼

143

405
−

286

2025
nf;

M2
4 ¼

6688

1215
−

836

2025
nf: ðB11Þ

2. Flavor-singlet DAs

The renormalization-group equations for the flavor-
singlet quark and gluon DAs can be inferred from [91].

They are more compact in matrix notation. To this end we
introduce the vector of Gegenbauer coefficients

~cn ¼
 
cð1Þn

cðgÞn

!
: ðB12Þ

Then

~cnðμÞ¼T −1
n ENLO

n ðμ;μ0ÞT n~cnðμ0Þ

þαsðμÞ
2π

Xn−2
k¼0;2;…

T −1
n Dk

nðμ;μ0ÞELO
k ðμ;μ0ÞT k~ckðμ0Þ;

ðB13Þ

where ENLOðLOÞ
n ðμ; μ0Þ and Dk

nðμ; μ0Þ are 2 × 2 matrices
that we will specify in what follows and

T n ¼ diag

�
3ðnþ 1Þðnþ 2Þ

2ð2nþ 3Þ ;
5nðnþ 1Þðnþ 2Þðnþ 3Þ

24ð2nþ 3Þ
�

ðB14Þ

is the transformation matrix from the local operator basis of
Ref. [91] to the basis of Gegenbauer coefficients defined in
Eqs. (16) and (20).
Let

γðiÞn ¼
 

qq
γðiÞn

qg
γðiÞn

gq
γðiÞn

gg
γðiÞn

!
ðB15Þ

be the matrix of anomalous dimensions where the super-
script refers to the order of perturbation theory. The
leading-order expressions are ðn ≥ 2)

qq
γð0Þn ¼ CF

�
4ψðnþ 2Þ þ 4γE − 3 −

2

ðnþ 1Þðnþ 2Þ
�
;

qg
γð0Þn ¼ −nf

12

ðnþ 1Þðnþ 2Þ ;

gq
γð0Þn ¼ −CF

nðnþ 3Þ
3ðnþ 1Þðnþ 2Þ ;

gg
γð0Þn ¼ Nc

�
4ψðnþ 2Þ þ 4γE −

8

ðnþ 1Þðnþ 2Þ
�
− β0:

ðB16Þ

The eigenvalues of the LO anomalous dimension matrix

γð0Þn read

γ�n ¼
1

2

�
qq
γð0Þn þ gg

γð0Þn �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqqγð0Þn − gg

γð0Þn Þ2þ4
qg
γð0Þn

gq
γð0Þn

q �
:

ðB17Þ
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Then

ELO
n ðμ; μ0Þ ¼ Pþn

�
αsðμÞ
αsðμ0Þ

�γþn
β0 þ P−

n

�
αsðμÞ
αsðμ0Þ

�γ−n
β0 ; ðB18Þ

where P�n are projectors on the eigenstates of the evolution
equation

Pþ0 ¼
�
1 0

0 0

�
; P−

0 ¼
�
0 0

0 1

�
;

P�n ¼ �
1

γþn − γ−n
ðγð0Þn − γ∓n 1Þ; n ≥ 2.

Pþn þ P−
n ¼ 1; ðP�n Þ2 ¼ P�n ; Pþn P−

n ¼ 0: ðB19Þ

Further

ENLO
n ðμ; μ0Þ ¼

X
a;b¼�

�
δabPa

n þ
αsðμÞ
2π

Rab
nnðμ; μ0ÞPa

nΓnPb
n

�

×
�
αsðμÞ
αsðμ0Þ

�γbn
β0 ðB20Þ

and

Dk
nðμ; μ0Þ ¼

X
a;b¼�

Rab
nkðμ; μ0ÞPa

nM
k
nPb

k; ðB21Þ

where

Γn ¼ γð1Þn −
β1
2β0

γð0Þn ðB22Þ

and

Rab
nkðμ;μ0Þ¼

−1
γan− γbk −β0

8<
:1−

�
αsðμÞ
αsðμ0Þ

�γan−γ
b
k
−β0

β0

9=
;: ðB23Þ

The NLO anomalous dimensions matrices for n ¼ 2; 4 are
given by [92]

γð1Þ2 ¼
 

17225
486

− 745
324

nf − 4nf − 43
216

nf

− 7295
2916

− 25
243

nf 447
8
− 437

81
nf − 4nf

!
;

γð1Þ4 ¼
 

331423
6750

− 37963
10125

nf − 4nf 22127
13500

nf

− 288421
91125

− 1316
6075

nf 31744
375

− 93788
10125

nf − 4nf

!

ðB24Þ

where the terms −4nf on the diagonal are due to the

factorization of the scale-dependent coupling fð1ÞM in the
definition of the DAs; cf. Eq. (15). The matrices Mk

n, k <
n ≤ 4 that describe mixing between different orders in the
conformal (Gegenbauer) expansion are given by

M0
2 ¼

 
65
9
− 4

9
nf 32nf − 6π2nf

− 175
27

− 10
27
nf −1080þ 120π2 − 10

3
nf

!
;

M0
4 ¼

 
13
9
− 14

45
nf 226

5
nf − 6π2nf

− 1414
135

− 56
135

nf 399π2 − 18753
5

− 56
15
nf

!
;

M2
4 ¼

 
2128
243

− 259
405

nf
49
30
nf

− 4214
1215

− 196
1215

nf 539
15

− 98
405

nf

!
: ðB25Þ
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