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We update the theoretical framework for the QCD calculation of transition form factors y*y — 5 and
y*y = i at large photon virtualities including full next-to-leading order analysis of perturbative
corrections, the charm quark contribution, and taking into account SU(3)-flavor breaking effects and
the axial anomaly contributions to the power-suppressed twist-four distribution amplitudes. The numerical
analysis of the existing experimental data is performed with these improvements.
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I. INTRODUCTION

During the last years, properties of the light pseudoscalar
n and #' mesons, their quark-gluon structure and hard
processes involving these particles, e.g. electromagnetic
transition form factors (FFs) and weak decays B — ('),
were the subject of numerous experimental and theoretical
studies. Especially the recent measurements of the electro-
magnetic transition FFs y*y — 5 and y*y — 7 at spacelike
momentum transfers in the interval 4—40 GeV? [1] and at
the very large timelike momentum transfer 112 GeV? [2]
by the BABAR Collaboration caused much excitement.
These measurements and their comparison to the spacelike
data for y*y — #° FF in the similar range by BABAR and
Belle collaborations [3,4] stimulated a flurry of theoretical
activity; see e.g. [5—8]. This debate focuses on the question
of whether hard exclusive hadronic reactions are under
theoretical control, which is highly relevant for all future
high-intensity, medium-energy experiments like, e.g.,
Belle II and PANDA.

In the exact flavor SU(3) limit the 7 meson is part of the
flavor octet whereas ' is a pure flavor singlet whose
properties are intimately related to the celebrated axial
anomaly [9,10]. However, it is known empirically that the
SU(3) breaking effects are large and have a nontrivial
structure. These effects are usually described in terms of a
certain mixing scheme that considers the physical 7,7
mesons as a superposition of fundamental (e.g. flavor
singlet and octet) fields in the low-energy effective theory;
see e.g. [11] and references therein. It is not obvious
whether and to what extent the approach based on state
mixing is adequate for the description of hard processes
that are dominated by meson wave functions at small
transverse separations, dubbed distribution amplitudes
(DAs); however, it can be taken as a working hypothesis
to avoid proliferation of parameters.

One particularly important issue is that eta mesons, in
difference to the pion, can contain a significant admixture
of the two-gluon state at low scales, hence a comparably
large two-gluon DA. Several different reactions were
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considered in an effort to extract or at least constrain these
contributions. Nonleptonic exclusive isosinglet decays [12]
and central exclusive production [13] act as prominent
probes for the gluonic Fock state since the gluon production
diagram enters already at leading order (LO). Exclusive
semileptonic decays of heavy mesons were calculated in
the framework of light-cone sum rules (LCSRs) [14,15]
and ky factorization [16]. From a calculational point of
view these decays are simpler but the interesting gluon
contribution enters only at next-to-leading order (NLO).
Numerically it was shown that the gluonic contributions to
n production are negligible while they can reach a few
percent in the #’ channel. Up to now experimental data are
not conclusive in all these decays, with a vanishing gluonic
DA being possible at a low scale. On the other hand, a large
gluon contribution was advocated in [17] from the analysis
of B; — J/Uy") transitions (see also [18]).

In this paper we consider electromagnetic transition form
factors y*y — n,# that are the simplest relevant processes
and are best understood from the theory side. Also in this
case we will find that the present experimental data are
insufficient to draw definite conclusions. However, the
forthcoming upgrade of the Belle experiment and the
KEKB accelerator [19], which aims to increase the exper-
imental data set by the factor of 50, will allow one to
measure transition form factors and related observables
with unprecedented precision.

The special role of the transition FFs as the “gold plated”
observables for the study of meson DAs is widely recog-
nized. To leading power accuracy in the photon virtuality
these FFs can be calculated rigorously in QCD in the
framework of collinear factorization (pQCD) [20-23]. The
main advantage of transition FFs in comparison to other
hard reactions with the same property is that the leading
hard contribution starts already at tree level and is not
suppressed by the wusual perturbative penalty factor
a,/m ~ 1/10. For the leading-twist collinear factorization
to hold, the pQCD contribution has to win against the
power-suppressed (end-point or higher-twist) corrections,
and this is expected to happen for transition FFs already at
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moderate photon virtualities that are accessible in present
experiments. One more advantage is that soft contributions
are simpler and can be modeled to a reasonable accuracy
using, e.g., LCSRs.

The theory of y*y — ") decays is, on the one hand,
similar to the QCD description of the y*y — 7° transition FF,
but contains specific new issues due to the two-gluon state
admixture, contributions of heavy quarks, and also poten-
tially large meson mass corrections. Our goal is to present a
state-of-the-art treatment of these special issues using a
combination of perturbative QCD for the calculation of the
leading terms and LCSRs for the estimate of power
corrections, complementing our study [24,25] of y*y — z°.
For earlier work related to this program, see [6,26-29].

An alternative approach to the calculation of transition
form factors makes use of transverse momentum-dependent
(TMD) meson wave functions (TMD or k; factorization
[30]). This is a viable technique that has been advanced
recently to NLO, see e.g. [31,32] for the electromagnetic
pion form factor and y*y — #°, and which can be applied
to the y*y — n) transitions as well. Because of a more
complicated nonperturbative input, interpretation of the
corresponding results in terms of DAs is, however, not
straightforward so that we prefer to stay within the collinear
factorization framework in what follows.

The theoretical updates implemented in this work are the
following:

(1) the c-quark contribution to the coefficient function

of the two-gluon DA;

(i1) complete NLO treatment of the scale dependence of
DAs including quark-gluon mixing;

(iii) consistent treatment of the corrections due to the
strange quark mass to O(my) accuracy including
an update of the SU(3)-breaking corrections in
twist-four DAs;

(iv) partial account of the anomalous contributions
and implementation of n —#' mixing schemes in
the twist-four DAs.

We further use these improvements for a numerical analysis
of the existing spacelike and timelike data, including a
careful analysis of the uncertainties, and the prospects to
constrain the two-gluon ) DAs if more precise data on
transition FFs become available.

The presentation is organized as follows. Section II is
introductory. We collect here the definitions for twist-two
and twist-three DAs and introduce necessary notation in
both the quark-flavor and singlet-octet bases. Different
mixing schemes are introduced and discussed. Section III is
devoted to the calculation of the y*y — n,# electromag-
netic transition FFs in the collinear factorization frame-
work. Complete NLO expressions for the leading-twist
contributions are given. We also demonstrate the cancella-
tion of the end-point divergences in twist-four contributions
at the tree (LO) level. The necessity to distinguish between
the notion of “power-suppressed” and “higher-twist”
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contributions is emphasized. A separate subsection con-
tains the discussion of the difference of timelike and
spacelike FFs in pQCD; the results are compared to data
[2]. In Sec. IV we start by explaining why the twist
expansion of the product of electromagnetic currents does
not provide the complete result for the FFs if one of the
photons is real, and present the calculation of the remaining
soft contributions within the LCSR framework that is
based on dispersion relations and quark-hadron duality.
A detailed numerical analysis of the spacelike experimental
data in this framework is presented in Sec. V. The final
Sec. VI is reserved for a summary and outlook.

The paper contains two appendixes where more techni-
cal material and/or long expressions are collected.
Appendix A is devoted to the two- and three-particle
twist-four DAs of the 7,7 mesons. It contains an update
of the existing expressions [33-35] taking into account
SU(3)-breaking effects, and also a partial calculation of
anomalous contributions to the higher-twist DAs that arise
from the axial anomaly. In Appendix B complete NLO
expressions for the scale dependence of the leading-twist
DAs are presented.

IL. 5, ¥ MIXING AND DISTRIBUTION
AMPLITUDES

The description of the transition FFs y*y — 5, /' requires
knowledge of the momentum fraction distributions of
valence quarks in the mesons at small transverse separa-
tions, the meson distribution amplitudes. We define the
leading-twist DA for a given quark flavor at a given scale
U as

(01g(z2n)itysq(zin)|M(p))
= iFgZ)(pn) Al due‘iZQI(””)¢5§)(u,ﬂ),
(0[5 (zan)rtyss(z1n)|M(p))

(s) ! 2 (s)
— iF$) (pn) / due S P0G) (w). (1)

where ¢ =u or d, n, is an auxiliary lightlike vector,
n? =0, and we use a notation

75, = Uzp + uzy, n=1-u. (2)
In the following we also abbreviate
i1 =22 —1q- (3)

The gauge links between the quark fields are implied. In all
equations M =,#' denotes the physical pseudoscalar
meson state. We assume exact isospin symmetry and
identify
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my =5 (m+my) )

The normalization is chosen such that

| auiy ) =1 (5)

and the couplings F ](VL,’) =F 5‘?, F ](&) are the matrix elements

of flavor-diagonal axial vector currents that we also write in
the form

W @ S (5) _ ls)
Fy =Fy = ek Fy =fwm» (6)
where
O M) = ifsp r=as. (]
with the currents
19 = Lyt drgsd, T =55 (8)
us \/E YIAJ/5 7’;475 ’ us )/’u]/5 .

The scale dependence of the DAs can be simplified by
introducing flavor-singlet and flavor-octet combinations

8) ,(8 1 2 (s
) f(”) - \/;f(nq,) (151(\3) - \/7 —fjw)qﬁj(w)
2 1 S N
fﬁvll)d’M(l) - \/;'fgq,) ¢1(\3) + \/' —f<, ,) qb(”). 9)

(017,91M(p))

Here

—ifllp,, i=18 (10)

where Jlgls) and Jl(j? denote the SU(3) flavor-singlet and
octet currents

1 1 . _ )
J,(ls) =/ ity ysu + dy,ysd + 57,755,
1 7 3 -
J;(g) = \/_6 [U}’”J/Sll + d}’/ﬂ/sd - 2S}/ﬂyss]. (11)

Equation (9) can be viewed as an orthogonal transformation
from the quark-flavor (QF) to the singlet-octet (SO) basis

(8) (q) 1(q)
(fM ¢?f< >> — Uio) (f,z)ab%(u,u)) (12)
fM¢M< ) fM¢M(”vﬂ)
where
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i 2
3T \é cos@y —sing
Ulgn) = - (5 ) o
2 \ﬂ singy  cos gy
3 3
with ¢, = arctan(/2).

The main advantage of this representation is that the
SO couplings and DAs do not mix with each other via

renormalization. In particular the octet coupling fﬁi)

scale independent whereas the singlet coupling fj&,’ evolves
due to the U(1) anomaly [36]:

d )2
ot 100 ==ty (32) ) 0@, 10

or

wwzﬁwﬂwgﬁmwmmﬁ (15)

where n; is the number of light quark flavors.

The DAs can be expanded in terms of orthogonal
polynomials C3/ 2(2u 1) that are eigenfunctions of the
one-loop flavor-nonsinglet evolution equation:

¢(18)(u u) = 6ui {1 + Z

n=24,...

1) () Y2 (2u lﬁ
(16)

The sum in Eq. (16) goes over polynomials of even dimension
n = 2,4, .... Thisrestriction is a consequence of C-parity that
implies that quark-antiquark DAs are symmetric functions
under the interchange of the quark momenta

o4 (o) = B (). (17)

In addmon we introduce a two-gluon leading-twist DA

¢M (u, ),
<0|Gng(Zzn)é"§(zln)IM(P)>

pn due lZZI(Pl’l>d) g u,u), 18

where Cr. = 4/3, é,w is the dual gluon field strength tensor
G, = (1/2)€,,0G? and G, = G,zn*. We use the con-
ventions ys = iy’y!y%y and €;;,; = 1, following [37]. The
gluon DA is antisymmetric

O () =~y (i, ) (19)

and can be expanded in a series of Gegenbauer polynomials
ISl

> (2u — 1) of odd dimension
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O () = 3000 37 ()G Qu—1). (20)
n=24,...

The flavor-octet Gegenbauer coefficients c,(f}v, (1) are renor-

malized multiplicatively at LO, and get mixed with the

coefficients c,((% (4) with k <n starting at NLO. The
flavor-singlet coefficients c,(:])v, (1) get mixed with the gluon

coefficients cEf}w (u) already at LO, and also with the coef-

ficients of the polynomials with lower dimension starting at
NLO; see Appendix B for details. In what follows we refer to
these coefficients as shape parameters. The values of shape
parameters at a certain scale g, encode all nonperturbative
information on the DAs.

In the exact SU(3) flavor symmetry limit the # meson is
part of a flavor octet, 7 = 5g, and # is a flavor singlet,

7' = . In this limit £, = —V/2£7, £ = 1/v/2f1 and

f,(7q) = f, where f, is the pion decay constant; in our nor-
malization f, = 131 MeV. However, it is known empiri-
cally that the SU(3)-breaking corrections are large and
have a rather nontrivial structure. In chiral effective theory
the 7' meson can be included in the framework of the 1/N,
expansion [38]. In this approach the leading effect is due to
the axial anomaly that introduces an effective mass term for
the #, i’ states that is not diagonal in the SO basis if SU(3)
flavor symmetry is broken. In addition, there is also an off-
diagonal contribution to the kinetic term 9,130, at loop
level [39]. As a result, the relation of physical 7, 7" states to
the basic octet and singlet fields in the chiral Lagrangian, #g
and 7, becomes complicated and involves two different
mixing angles, see, e.g., a discussion in Ref. [11]. There is no
reason to expect that these mixing angles are the same for the
matrix elements of all operators of higher dimension that
determine moments of DAs. Thus the classification based on
the SO mixing scheme without additional assumptions does
not seem to be particularly useful in this context as the
number of parameters is not reduced.

In the last years a specific approximation has become
popular that we will refer to as the Feldmann-Kroll-Stech
(FKS) scheme [11]. This construction is motivated by the
observation that the vector mesons @ and ¢ are to a very
good approximation pure #iu + dd and 3s states and the
same pattern is observed in tensor mesons. The smallness
of mixing is a manifestation of the celebrated Okubo-
Zweig-lizuka (OZI) rule that is phenomenologically very
successful. If the axial U(1) anomaly is the only effect that
makes the situation in pseudoscalar channels different, it is
natural to assume that physical states are related to the
flavor states by an orthogonal transformation

() =v (). ve= (e o),

(21)
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This state mixing is a very strong assumption that implies
that the same mixing pattern applies to the decay constants
and, more generally, to the wave functions so that

(@) £(s)
PO 0T O HES

£

~uio) (" f0¢) (23)

with the same mixing angle ¢.

This is a far reaching conjecture that allows one to reduce
the four DAs of the physical states 7,# to the two DAs
¢y (u, ), ¢py(u, p) of the flavor states:

o () = ¢ (u) = b, ().
¢ () = py) (1) = oy (w). (24)

The singlet and octet DAs in this scheme are given by

ey ey _U((p)(fqr/)q 0

= UT((PO)
e fDpl) 0 fsrﬁs)

(25)
and the same relation is valid separately for the couplings
fj(v;) and the couplings multiplied by the shape parameters
fj(vr,)ci% (16). The couplings f,, f and the mixing angle ¢

in the FKS scheme have been determined in Ref. [11] from
a fit to experimental data:

fq = (1.07 £0.02)f,,
fs=(1.34 £0.06)f,,

=393 +£10". (26)
A newer analysis [40] exploiting more recent data but only
a subset of the processes investigated in [11] yields

fq = (1.09 £0.03)f,.
fs=(1.66 £0.06)f,,

9 =407 £14, (27)
where the mixing angle is the average of ¢, and ¢, from
[40]. The difference between the two sets can be viewed as
an intrinsic uncertainty of the FKS approximation. For
consistency with earlier work, e.g. [6], we will accept by

default the original set of parameters from Ref. [11],
Eq. (26), for numerical calculations in this work. A recent

074019-4



TRANSITION FORM FACTORS ...

discussion of the ongoing investigations of 7 — 7’ mixing
from a more general perspective can be found in [41].

Since the flavor-singlet and flavor-octet couplings have
different scale dependence, Eq. (25) cannot hold at all
scales. It is natural to assume that the FKS scheme refers to
a low renormalization scale yy ~ 1 GeV and the DAs at
higher scales are obtained by QCD evolution (that also
generates nonvanishing OZI-violating contributions).
Figure 1 shows a comparison of the y*y — #° experimental
data with the nonstrange y*y — |n,) FF extracted from
the combination of BABAR and CLEO measurements of
y*y = n and y*y — ' assuming the FKS mixing scheme.
Were this scheme exact, the two FFs would coincide in the
whole Q? range, up to tiny isospin breaking corrections.
It is seen that the existing measurements do not contradict
the FKS approximation at low-to-moderate Q% < 10 GeV?,
whereas at larger virtualities the comparison is inconclusive
because of significant discrepancies between the BABAR
and Belle pion data. The BABAR data taken alone show a
dramatic difference between the y*y — 7° and y*y — Ing)
FFs at large virtualities that cannot be explained by
perturbative evolution effects. If this difference were con-
firmed, it would be a stark indication that the concept of
state mixing is not applicable to the 57 and ' DAs so that the
corresponding relations between higher-order Gegenbauer
coefficients are strongly broken already at a low scale.

Staying with the state mixing picture, for the gluon DA
we have to assume that

(01G,1£(221) G™ (z11) 1g) = (01G g (22n) G (z4) 1)

and as a consequence

¢ (1) = B (u). (28)

0.35 [T rrrrrrrrr o )
os0f @ Fra-m(@%) % i
0.25F ]
2 ]
0 0' m % I {1 l 1
I‘ ]
0.15F gﬁ# ]
@ BABAR:y'y-ln,) ]
0.10 O BABAR:yy-n’
F 01 BELLE: y'y-n’ |
0.05 r A CLEO: y"y-ln,) 7
F A CLEO: y'y-n’ ]

000 USRS ST SN S S S (NS S S ST S SN ST S SN ST ST S [N SN ST ST SN N ST ST S S T ST S S'Y
5 10 15 20 25 30 35 40

Q2

FIG. 1 (color online). The experimental data on y*y — z°

[3,4,42] (open symbols) compared with the nonstrange component
of the eta meson transition FF, y*y — |, (filled symbols), from
the combination of BABAR and CLEO measurements [1,42] on
and 7’ production in the FKS mixing scheme, Egs. (22) and (23).
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Two-particle twist-three DAs for the strange quarks can
be defined as

1 o s
mmwmwmmmwm—/dw%W%MW
0
(29)

and

2m(0[5(z2n)0,,758(21n) M (p))
iz

B8 (i, = ) [ due 5 ) (30

with the normalization condition

Y audP ) — 1 dude ) — 5O 31
A ugpzy (1) A ucpzy (1) Mo (31)
where

HY) = m3,Fy) —ay,

ay = (0132 GAG M (p)). (32)

that follows from the anomaly relation
J) = 2m,iyss + = GA,GM
w3 = 2mSiyss +EGMVG . (33)

Twist-three DAs for the light ¢ = u,d quarks can be
defined by similar expressions with obvious substitutions

s — ¢ eg HY = m2 F\Y

use the notation, cf. (6),

— ayy. In what follows we also

(q)
u h N S
R S R R

We do not present here the definitions of three-particle
quark-antiquark-gluon twist-three DAs as it turns out
that they do not contribute to the FFs of interest at LO
in perturbation theory.

Assuming the FKS mixing scheme at low scales one can

rewrite the four DAs {77 in terms of two functions as in

Eq. (23), and similar for (j)gﬁ,';)", introducing two new
parameters h, and hy [43]

h, = 0.0015 + 0.004, hy = 0.087 £ 0.006. (35)

Note that 4, is small and consistent with zero. It is easy to
convince oneself that matrix elements of operators with an
even number of y matrices enter the calculation of the

v*y = n and y*y — 7/ transition FFs always multiplied by
quark masses, as on the left-hand-side of Egs. (29) and (30).
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In this situation the contribution of light ¢ = u, d quarks is
tiny and can safely be neglected. To this accuracy

@5 (1) = — sin g}, (u),
B3 (u) = — sin g3, (u).

5" (1) = cos b, (u).
B (u) = cos ggps, (u),

(36)
where
P (u) = hy + 60m, f5,Cy*(Qu—1) + ...,
$S,(u) = 6iulhy + 10mf3,C*Qu—1)+...]. (37

The ellipses stand for the contributions of higher conformal
spin and corrections O(m?) which we neglect for consis-
tency with the calculation of twist-four corrections (see the
next section). The coupling f;, is defined as

(0[50,6759G™s|ns(p)) = 2i(pn)* £, (38)

and we assume that fgf} = cos ¢f 3y, fgfy) = —sin@fs,.

The corresponding coupling for the charged # meson is
estimated to be (at the scale 1 GeV) [35]

f3z ~0.0045 GeV?2. (39)
Lacking any information about the flavor-singlet contribu-

tion, we adopt this number as a (possibly crude) estimate
for f3,. With this choice

2msf3s

s

~0.01 (40)

and one may hope that the corresponding ambiguity in
FF predictions is not very large. We will return to this
question in the next section. The scale dependence of f75; is
given by [35]

f3s(/'£) = LSS/(9ﬂ0>f3s(M0) + O(’"&f&) (41)

where L = a (Iu)/as(,uﬂ)'
Finally, we will need the DAs of twist four that are rather

numerous. The corresponding expressions, including some
new results, are collected in Appendix A.

ML y*y — n.yy FORM FACTORS
IN QCD FACTORIZATION

A. Leading twist

The FFs F,._y(q7.95), M =n,5' describing the
meson transition in two (in general virtual) photons are
defined by the following matrix element of the product of
two electromagnetic currents

PHYSICAL REVIEW D 90, 074019 (2014)
/ dhxe s (M (p) [T (x) (0)}]0)
= ieQSyvaﬂq?ng}'*y**M(q%’ ('I%)? (42)

where

Je™(x) = e,ii(x)y,u(x) + eqd(x)y,d(x) + ...,

p is the meson momentum and ¢, = q; + p. We will
mainly consider the spacelike FF, in which case photon
virtualities are negative. In the experimentally relevant
situation one virtuality is large and the second one small
(or zero). For definiteness we take

B =—4 (43)

assuming that ¢> < Q2. Most of the following equations
are written for g> = 0, and we use a shorthand notation

q% = _QZ’

F”*y_’M(QZ) = Fy*V*—»M(CI% =-0%¢*=0).

The leading contribution O(1/Q?) to the FFs can be
written in factorized form as a convolution of leading-twist
DAs with coefficient functions that can be calculated in
QCD perturbation theory.

The contribution of heavy (charm) quarks requires some
attention. There are two basic possibilities to take into
account heavy quarks in the QCD factorization formalism
[44—-47] which correspond, essentially, to the two choices
of the (physical) factorization scale. It can be smaller,
U < my, or larger, 4 > m,, than the heavy quark mass. If
Agep < < my, Q, ie. if the (heavy) quark mass m, is
very large, of the order of the photon virtuality m, ~ Q, it is
natural to write the structure function as a convolution
of coefficient functions and parton densities that involve
only light quark flavors u, d, s and gluons. This approach is
usually referred to as the decoupling scheme, or fixed flavor
number scheme (FFNS). Another possibility is to assume
the hierarchy Agcp,m, < u < Q (which implies m;, < Q)
and write the FFs as a sum involving heavy flavors. This is
usually dubbed variable flavor number scheme (VENS),
with MS subtraction for all flavors.

In this work we adopt the first scheme which has the
advantage that the complete heavy quark dependence is
retained in the coefficient functions. A potential problem
in this case is that for m;, < Q the coefficient functions
involve large logarithms ~ In Q% /m? which one would like
to resum to all orders. This resummation is naturally done in
the VENS schemes where it corresponds to the resummation
of collinear logarithms using the Efremov-Radyushkin-
Brodsky-Lepage (ERBL) equation, but the price to pay is
that this can only be done to leading power accuracy in the
m?/Q? expansion. There exists vast literature devoted to
heavy quark contributions to deep inelastic lepton hadron
scattering (DIS), discussing how the advantages of both
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approaches can be combined by matching at the scale
u=my; see e.g. [46]. We leave such improvements for
future work, as the numerical impact of resummation on the
transition FFs is not likely to be large. For the same reason
we do not take into account terms ~a2InQ/m, in the
coefficient functions of light quark DAs.

Thus we write

o _ I3
Fy*y—)M(Q ):Wg 0

2fy/ YWy 02 (1
+ u u,J=n, o u,
3\/5 0 H ( Q H (ﬂ))¢M ( ﬂ)

1
duT (u, 0, ety (1)) L) (1, 1)

(n
2 1
s

Vel duTg)(u,QZ,M,(XS(/J)>¢1(5)(”’/4)7

(44)

where ¢§3’1’g)(u, u) are the light quark octet (singlet), and
gluon DAs defined in the previous section.

The coefficient function for the quark DA is known in the
MS scheme to NLO in the strong coupling [48-50] and is
the same for flavor-octet and flavor-singlet contributions.
Taking into account the symmetry of the quark DAs (17) it
can be written as

NLO _
Ty =

2r
9 3 0?

The leading-order gluon coefficient function is calculated
from the diagrams in Fig. 2. The contribution of light u, d, s
quarks reads [6,27]

g _
TH|light =-Cr

as(y)Zlnu{l 1 QZ}

G ) 3 ChutInZ
2O \u - et

(40)

and the c-quark contribution is equal to

&

FIG. 2. Box diagrams contributing to the gluon coefficient
function.
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- 25 fp
- g 1) - @
+2Bu—1)B(uQ*) In {%} } (47)
where
pey =1+ (4s)

In numerical calculations we use the value m, = 1.42 GeV
for the c-quark pole mass. The b-quark contribution is
given by the same expression with an obvious replacement
of the quark mass m, — m,, and extra factor 1/4 from the
electric charge €2 — ¢2. It is very small for the whole
experimentally accessible region Q% < 100 GeV? and can
safely be neglected.

In the formal Q> — oo limit the transition form factors
have to approach their asymptotic values [51]

le.inoonFy*yAM(Qz)
‘ﬁﬂwmﬂw<>nﬁ%<> (49)
- 3 M m \Ho ”ﬁo s \Ho .

Note that the scale dependence of the flavor-singlet axial

coupling (15) gives rise to a finite renormalization factor

~0.85 which is not negligible. Using ny = 4, uy = 1 GeV,

a,(1 GeV) = 0.5 and the FKS parameters in (26) we
obtain

as

Q°F r*Jyf—w

Q*F>
rr=n

(Q%) — 0.173(0.158) GeV,
(Q%) = 0.247(0.270) GeV. (50)

The asymptotic FF values corresponding to the parameter
set in (27) are shown in parenthesis for comparison. The
finite renormalization correction to the flavor-singlet con-
tribution is not taken into account in [1,6,27]. It is only a
<5% effect for the # meson but leads to a 20% reduction of
the asymptotic value of the FF for the 7/, in which case the
effect is amplified by the cancellation between the flavor-

singlet and flavor-octet contributions, f,(?} ) —0.15 (0.17),

f ,(f) = —0.06(—0.08). In this way the discrepancy between

the data [1] and the expected asymptotic behavior of the
vy — 1’ FF is removed, see Sec. V.

B. Higher twist corrections

One source of power corrections ~1/Q? to the transition
FFs F,._y corresponds to contributions of less singular
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terms ~1/x%, Inx?, etc., as compared to the leading
contribution ~1/x* in the operator product expansion of
the two electromagnetic currents in Eq. (42). They can be
calculated in terms of meson DAs of higher twist and will
be referred to as higher-twist corrections in what follows.
To LO in perturbation theory one obtains including the
twist-four contribution

0@ =2 3 r [
”mM¢M<> g7 P 0
1
_M_Q2A4(H\)4( )} (51)

where the function Ay, (u) is written in terms of two-
particle and three-particle DAs of twist-four defined in

Appendix A:
—¢4M /doh/ daz{ ®4(a)

2u—1-a,+a

: <1>4M<g>]

a3

A4;M(”) =

(52)

a=1-a;—a,

Using explicit expressions for the twist-four DAs (see
Appendix A), we obtain

Qsz*y%M(Qz)
, 1 h(’)
=23 eiFﬁ?’{3<1+cé‘f> 5 L‘ (24 3¢)

y=ud,s
R <67 5c<W>> 3m.yf ]}
T T \2en 4 t2m ’
fﬁ‘}’) 360 4 2 fM

(53)
where we included, for comparison, the leading-order
leading-twist contribution and ignored the scale depend-
ence. Note the following:

(i) The end-point divergence at u — 0 in the contribu-

tion of the twist-three DA (j)x’;)(u) exactly cancels
the similar divergence in the twist-four contributions
that are related to twist-three operators by equations
of motion; this cancellation is general and does not
depend on the shape of the twist-three DAs.

(i) Assuming the FKS mixing scheme the expression
for the 1/Q? correction (in square brackets) does
not depend on the meson states, 7 or 7'. Using the
numbers quoted in Egs. (26) and (35) we obtain for
the ratio

80 2y
+95M

A/ = 0504004 GeV2,  (54)

PHYSICAL REVIEW D 90, 074019 (2014)

whereas the similar ratio for the light u, d quarks is
compatible with zero.
(iii) The higher-twist correction is dominated by the

contribution of 5M = (0.2 GeV? (see Appendix A)
whereas the contribution of the twist-three quark-

antiquark-gluon matrix element ~mf gj‘)l / f,(‘?
completely negligible.
Plugging in the numbers we obtain a rough estimate of the
twist-four contribution

Ftw1st -two (Q2) (55)

r'y-M

0.9 GeVT

F7*7—>M(Q2) = |:1 - Q
This is a small correction. However, one can show that
contributions of arbitrary twist produce a 1/Q? correction
as well (see a detailed discussion in [24]), indicating that
the light-cone dominance of the transition form factor with
one virtual and one real photon does not hold beyond
leading power accuracy. An estimate of the twist-six
contribution [24] results in a small positive 1/Q? correc-
tion, enhanced by an additional In Q? factor. The mismatch
of twist- and power-counting is due to the fact that to power
accuracy one must consider the contributions of large
light-cone distances between the currents, that are not
“seen” in the twist expansion. To leading order in the
QCD coupling such terms can simply be added and there is
no double counting. An example of such a correction is the
contribution of real photon emission at large distances
calculated in Ref. [24]:

V2f, 167a.y(Gq)?
3 9f20*

Lo#s. () (1 ¢,())
xAdx x /)dy 7 (56)

where ¢,(y) = 6y(1 —y) is the leading-twist photon DA
[52,53] and y = 3.5 GeV~2 (at the scale 4 = 1 GeV) is the
magnetic susceptibility of the quark condensate [53-57].
The integrals over the quark momentum fractions in (56)
are both logarithmically divergent at the end-points x — 0,
y — 1, which signals that there is an overlap with the soft
region. Such soft contributions are related to the overlap
between the light-cone wave functions of the pseudoscalar
meson and the real photon and can be taken into account in
the framework of LCSRs described in the next section.

Fy y—r° (Qz)

C. Timelike form factors

In Ref. [2] the processes eTe™ — y* — (n,17')y were
studied at a center-of-mass energy of /s = 10.58 GeV.
The measurements can be interpreted in terms of the
v*y = .7 FFs at remarkably high timelike photon vir-
tuality Q% = —s = —112 GeV?:
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02F oy (0% g1 2Geve = (0.2514£0.021) GeV,  (57)

where we added the statistical and systematic uncertainties
in quadrature. Note that the timelike FFs are complex
numbers, whereas only the absolute value is measured.

To leading-twist accuracy, the timelike FFs can be
obtained from their Euclidean (spacelike) expressions by
the analytic continuation

Q% > —s —ie. (58)
The imaginary parts arise both from the analytic continu-
ation of the hard coefficient functions and the DAs
which become complex at timelike scales y> ~ Q> = —s;
see e.g. [58].

Since transition form factors are linear functions of the
meson DAs, the results of the QCD calculation can be
written as a sum of contributions of different Gegenbauer
polynomials at the low reference scale

2 ptwist- 2
O F (07| g2——112 Gev?

=0161 GeV+ > S Al ().

p=q.s.,gn=24,...
2 ist- 2
0 F;“f;i}f°( )|Q2:—112 GeV?

=0241GeV+ > ST f0AP ),

pP=q.s.,gn=24,...

(59)

where the asymptotic DA contributions are almost the same
in the timelike and spacelike regions, and the coefficients
f](‘f,’;)n = f;é’;)n(Q2 Ju* ag(u?); u3) absorb all dependence
on Q2. Numerical values of these coefficients with the
choice of factorization scale u> = Q?, continued analyti-
cally to the timelike values Q* = —s, are presented for 7
and #/ mesons in comparison with the corresponding

spacelike coefficients for n = 2,4 in Table 1. Note that

the Gegenbauer coefficients at the low scale ) (po) do not

depend on the type of the meson— or #'—by assumption
of the FKS state mixing. For this calculation we have taken
the set of parameters in Eq. (26). The given numbers
correspond to the choice of the scale y> = Q?; they change

TABLE L.

PHYSICAL REVIEW D 90, 074019 (2014)

by at most 10% if the scale is varied in the inter-
val 0%/2 < u? < 20>

We see that the coefficients of higher Gegenbauer
polynomials are in general rather small, which is due to
suppression by the anomalous dimensions. These coeffi-
cients acquire rather large phases; however, for realistic
values of the Gegenbauer coefficients c\7) ~c}'} ~0.1-0.2
the corresponding contributions to the FF appear to be
marginal as compared to the leading terms in (59). Thus the
overall phase is small and the absolute values of the FF in
the spacelike and timelike regions remain close to each
other. This result is in agreement with the conclusion in
[58] that perturbative corrections cannot generate a sig-
nificant difference between the spacelike and timelike
transition FFs.

Beyond the leading power accuracy the situation is less
clear. Note that the overall 1/Q? correction to the spacelike
transition form factors is negative (this can be shown in
many ways; see, e.g. [24,25]) and by virtue of the sign
change in Q” one expects a positive correction to the
timelike form factors if the analytic continuation is justified
to power accuracy which is, however, not obvious. The
higher-twist contributions corresponding to less singular
terms in the light-cone expansion of the product of the two
electromagnetic currents are small and tend to have alter-
nating signs; cf. the discussion in the previous section.
They are unlikely to play any role at |Q?| ~ 100 GeV2. The
soft contributions can, however, be significant.

Within the LCSR approach to soft contributions dis-
cussed in the next section, their magnitude is correlated
with the shape of the leading-twist DA: broader DAs
generally lead to larger soft corrections and vice verse.
A rough estimate (69) gives

(3-7) GeV?

QZFY*W(Qz)=Q2F3§3,7(Q2)[1— 7 ] (60)

where the larger number corresponds to a broad DA of
the type [24] required to describe the BABAR data [3] on
y*y = 7%, and the smaller one is obtained for the asymp-
totic DA. Assuming that the soft correction changes sign
in the timelike region, we conclude that the difference
between the timelike and spacelike form factors at
|Q?| = 112 GeV? can be of the order of ~5%—13% for

Coefficients (59) of the contributions of different Gegenbauer polynomials in the expansion of DAs to the transition form

factors at the timelike Q> = —s = —112 GeV?, assuming validity of the FKS mixing scheme (26) at the low scale o = 1 GeV. The
corresponding spacelike coefficients for Q> = 112 GeV? are also given for comparison. All numbers in units of GeV.

Meson  Scale 15 7y 75 £ 7Y 7
spacelike  0.126 —0.037 0.010 0.105 —0.030 0.006
4 timelike  0.11340.032i —0.033—0.009i 0.011 —0.001i ~0.086 + 0.039% —0.025—0.011i ~ 0.006 + 0.001i
, spacelike  0.103 0.045 0.061 0.086 0.037 0.037
1 timelike  0.093 +0.026i  0.040 +0.011i  0.069 —0.005i 0.070 +0.032i  0.030 + 0.014i  0.040 + 0.005i
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the “narrow” and “broad” meson DA, respectively. This
difference can further be enhanced by Sudakov-type cor-
rections; see the discussion in [58] and references therein.

It is interesting that the experimental result for y*y — #/
at Q> = —112 GeV? [2] is very close to the contribution
of the asymptotic #/ meson DA in Eq. (59), whereas the
asymptotic contribution to y*y — n is almost 50% below
the data; cf. (57). This result urgently needs verification. If
correct, it can probably only be explained by much larger
soft contributions such as a much broader DA of the 7
meson as compared to #’, which would be in conflict with
the state mixing approximation for DAs.

IV. LIGHT-CONE SUM RULES

The LCSR approach was proposed in [52,59-61] and
adapted for the present situation in [62]. This technique is
well known and has been used repeatedly for y*y —
[24,25,63-70] so that in what follows we will only give
a short introduction and present the necessary NLO
expressions, generalized and/or adapted for the case of
n") mesons.

The idea is to consider a more general transition FF for
two nonvanishing photon virtualities, ¢7 = —Q? and
g3 = —q*, and perform the analytic continuation to the
real photon limit g> = 0 employing dispersion relations.

On the one hand, F,,_(0? ¢*) satisfies an unsub-
tracted dispersion relation in the variable g> for fixed Q2.
Separating the contribution of the lowest-lying vector
mesons p, ® we can write

_ \/Epry*p—»M(Qz)

m,z, + ¢
+l/oo s ImF (0%, —s5)
T Js,

s+ q2

where s, is some effective threshold. Here, the p and o
contributions are combined in one resonance term assum-
ing m, =m,, and the zero-width approximation is used;
fp~200 MeV is the usual vector meson decay constant.
Note that since there are no massless states, the real photon
limit is recovered by the simple substitution g> — 0in (61).

On the other hand, the same FF can be calculated using
QCD perturbation theory and the operator product expan-
sion (OPE). The QCD result obeys a similar dispersion
relation

Fy*y*—>M(Q2v qZ)

. (61)

1 [ ImF¥P (0%, -s)
FEP (02, ¢4 :—/ d rr—m . (62
'y —>M(Q q ) 7 Jo s 5+ q2 ( )

The basic assumption, usually referred to as quark-hadron
duality, is that the physical spectral density above the
threshold s > s, coincides with the QCD spectral density
as given by the OPE:

PHYSICAL REVIEW D 90, 074019 (2014)
C
ImF .y (Q% =) =ImF > | (0% —s).  (63)

This equality has to be understood in the sense of
distributions, with both sides integrated with a smooth test
function.

Equating the two representations in (61) and (62) at
g*> — —oo and subtracting the contributions of s > s, from
both sides one obtains

1 So
\/Epry*qu(QZ):; A dstmF >\ (0 —s).  (64)

This relation explains why s is usually referred to as the
interval of duality. The perturbative QCD spectral density
F %P_,M(QZ, —s) is a smooth function and does not
vanish at small s — 0. It is very different from the physical
spectral density ImF .-y (0%, —s) ~8(s —m3). However,
the integral of the QCD spectral density over a certain
region of energies coincides with the integral of the
physical spectral density over the same region; in this
sense the QCD description of correlation functions in terms
of quark and gluons is dual to the description in terms of
hadronic states.

In practical applications of this method one uses a
trick borrowed from QCD sum rules [71], to reduce the
sensitivity to the duality assumption in Eq. (63) and also to
suppress contributions arising from higher order terms in
the OPE. To this end one attempts to match the “true” and
calculated FF at a finite value ¢> ~ 1-2 GeV? instead of
the g> — oo limit. This is done by going over to the Borel
representation 1/(s + ¢*) — exp|—s/M?], the final effect
being the appearance of an additional weight factor under
the integral

Im

1 So
\/EfPFr*/HM(Qz) = ;/ dse=(s—mp)/M?

0
X ImF%P_,M(QZ, —-s). (65)

Varying the Borel parameter within a certain window one
may test the sensitivity of the results to a chosen model for
the spectral density.

With this refinement, substituting Eq. (65) in (61) and
using Eq. (63) we obtain for ¢g*> — 0

FLCR (02) — l/“‘o ds | rocp (02, —s)elmi=s)/1r
0

y'y-M P m_% vy -M
1 [oods
+- / TlmF%}lM(Q% —s). (66)

0

This expression contains two nonperturbative parameters,

the vector meson mass mf,, and the effective threshold

so = 1.5 GeV?, as compared to the “pure” QCD calculations.
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Taking into account Eq. (62) one can rewrite the same
result as

FISSS, (07) =

2
QCD (2 o ds | g _ ™
F}’ }/—>M(Q ) ﬂ[; mg |:g(mp S) T

X ImFP (02, —s), (67)

separating the result of a “pure” QCD calculation and the
correction.

To get an impression of how this modification affects
the QCD result, we insert the leading-order and leading-
twist expression for ImFQy > (0% —s) and rewrite the

dispersion integral in terms of a variable x = Q%/(s + Q?)
that corresponds to the fraction of the meson momentum
carried by the interacting quark:

Ldx i
F];;IC]:/S—ISM ZCfM [/ f¢1(w)(x)
i—18 o X
Ldx (XQ? ™ ;Q'
ax ] 68
+/<m = =)o) @
where C! = 34, €% = 35-,‘:1—xandx0:%$—2Q2.The

first contribution is the LO perturbative result while the
second part represents the soft end-point correction from
the region x > xy = 1 — O(sy/Q?), due to the modification
of the spectral density in the LCSR framework.

For a rough estimate of the soft correction we expand the
integrand for small 1 — x,

tdx )
[/ 2o

ZC’fM
Fa(5 e 1)) )

P

F5(Q%) »

where ¢j§j> (0) = (d/ dx)qﬁx,) (x)|y—o and we assumed that
the DA vanishes linearly at the end points. Using

$0) =3 [2 + ) (n+ D)+ 2)01(5)}
w77
/ S (x) = [1 +n_;mcgf>],

and assuming that the numerical values of the Gegenbauer
moments for the singlet and octet DAs are the same, we
arrive at the estimate in Eq. (60).

A. Twist-two contribution

For our purposes it is convenient to write the required
imaginary part of F”_>M(Q2 2) as a sum of terms
corresponding to the expansion of the meson DAs

PHYSICAL REVIEW D 90, 074019 (2014)

¢ (x, ) in Gegenbauer polynomials. The twist-two quark
components of the spectral densities with NLO accuracy
can be obtained from relevant expressions presented in our
work [24]. Thus we write, for the flavor-octet contribution,

1
CImF 0 (07 )

Cray
%ZC%(H) {pﬁo)(QZ,SH 2F: P (@2 sip)|
n=0
(70)

The LO partial spectral density is proportional to the
meson DA

2¢,(x)

Oy )=o),

P02, s) =

(71)

where x = Q%/(Q? + s).
The NLO spectral density can be written in the following
form:

Q2 s ) = —3[1+2(p(2) — (2
@5 = ot { {30+ 20 v 4 )
7 X }/5,0) s
5w (5) - fouts
0) rz 0 (7
Ry ORI
Cr u—x
1 -
_U duwm<l_z)
x u—x u
+(x—>)"c)]}, (72)
where yi,o) is the flavor-nonsinglet LO anomalous dimen-

sion (B6).
The flavor-singlet quark contribution can be written
similarly as

1
CImF (07 )

2fM Z

Cra;
[ z,s)+§ (02, 5:p)

(73)

s) and pi)(Q2, s; ,u) the
difference being encoded in the decay constants f M, the
expansion coefficients cf,”)M and numerical factors.

In order to find the contribution of the gluon DA one has
to calculate the relevant Feynman diagrams (Fig. 1) for
light quarks in the loop and two nonzero photon virtualities,
0? and g*. One obtains, omitting the factor Cra,/4x,

with the same functions p,(lo)(Q
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Tleight(u’ QZ» q2) =)

+2 [Qzu(su -2) ln<

PHYSICAL REVIEW D 90, 074019 (2014)

2 72 2 72 2

mrg=pr (o) () ()
2 72 2 =12 2

_P@n (MQ#) [m (Q;zuq n (q_z )}
q M H

2 =2 2 =2
M) a2 - 3u) m(thq#)]}.

(74)

It is not difficult to verify that the result in (74) reproduces the known expression (46) in the limit g> — 0. The
corresponding contribution to the spectral density reads, replacing ¢> — —s,

1 2x [ 1 I i _
;Ing_]hight(u’ Q% —s) = 7 {W [@(u —X) [(xu2 + xu?)In (1 - §> + uu”
P 2
+ [@(u-x)i—(a(x—u)_%] [1nQ—2+1n——2H (75)
u u 7 X
A recalculation of the heavy c-quark contribution is not 1I FQCD(e) (0%, —s)
needed since the corresponding spectral density is not ry oM e
affected by the LCSR modification. Thus the result in 2 f(l) 0 Coat
Eq. (47) obtained for g> = 0 can be used as it stands. M (@) ES p9(Q% s3u). (79)

The contributions of different Gegenbauer polynomials
in the expansion of the two-gluon DA
w, (1) = 30u2@2C% (2u — 1) (76)

defined as

1 1
PUQsip) = [ dutmT (.0 ~s)a (). (77)

can readily be computed from the above expressions. We
obtain for n =2 and n = 4:

5x gqy(O) )_CQ2
p5(0%, s, 1) :@ {— C; (1n—2—2>¢2(x)
+ 222(65x2 —30x + 1)} ,

5 94, (0) =2
plqt(Q27 S,,Ll) - @ |:_ g; (ln% - 2> (p4(x)
+

14
E5c2(1827x4 — 2457x3 4 959x7

—105x + 1)} , (78)

where ¢,,(x) are defined in (71) and the respective quark-
gluon mixing anomalous dimension appears, because
the coefficient of In Q?/u? in (75) is just the evolution
kernel V99(x, u).

Collecting all factors, the final expression for the
contribution of the light quark box diagrams to the spectral
density takes the following form:

= — c
3\/§n:2 n,M(:u) o

As mentioned above, the contribution of charm quarks does
not need to be written in this form as it is not affected by the
LCSR subtraction.

B. Higher-twist and meson mass corrections

The bulk of the higher-twist corrections corresponding to
the contributions of two-particle and three-particle twist-
four DAs can be taken into account using the expressions
given in Ref. [24] with the substitution of pion DAs by their
n,1 counterparts. The latter have been studied previously
in [34,35] but, as we found, the results given there are
not complete. The corresponding update is presented in
Appendix A. We take into account quark mass corrections
in the relations between different matrix elements imposed
by QCD equations of motion (EOM) and also consider, for
the first time, anomalous contributions to the flavor-singlet
twist-four DAs.

In addition, one has to take into account the contribution
of the twist-three DA, which appears due to the non-
vanishing strange quark mass, and an extra meson mass
correction ~m?, coming from the expansion of the leading-
order amplitude.

In the expressions given below we collect the results for
the spectral densities for the higher-twist contributions
defined as

h 1 i
pi = ImF 70 (02 ). (80)

The superscript i =m,3,4 corresponds to the meson
mass, twist-three DA, and twist-four DA contributions,
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respectively. All higher-twist contributions can most con-
veniently be written as a sum of contributions of different
quark flavors

P (0%, s) = 2e3piy (0%, ) + V2(el + ed)piy " (Q%. ).
(81)

The rewriting in terms of the parameters in the FKS scheme
is then done using Egs. (23) and (36) for the leading twist
and the same transformation rules for the higher-twist
matrix elements fg‘ﬁ and f(M“)élzé“) where a = g, s.
The meson mass correction to the contribution of the
nth Gegenbauer term in the expansion of the leading-twist
DA, cf. (70), takes the form
2
m), X
pgﬂ,i1a(Q27 S) = a

Here we used a shorthand notation

o (éxfﬂn (x) = x)'cd%gon (x)) . (82)

£ =2x—1

and made a substitution m3, fgj) - h}ﬂ? motivated in
Appendix A, Eq. (A35), for consistency with the calcu-
lation of twist-four contributions.

The contribution of the twist-three DA to NLO accuracy

in the conformal expansion reads

(3).a 2 _ )C2 a a 1/2

pu(Q% ) = 0 (hyg&x + 60ma f5),Cy~(2x = 1)),
(83)

and the twist-four contribution, to the same accuracy, can
be brought into the form

26 (160 )
S e

+ m, 5,60 — 210x%(3 — xX)]
13 21
a 1 —_ vyl — — ¥
+hM[ xx<6 5 xx)

+ 4 xx(21 — 135x5€)] } (84)

Py (0% 5) =

In all expressions a = ¢, s and x = Q°/(s + Q?).

The twist-six contributions to the y*y — z° transition FF
have been calculated in the factorization approximation in
Ref. [24]. The extension of these results to y*y — n,%' is
not immediate as in order to include SU(3) flavor violation
effects we would have to recalculate all the diagrams
keeping terms linear in the quark masses. These would
lead in the factorization approximation to contributions
proportional to the twist-two distribution amplitude times
quark condensate. We postpone this calculation to a

PHYSICAL REVIEW D 90, 074019 (2014)

forthcoming publication and prefer to neglect the twist-
six contributions altogether since at this level we would
only be able to include them consistently for the octet but
not the singlet. Neglecting them amounts to an additional
uncertainty at the level of 2%-3% and we will see that
neither theoretical nor experimental precision are up to now
sufficient to make these terms relevant.

V. NUMERICAL ANALYSIS

A. Sum rule parameters

All numerical results in this work are obtained using the
two-loop running QCD coupling with Ag():n =326 MeV
and ny =4 active flavors. Validity of the FKS mixing
scheme for the DAs is assumed at the renormalization scale
po =1 GeV, a,(uy) = 0.494. Unless stated otherwise,
we use the set of FKS parameters specified in Eq. (26).
All given values of nonperturbative parameters refer to the
same scale yy = 1 GeV.

A natural factorization and renormalization scale y in
the calculation of the meson transition FFs with two large
photon virtualities is given by the virtuality of the quark
propagator u?> ~ xQ? + xg*. If g¢> — 0, in the LCSR frame-
work the relevant factorization scale becomes y> ~ xQ? +
xM? or pi* ~ XQ* + xs¢ if M? >> s; see e.g. [72]. Note that
the restriction s < s in the first integral in (66) translates to
¥ < 59/ (so + Q%) and hence the quark virtuality remains
finite pu® =25, as Q%> — co, in agreement with the inter-
pretation of this term as the “soft” contribution. Using
the x-dependent factorization scale is inconvenient so that
we replace x by the average (x) which is varied within a
certain range:

> = (X)Q* + (x)s, 1/4 < (x) < 3/4. (85)

The choice of the Borel parameter in LCSRs is discussed
in [73,74]. The difference to the classical QCD sum rules is
that the twist expansion in LCSRs goes in powers of
1/(xM?) rather than 1/M?. Hence one has to use somewhat
larger values of M? compared to the QCD sum rules for
two-point correlation functions in order to ensure the same
hierarchy of contributions. We choose as the “working
window”

1 < M? <2 GeV? (86)

and M?=1.5GeV? as
calculations.

We use the standard value s, = 1.5 GeV? for the
continuum threshold, and the range

the default value in our

1.3 <59 < 1.7 GeV? (87)

in the error estimates. We did not attempt to consider
corrections due to the finite width of the p, ® resonances.
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The estimates in Ref. [68] suggest that such corrections
may result in an enhancement of the form factor by 2%—-4%
in the small-to-medium Q2 region where the resonance
part dominates. We believe that such uncertainties are
effectively covered by our (conservative) choice of the
continuum threshold.

Finally, we use the values of the twist-three parameters

. . 2
h, and h [43] specified in Eq. (35), and also use 5,&") =

519 = 0.2 +0.04 GeV? [65,75] (at the scale 1 GeV) for
the normalization parameter for twist-four DAs (A7).

PHYSICAL REVIEW D 90, 074019 (2014)

B. Models of DAs and comparison with the data

The LCSR calculation of the FFs is compared with the
experimental data [1,42] in Fig. 3. The dependence of
the results on the Borel parameter, continuum threshold,
normalization of the higher-twist contributions and, to a
lesser extent, the factorization scale, can be viewed as an
intrinsic irreducible uncertainty of the LCSR method. This
uncertainty is shown in the figures by the dark blue bands.

In this work we use the FKS mixing scheme [11] as the
simplest working hypothesis that allows one to reduce the

—7 T

— 77—

Q?, GeV?

FIG. 3 (color online).
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Transition form factors y*y — 7 (left panels) and y*y — #’ (right panels) [1,42] compared to the LCSR calculation

with three models of the leading-twist DAs specified in Table II. Asymptotic values at large photon virtualities (50) corresponding to the
central values of the FKS parameters in Eq. (26) are shown by the horizontal dashed lines. The dark blue shaded areas correspond to
uncertainties of the calculation due to the choice of the LCSR parameters M> and s, factorization scale y, and the higher-twist parameters
has) §249); see text. The light blue areas are obtained by adding the uncertainties in the FKS parameters, Eq. (26).
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number of parameters, assuming that it holds for complete
wave functions, and therefore also for the DAs, at an ad hoc
low scale ug = 1 GeV. The error bands corresponding to
adding the uncertainties of the FKS parameters as given in
Eq. (26) to the LCSR uncertainties specified above is
shown by light blue bands. We assume that all errors are
statistically independent and add them in quadrature. We
expect that the bulk of these uncertainties will be eliminated
in the future by using first-principle lattice calculations
of the couplings f,, f,; that are not bound to any mixing
scheme.

Asymptotic values of the form factors for large photon
virtuality for the central values of the FKS parameters in
Eq. (26) are shown by the horizontal dashed lines; cf.
Eq. (50). The asymptotic value for y*y — # differs con-
siderably from the one assumed in [1,6,27], which is an
effect of the finite renormalization correction to the flavor-
singlet contribution; see Eq. (49). Note that experimental
measurements for both 7 and #’ FFs at large virtualities are
consistent with the expected asymptotic behavior.

The remaining nonperturbative input in the calculations
is provided by the shape parameters of the DAs. We do not
view this dependence as “uncertainty.” Indeed, on the one
hand, extraction of the information about DAs is the
primary motivation behind the studies of transition form
factors. On the other hand, lowest nontrivial moments of
DAs can also be studied in lattice QCD [76,77]. Such
calculations are ongoing and the corresponding parameters
will eventually be known to a sufficient precision.

In the FKS approximation the remaining information

about the DAs is encoded in three constants, cﬁ,q) (mo),

) (Ho), and e (Ho), for each Gegenbauer moment

n = 2,4, etc. The nonstrange coefficients, 9 (Ho), should

be similar to the corresponding coefficients for the pion
DA. Unfortunately the situation with the pion DA is far
from being settled. Direct calculations using QCD sum
rules and lattice simulations do not have sufficient accuracy
so far, whereas the constraints from the experimental data
on the y*y — 7% FF are inconclusive because of the
discrepancy between the BABAR and Belle measurements
[3,4]. A detailed discussion can be found in [24,25].
Because of this uncertainty, we present the results for
three different models of the DAs specified in Table II
where the coefficients c,(ﬂ) (o) are chosen in the range that
corresponds to popular models for the pion DA, the SU(3)

TABLE II. Gegenbauer coefficients of three sample models of
the leading-twist DAs [u, d quarks (q), s quarks (s), and gluons (g)]
at the scale uy = 1 GeV; cf. Fig. 3.

Model c<2q> c(;) cf{” cff) c(zg )

I 0.10 0.10 0.10 0.10 —0.26
11 0.20 0.20 0.0 0.0 —0.31
111 0.25 0.25 —0.10 —0.10 —0.25

PHYSICAL REVIEW D 90, 074019 (2014)

breaking in these parameters is neglected (see below), and
the gluon coefficients are fitted to describe the data. The
first model corresponds to the pion DA used in Ref. [25]
to describe the Belle data [4] (truncated to n = 2,4), the
second (simplest) model corresponds to a typical ansatz
used in vast literature on the weak B — z decays, and the
third model with a negative n = 4 coefficient is advocated
by the Bochum-Dubna group; see e.g. [69] and references
therein.

On general grounds one expects [78] that the DAs of
hadrons containing strange quarks are more narrow than
those built of u, d quarks, i.e.

e o) < @ (uo):; (88)

however, existing numerical estimates of this effect are
rather uncertain. QCD sum rule calculations (see
e.g. [34,35]) and lattice calculations [76,77] do not seem
to indicate any large difference so that we have assumed

e (uo) = ¢\? () for the present study. Setting instead

i) (uy) = 0, which is probably extreme, the FF 5y — 5
gets increased by 5%—6% and the FF y*y — 5’ decreases by
4%—-5% for Q> > 5 GeV? as compared to the results shown
in Fig. 3.

The gluon DA mainly contributes to the #' FF, whereas
its effect on the # is small. To illustrate this dependence we

show in Fig. 4 the results of the calculation with cé‘” =

¢ =0.1 and ¢/ =0 corresponding to model T with

gluon contribution put to zero (blue curve), and the shaded

area in light green obtained by varying ng)

—0.5 < ¢} < 0.5. Note that the gluon DA contribution is
significantly enhanced (by a factor 5/3 for large Q) by
including the c-quark contribution, which is one of the new
elements of our analysis.

The three models in Table II lead to an equally good
description of the experimental data at large Q% >
10-15 GeV? but differ at smaller Q? where model I seems
to be preferred. Unfortunately, the uncertainties of the
calculation also increase in this region, especially for
model III which suffers from a stronger dependence on
the Borel parameter. For this reason we think that none of
the considered models can be excluded and, also in the
future, the experimental data on transition FFs alone will
not be sufficient to pin down the shape of DAs. One needs a
combined effort of theory and experiment, supplementing
FF data with lattice calculations of at least a few key
parameters.

Finally, in Fig. 5 we show the same results on a
logarithmic scale in Q2 where we have also included
the timelike momentum transfer data point [2] at |Q?| =
112 GeV? (red stars) for comparison.

One sees that the measurement of eTe™ — y* = iy
appears to be in good agreement with the expected

in the range
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Same as in Fig. 3 using a logarithmic scale in Q. The calculation uses the first model of the leading-twist DAs

specified in Table II. The timelike data point [2] at |Q?| = 112 GeV? is shown by red stars for comparison.

asymptotic behavior in the spacelike region, whereas the
result for eTe~™ — y* — gy is considerably higher. This
difference is interesting and surprising. The Sudakov
enhancement of the timelike FFs as compared to their
spacelike conterparts, usually quoted in this context, is
universal and should affect both 7 and #’ production equally
strongly. As already discussed in Sec. III. C, the large
difference can only be attributed to nonperturbative cor-
rections corresponding to the soft (end-point) integration
regions. Although a rigorous connection of such contribu-
tions to the DAs does not exist, one can plausibly argue that
large soft corrections are correlated with the end-point
enhancements in the DAs, of the type that have been
discussed in connection with the large scaling violation in
the y*y — z° form factor reported in [3]. For this reason we
expect that, if the large value of the timelike form factor for
the 7 meson is confirmed, the corresponding spacelike form
factor should exhibit the similar scaling violating behavior
as observed by BABAR for the pion. In fact the existing data
may support such a trend, see Fig. 5, although it is not
statistically significant.

VI. SUMMARY AND CONCLUSIONS

In anticipation for the possibility of high-precision
measurements of the transition form factors y*y — n and
¥y — i’ at the upgraded KEKB facility, in this work we
update the corresponding theoretical framework. The
presented formalism incorporates several new elements
in comparison to the existing calculations, in particular a
full NLO analysis of perturbative corrections, the charm
quark contribution, and revisited twist-four contributions
taking into account SU(3)-flavor breaking and the axial
anomaly. A numerical analysis of the existing experimental
data is performed with these improvements.

For the numerical analysis we have used the FKS state
mixing assumption for the 7, ' DAs at a low scale of 1 GeV
as a working hypothesis to avoid proliferation of param-
eters. This assumption does not contradict the data on the
FFs at small-to-moderate photon virtualities and can be
relaxed in the future, if necessary.

The most important effect of the NLO improvement is
due to the finite renormalization of the flavor-singlet axial
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current which results in a 20% reduction of the expected
asymptotic value of the y*y — #' form factor at large photon
virtualities. Taking into account this correction brings the
result in agreement with BABAR measurements [1].

We also want to emphasize the importance of taking
into account the charm quark contribution. This effect is
negligible at small Q?, but increases the contribution of the
most interesting two-gluon DA by a factor 5/3 at large
scales, so that a consistent implementation of the c-quark
mass threshold effects is mandatory.

The update of the higher-twist corrections does not have
a large numerical impact, but is necessary for theoretical
consistency with taking into account the meson mass
corrections to the leading-twist diagrams. Identifying the
hadron mass corrections in hard exclusive reactions is in
general a nontrivial problem [79], and it is made even more
difficult by the axial anomaly. We have calculated the
anomalous contribution to the twist-four DA for one
particular case and found a specific mechanism how this
contribution can restore the relations between 7, 7 masses
implied by the state-mixing assumption for higher twist.

Our results for the FFs at Euclidean virtualities are, in
general, in good agreement with the experimental data [1],
although the present statistical accuracy of the measure-
ments is insufficient to distinguish between different
models of the DAs specified in Table. II. We expect that
experimental errors will become smaller in the future, and
also that some of the parameters, most importantly the
decay constants f,, f,, will be calculated with high
precision on the lattice. In this way the comparison of
the QCD calculation with experiment will allow one to
study the structure of 7, #' mesons at short interquark
separations, encoded in the DAs, on a quantitative level.

We have given a short discussion of the transition form
factors in the timelike region g> = —Q? > 0. The result by
BABAR [2] suggesting a large enhancement of the 7 form
factor in the timelike as compared to the spacelike region,
and at the same time no such enhancement for 7/, is rather
puzzling. If confirmed, this difference would imply a
significant difference in the end-point behavior of # and
' DAs.
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APPENDIX A: DISTRIBUTION AMPLITUDES
OF TWIST FOUR

This Appendix contains a detailed discussion and an
update of the twist-four DAs of pseudoscalar mesons. To

PHYSICAL REVIEW D 90, 074019 (2014)

this end we follow the classification and notations in
Ref. [35] adapted for our present case. The presentation
is divided into two parts. In the first subsection we ignore
anomalous contributions. This part contains the necessary
definitions and an update of the results in [34] and [35]
taking into account quark mass corrections in the relations
between different matrix elements. The given expressions
can be used as written for the flavor-octet contributions but
have to be modified for flavor-singlet ones. Anomalous
contributions to the flavor-singlet twist-four DAs are
considered in the second subsection. This is an entirely
new subject; we are not aware of any related studies beyond
twist-two accuracy. The complete solution requires a full
NLO evaluation of twist-four contributions and goes
beyond the scope of this work. Instead, we formulate a
simple substitution rule that is based on a sample calcu-
lation of the anomaly for one particularly important case,
and is likely to take into account the bulk of the effect.

1. General classification and quark mass corrections

There exist four different three-particle twist-four DAs
that can be defined as, e.g. for the strange quarks

(013(221)7,,759Gap(z3n)s(z1n) M (p))

1 s) (s
= pﬂ(panﬂ - p/)’nrz) EFI(\/)(pé(l,j)u(éi pn)

+ (g = Pagh) Fod Wi (2. pn) + ...

(015(221)7,,19G o (z3n)s(z1n) M (p))

1 S S
= pu(panis — Ppny) EF/(/ fu)u(z, pn)
)

+ (P = Pagl) For Wiy (2. pn) + ..

K

(A1)

with the shorthand notation

]—'(g’ pn) p— /Dgg_ipn(alzl+a212+0(313)f(g)’

1
Dg-/dadadaé(l— ai)
[ Pa= [ dudardas(1-

and g, = Gou — (Palty + Puna)/(pn), etc. The ellipses
stand for contributions of twist higher than four. C-parity
implies that the DAs ® and ¥ are antisymmetric under the
interchange of the quark momenta, @, <> a,, whereas ®
and ¥ are symmetric. The three-particle twist-four DAs for
q = (u, d) quarks are defined by the same expressions with
obvious substitution of the quark fields and the superscripts
(s) = (¢); cf. Eq. (1).

Three-particle DAs can be expanded in orthogonal
polynomials that correspond to contributions of increasing
spin in the conformal expansion. Taking into account
contributions of the lowest and the next-to-lowest spin,
one obtains [33-35]

(A2)
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q’a(ts;/)w (a) = 1200 03 [¢§S1)w (o) — )],
O, (@) = 120003 (B ) + $5 1 Bas — 1),

Wy (a >——30a3{w0M<1 —a3) ) las (1 - ) — 6ay a0
) {a (1-a )-3(a2+a2)”
Yom|%3 3) 5\ T )

\I,(‘) =-30 2 _ (s) (s)

&M (a) a5 (o —ay) Vou TV u
L®) (5ay-3 A3
+2V/2,M( az—3) ;. (A3)

The coefficients g{),(s,)w, 1//,?1)” are related by QCD equations

of motion [33]. One such relation is rather nontrivial and
involves the divergence (in the mathematical sense) of the
spin-three conformal operator

Gs) -2 1 _
Qﬂaﬁ = 35DyDpy,vss — gﬁaaﬂsyﬂ]@s, (A4)

where the symmetrization in all Lorentz indices and
subtraction of traces are implied. Ignoring possible anoma-
lous contributions to be discussed later, we obtain

8”@ SS

— —
uafp /}Da - DaGpﬁ)ySS

= —24i57(G,

+4im 3D, Dyyss — 16im 56" G \pyss

16 . _ - =
-3 057’ G pes — 8075y3G s
T im;0,045yss — traces. (A5)
The quark mass corrections in this expression ~O(my) are

a new result; they have not been taken into account in [34]
and [35].
After some algebra we obtain

7 (s s 1 2(s
Powe = Vo = =30 - (A6)

where the parameter 5%‘8') is defined as
(Ols7°i9G,slM(p)) = pufi 0" (A7)

and
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K 21 2(s K 2 138 K
o= [ b+ gmi(1-7 )|

9 _Tlow o 1 18 ¥
o =3[+ i (12 am L),
M

(s)
K 7 2(s K 1 18 K f
Wy = 1 [25M( oy - E’"ﬁ (1 - 7C§A)4) —4m; f?}ﬂ ,

(A8)

where
I 4 .
(O[5[iD,,, igGelyes — 0 i0,5i9G eyes|M(p))
1 .
= fi ool (Pﬂpu —Zmﬁg,w) + O(twist5). (A9)

The expressions in (A8) differ from those in [34] and [35]
in terms ~m3, that arise from the quark mass corrections in

the divergence of the conformal operator (AS5) and, sur-

prisingly, also in terms Nm,zwcg&: The result for such terms

obtained in [34] (and used in [35]) is recovered if in our
expressions m2,c) — (3/2)m2,c).

In addition one defines the two-particle twist-four DAs
as corrections ~O(x?) in the light-cone expansions x> — 0

of the nonlocal matrix element

(015(22X)y,755(21%)| M (p))
. s 1 —iz" X Ky Z -x
= ip,Fy; [ due Zzﬂf”[fﬁﬁ/( ) 2 i ()
4L gl / e 0y ) () (A10)
2(Px) M 0 M

The DAs ¢f“2,(u), wf{j&(u) can be calculated in terms of the
three-particle DAs of twist four and the DAs of lower twist
defined in the main text, making use of the operator
identities (see e.g. [35])

(3 =xlrrss(—x)

= —i/_j dvvs(x)[x, vx|x*gG,, (vx)yys[vx, —x]s(—x),

(A1)
and
95 (), =xJryss(=x)}
=—i /_1 dvs(x)[x, vx]x*9G,, (vx)yys[vx, —x]s(—x)

+ 2m5(x)[x, —x]iyss(—x), (A12)
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where [x,y] is the straight-line-ordered Wilson line
connecting the points x,y and 0, is the total derivative
defined as

G {u(x)ld(-x)}

- %{a(x +y)x 4y, —x + y]ld(-x + y)} o

(A13)

Taking the matrix elements of these identities and putting
x> — 0 afterwards, one obtains the expressions for two-

particle DAs y/f&(u) and qﬁf& that can conveniently be
separated in “genuine” twist-four contributions and meson
mass corrections as

(s)twist

Wi () = vl () + mi™ ) (A14)
with
(s)twist 20 2(s) ~1/2 f<‘>
Wi () = ?51&/1‘ G (u—-1)+ 30ms%
Iu
1
X (2 — 10uin + 35u2ﬁ2>,
§)mass 17 105
pmass () =1 1% u—l—Tu i
5 (3
+cb, (5 — S4ui + 225u2a2> (A15)
and similarly
(s) g (s)twist mass
a () =@y (u) +m M¢4M (u), (Al6)
where
5 )twis! 200
PSS () = = o u 922 + 2150 ol {uin(2 + 13ui)
+2[u? (10 = 15u + 6u?) Inu + (u < it)]}
+ 20m f”{ 12 — 63uin + 14u*i?),
i
S )mass 88 39
P () = [15 + 5 ui+ 14 ]

24 54
ng)w”“[s ?uﬁ + 180u2ﬁ2}
28 24
(— < Com () > 3(10 — 15u + 6u?) Inu
< )] (A17)

These results supersede the corresponding expressions in
Refs. [35] and [80].
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2. Anomalous contributions

The general reason why the results in the previous
subsection are incomplete is that the operator identities
(AS), (Al1), (A12) are valid in this form only for bare
(unrenormalized) operators. The renormalization Z factor
for the light-ray operator on the left-hand side of, e.g.,
Eq. (A12) can be written as an integral operator acting on
the field coordinates; see [81]. The derivative 0, can be
brought inside the integral so that the algebra leading to the
expression on the right-hand side of this equation remains
unchanged. However, the result is not yet written in terms
of renormalized operators. Since the overall expression is
finite (as a derivative of a finite operator) it can further be
reexpanded in contributions of renormalized operators. In
this way the coefficient functions of the operators that are
already present will be modified by a, corrections and all
other operators with proper quantum numbers can appear,
with coefficient functions starting at order O(a;). Whereas
this complication is, generally speaking, only relevant if the
calculation of twist-four corrections is done to NLO
accuracy (in which case the a, corrections to the coefficient
functions of the OPE of the product of two electromagnetic
currents have to be taken into account as well), the
contribution of gluon operators related to the axial anomaly
deserves special attention because of its role in the pattern
of chiral symmetry breaking for pseudoscalar mesons.

To begin with, we recall the derivation of the celebrated
anomaly relation (33) for the axial current:

- —_ - <_ . = .
0,57"yss=2mSiyss+5[( D—imy)ys—ys( D+imy)]s.
(A18)

The EOM terms (Dirac operator applied to a quark field)
can be substituted inside the QCD path integral by a
functional derivative with respect to the corresponding
antiquark field,

(_D> +imy)s(y)eBSy = ———e'Sv,

50) (A19)

where S, is the fermion part of the action. Such contribu-
tions can usually be dispensed of by partial integration inside
the path integral, producing contact terms. Anomalous
contributions arise when the derivative §/55(y) acts on
the antiquark field in the same composite operator, in our
case the axial current, producing ill-defined contributions
~&6*(0) that have to be regularized.

A well-known method to avoid this problem is to use
Schwinger’s split-point regularization

5(0)7,755(0) = 5(x)[x. —x]y,rss(=x).  (A20)

where x* should be sent to zero at the end of the calculation.
In this case the EOM terms in the divergence can be
dropped, but an extra contribution appears due to the
Wilson line:
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0,3(x)7"yss(=x) = 2m5(x)iyss(—x)

- 2i§(x>xagGaﬂ(O)yﬂ}/SS(_x); (Azl)
cf. Eq. (A12). Using the standard expression for the short-
distance expansion of the quark propagator in a background
field [82]

i wc”nga -

S(—"E)g(l') = 167224 167222 Vs +. (A22)
and the symmetric limit x* — O such that
xpxa—>zgpgx2, (A23)

one arrives after a little algebra at the expression in (33).

The light-ray operators that enter the definitions of DAs
are defined as generating functions of renormalized local
operators so that the same problem with EOM contributions
occurs and can be treated in a similar manner. We start with
a regularized version of the light-ray operator by shifting it
slightly off the light cone

5(zan)[zom, zinly,yss(zin) = 5(x2)[xa, %1 Jy,7ss(x;)

(A24)
where
X| =zin —x, Xy = Zpn + X, (x-n)=0. (A25)
and
N = (1 =) = 2. (A26)
Then
9,4q(x2) 7" [x2, x1]ysq(x1) }
— i [ a6y (o1 + va)rrsal)
+2myq(x;)iysq(x;). (A27)

The light-cone expansion of the quark propagator reads
[81]

q(’?l)ﬁ(xg) = %[xl,xg 8?212/ du
X {igGPU% + da(AD)gGPU}(uxl + Uxs)
+... (A28)
where the terms shown by ellipses have at most a

logarithmic singularity In A%> = Inx?> and do not contribute
in the limit x — 0.
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The propagator (A28) is traced in (A27) with y*ys, so
that only the term in igf}payS is relevant. It has a 1/x?
singularity, hence we need to collect all contributions with
two powers of x in the numerator. They can come either
from factors of A, that give rise, in the symmetric limit
(A23), to the term

_/ dv/ dl/tGA Zzln)é?w(zbllZn)

or from the expansion of the gluon fields in powers of the
deviation from the light-cone direction, producing contri-
butions of the type

1 1 -
g—;zlz/ dv/ du(2v = 1)DG o, (z5,n) Gy, (21).

Using the EOM D"Gaﬂ gz thyﬂq these contribu-
tions can be rewritten in terms of the same quark-antiquark-
gluon operators that enter Eqs. (Al1) and (A12), i.e. they
are of the same order as the NLO O(a) corrections to the
coefficient functions of twist-four operators. Hence they
can (should) be neglected if the calculation is done to LO
accuracy. We obtain

0,{q(zin)r*[zin, zon]ysq(zon) }
1
= —izle dvg(zin)n®gGe,(z5,n)r"ysq(zon)

+2m,q(zyn)iysq(zon)

/dv/ duGf,(25,n)GY* (ziyn).

Taking the matrix element of this relation one obtains an

equation for the DA wf&&,(u) which can be solved as in [33]

and [34]

(A29)

N N N N N N d
Fitwinn(w) =205 (u) - Zm%wfﬁw>¢§u><u> I

/ e / a2 2(@) =2V (@)

1 - (Zl —
+ 2ay Sy (u).

(A30)
where the last term 51//5‘;)4(@ is new—it stems from the
anomalous contribution in Eq. (A30); a, is defined
in Eq. (32).

This extra term can be expressed in terms of the twist-
four gluon DA

0152 GlemGlam M (p)) = ay [ due ),
(A31)

normalized as [ dugbf‘ﬁ)l(u) = 1. After some simple algebra
one obtains the following equation for the moments of

Sy (1)
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1
| autzu =y

0
1 (=D oy P (1)
= Zm/o dull — (2u—1) ]4u—ﬁ’
(A32)

which can be solved for any given twist-four gluon DA.
A remarkable feature of this equation is that the resulting

distribution 51//‘(1‘;)4(@ depends on the shape of 4)4(1?121(“) only

very weakly. Using the asymptotic DA gz’)ﬁz,(u) =1 one
obtains

Sy (u) = —2[ulnu + iln i), (A33)

whereas for ¢£ﬁ)4(u) = 6u(l —u) one gets 5y/f‘§‘)4(u) =

6u(1 — u) as well. The numerical difference between the
two expressions is very small; see Fig. 6. The effect of the
anomalous contribution is therefore mainly to redefine
the normalization of the meson mass correction propor-
tional to the twist-two DA, the second term in (A30), to

—om2, £ (1) + 2ay Sy (u)

= 20, ) — ay)pS) (u) = 203 () (A34)

so that it matches the normalization of the pseudoscalar
twist-three DA qbg;)f (#) (29). In this way the condition

[ duy')(u) = 0 is restored.

The complete calculation of such contributions to the
twist-four DA is complicated as it requires reevaluation of
all operator identities. Hence relations between the param-
eters, e.g. Eq. (A8) will be modified. This is a large
calculation that is beyond the scope of this work.
Instead, we will assume that the same substitution,

2.0 F—mm—————

Fsuly (u)

FIG. 6 (color online). The anomalous contribution to the twist-
four DA y/g‘j& (u) (A33) compared to the asymptotic leading-twist
DA 6u(1 — u) (dashed line).
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mifa = by = mify) —ay  (A35)
can be applied for all occurrences of pseudoscalar meson
masses m3, in the flavor-octet higher-twist corrections. The
ansatz (A35) is attractive as it guarantees that the higher-
twist effects and therefore also the transition FFs at low
momentum transfer obey the same FKS mixing scheme as
is assumed for the leading twist. As we demonstrate in the
text, this assumption does not contradict the existing data.

APPENDIX B: SCALE DEPENDENCE O THE
LEADING-TWIST DAs TO NLO ACCURACY

1. Flavor-octet DAs

The scale dependence of the Gegenbauer coefficients in
the expansion of the flavor-octet contributions to the 7, #’
DAs is the same as for the pion DA. One obtains [83-89]

8 8
) = e (o) ENO (1, o)

o (1) >

2r =

+ ) (o) ELO (1, pro)d¥ (s, po). (B

The renormalization group (RG) factor EN-O

expression is given by

(14, o) in this

0
MO ) — as(ﬂ)yn /#o
(4, Ho) [as ™
a;(u) = as(uo) (1) _ P10
X{1+ 270, <7n zﬁoyn >}

(B2)

The corresponding LO factor ELO(u, ug) is obtained by
keeping the first term only in the braces.

Here f3y(p,) and %(lo) (yfql)) are the LO (NLO) coefficients
of the QCD g function and the anomalous dimensions,
respectively:

2
RIS YR CA N

[uzi pla) 2L 1yn<as>] 9 —0,

ou? oa, 2
s . ayfa)?
=y =47 = B4
o) = 3o 40 (52) (B4)
The first two coefficients of the beta function are
2 38

whereas the LO flavor-nonsinglet anomalous dimensions
are given by
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W = cp |4 Z T S
FlAw(n+2)+4yg CENEEDI

(B6)

where y(x) = dInT'(x)/dx.

The NLO anomalous dimensions can most easily be
obtained using the FeynCalc Mathematica package [90].
For convenience we present explicit expressions fo

n = 2,4 that are used in our calculations (}/E)1> =0):

a 17225 415
277486 162"
1) 331423 7783

_o014e B7

T T 76750 20257 (B7)

The off-diagonal mixing coefficients d% in Eq. (B1) are
given by the following expression:

dy (u, o) = 1o (p, o) M,

( ) V,(,O)fri) —Po
-1 a,(p Bo
PRI B A |
¢ 0 yS,()) - y](co) - bo A (ﬂo)
(B8)
The matrix M¥ is defined as
k+1)(k+2)(2n+3) ©0) ()
k= L
(n+1)(n+2) i =]
4CAL =1 = By AL —y(n+2)+y(1)
+2Cr
(n—k)(n+k+3) (k+1)(k+2)
(B9)
where
n+k+4 n—k
Ak =y ———— ) —
() - (")
+2y(n—k)—w(n+2)—w(l). (B1O)

For convenience, we give the numerical values of the
nonvanishing coefficients MX for n < 4:

o 455 35
27 162 81"
, 143 286
47405 2025
6688 836

2

Bl11
471215 2025 (B11)

2. Flavor-singlet DAs

The renormalization-group equations for the flavor-
singlet quark and gluon DAs can be inferred from [91].

PHYSICAL REVIEW D 90, 074019 (2014)

They are more compact in matrix notation. To this end we
introduce the vector of Gegenbauer coefficients

0
=1 7. (B12)

cglg)

Then
En (ﬂ) = Tﬁl EIV:ILO (/"v”O)Tnzn (ﬂO)
a,(u) < —1yk LO 2
+ > T, Dy (. o) E5° (1 pto) T k(o)
T 2oz

(B13)
where £)-010) (u, o) and DX(u, o) are 2 x 2 matrices

that we will specify in what follows and

. (3n+1)(n+2) Sn(n+1)(n+2)(n+3)
T":dmg< 22n+3) 24(2n + 3) )

(B14)

is the transformation matrix from the local operator basis of
Ref. [91] to the basis of Gegenbauer coefficients defined in

Egs. (16) and (20).
qgﬂl’))
!19]/51!)

Let
¥ i) _ (qq%(ll)
gq},gl)

be the matrix of anomalous dimensions where the super-
script refers to the order of perturbation theory. The
leading-order expressions are (n > 2)

(B15)

qq, (0) 2
n = Cp |4 +2)+4dyp—-3————|,
4 F|: y/(n ) TE (n+1)(n+2)}

a9, (0) _ _ 12
T i D+ 2)
3
gq},gl0) - —Cp n(n+3)

3n+ D(n+2)

g9, (0) 8
n =N_.|4 +2))+4dyp————| — Po.
I [ W(” ) YE (n—|— 1)(,1_'_2)} Po

(B16)

The eigenvalues of the LO anomalous dimension matrix

7,(10) read

1
yE = 2[ ]/n + }, i\/qq .qg Jr41111() 7,’(1)].

(B17)
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Then

eww#w—aﬂ%wq%+P4%Wq% (B18)

A (/’lO) Ay (/"0 )

where P are projectors on the eigenstates of the evolution

equation
( >
0 0 1)

1 0
P = ,
0 <0 0)

1
Pt =+ YWy, nx2
Yn = ¥n ( )
P +P, =1, (PF)? =Py, PP, =0. (B19)
Further
ENO(u. o) = {@bPz &) Rﬁﬁ(u,szran]
a,b=+ n
7
% |:as (ﬂ) :|ﬂ0 (BZO)
ag (,M())
and
Dh(u o) = > R (. o) PaMEPL,  (B21)
a,b=+
where
Bi (0
r, =7 - 2L B22
% (B22)

PHYSICAL REVIEW D 90, 074019 (2014)

and

5 *VZ ~ho

-1 - |:as(ﬂ):| o

a—yh—po o (o)

Rt (ko) = ; (B23)

The NLO anomalous dimensions matrices for n = 2,4 are
given by [92]

17225 _ TS, _ 4. _a3
7(1) B ( 6. — sty —4ny 216 "'
2 7295 _ 25 447 _ 437 ’
—%16 ~2a3F g sty Ay
331423 _ 37963 ,, _ 22127
m [ Te750 ~ 101257 dny 13500 'L/
Ty = _ 288421 _ 1316 31744 _ 93788, 4p
91125 ~ 6075 ""f 375 10125 "*f f

(B24)

where the terms —4n, on the diagonal are due to the

factorization of the scale-dependent coupling fl(é) in the
definition of the DAs; cf. Eq. (15). The matrices MY, k <
n < 4 that describe mixing between different orders in the
conformal (Gegenbauer) expansion are given by

65 4 2
MO B ?—§l’lf 3211,0 —677.' Vlf
2\ S0, 1080 4 12022 =0y, )’
2 f 3 f
1

7 27
B3_ 14, 226 . _ 62
MO — 9~y 5 np— 61Ny
o\l 399, 187350, )
135~ 135S 5 15°f

4214 196 539 (B25)

2128 _ 259, 49,
M2 — 243 7 405" f 30"
N 4214 _ 196, 53998, |
1215 12157 15 T 405 f
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