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We extract the Glauber divergences from the spectator amplitudes for two-body hadronic decays
B → M1M2 in the kT factorization theorem, where M2 denotes the meson emitted at the weak vertex.
Employing the eikonal approximation, the divergences are factorized into the corresponding Glauber phase
factors associated with the M1 and M2 mesons. It is observed that the latter factor enhances the spectator
contribution to the color-suppressed tree amplitude by modifying the interference pattern between the two
involved leading-order diagrams. The first factor rotates the enhanced spectator contribution by a phase,
and changes its interference with other tree diagrams. The above Glauber effects are compared with the
mechanism in elastic rescattering among variousM1M2 final states, which has been widely investigated in
the literature. We postulate that only the Glauber effect associated with a pion is significant, due to its
simultaneous roles as both a qq̄ bound state and a pseudo-Nambu-Goldstone boson. Treating the Glauber
phases as additional inputs in the perturbative QCD (pQCD) approach, we find a good fit to all the B → ππ,
πρ, πω, and πK data, and resolve the long-standing ππ and πK puzzles. The nontrivial success of this
modified pQCD formalism is elaborated.
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I. INTRODUCTION

The knownB → ππ andB → πK puzzles have stimulated
a lot of discussions in the literature: the measuredB0 → π0π0

branching ratio [1] is several times larger than the naive
expectation, and the measured direct CP asymmetry in the
B� → π0K� decays dramatically differs from the B0 →
π∓K� one. It has been pointed out that these puzzles
are sensitive to the least-understood color-suppressed tree
amplitudes C [2–4]. Other similar discrepancies were also
observed: the B0 → π0ρ0 branching ratios from the pertur-
bative QCD (pQCD) and QCD factorization (QCDF)
approaches, being sensitive to C, are lower than the data
[5–7]. However, the estimate of C from pQCD is well
consistent with the measured B0 → ρ0ρ0 branching ratio [8].
Proposals resorting to new physics [9–21] mainly resolved
the πK puzzle without addressing the peculiar feature ofC in
the π0π0, π0ρ0, and ρ0ρ0 modes, while those resorting to
QCD effects are usually strongly constrained by the ρρ data
[22]. The recent resolution of the B → πK puzzle by means
of the so-called Pauli blocking mechanism seems to lack
solid theoretical support [23]. This exemplifies the difficulty
of this subject.
Motivated by the above puzzles, we have carefully

investigated the subleading contributions to the amplitudes
C and their impact on the B → ππ, πK decays in the

pQCD approach based on the kT factorization theorem
[24,25]. For example, the next-to-leading-order (NLO)
contributions from the vertex corrections, the quark loops,
and the magnetic penguin have been calculated [26,27].
Nevertheless, once a mechanism identified for C respects
the conventional factorization theorem, it is unlikely to be a
resolution due to the B → ρρ constraint mentioned above
[8]. This is the reason why the above NLO corrections
could not resolve the puzzles completely, though the
consistency between the pQCD predictions and the data
was improved. For a similar reason, higher-order correc-
tions evaluated in QCDF [28]—which obey the collinear
factorization—cannot resolve the B → ππ puzzle either. In
a recent work [29] we have analyzed high-order corrections
to the spectator diagrams in the kT factorization theorem,
and found a new type of infrared divergence, which are
called Glauber gluons [30]. The all-order summation of the
Glauber gluons leads to a phase factor, which modifies the
interference between the spectator diagrams for C. We
postulated that only the Glauber factors associated with a
pion give significant effects, due to its simultaneous roles as
both a qq̄ bound state and a pseudo-Nambu-Goldstone
(NG) boson [31]. It was then demonstrated that the Glauber
effect, enhancing the magnitude of C, partially resolved the
B → ππ and B → πK puzzles. Our prediction for the B0 →
π0π0 branching ratio around 1.0 × 10−6 [29] turns out to be
consistent with the recent Belle data ð0.90� 0.12�
0.10Þ × 10−6 [32].

*hnli@phys.sinica.edu.tw
†Satoshi.Mishima@roma1.infn.it

PHYSICAL REVIEW D 90, 074018 (2014)

1550-7998=2014=90(7)=074018(19) 074018-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.90.074018
http://dx.doi.org/10.1103/PhysRevD.90.074018
http://dx.doi.org/10.1103/PhysRevD.90.074018
http://dx.doi.org/10.1103/PhysRevD.90.074018


The above progress implies that the Glauber gluons in
the kT factorization theorem deserve a thorough study.
In this paper we shall examine whether the Glauber
divergences in the spectator diagrams for the B →
M1M2 decay, where M2 denotes the meson emitted at
the weak vertex, have been extracted completely, and
whether the same Glauber effect improves the consistency
of the pQCD predictions with other data involving the pion,
such as the B → πρ; πω data. It will be shown that there
exist Glauber divergences associated with the M1 meson,
in addition to those associated with theM2 meson [29]. The
all-order organization of the Glauber divergences follows
the standard procedures, relying on the eikonal approxi-
mation for soft gluons. The resultant Glauber factor
expð−iSe1Þ from M1 is the same for the two leading-order
(LO) spectator diagrams. The Glauber factor from M2

carries opposite phases, namely, expðiSe2Þ for one diagram,
and expð−iSe2Þ for another. Therefore, they have different
impacts on the amplitude C: the latter enhances the
spectator contribution to C by modifying the interference
pattern between the two LO diagrams (as mentioned
before), whereas the former rotates the enhanced spectator
contribution by a phase, and changes its interference with
other tree diagrams. The correspondence between the
Glauber factors and the mechanism in elastic rescattering
among various M1M2 final states will be made explicit,
including the singlet exchange and the charge exchange,
which have been widely explored in the literature [33,34].
The Glauber factors expð−iSe1Þ (as M1 ¼ π), and

expð�iSe2Þ (as M2 ¼ π) are introduced into the pQCD
factorization formulas for the spectator diagrams in the
B → ππ, πρ, πω, and πK modes (a total of 13 modes), and
the phases Se1 and Se2 are treated as additional inputs. It
turns out that the equal value Se1 ¼ Se2 ≈ −π=2 leads to a
good fit to all the B → πM data. It will be observed that the
Glauber effects give NLO pQCD predictions for the
B0 → πþπ−, Bþ → πþπ0, and B0 → π0π0 branching ratios
that agree well with the data. In particular, the rotation of
the spectator amplitude by expð−iSe1Þ is crucial for
enhancing the ratio of the Bþ → πþπ0 branching ratio
over the B0 → πþπ− one; this ratio depends on both the
color-allowed tree amplitude T and the color-suppressed
tree amplitude C, so the relative phase between them
matters. It is a nontrivial success that all the B → ππ,
πρ, and πK puzzles mentioned before are resolved at the
same time by introducing two Glauber phases.
In Sec. II we construct the standard meson wave

functions for the B → M1M2 decays in the kT factorization
theorem, and analyze the residual infrared divergences
caused by the Glauber gluons in the NLO spectator
diagrams. The Glauber gluons associated with the M1

andM2 mesons are then factorized into the Glauber factors
expð−iSe1Þ and expð�iSe2Þ, respectively. In Sec. III we
investigate the numerical impacts of the Glauber factors on
the B → ππ, πρ, πω, and πK decays by presenting NLO

pQCD predictions as contour plots in the Se1-Se2 plane.
The agreement between the predictions and the data for the
branching ratios and direct CP asymmetries as Se1 ¼ Se2 ≈
−π=2 is highlighted. Section IV contains the conclusion.
The existence of the Glauber divergences is illustrated in
the Appendix by means of the Feynman parametrization of
loop integrands.

II. FACTORIZATION OF GLAUBER GLUONS

It was pointed out in Ref. [30] that the kT factorization
theorem holds for simple processes like deeply inelastic
scattering, but residual infrared divergences from the
Glauber region may appear in complicated QCD processes
like high-pT hadron hadroproduction. To factorize the
collinear gluons associated with, say, one of the initial-
state hadrons, one eikonalizes the particle lines to which the
collinear gluons attach. The eikonal lines from other
hadrons should cancel in order to maintain the universality
of the parton distribution function under consideration.
However, the required cancellation is not exact in the kT
factorization, leading to imaginary infrared logarithms,
though it is in the collinear factorization. It has been
demonstrated that the residual divergences can be factor-
ized into a Glauber factor for low-pT hadron hadropro-
duction: the contour of a collinear gluon momentum can be
deformed away from the Glauber region at low pT, such
that the usual eikonalization still holds [35]. The above
investigation was then extended to two-body hadronic
B-meson decays B → M1M2, and the residual infrared
divergences in a spectator amplitude associated with theM2

meson were found and factorized into the same Glauber
factor [29]. Note that the kT factorization for a factorizable
emission amplitude, i.e., a B-meson transition form factor,
was proven in Ref. [36].
In this section we shall perform a thorough study of

the infrared divergences in the spectator diagrams at the
one-loop level of the kT factorization, following reason-
ing different from that in Ref. [29]. Both the infrared
divergences—which are absorbed into the standard meson
wave functions—and the residual infrared divergences
from the Glauber gluons associated with the mesons M1

and M2 will be extracted. Since we have postulated that
only the Glauber effect from the pion is significant, it is not
necessary to discuss the Glauber divergences associated
with the B meson. In principle, the Glauber gluons also
exist in spectator penguin diagrams and in nonfactorizable
annihilation diagrams, in which the hard gluon is emitted
by the b quark or by the spectator quark in the Bmeson. As
explained in Ref. [29], these diagrams are larger at LO, so
they are more stable against subleading corrections. The
Glauber effect is expected to be more significant in the
spectator tree amplitudes, because of their tininess at LO.
Consider the BðPBÞ → M1ðP1ÞM2ðP2Þ decay, where

PB, P1, and P2 represent the momenta of the B, M1, and
M2 mesons, respectively. For convenience, we choose
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PB ¼ ðPþ
B ; P

−
B; 0TÞ with Pþ

B ¼ P−
B ¼ mB=

ffiffiffi
2

p
, with mB

being the B-meson mass, and P1 (P2) is in the plus (minus)
direction. The parton four-momenta k, k1, and k2 are
labeled in Fig. 1(a). After performing loop integrations,
we keep k− ¼ xP−

B, kþ1 ¼ x1P
þ
1 , k−2 ¼ x2P−

2 , and the
transverse components kT that appear in the hard kernel
for the b-quark decay. The order of magnitude x2 ∼ 0.5,
x1 ∼ 0.3, x ∼ 0.1, mB ∼ 5 GeV, and kT ≲ 1 GeV implies
the hierarchy among the scales involved in exclusive
B-meson decays in the small-x region [37],

m2
B; x2m

2
B ≫ x1m2

B ≫ xm2
B ≫ xx1m2

B; k
2
T; ð1Þ

which will serve as a basis for higher-order analysis below.
We first identify the Glauber gluons associated with the

LO spectator tree diagram in Fig. 1(a), originating from the
operator O2 [38]. We start with the set of NLO diagrams
with a radiative gluon of momentum l being emitted by the
valence quark ofM2, as displayed in Fig. 2. Due to the soft
cancellation between the gluons radiated by the valence
quark and by the valence antiquark of M2 [39], only the
collinear region where l is collimated to P2 is relevant
here, and the kT dependence of parton propagators in the
B and M1 mesons is negligible. The propagators of these
partons attached to the collinear gluons can then be
approximated by the eikonal propagators 1=ðl− � iϵÞ.

For a loop diagram to generate an imaginary Glauber
logarithm, a necessary (but not sufficient) condition is that
the interval of l− covers the origin l− ¼ 0. The correspond-
ing integral then contains an imaginary piece,

Im
Z

b

−a
dl−

1

l− þ iϵ
¼ −π

Z
b

−a
dl−δðl−Þ ¼ −π; ð2Þ

under the principal-value prescription.
It has been shown that Figs. 2(a)–2(c) do not contain

Glauber divergences, and they contribute to the M2 meson
wave function [29]. We take the vertex correction in
Fig. 2(a) as an example. The integrand is proportional to

1

2ðP−
2 − k−2 þ l−Þlþ − jk2T − lT j2 þ iϵ

1

2l−lþ − l2T þ iϵ

×
1

2ðP−
B − k−Þlþ þ 2ðPþ

B − kþ þ lþÞl− þ iϵ
; ð3Þ

where l denotes the loop momentum, and the transverse-
momentum-dependent terms of the virtual b-quark propa-
gator have been neglected in the heavy-quark limit. The
contour integration over lþ indicates that the loop integral
does not vanish only for l− < 0: in this range there are poles
located in the different half complex planes of lþ. Picking
up the pole lþ ≈ 0 − iϵ [see the power counting in Eq. (1)]
associated with the valence-quark propagator in M2,
namely, the first factor of Eq. (3), the b-quark propagator
reduces to the eikonal propagator proportional to
1=ðl− þ iϵÞ. In the range l− < 0 this propagator does not
generate a Glauber divergence according to Eq. (2).
Because it is factorized in color flow by itself with the
color factor CF, Fig. 2(a) leads to a Wilson line running
from minus infinity to the origin, i.e, the weak vertex,
which appears in the definition of the M2 meson wave
function. Similarly, the vertex correction in Fig. 2(b) is free
of a Glauber divergence. Figure 2(c), with the collinear

FIG. 1 (color online). LO diagrams for a spectator amplitude.

FIG. 2 (color online). NLO diagrams for Fig. 1(a) that are relevant to the factorization of theM2 meson wave function. Figures 2(d)–2(f)
contribute to the Glauber divergences.
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gluon attaching to the virtual quark line, does not produce
an infrared Glauber divergence: the virtual quark line
remains highly off shell by Oðx1m2

BÞ before and after
the attachment of the collinear gluon according to Eq. (1),
so no Glauber divergence is generated in this diagram.
As was observed in Ref. [29], Figs. 2(d)–2(f) produce

residual Glauber divergences under the hierarchical relation
in Eq. (1), which demand the introduction of an additional
nonperturbative input. The integrand for Fig. 2(d) contains
the five denominators

½ðP2 − k2 þ lÞ2 þ iϵ�½ðkþ lÞ2 þ iϵ�½ðk − k1 þ lÞ2 þ iϵ�
× ðl2 þ iϵÞ½ðk2 − kþ k1 − lÞ2 þ iϵ�: ð4Þ

Nonvanishing contributions come from the ranges
0 < l− < k−2 , −k−< l− < 0, and −ðP−

2 − k−2 Þ < l− < −k−,
where the poles of lþ are given by

lþ ≈
jlT − k2T j2

2ðl− þ P−
2 − k−2 Þ

− iϵð−iϵ;−iϵÞ; ð5Þ

lþ ¼ −kþ þ jlT þ kT j2
2ðl− þ k−Þ − iϵð−iϵ;þiϵÞ; ð6Þ

lþ ¼ kþ1 þ jlT − k1T þ kT j2
2ðl− þ k−Þ − iϵð−iϵ;þiϵÞ; ð7Þ

lþ ¼ l2T
2l−

− iϵðþiϵ;þiϵÞ; ð8Þ

lþ ¼ kþ1 þ jlT − k2T − k1T þ kT j2
2ðl− − k−2 Þ

þ iϵðþiϵ;þiϵÞ; ð9Þ

respectively. We pick up the first pole lþ ∼OðΛ2
QCD=mBÞ−

iϵ, which corresponds to the collinear gluon associated
with the valence quark of M2. It is seen that the allowed
range for this pole, −ðP−

2 − k−2 Þ < l− < k−2 , covers the
origin l− ¼ 0, leading to a Glauber divergence from
the eikonalized spectator propagator 1=ðkþ lÞ2 and the
on-shell radiative gluon. The other poles, such as those in
Eqs. (6) and (7) in the range −k− < l− < 0, should be
included. However, it is easy to confirm that they are
irrelevant to the analysis of the Glauber divergences. An
alternative demonstration of the existence of the Glauber
divergence in Fig. 2(d) by means of the Feynman
parametrization of the corresponding loop integrand is
presented in the Appendix.
For Fig. 2(e), the Ward identity is applied to the virtual-

gluon propagators,

1

½ðk − k1Þ2 þ iϵ�½ðk − k1 þ lÞ2 þ iϵ�

¼
�

1

ðk − k1Þ2 þ iϵ
−

1

ðk − k1 þ lÞ2 þ iϵ

�

×
1

l2 þ 2ðk − k1Þ · lþ iϵ
: ð10Þ

Here we have chosen the sign of the iϵ term in the factor
outside the square brackets, such that this factor reduces to
the eikonal propagator 1=ð−l− þ iϵÞ, after picking up the
pole lþ ≈ 0 − iϵ. With this choice the first term in the above
splitting can be combined with Figs. 2(b) and 2(c) to
contribute to theM2 meson wave function with the piece of
the Wilson lines from a coordinate z2 to plus infinity [40],
where z2 has been labeled in Fig. 1. As explicitly shown in
the Appendix, the first term does not involve a Glauber
divergence, so it does not break the universality of the M2

meson wave function. The second piece in Eq. (10) with the
color factor Nc=2, with Nc being the number of colors,
contains the original Glauber divergence of Fig. 2(e). The
eikonal approximation for the spectator propagator
1=½ðk1 − lÞ2 þ iϵ� in Fig. 2(f) also gives 1=ð−l− þ iϵÞ
but with the color factor −1=ð2NcÞ [39]. The sum of the
second piece in Eq. (10) and Fig. 2(f) then leads to the
Glauber divergence with the color factor Nc=2 − 1=
ð2NcÞ ¼ CF.
We examine the effects from Fig. 3, which is similar to

Fig. 2 but with the collinear gluon being emitted by the
valence antiquark of M2. Figures 3(a)–3(c) do not generate
Glauber divergences, and they also contribute to the M2

meson wave function. For example, the attachment to the b
quark in Fig. 3(a) gives rise to the eikonal propagator
1=ðl− þ iϵÞ as in Eq. (3), namely, the first piece of the
Wilson lines, which runs from minus infinity to the origin.
Figure 3(d) contains the four denominators

½ðk2 þ lÞ2 þ iϵ�½ðkþ lÞ2 þ iϵ�½ðk − k1 þ lÞ2 þ iϵ�ðl2 þ iϵÞ;
ð11Þ

whose corresponding lþ poles are the same as inEqs. (5)–(8).
Therefore, the allowed range of l− reduces to−ðP−

2 − k−2 Þ <
l− < 0without the pole in Eq. (9), and this diagram does not
contain a Glauber divergence. This observation is also
confirmed in the Appendix by means of the Feynman
parametrization of the corresponding loop integrand.
Figures 2(d) and 3(d) have the same amplitudes in the soft
region with l ∼OðΛQCDÞ except for a sign difference, which
is attributed to the emissions of the collinear gluon by the
valence quark and valence antiquark inM2. Because of this
soft cancellation, the contour of l− in Fig. 2(d) can be
deformed away from the OðΛQCDÞ region, and the eikonal-
ization of the spectator 1=½ðkþ lÞ2 þ iϵ� into 1=ðl− þ iϵÞ is
justified [29]; that is, Fig. 3(d) provides soft subtraction for
Fig. 2(d), but it does not remove its Glauber divergence. The
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soft cancellation also occurs between Figs. 2(e) and 3(e),
and between Figs. 2(f) and 3(f).
The NLO residual infrared divergences in Figs. 2(d)–2(f)

are then extracted from the Glauber region,

gCF

Z
d4l
ð2πÞ4 tr

�
…

−iðk2 − kþ k1 − lÞ
ðk2 − kþ k1 − lÞ2 þ iϵ

× ð−igγβÞγ5P2ð−igγ−Þ
iðP2 − k2 þ lÞ

ðP2 − k2 þ lÞ2 þ iϵ

�

×
−i

ðk − k1 þ lÞ2 þ iϵ
−i

l2 þ iϵ
2πiδðl−Þ; ð12Þ

where the … denotes the rest of the integrand, and γ5P2

comes from the twist-2 structure of the M2 meson wave
function. The lþ poles in Eq. (12) are given by Eqs. (5), (7),
and (9) with l− ¼ 0 from the valence-quark propagator, the
virtual-gluon propagator, and the virtual-quark propagator,
respectively. Only the pole in Eq. (5) is of OðΛ2

QCD=mBÞ.
As long as kþ1 is of or greater thanOðΛQCDÞ, we can deform
the contour of lþ, such that lþ remains OðΛQCDÞ, and the
hierarchy

ðP−
2 − k−2 Þlþ ∼OðmBΛQCDÞ ≫ jlT − k2T j2 ∼OðΛ2

QCDÞ
ð13Þ

holds. The valence quark carrying the momentum P2 −
k2 þ l in Eq. (12) can then be eikonalized into 1=ðlþ þ iϵÞ.
Equation (12) is factorized into

g2CF

Z
d4l
ð2πÞ4 tr

�
…

−iðk2 − kþ k1 − l Þ
ðk2 − kþ k1 − lÞ2 þ iϵ

ð−igγβÞγ5P2

�

×
−i

ðk − k1 þ lÞ2 þ iϵ
1

lþ þ iϵ
−i

l2 þ iϵ
2πiδðl−Þ: ð14Þ

The above factorization of the Glauber gluon follows
exactly the reasoning applied to the low-pT hadron

hadroproduction in Ref. [35]. We close the contour in
the lower half plane of lþ, and pick up only the pole
lþ ≈ 0 − iϵ from the eikonal propagator 1=ðlþ þ iϵÞ, which
corresponds to an on-shell valence-quark propagator.
Another pole corresponding to the on-shell right gluon
contributes to the Glauber divergence associated with
Fig. 1(b) [29]. We then derive explicitly the imaginary
logarithm,

i
αs
π
CF

Z
d2lT
l2T

Mð0Þ
a ðlTÞ; ð15Þ

where Mð0Þ
a denotes the LO spectator amplitude from

Fig. 1(a). The gluon propagator proportional to 1=l2T
indicates that the infrared divergence we have identified
arises from the Glauber region.
Below we investigate the Glauber divergences appearing

in the NLO corrections to Fig. 1(b), which are associated
with the M2 meson. The relevant diagrams contain the
attachments of the collinear gluons emitted by the valence
antiquark ofM2 as depicted in Fig. 4. For the attachment to
the virtual gluon in Fig. 4(b), we adopt the splitting

1

½ðk − k1Þ2 þ iϵ�½ðk − k1 þ lÞ2 þ iϵ�

¼
�

1

ðk − k1Þ2 þ iϵ
−

1

ðk − k1 þ lÞ2 þ iϵ

�

×
1

l2 þ 2ðk − k1Þ · l − iϵ
; ð16Þ

where the second term on the right-hand side contains the
Glauber divergence in the original NLO diagram. The first
term then contributes to the definition of the M2 meson
wave function. A similar analysis implies that the diagrams
in Fig. 4 contain the Glauber divergences

FIG. 3 (color online). More NLO diagrams for Fig. 1(a).
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−i
αs
π
CF

Z
d2lT
l2T

Mð0Þ
b ðlTÞ; ð17Þ

where Mð0Þ
b denotes the LO spectator amplitude from

Fig. 1(b). The additional minus sign compared to Eq. (15)
is attributed to the collinear gluon emission by the valence
antiquark of M2.
It has been shown that the residual infrared divergences

appear between the M2 meson and the B → M1 transition
[29]. It is natural to ask whether there exist more residual
infrared divergences in the spectator amplitude of the B →
M1M2 decay. We shall verify that this is the case: additional
Glauber divergences associated with the M1 meson are
induced by the inclusion of the Glauber divergences asso-
ciated with theM2 meson. Consider all possible attachments
of the collinear gluons emitted by the valence quark ofM1 to
particle lines in Fig. 1(a), among which the diagram in
Fig. 5(a) contains a Glauber divergence as implied by the
pole analysis of the following five denominators:

½ðP1 − k1 þ lÞ2 þ iϵ�½ðkþ lÞ2 þ iϵ�½ðk − k1 þ lÞ2 þ iϵ�
× ðl2 þ iϵÞ½ðk2 − kþ k1 − lÞ2 þ iϵ�: ð18Þ

Nonvanishing contributions come from the ranges
0< lþ <kþ1 , −kþ < lþ< 0, and −ðPþ

1 − kþ1 Þ < lþ < −kþ,
where the poles of l− are given by

l− ≈
jlT − k1T j2

2ðlþ þ Pþ
1 − kþ1 Þ

− iϵð−iϵ;−iϵÞ; ð19Þ

l− ¼ −k− þ jlT þ kT j2
2ðlþ þ kþÞ − iϵð−iϵ;þiϵÞ; ð20Þ

l− ¼ l2T
2lþ

− iϵðþiϵ;þiϵÞ; ð21Þ

l− ¼ −k− þ jlT − k1T þ kT j2
2ðlþ − kþ1 Þ

þ iϵðþiϵ;þiϵÞ; ð22Þ

l− ¼ k−2 þ jlT − k2T − k1T þ kT j2
2ðlþ − kþ1 Þ

þ iϵðþiϵ;þiϵÞ; ð23Þ

respectively. We pick up the first pole l− ∼OðΛ2
QCD =

mBÞ − iϵ, which corresponds to the collinear gluon

associated with the valence quark of M1. It is seen that
the allowed range for this pole, −ðPþ

1 − kþ1 Þ < lþ < kþ1 ,
covers the origin lþ ¼ 0, leading to a Glauber divergence
from the eikonalized spectator propagator 1=ðkþ lÞ2 and the
on-shell radiative gluon.
The residual Glauber divergence in Fig. 5(a) yields the

NLO spectator amplitude

g
−1
2Nc

Z
d4l
ð2πÞ4 tr

�
…ð−igγþÞ iðP1 − k1 þ l Þ

ðP1 − k1 þ lÞ2 þ iϵ
γμ

× ð1 − γ5Þ
−iðk2 − kþ k1 − lÞ

ðk2 − kþ k1 − lÞ2 þ iϵ
ð−igγβÞγ5P2

�

×
−i

ðk − k1 þ lÞ2 þ iϵ
−i

l2 þ iϵ
πiδðlþÞ: ð24Þ

The l− poles in the above expression are given by Eqs. (19)
and (23) with lþ ¼ 0 from the valence-quark propagator in
M1 and the virtual-quark propagator, respectively. The pole
in Eq. (19) is of OðΛ2

QCD=mBÞ, and the pole in Eq. (23) is
of OðmBÞ, so we can deform the contour of l− such that
l− remains at least OðΛQCDÞ, and the hierarchy

FIG. 4 (color online). NLO diagrams for Fig. 1(b) that contribute to the Glauber divergences associated with the M2 meson.

FIG. 5 (color online). (a)–(c) Higher-order corrections to Fig. 1
that contain the Glauber divergences associated with the M1

meson. (d) Higher-order correction to Fig. 1 that does not contain
the Glauber divergence associated with the M1 meson.
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ðPþ
1 − kþ1 Þl− ∼OðmBΛQCDÞ ≫ jlT − k1T j2 ∼OðΛ2

QCDÞ
ð25Þ

holds. The valence quark carrying the momentum P1 −
k1 þ l is thus eikonalized into 1=ðl− þ iϵÞ. Equation (24) is
factorized into

g2
−1
2Nc

Z
d4l
ð2πÞ4 tr

�
…γμð1 − γ5Þ

−iðk2 − kþ k1 − lÞ
ðk2 − kþ k1 − lÞ2 þ iϵ

× ð−igγβÞγ5P2

�
−i

ðk − k1 þ lÞ2 þ iϵ

×
1

l− þ iϵ
−i

l2 þ iϵ
πiδðlþÞ;

≈ −i
1

2Nc

αs
2π

Z
d2lT
l2T

Mð0Þ
a ðlTÞ; ð26Þ

where we have closed the contour in the lower half plane of
l− over the pole l− ≈ 0 − iϵ from the eikonal propaga-
tor 1=ðl− þ iϵÞ.
Figure 5(b) gives the same Glauber divergence as in

Eq. (26), since the collinear gluon is also emitted by the
valence quark of M1 and attaches to the spectator of the B
meson:

−i
1

2Nc

αs
2π

Z
d2lT
l2T

Mð0Þ
b ðlTÞ: ð27Þ

The Glauber divergences in Eqs. (26) and (27) can also be
verified by means of the Feynman parametrization of the
loop integrands, as shown in the Appendix. Because of the

destruction between the LO amplitudes Mð0Þ
a and Mð0Þ

b ,
these Glauber divergences cancel each other. The same
cancellation also occurs between the pair of diagrams with
the collinear gluons attaching to the virtual gluons in
Figs. 1(a) and 1(b). This then implies that there are no
additional Glauber divergences at NLO in the B → M1M2

decay, except those associated with the M2 meson. The
other collinear gluon emissions from the valence quark and
from the spectator ofM1 contribute only to the construction
of theM1 meson wave function, which contains the Wilson
lines running from the origin to infinity, and then from
infinity to the coordinate z1 labelled in Fig. 1(a). The
cancellation of the soft divergences—similar to that
between Figs. 2 and 3—also occurs between the above
two sets of diagrams.
Nevertheless, the Glauber divergences associated with

the M1 meson exist at next-to-next-to-leading order. Once
the Glauber gluons associated with the M2 meson are
included, the interference between the two spectator
amplitudes Ma and Mb becomes constructive, and the
cancellation between Eqs. (26) and (27) no longer occurs.
A corresponding diagram is displayed in Fig. 5(c), in which
the two vertical gluon lines contribute to the Glauber

divergences for Figs. 1(a) and 1(b), and the third gluon
emitted by M1 gives a common Glauber divergence.
The color factor for Fig. 5(c) is given by

trðTcTaTbTcTbTaÞ ¼ 1

2
trðTaTbÞtrðTbTaÞ

−
1

2Nc
trðTaTbTbTaÞ; ð28Þ

where Ta, Tb, and Tc are associated with the left vertical
gluon, the right vertical gluon, and the third gluon,
respectively. The first term in the above expression corre-
sponds to a color flow from the four-fermion operator O1.
Since we focus on the spectator amplitude from O2 in this
work, this contribution will be dropped. The second term
corresponds to the color flow of the original spectator
amplitude, implying that the color factors for the Glauber
divergences associated with theM2 andM1 mesons remain
as in Eqs. (15), (17), (26), and (27).
It can be shown that the attachments of the third gluon to

other lines—for example, to the spectator line between the
two vertical gluons in Fig. 5(d)—do not produce Glauber
divergences. The reason is explained below. We route the
loop momentum of the third gluon through the left-handed
vertical gluon. When this left-handed vertical gluon is hard
(the right-handed vertical gluon is soft), the third gluon
contributes only to the M1 meson wave function: the
diagram can be regarded as a two-particle reducible
correction to the M1 meson wave function with the
right-handed vertical soft gluon coupling the M2 meson
and the B-M1 system; that is, it does not contribute to the
Glauber divergence, which breaks the factorization. When
the left-handed vertical gluon is soft (the right-handed
vertical gluon is hard), the valence quark of the M2 meson
remains on shell and collimated to the M2 meson. In this
case its momentum is independent of k1, and it does not
constrain the contour in the l− plane. When both vertical
gluons are hard, Fig. 5(d) contributes to the NLO hard
kernel, which goes beyond the accuracy of the present
calculation.
A remark is in order. It has been shown that a Glauber

divergence exists in Fig. 2(f), where the radiative gluon of
momentum l attaches partons in theM1 andM2 mesons. A
simple way to tell whether this Glauber divergence is
associate with theM1 orM2 meson is to investigate the pole
structures. By replacing the spectator propagator by δðl−Þ
[as was done in Eq. (12)], we check the pole positions in the
complex lþ plane and find that the lþ contour for Fig. 2(f)
is constrained by the valence-quark propagator and the
valence-antiquark propagator of M2. On the contrary, by
replacing the valence-quark propagator of M2 with δðlþÞ
we see that the l− contour is not constrained. The above
difference in the pole structures of lþ and l− implies that the
observed Glauber divergence should be associated with
the M2 meson. We then complete the investigation of the
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Glauber divergences in the spectator amplitudes for the
two-body hadronic B-meson decays. The exponentiation of
the NLO results in Eqs. (15) and (17) [29] and in Eqs. (26)
and (27) leads to the parametrization

MG
a ¼ expð−iSe1Þ expðiSe2ÞMð0Þ

a ;

MG
b ¼ expð−iSe1Þ expð−iSe2ÞMð0Þ

b ; ð29Þ

where the signs have followed the indication of the NLO
results. It is obvious that the destruction between MG

a and
MG

b retains, as the Glauber factors associated with the M2

meson are turned off, i.e., Se2 ¼ 0. Strictly speaking,
Eq. (29)—derived while neglecting the dependence on
the Glauber gluon transverse momentum—holds only
approximately. We shall treat the Glauber phases Se1 and
Se2 as free parameters in the numerical analysis later. A
definition for the Glauber factor in terms of a matrix
element of four Wilson lines was constructed in Ref. [35].
At last, we point out the connection between the Glauber

gluon exchanges and the elastic scattering in two-body
hadronic B-meson decays. The analysis of Refs. [33,34]
started with the amplitudes evaluated in the QCDF
approach, and final-state interaction effects were included
via the elastic rescattering. We take only the rescattering
between the B0 → πþπ− and B0 → π0π0 modes as an
example,

�
πþ π−

π0 π0

�
¼ S1=2res

�
πþ π−

π0 π0

�
QCDF

; ð30Þ

with the matrix S1=2res ≡ ð1þ iT Þ1=2 parametrizing the
rescattering effects. The matrix T is written as

T ¼
�

r0 þ 2ra þ rt ð2ra − re þ rtÞ=
ffiffiffi
2

p

ð2ra − re þ rtÞ=
ffiffiffi
2

p
r0 þ ð2ra þ re þ rtÞ=2

�
;

ð31Þ

where the parameters r0, re ra, and rt denote the mecha-
nism from the singlet exchange, the charge exchange, the
annihilation, and the total annihilation, respectively. The
best fit to the B → PP data gave the following combined
parameters defined in Eq. (15) of Ref. [34]:

1þ iðr0 þ raÞ ¼ 0.94þ 0.58i;

iðre − raÞ ¼ 0.06 − 0.58i;

iðra þ rtÞ ¼ −0.12 − 0.09i; ð32Þ

which seem to indicate that the annihilation and the total
annihilation are less important, and r0 and re are roughly of
the same order of magnitude.
Compared to the above formalism, the standard NLO

pQCD decay amplitudes correspond to the inputs on the
right-hand side of Eq. (30), and the Glauber gluon

exchanges correspond to the matrix T . The Glauber gluons
do not generate the annihilation ra and rt, an observation
consistent with the numerical outcomes in Eq. (32). We
elaborate that the amplitude in Eq. (15) contributes to r0,
and that in Eq. (17) contributes to re. We insert the identity
for the color matrices

IijIlk ¼
1

Nc
IljIik þ 2ðTcÞljðTcÞik ð33Þ

into MG
b , with Iij (Ilk) being the unity matrix associated

with the meson M1 (M2). The second term in the decom-
position, associated with a meson in the color-octet state,
will not be considered here. The matrix Ilj in the first term
implies that the valence quark in M1 and the valence
antiquark in M2 form a color-singlet state. The matrix Iik
implies that the valence antiquark in M1 and the valence
quark in M2 form a color-singlet state. It is easy to see that
the resultant topology corresponds to the color-allowed tree
amplitude T. Therefore, MG

b can be regarded as a con-
tribution from the B0 → πþπ− intermediate state (domi-
nated by the amplitude T) to the B0 → π0π0 decay
(dominated by C) through the mechanism of charge
exchange. The above color rearrangement does not apply
to the amplitude MG

a , since the color trace of Ilj and the
color matrix associated with the hard gluon vertex vanishes.
Hence,MG

a represents the contribution from the B0 → π0π0

intermediate state to itself through the singlet exchange.
Certainly, the Glauber effect and the elastic rescattering are
essentially different. For instance, the former is crucial only
in the pion-involved decays, while the latter contributes to
all relevant modes under the SU(3) flavor symmetry.

III. NUMERICAL ANALYSIS

As postulated in Ref. [29], the Glauber effect from the
multiparton states is more significant in the pion than in
other mesons. This postulate can be understood by means
of the simultaneous role of the pion as a qq̄ bound state and
as a NG boson [31]. The valence quark and antiquark of the
pion are separated by a short distance in order to reduce the
confinement potential energy, while the multiparton states
of the pion spread over a huge spacetime in order to meet
the role of a massless NG boson; that is, the multiparton
states distribute more widely than the qq̄ state does in the
pion compared to other mesons. This explains the strong
Glauber effect from the pion, which will be examined in
this section. The standard pQCD factorization formulas for
the B → ππ and πK decays are referred to [26], while those
for the B → πρ and πω decays [5,6] can be obtained by
taking into account the differences between B → PP and
PV modes, as illustrated in Refs. [41,42].
Following Eq. (29), we multiply the b-quark spectator

amplitudes in NLO pQCD, both tree and penguin, by
expðiSe2Þ [expð−iSe2Þ] with the hard gluon being emitted
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by the valence antiquark (quark) in M2, if M2 denotes a
pion. We also multiply the above spectator amplitudes by
expð−iSe1Þ if M1 denotes a pion. As mentioned in
Ref. [26], the color-suppressed tree amplitude in the B →
ππ decays is small at LO due to the small Wilson coefficient
a2 for the factorizable contribution and to the cancellation
between Figs. 1(a) and 1(b) for the spectator contribution.
The presence of the Glauber factor expð�iSe2Þ converts the
destructive interference in Fig. 1 into a constructive one,
resulting in strong enhancement. The Glauber factor
expð−iSe1Þ further rotates the enhanced spectator ampli-
tude and modifies its interference with other emission
amplitudes. This effect will adjust the relative phase
between the color-allowed and color-suppressed tree ampli-
tudes, such that all three B → ππ branching ratios are
accommodated at the same time.
The choices of the distribution amplitudes for the B

meson, pseudoscalar mesons, and vector mesons are the
same as in Ref. [41], but with the updated values of the
meson decay constants: fB ¼ 191 MeV, fπ ¼ 130 MeV,
fK ¼ 156 MeV, fρ ¼ 216 MeV, fTρ ¼ 165 MeV, fω ¼
187 MeV, and fTω ¼ 151 MeV [43,44]. We also update
the meson masses mB ¼ 5.28 GeV, mπ ¼ 0.137GeV,
mK ¼ 0.495 GeV, mρ¼0.77GeV, and mω ¼ 0.783 GeV,
the quark masses mq ¼ 6.5 MeV, ms ¼ 140 MeV,
mc ¼ 1.5 GeV, and mb ¼ 4.8 GeV (which appear in the
quark-loop and magnetic-penguin amplitudes), the chiral
scales m0π ¼ 1.6 GeV and m0K ¼ 1.8 GeV, the B-meson
lifetimes τB0 ¼ 1.519 × 10−12 s and τB� ¼ 1.641 × 10−12 s,
the Cabibbo-Kobayashi-Maskawa matrix elements
Vud ¼ 0.97427, Vus¼ 0.22534, jVubj ¼ 3.51×10−3, Vcd ¼
−0.22520, Vcs ¼ 0.97344, and Vcb ¼ 0.0412, and the

weak phases ϕ1 ¼ 21.5∘ and ϕ3 ¼ 70∘ [1,43], while the
other parameters are taken to be the same as in Ref. [41].
We employ the NLO Wilson coefficients for the emission
amplitudes, and the LO ones for the annihilation ampli-
tudes, since the NLO corrections to the weak vertices in the
latter are not yet available. The resultant B → π; K; ρ;ω
transition form factors are then given by

FBπ
0 ð0Þ ¼ 0.28; FBK

0 ð0Þ ¼ 0.39;

ABρ
0 ð0Þ ¼ 0.29; ABω

0 ð0Þ ¼ 0.27 ð34Þ

at maximal recoil, close to those obtained in Ref. [45].
The Se1 and Se2 dependencies of the color-suppressed

tree amplitude C, the color-allowed tree amplitude T, and
their ratio for the B → ππ decays are displayed in Fig. 6,
where the definitions of C and T are the same as in
Ref. [26]. As argued before, the destructive interference
between Figs. 1(a) and 1(b) is moderated by the Glauber
factor, so their net contribution increases for nonvanishing
Se2. It is observed in Fig. 6 that the magnitude of C reaches
a maximum as Se2 ≈ −π=2. On the other hand, Figs. 1(a)
and 1(b) acquire the same phase factor expð−iSe1Þ from the
Glauber gluons in the M1 meson. Despite being an overall
factor, it changes the relative phase between the spectator
amplitude and the factorizable emission amplitude, which
includes the important vertex corrections at NLO [26].
Therefore, C also depends on Se1, whose magnitude
reaches a maximum for Se1 ≈ Se2 ≈ −π=2. Because T
receives contributions from both the factorizable and
spectator diagrams, the Glauber factors affect its magnitude
and argument. Due to the dominance of the former

FIG. 6 (color online). Se1 and Se2 dependencies of the amplitudes C and T, and their ratio C=T for the B → ππ decays.
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contribution, the Glauber effect on T is minor compared to
the effect on C. Figure 6 shows that the magnitude of the
amplitude ratio C=T is enhanced by a factor of 3 as
Se1 ≈ Se2 ≈ −π=2, relative to the value at Se1 ¼ Se2 ¼ 0.
The result C=T ¼ 0.58e−0.9i at Se1 ¼ Se2 ¼ −π=2 for the
B → ππ decays is close to the extraction in Ref. [2].
Similar plots for the B → πρ and πK decays are

displayed in Fig. 7. The plots for the B → πω decays,
similar to those for the B → πρ ones, are not presented
here. Since only a single pion is involved in each mode,
either the Glauber phase Se1 or Se2 appears in the modified
pQCD factorization formula. For those modes containing
the B → π transition, the corresponding amplitude ratio
Cπρ=Tπρ depends on Se1 only: the magnitude of Cπρ=Tπρ

decreases by about 40%, and the argument decreases by
about 10% as Se1 varies from zero to −π=2. For those
modes with M2 ¼ π, the corresponding amplitude ratios
Cρπ=Tρπ and CKπ=TπK mainly depend on Se2: both the
magnitude and argument increase by a factor of 2 as Se2
varies from zero to −π=2. As explained before, the
variation of Se2 modifies the interference pattern between
the two spectator diagrams in Fig. 1, such that the
corresponding Glauber effect always enhances the magni-
tude of C=T. Compared to the B → ππ case, the Glauber
effects are minor in the B → πρ, πω, and πK decays, as
expected.
The Se1 and Se2 dependencies of the B → ππ branching

ratios (in units of 10−6) and direct CP asymmetries are
shown in Fig. 8. It is found that the combined effect from
the two Glauber factors decreases the B0 → πþπ−

branching ratio from 7.5 × 10−6 (corresponding to
Se1 ¼ Se2 ¼ 0) to 6.4 × 10−6 (corresponding to
Se1 ¼ Se2 ¼ −π=2). On the contrary, the Bþ → πþπ0
branching ratio increases from 5.0 × 10−6 to 6.6 × 10−6;
that is, the ratio of the above two predictions becomes
consistent with the data. The Glauber effect is not dramatic,
because these two modes are dominated by the color-
allowed tree amplitude T. The enhancement of the B0 →
π0π0 branching ratio from about 0.38 × 10−6 to 1.2 × 10−6

is significant, giving a NLO pQCD prediction that agrees
well with the data, ð1.17� 0.13Þ × 10−6. Note that
the above data have been updated by combining the
BABAR data in Ref. [1] with those recently reported by
Belle [32]. The improved consistency of the three predicted
branching ratios with the data is highly nontrivial, which
requires the simultaneous adjustment of the relative phases
between the spectator diagrams, and between the spectator
amplitude and other emission amplitudes. It is seen that the
Glauber factor does not change much the direct CP
asymmetries in the B0 → πþπ− and Bþ → πþπ0 decays,
which contain the amplitude T. The impact on the B0 →
π0π0 direct CP asymmetry is obvious in Fig. 6: the
predicted ACPðπ0π0Þ decreases from 0.59 to 0.36, closer
to the central value of the data 0.03� 0.17, when one varies
the phases from Se1 ¼ Se2 ¼ 0 to Se1 ¼ Se2 ¼ −π=2. The
above data have been also updated by combining the
BABAR ones in [1] with those recently reported by
Belle [32].
The NLO pQCD predictions for the mixing-induced CP

asymmetries in the B → ππ decays with the variation of Se1

FIG. 7 (color online). Se1 and Se2 dependencies of the amplitudes C and T, and their ratio C=T for the B → πρ and
πK decays.
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and Se2 are exhibited in Fig. 9. The prediction for
SCPðπ0π0Þ is more sensitive to the Glauber phases com-
pared to that for SCPðπþπ−Þ, since the B0 → πþπ− mode is
dominated by the color-allowed tree amplitude. The latter
remains around −0.43 under the variation of Se1 and Se2,
which is lower than the data −0.66� 0.06 [1]. The former
reduces from 0.80 to 0.63 as one tunes the phases from
Se1 ¼ Se2 ¼ 0 to Se1 ¼ Se2 ¼ −π=2. To quantize the
improvement of the consistency between the pQCD pre-
dictions and the data attributed to the inclusion of the
Glauber phases, we define

Δχ2 ¼ ðdata mean − theory valueÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
data error2 þ ð0.30 × theoty valueÞ2

p ; ð35Þ

where the unknown theoretical uncertainty is assumed to be
30%. We stress that we have not attempted to undertake the

best fit, but rather to illustrate the improvement by comput-
ing Δχ2. The last plot in Fig. 9 summarizes the reduction of
Δχ2 in the global fit of the pQCD predictions with the
Glauber phases to the B → ππ data. As expected, the value
drops significantly from about 36 (corresponding to Se1 ¼
Se2 ¼ 0) to around 11 (corresponding to Se1 ¼ Se2 ¼
−π=2); that is, the Glauber gluons indeed affect the ratio
C=T toward the indication of the data.
The Se1 and Se2 dependencies of the B → πρ branching

ratios (in units of 10−6) and direct CP asymmetries are
shown in Fig. 10. Because only a single pion is involved in
these modes, the Glauber effect is minor. The NLO pQCD
prediction for the branching ratio Bðπ�ρ∓Þ increases a bit
from 27.8 × 10−6 to 30.8 × 10−6 as one tunes the phases
from Se1 ¼ Se2 ¼ 0 to Se1 ¼ Se2 ¼ −π=2, which slightly
overshoots the data. The predicted Bðπþρ0Þ increases from
6.5 × 10−6 to 7.2 × 10−6, while the predicted Bðπ0ρþÞ
decreases from 13.3 × 10−6 to 9.3 × 10−6. The predicted

FIG. 8 (color online). Se1 and Se2 dependencies of the B → ππ branching ratios (in units of 10−6) and direct CP asymmetries.

FIG. 9 (color online). Se1 and Se2 dependencies of the B → ππ mixing-induced CP asymmetries, and Δχ2.
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Bðπ0ρ0Þ changes more dramatically under the variation of
the Glauber factors, since it is dominated by the color-
suppressed tree amplitude: it is enhanced from 0.70 × 10−6

to about 1.1 × 10−6. The predictions for Bðπþρ0Þ and
Bðπ0ρ0Þ become closer to the data. The current data for
the direct CP asymmetries in the B → πρ decays and for

the mixing-induced CP asymmetry SCPðπ0ρ0Þ still suffer
huge uncertainties.
The behavior of the B → πω modes with the Glauber

phases is similar to that of the corresponding B → πρ
modes, as shown in Fig. 11. The NLO pQCD prediction for
BðπþωÞ increases from 5.4 × 10−6 to 6.1 × 10−6 as one

FIG. 10 (color online). Se1 and Se2 dependencies of the B → πρ branching ratios (in units of 10−6), direct CP asymmetries, and
mixing-induced CP asymmetry.

FIG. 11 (color online). Se1 and Se2 dependencies of the B → πω branching ratios (in units of 10−6), direct CP asymmetries, and
mixing-induced CP asymmetry.
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tunes the phases from Se1 ¼ Se2 ¼ 0 to Se1 ¼ Se2 ¼ −π=2.
The modified result is more consistent with the data, ð6.9�
0.5Þ × 10−6 [1]. The prediction for Bðπ0ωÞ increases from
0.04 × 10−6 to 0.85 × 10−6 above the upper bound 0.5 ×
10−6 [1]. As remarked before, the present formalism is a
simplified one that neglects the convolution between the

Glauber factors and the standard pQCD factorization
formulas. We shall refine our predictions when the data
for Bðπ0ωÞ become available. As for the direct CP
asymmetries, the predicted ACPðπþωÞ remains around
−0.2 under the variation of the Glauber phases. The CP
asymmetries ACPðπ0ωÞ and SCPðπ0ωÞ are more sensitive to

FIG. 12 (color online). Se1 and Se2 dependencies of the B → πK branching ratios (in units of 10−6), direct CP asymmetries, and
mixing-induced CP asymmetry.

FIG. 13 (color online). Se1 and Se2 dependencies of Δχ2 for all the B → ππ, πρ, πω, and πK decays. The difference of Δχ2 for each
considered quantity due to the inclusion of the Glauber effects is also displayed.
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the Glauber phases, and the predicted value for the former
(latter) varies from −0.99 to −0.12 (from −0.11 to −0.26).
The current data for the direct CP asymmetries and mixing-
induced CP asymmetry either have large uncertainties or
are not yet available.
The Se1 and Se2 dependencies of the B → πK branching

ratios (in units of 10−6), direct CP asymmetries, and
mixing-induced CP asymmetry are displayed in Fig. 12.
It is easy to understand that the pQCD predictions for all the
branching ratios weakly depend on the Glauber phases.
Bðπ−KþÞ and BðπþK0Þ are insensitive to the variation of
Se2, since these two modes do not involve the color-
suppressed tree amplitude. The weak dependence on Se1 is
introduced through the interference between the spectator
diagrams and the factorizable emission diagrams. Bðπ0KþÞ
and Bðπ0K0Þ depend on both Glauber phases because of
the involvement of the color-suppressed tree amplitude. For
a similar reason, the direct CP asymmetries ACPðπ−KþÞ
and ACPðπþK0Þ are insensitive to the variation of Se2, and

slightly depend on Se1. The prediction for ACPðπ−KþÞ
remains as −0.11 while varying Se1, which is close to the
data, −0.082� 0.006 [1]. On the contrary, ACPðπ0KþÞ
and ACPðπ0K0Þ depend on Se2, but they are not sensitive to
Se1. Note that the amplitude C contains the B → K
transition in this case, and the Glauber effect from the
kaon is assumed to be negligible. The predicted
ACPðπ0KþÞ increases from −0.01, and becomes positive
quickly as Se2 approaches −π=2, a tendency in agreement
with the updated data 0.040� 0.021 [1]. The prediction
for ACPðπ0K0Þ decreases from −0.08 to −0.21. This
difference is attributed to the sign change of C between
the above two modes. Figure 12 indicates that the mixing-
induced CP asymmetry SCPðπ0K0Þ descends from 0.75 to
0.69. Compared to the data SCPðπ0K0Þ ¼ 0.57� 0.17 and
SCPðcc̄sÞ ¼ 0.682� 0.019 [1], the consistency has been
improved.
At last, we display the Se1 and Se2 dependencies of Δχ2

for the fit to all the B → ππ, πρ, πω, and πK data in Fig. 13,

TABLE I. Branching ratios (in units of 10−6) and direct CP asymmetries, with the notation Se ≡ Se1 ¼ Se2.

Data [1,32] Se ¼ 0 Se ¼ −π=2 Data [1,32] Se ¼ 0 Se ¼ −π=2

BðB0 → π∓π�Þ 5.10� 0.19 7.5 6.4 ACPðB0 → π∓π�Þ 0.31� 0.05 0.15 0.17

BðB� → π�π0Þ 5.48þ0.35
−0.34 5.0 6.6 ACPðB� → π�π0Þ 0.026� 0.039 −0.003 −0.012

BðB0 → π0π0Þ 1.17� 0.13 0.38 1.2 ACPðB0 → π0π0Þ 0.03� 0.17 0.59 0.36

BðB0 → π∓ρ�Þ 23.0� 2.3 27.8 30.8

BðB� → π0ρ�Þ 10.9þ1.4
−1.5 13.3 9.3 ACPðB� → π0ρ�Þ 0.02� 0.11 0.17 0.13

BðB� → π�ρ0Þ 8.3þ1.2
−1.3 6.5 7.2 ACPðB� → π�ρ0Þ 0.18þ0.09

−0.17 −0.20 −0.31
BðB0 → π0ρ0Þ 2.0� 0.5 0.70 1.1 ACPðB0 → π0ρ0Þ −0.27� 0.24 0.38 0.18

BðB� → π�ωÞ 6.9� 0.5 5.4 6.1 ACPðB� → π�ωÞ −0.02� 0.06 −0.20 −0.18
BðB0 → π0ωÞ < 0.5 0.04 0.85 ACPðB0 → π0ωÞ —– −0.99 −0.12
BðB� → π�K0Þ 23.79� 0.75 20.9 21.1 ACPðB� → π�K0Þ −0.015� 0.019 0.001 0.001

BðB� → π0K�Þ 12.94þ0.52
−0.51 12.2 12.9 ACPðB� → π0K�Þ 0.040� 0.021 −0.01 0.10

BðB0 → π∓K�Þ 19.57þ0.53
−0.52 17.6 17.7 ACPðB0 → π∓K�Þ −0.082� 0.006 −0.11 −0.11

BðB0 → π0K0Þ 9.93� 0.49 7.5 7.2 ACPðB0 → π0K0Þ −0.01� 0.10 −0.08 −0.21

TABLE II. Mixing-induced CP asymmetries.

Data [1] Se ¼ 0 Se ¼ −π=2 Data [1] Se ¼ 0 Se ¼ −π=2

SCPðB0 → π∓π�Þ −0.66� 0.06 −0.44 −0.43 SCPðB0 → π0π0Þ —– 0.80 0.63

SCPðB0 → π0ρ0Þ −0.23� 0.34 −0.09 −0.30 SCPðB0 → π0ωÞ —– −0.11 −0.26
SCPðB0 → π0K0Þ 0.57� 0.17 0.75 0.69

TABLE III. CP-violation parameters for the B0 → π∓ρ∓ decays.

Data [1] Se ¼ 0 Se ¼ −π=2 Data [1] Se ¼ 0 Se ¼ −π=2

C −0.03� 0.06 0.09 0.10 ΔC 0.27� 0.06 0.44 0.32
S 0.06� 0.07 −0.04 −0.08 ΔS 0.01� 0.08 0.004 −0.14
Aπρ −0.11� 0.03 −0.11 −0.13
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which exhibits a significant decrease of Δχ2 from 76 to 49,
as both Se1 and Se2 change from zero to −π=2. Figure 13
also shows the change of Δχ2 for each mode caused by
Se1 ¼ Se2 ¼ −π=2. The major reduction ofΔχ2 arises from
the modified predictions for the B → ππ decays, especially
from the B0 → π0π0 branching ratio. The amount of
reduction of Δχ2 from the B → πρ, πω, and πK modes
is minor. To summarize the Glauber effects on the quan-
tities considered above, we present the branching ratios and
direct CP asymmetries from the data, the standard NLO
pQCD predictions with Se ¼ Se1 ¼ Se2 ¼ 0, and the modi-
fied predictions with Se ¼ −π=2 in Table I. Those for the
mixing-induced CP asymmetries are listed in Table II.
Finally, we compute the CP-violation parameters C,ΔC, S,
ΔS, and Aπρ associated with the B0 → π∓ρ∓ decays, which
were defined in Ref. [1], and present the results in Table III.
Our predictions for these observables can be confronted
with future data.

IV. CONCLUSION

In this paper we have identified the uncancelled Glauber
divergences in the kT factorization theorem for the specta-
tor amplitudes in the B → M1M2 decays at the NLO level.
It has been shown that the divergences are factorizable and
demand the introduction of the phase factors: those
coupling the M1 meson and the B-M2 system are absorbed
into the phase factor expð−iSe1Þ, and those coupling theM2

meson and the B → M1 transition are absorbed into
expð�iSe2Þ. We have investigated the Glauber effects on
the color-suppressed tree amplitude C and the color-
allowed tree amplitude T in a simplified formalism, in
which the convolution between the Glauber factors and the
standard pQCD factorization formulas is neglected.
Treating Se1 and Se2 as free parameters, it was observed
that the ratio C=T is enhanced maximally by a factor of 3,
and a good fit of the pQCD predictions to all the considered
B → ππ, πρ, πω, and πK data is achieved as Se1 ¼ Se2≈
−π=2.
We summarize the modified NLO pQCD predictions as

follows: Bðπ0π0Þ and Bðπ0ρ0Þ are increased, the difference
between ACPðπ∓K�Þ and ACPðπ0K�Þ is enlarged, and
ΔSπ0KS

is reduced, all becoming more consistent with the
data. The major reduction ofΔχ2 in the global fit arises from
the observables for the B → ππ modes. We stress again that
the above improvement is nontrivial, since the simultaneous
adjustment of the phases between the spectator diagrams and
between the spectator amplitude and other emission ampli-
tudes for these modes is required. The constraint on C from
the B → ρρ data is avoided because of the special role of the
pion as a qq̄ bound state and a pseudo-NG boson. It seems
that the implication for new physics from the B → πK
puzzle tends to be weaker [46,47].
The Glauber gluons may have a nonperturbative origin

similar to that in elastic rescattering. The correspondence
has been made explicit between the Glauber factors and the

mechanism in elastic rescattering among various M1M2

final states, including the singlet exchange and the charge
exchange [33,34]. A derivation of the Glauber factor, or
even an evaluation of the parameters Se1 and Se2 by
nonperturbative methods for various mesons will lead to
a deeper understanding of the proposed mechanism.
Besides, the Glauber gluons in the nonfactorizable anni-
hilation amplitudes—which couple the B meson and the
M1-M2 system—deserves a thorough investigation as well.
The inclusion of these additional Glauber gluons will
complete the modified pQCD formalism for nonfactoriz-
able B → M1M2 decay amplitudes. The above subjects will
be studied in forthcoming papers.
We expect that the Glauber effect also appears in other

complicated pion-induced processes, if it is really the
mechanism responsible for the B → ππ and πK puzzles.
It has been demonstrated recently [48] that the existence of
Glauber gluons in the kT factorization theorem can account
for the violation of the Lam-Tung relation [49], namely, the
anomalous lepton angular distribution observed in pion-
induced Drell-Yan processes [50–52]. It was noticed that a
final-state parton is required to balance the lepton-pair
transverse momentum qT , so at least three partons are
involved. Since the low-qT spectra of the lepton pair are
involved, the kT factorization is an appropriate theoretical
framework. The Glauber gluons then exist and are factor-
izable at low qT, a kinematic region similar to the small-x
one for the B → ππ and πK decays. Associating the
Glauber phase factor expðiSeÞ to the t-channel diagrams,
it has been shown that the spin-transverse-momentum
correlation between colliding partons—which is necessary
for the violation of the Lam-Tung relation—can be gen-
erated. More interestingly, this resolution can be discrimi-
nated by measuring the pp̄ Drell-Yan process at GSI and
J-PARC [48].
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APPENDIX: GLAUBER DIVERGENCES IN
FEYNMAN PARAMETRIZATION

In this appendix we verify the existence of the Glauber
divergences in the NLO spectator diagrams by means of
the Feynman parametrization. Starting with the integrand
in Eq. (4) for Fig. 2(d), we associate the Feynman
parameters x, t, z, 1 − x − y − z − t, and y with each of
the denominators in sequence, obtaining a factor 1=ðq2þ
2M2Þ5, with
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q ¼ lþ xðP2 − k2Þ þ tkþ zðk − k1Þ − yðk2 − kþ k1Þ;
M2 ¼ xðyþ zÞk1 · ðP2 − k2Þ þ yð1 − y − zÞ

× k1 · k2 − ð1 − y − z − tÞðyþ zÞk1 · k: ðA1Þ

Note that the Wick rotation for the variable change q0 →
iq0 holds, no matter whetherM2 is positive or negative. The
two poles of q0 are always located in the second and fourth
quadrants. The difference is that the two poles are closer to
the imaginary axis of the q0 plane whenM2 > 0, and to the
real axis whenM2 < 0. After integrating out q, we arrive at
a power of 1=ð2M2 þ iϵÞ. To get infrared divergences,
some of the Feynman parameters need to be small, such
that we have small M2. For example, the collinear diver-
gence from the loop momentum l parallel to P2 corre-
sponds to x ∼Oð1Þ because ðP2 − k2 þ lÞ2 is small
already, and y, z, and t are all small because their associated
denominators are large. A more solid argument on the
relations between the Feynman parameters and the pres-
ence of infrared singularities can be made with the Landau
equations [53].
The sign change of M2 in the last integral is required

for the existence of the Glauber divergences, such that
the principal-value prescription applies. We first integrate
out x and get a power of 1=ðyþ zÞ as a coefficient of
the integrand. The upper bound x ¼ 1 − y − z − t leads to
the collinear divergence from l parallel to P2, as stated
before. It is easy to see that M2 does not change sign in
this term,

M2
x¼1−y−z−t ¼ ð1 − y − z − tÞðyþ zÞk1 · ðP2 − k2Þ

þ yð1 − y − zÞk1 · k2 − ð1 − y − z − tÞ
× ðyþ zÞk1 · k

¼ ð1 − y − z − tÞðyþ zÞk1 · ðP2 − k2 − kÞ
þ yð1 − y − zÞk1 · k2 > 0; ðA2Þ

due to the power counting P−
2 − k−2 ≫ k−. Hence, it does

not contribute to a Glauber divergence, and will be
neglected. We then consider another term from the lower
bound x ¼ 0. Integrating out t, we obtain the second
coefficient 1=ðyþ zÞ for the integrand. Similarly, the upper
bound t ¼ 1 − y − z does not generate a Glauber diver-
gence, because M2

x¼0;t¼1−y−z ¼ yð1−y− zÞk1 ·k2 is always
positive. We focus on the term from the lower bound
t ¼ 0,

M2
x;t¼0 ¼ ð1 − y − zÞ½yk1 · k2 − ðyþ zÞk1 · k�: ðA3Þ

For the power counting k−2 ∼OðmBÞ and k− ∼OðΛQCDÞ,
it is obvious that the above expression can change sign
in the infrared region y∼Oðλ2Þ≪ z∼OðλÞ, where λ≡
ΛQCD=mB denotes a small number. The above order of
magnitude makes sense given the associated denominators

ðk2−kþk1−lÞ2∼Oðm2
BÞ and ðk − k1 þ lÞ2 ∼OðmBΛQCDÞ.

Therefore, Fig. 2(d) contributes to a Glauber divergence,
as concluded in Sec. II.
Next we investigate Fig. 3(d) by associating the

Feynman parameters x, t, z, and 1 − x − z − t with each
of the denominators in Eq. (11) in sequence. Compared to
Eq. (4), the parameter y is absent, and P2 − k2 in the first
denominator is replaced by k2. The corresponding M2 is
then written as

M2 ¼ xzk1 · k2 − zð1 − z − tÞk1 · k: ðA4Þ

Integrating out x, we find the terms from the upper and
lower bounds, x ¼ 1 − z − t and x ¼ 0, respectively,
cannot change sign:

M2
x¼1−z−t ¼ zð1 − z − tÞk1 · ðk2 − kÞ > 0;

M2
x¼0 ¼ −zð1 − z − tÞk1 · k < 0; ðA5Þ

for k−2 ≫ k− in our power counting. That is, Fig. 3(d) does
not develop a Glauber divergence, as stated in Sec. II.
Figures 2(d) and 3(d) have the same amplitudes in the soft
region with l ∼OðΛQCDÞ except for a sign difference,
which is attributed to the emissions of the collinear gluon
by the valence quark and valence antiquark in M2. In the
present analysis based on the Feynman parametrization,
Fig. 3(d) provides soft subtraction for Fig. 2(d) at y → 0. A
convenient way to get the sum of Figs. 2(d) and 3(d) is to
introduce a lower bound y ¼ ymin for Eq. (A3). Obviously,
Eq. (A3) still develops a Glauber divergence, as long as the
hierarchy y ≪ z holds.
We turn to Fig. 2(f), which contains the five denominators

½ðP2 − k2 þ lÞ2 þ iϵ�½ðk1 − lÞ2 þ iϵ�
× ½ðk − k1 þ lÞ2 þ iϵ�ðl2 þ iϵÞ
× ½ðk2 − kþ k1 − lÞ2 þ iϵ�: ðA6Þ

Associating the Feynman parameters x, t, z, 1 − x − y−
z − t, and y with each of the denominators in sequence, we
have

M2 ¼ xðyþ zþ tÞk1 · ðP2 − k2Þ þ yð1 − y − z − tÞk1 · k2
− ð1 − y − z − tÞðyþ zÞk1 · k; ðA7Þ

which is basically similar to Eq. (A1). We first integrate
out x and get a power of 1=ðyþ zþ tÞ as a coefficient
of the integrand. The upper bound x ¼ 1 − y − z − t leads to
a collinear divergence from l parallel to the P2 meson.
It is trivial to find that M2 does not change sign in this
term,
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M2
x¼1−y−z−t ¼ ð1 − y − z − tÞ½ðyþ zþ tÞk1 · ðP2 − k2Þ

þ yk1 · k2 − ðyþ zÞk1 · k�;
¼ ð1 − y − z − tÞ½ðyþ zÞk1 · ðP2 − k2 − kÞ
þ tk1 · ðP2 − k2Þ þ yk1 · k2� > 0; ðA8Þ

due to P−
2 − k−2 ≫ k−. Hence, it does not contribute to a

Glauber divergence, and will be neglected. Another term
from the lower bound x ¼ 0 reads

M2
x¼0 ¼ ð1 − y − z − tÞ½yk1 · k2 − ðyþ zÞk1 · k�; ðA9Þ

which can change sign in the infrared region y ∼Oðλ2Þ ≪
z ∼OðλÞ, the same as for Eq. (A3); that is, Fig. 2(f)
contributes to a Glauber divergence.
Correspondingly, we should investigate Fig. 3(f), which

contains the four denominators

½ðk2 þ lÞ2 þ iϵ�½ðk1 − lÞ2 þ iϵ�½ðk − k1 þ lÞ2 þ iϵ�ðl2 þ iϵÞ:
ðA10Þ

The Feynman parameters x, t, z, and 1 − x − z − t are
associated with each of the denominators in sequence.
Compared to Eq. (A6), the parameter y is absent, and
P2 − k2 in the first denominator is replaced by k2. M2 in
this case is then written as

M2 ¼ xðzþ tÞk1 · k2 − zð1 − z − tÞk1 · k: ðA11Þ

Integrating out x, we observe the terms from the upper
and lower bounds, x ¼ 1 − z − t and x ¼ 0, respectively,
cannot change sign,

M2
x¼1−z−t ¼ ð1 − z − tÞ½tk1 · k2 þ zk1 · ðk2 − kÞ� > 0;

M2
x¼0 ¼ −zð1 − z − tÞk1 · k < 0 ðA12Þ

for k−2 ≫ k−, and that Fig. 3(f) does not develop a Glauber
divergence. Figure 3(f) just provides soft subtraction for
Fig. 2(f) at y → 0.
We then check the triple-gluon diagram in Fig. 2(e),

which contains four denominators:

½ðP2 − k2 þ lÞ2 þ iϵ�½ðk − k1 þ lÞ2 þ iϵ�ðl2 þ iϵÞ
× ½ðk2 − kþ k1 − lÞ2 þ iϵ�: ðA13Þ

Associating the Feynman parameters x, z, 1 − x − y − z,
and y with each of the denominators in sequence, we have

M2 ¼ xðyþ zÞk1 · ðP2 − k2Þ þ yð1 − y − zÞk1 · k2
− ðyþ zÞð1 − y − zÞk1 · k: ðA14Þ

By integrating out x, the upper bound also gives a collinear
divergence relevant to the M2 meson, which does not

change sign, just like Eq. (A2). The term from the lower
bound x ¼ 0 reads

M2
x¼0 ¼ ð1 − y − zÞ½yk1 · k2 − ðyþ zÞk1 · k�; ðA15Þ

which is the same as for Figs. 2(d) and 2(f).
The Glauber divergence in Eq. (A15) can be isolated via

the Ward identity in Eq. (10). Comparing the first term in
Eq. (10) with Eq. (A13), the denominator ðk − k1 þ lÞ2 þ
iϵ is replaced by l2 þ 2ðk − k1Þ · lþ iϵ. Therefore, the
corresponding M2 is given by

M2 ¼ xðyþ zÞk1 · ðP2 − k2Þ þ yð1 − y − zÞk1 · k2
− yð1 − y − zÞk1 · kþ zðyþ zÞk1 · k; ðA16Þ

which can be derived simply by dropping the −zk1 · k term
in Eq. (A14). The term from the lower bound x ¼ 0
corresponding to Eq. (A16) is then written as

M2
x¼0 ¼ yð1 − y − zÞk1 · ðk2 − kÞ þ zðyþ zÞk1 · k > 0:

ðA17Þ

Hence, the first term in Eq. (10), being free of a Glauber
divergence, is absorbed into the M2 meson wave function.
It is found that the Glauber divergence in Fig. 2(e) has been
moved into the second term in Eq. (10), which can be
combined with those in Figs. 2(d) and 2(f). It turns out that
the Glauber divergence associated with the M2 meson has
the color factor CF, as was claimed in Ref. [29].
Consider all possible attachments of the collinear gluon

emitted by the valence quark of M1 to other particle lines,
which are displayed in Fig. 14. Figure 14(c) contains the
four denominators

½ðk2 − lÞ2 þ iϵ�½ðP1 − k1 þ lÞ2 þ iϵ�ðl2 þ iϵÞ
× ½ðk2 − kþ k1 − lÞ2 þ iϵ�; ðA18Þ

with which the Feynman parameters x, t, 1 − x − y − t,
and y are associated in sequence. It is straightforward to
derive

M2 ¼ ðxþ yÞtðP1 − k1Þ · k2 þ yð1 − x − yÞk1 · k2
− ytðP1 − k1Þ · k − yð1 − yÞk1 · k: ðA19Þ

It is appropriate to integrate out t first, since its coefficient
xðP1−k1Þ ·k2þyðP1−k1Þ · ðk2−kÞ> 0 does not change
sign according to the power-counting rules. The term from
the upper bound t ¼ 1 − x − y, which corresponds to a
collinear divergence from l parallel to P1, gives

M2
t¼1−x−y ¼ ð1 − x − yÞ½ðxþ yÞðP1 − k1Þ · k2 þ yk1 · k2

− yðP1 − k1Þ · k − yk1 · k� − xyk1 · k: ðA20Þ
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To get pinched infrared singularities, we must have
small x; y due to the large denominators ðk2 − lÞ2;
ðk2 − kþ k1 − lÞ2. In the x; y → 0 limit the above expres-
sion becomes

M2
t¼1−x−y ¼ xðP1 − k1Þ · k2þ yP1 · ðk2 − kÞ− xyk1 · k > 0;

ðA21Þ

because the third term over the first term is of Oðλ3Þ even
for kþ1 ∼OðmBÞ [y is then ofOðλ2Þ]. Another term from the
lower bound t ¼ 0 is written as

M2
t¼0 ¼ y½ð1 − x − yÞk1 · k2 − ð1 − yÞk1 · k�

≈ yk1 · ðk2 − kÞ > 0 ðA22Þ

in the x; y → 0 limit. The pole structures of Eq. (A18) can
be analyzed in the sameway as in Sec. II. It will be seen that
the interval of l− does not cover the origin, as the contour
integration over lþ is performed first, or the Glauber
divergences associated with the poles of l− cancel each
other at leading power in 1=mB as l− is integrated out first.
In conclusion, Fig. 14(c) does not contain a Glauber
divergence.
The analysis of Fig. 14(b) is trivial. Due to the absence of

y, it is easy to write down

M2 ¼ xtðP1 − k1Þ · ðP2 − k2Þ > 0: ðA23Þ

That is, it just provides soft subtraction for Fig. 14(c)
at y → 0.
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