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We observe that the linear potential used as a leading approximation for describing color confinement in
the instant form of dynamics corresponds to a quadratic confining potential in the front form of dynamics.
In particular, the instant-form potentials obtained from lattice gauge theory and string models of hadrons
agree with the potentials determined from models using front-form dynamics and light-front holography,
not only in their shape, but also in their numerical strength.
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I. INTRODUCTION

A key question in QCD is to understand the non-
perturbative dynamics underlying the confinement of
quarks and gluons [1,2] from first principles. Various
approaches to nonperturbative QCD such as lattice gauge
theory, AdS/QCD and string theory appear to describe
color confinement in very different ways. In this paper we
will show that despite their apparent analytic differences,
these approaches have essential elements in common if one
takes into account the fact that the shape of the confinement
potential depends on the form of dynamics; e.g., the instant
form (IF) versus the front form (FF) [3], the latter called
also the light-front (LF) dynamics in the literature.
Nonrelativistic analyses such as heavy quark effective

theory are based on the commonly used IF dynamics where
the Hamiltonian is the usual time evolution operator.
Relativistic bound-state problems such as confinement of
light quarks are usually formulated in the FF Hamiltonian
dynamic framework, since it provides a rigorous frame-
independent formalism. In this case, the LF Hamiltonian is
the time-evolution operator HLF¼ i ∂∂τ where τ¼ðctþzÞ=c.
It is important to note that the form of the effective

potential in each formalism depends on the form of the
dynamics which is utilized. In this paper we will
compare the physical descriptions, their effective poten-
tials, and the mass scales controlling quark confinement
obtained from lattice, string theory, and the FF approach
based on LF holography. A crucial observation is
that a linear confining potential in the IF of dynamics
agrees with a quadratic confining potential in the FF of

dynamics at leading approximation. One thus obtains a
common element of quantum-mechanical effective theories
which incorporates color confinement, relativity, and
essential spectroscopic and dynamical features of hadron
physics.
An important tool will be the Wentzel-Kramers-Brillouin

(WKB) [4] formalism which allows one to relate the
maximum distance of separation between quarks within
a meson as predicted by each model. We find that this
parameter appears to be universal even among different
forms of dynamics. It thus provides a universal point
of focus for describing the same phenomenon of color
confinement in different approaches.
We begin by recalling that the IF of the nonrelativistic

Schrödinger operator for a system made of two strongly
interacting particles of identical mass m and with momenta
~pq ¼ ~p and ~pq̄ ¼ −~p, such as J=ψ , ϒ or other mesons, is

M ¼ 2mþ ~p2

m
þ Veff ; ð1Þ

where 2mþ ~p2

m originates from 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ~p2

p
. The eigen-

value of M is the mass of the system. In contrast, the FF
formulation of the theory of interacting particles is appli-
cable to nonrelativistic as well as relativistic constituents.
It leads to an effective eigenvalue equation for the mass
squared operator

M2 ¼ k2⊥ þm2

xð1 − xÞ þ Ueff ; ð2Þ
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instead of M in the IF of dynamics, Eq. (1). The boost-
invariant FF variables x and 1 − x are ratios of longitudinal
FF momenta pþ

q ¼ pt
q þ pz

q and pþ
q̄ ¼ pt

q̄ þ pz
q̄ of the

constituents to the longitudinal FF momentum of the

meson, Pþ ¼ Pt þ Pz. The term k2⊥þm2

xð1−xÞ is the LF kinetic

energy as well as the invariant mass squared s ¼
ðpq þ pq̄Þ2 of the qq̄ pair.
It will be convenient to define a relative three-vector

momentum operator ~p (in the constituent rest frame [5–7]),
so that

M2 ¼ k2⊥ þm2

xð1 − xÞ þ Ueff ≡ 4m2 þ 4~p2 þ Ueff : ð3Þ

We identify p2⊥ ¼ k2⊥
4xð1−xÞ and 4m2 þ 4p2

3 ¼ m2

xð1−xÞ, so

p3 ¼ mffiffiffiffiffiffiffiffiffiffi
xð1−xÞ

p ðx − 1
2
Þ has an infinite range and is propor-

tional to m. The conjugate variables are r⊥ ¼ i ∂
∂p⊥ and

r3 ¼ i ∂
∂p3

. Early discussions of models of mesons as two-
body systems in the FF dynamics, as alternative to the IF,
especially in the infinite momentum frame, can be found in
Refs. [8–13].
The central problem then becomes the derivation of the

effective interactions Veff and Ueff . We observe that nearly
all considerations in the IF of the Hamiltonian dynamics
lead to the conclusion that the potential between a quark
and antiquark at large distances should be linear. This
article points out that the linear IF potential Veff implies a
quadratic FF potential Ueff at large qq̄ separation, as
implied by Eq. (1), which is the lowest-order approxima-
tion, and Eq. (3),

Ueff ¼ V2
eff þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

q
Veff þ 2Veff

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

q
: ð4Þ

At large distances, near turning points where kinetic energy
is minimal, the potential term V2

eff dominates the right-hand
side. Thus, for a linear IF potential Veff , the FF potential
Ueff is quadratic. Such FF harmonic oscillator potential
predicts linear Regge trajectories [14,15] in the hadron
mass square for small quark masses.
In the next sections, various models defined in different

forms of dynamics will be discussed. In the last section we
will compare the models in terms of their WKB parameter.

II. INSTANT-FORM APPROACHES

The main contemporary tool for studying mesons in the
IF of dynamics is lattice QCD, originally formulated in
Ref. [16]. One obtains numerical results for hadron proper-
ties from calculating their Euclidean propagators [17]. The
underlying dynamics can be studied in terms of a potential
by calculating the Wilson loops, where quarks are repre-
sented by static color sources [18,19]. We focus first on
methods which allow one to compute the shape and mass

scale of the nonrelativistic potential which confines pairs of
infinitely heavy quarks [20–22]. The lattice approach is
closely related to the string picture for hadrons (see below).

A. Specific lattice-potential results

The static potential obtained in the quenched approxi-
mation of the lattice QCD can be parametrized in the form
of the Cornell potential [23]; i.e. (up to a constant term)

VðlatticeÞ
eff ðrÞ ¼ −

A
r
þ σr; ð5Þ

where r denotes the distance between infinitely heavy
(static) quark and antiquark and σ is called string tension.
The string tension due to the gluonic fields connecting
static color sources does not include the pair creation
mechanism that breaks the string; there is thus no direct
relation of the two-body effective potential for QCD to this
aspect of the string tension.
The progress made in simulations of QCD on the lattice

allows one to calculate coefficients A and σ also for quarks
with finite masses. For instance, one of the most recent
analyses of charmonium [24,25] found the square root of
string tension of magnitude

ffiffiffi
σ

p ¼ 394ð7Þ MeV, associated
with the quark mass 1.74(3) GeV. Despite the fact that our
discussion concerns quarks with the phenomenological
values of masses which may be different from the char-
monium result of 1.74 GeV, the value of

ffiffiffi
σ

p ¼ 394 MeV
appears appropriate for our purpose of estimating the
behavior of the quark-antiquark effective potential in the
configuration where the potential dominates the meson
energy. However, it should be mentioned that in the case
of static sources the value of

ffiffiffi
σ

p
∼ 460 MeV is obtained

[26–28]. Lattice estimates for the universal quark-antiquark
potentials should be based on calculations for quarks with
finite effective mass parameters.

B. Classical string model

An effective description of quark confinement in mesons
is the string model for hadrons, where color-electric fields
between two static color sources are squeezed into a thin,
effectively one-dimensional, flux tube or vortex [29–32].
The string picture of confinement can be considered [18] as
the strong coupling limit of the IF Hamiltonian formulation
of lattice QCD.
One can study the spectra of multidimension string

models [33–36] such as strings described by the Nambu-
Goto action [37,38]. This approach yields a string with a
constant energy density per unit length and a static potential
which rises linearly as a function of the string length r.
In the 4-dimensional space-time, the quark-antiquark
potential is thus given (up to a constant term) by [35,39]

VðstringÞ
eff ðrÞ ¼ σr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

π

6σr2

r
: ð6Þ
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From this, one can calculate the dependence of the meson
spectrum on the internal angular momentum. By compar-
ing with the empirical Regge trajectories, one finds a slope
parameter 470 MeV <

ffiffiffi
σ

p
< 480 MeV for pseudoscalars

(π and K), while for other mesons the value of
ffiffiffi
σ

p
varies

between 424 and 437 MeV [40]. The string description
applies for distances r ≫ rc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π=ð6σÞp

, and rc ≃
0.33 fm for

ffiffiffi
σ

p ≃ 430 MeV. Most of the above results
point toward the value about 430 MeV with an ambiguity
on the order of 7 MeV. A review of the lattice and the string
theories can be found in Refs. [40,41].

C. Stochastic vacuum model

In the stochastic vacuum model (SVM), string formation
is a property of the gauge-invariant gluon field-strength
correlator, which can be obtained by lattice simulations.
It thus connects the lattice with the hadronic string
picture [42,43].
The SVM [42] starts with the assumption that the

nonperturbative (long-distance) part of the functional
integral over the gluon field can be approximated by a
Gaussian integration. Wilson loops can be evaluated easily
and are determined by the gauge-invariant correlator of
the gluon fields; for large loops one derives an area law
signifying linear confinement. The resulting nonrelativistic
potential begins quadratically and becomes linear at dis-
tances comparable to the correlation length of the gluon
field. The confinement mechanism is due to the formation
of a color-electric string between the quark and antiquark
[43]. The string tension is given by [42,43]

σ ¼ π

48Nc

Z
∞

0

dz2Dðz2Þ; ð7Þ

where Dðz2Þ is the scalar part of the gauge invariant color
field correlator hGμνðzÞΦðzÞGρσð0Þi and ΦðzÞ is the color
transporter from point 0 to z.Dðz2Þ can be calculated on the
lattice using the cooling method [44]. Using the numerical
results of this lattice simulation [44] one obtains for the
string tension

ffiffiffi
σ

p ¼ 410ð11Þ MeV.

III. FRONT-FORM APPROACHES

The lattice gauge theories are not effectively formulated
using the FF of dynamics because of difficulties with
understanding what to do in the Minkowski space.
High-energy experiments require an efficient IF description
in the infinite momentum frame or, in a frame-independent
way, description using the FF. Since there is no efficient
lattice description that could be used, one turns to the FF
Hamiltonian methods.
The derivation of the FF QCD Hamiltonian eigenvalue

equation that accounts for dynamical effects of all virtual
quarks and gluons present in the Fock-space expansion of a
hadron state, requires a suitable renormalization group

procedure. We focus on the procedure called the similarity
renormalization group procedure [45–47], and to its suc-
cessors, especially the renormalization group procedure
for effective particles (RGPEP, see below).
The potential Ueff in the FF effective Hamiltonian,

Eq. (2), can be found by applying the Ehrenfest principle
[48] to quantum field theory [49], in the sense of calculat-
ing expectation values which average quantities of interest
over all Fock sectors and all effective constituents in them,
except for the constituent that is struck by an external
probe, called the active one. In every Fock sector, the active
constituent moves in an effective potential generated by
the remaining constituents, called spectators. Following
this line of reasoning, the resulting potential describes the
motion of an active constituent around the minimum of
its potential energy. Such a potential is expected to be
quadratic, UeffðrÞ ∼ r2, as every regular function around its
minimum is. Both the Ehrenfest equation and the quadratic
potential agree with the requirement of rotational symmetry
because all Fock sectors in the bound-state dynamics are
included, cf., [50–52]; i.e. multiplets of the spectrum have
the mass degeneracy required by the rotational symmetry
in 3-dimensions. The quadratic form of the FF Ehrenfest
potential around its minimum agrees well with the large-r
result thatUeffðrÞ ∼ r2 when VeffðrÞ ∼ r, and with results of
the LF holography. This will be explained after we discuss
the LF holography.

A. LF holography

One can write the FF equation of motion for mesons in
the form of a single-variable relativisitic eigenvalue equa-
tion analogous to the nonrelativistic quark-antiquark radial
Schrödinger equation [53]. The same equation for massless
quarks arises from the LF holographic mapping [54,55] of
the soft-wall model modification of AdS5 space [56] with
any dilaton profile which breaks the maximal symmetry of
AdS5 space. Thus one arrives at a meson equation of
motion for zero quark mass, where the fifth-dimension
variable z in AdS5 becomes identified with the boost-
invariant transverse qq̄ separation variable ζ. One has
ζ2 ¼ 1

4
r2⊥ ¼ xð1 − xÞb2⊥, where b⊥ ¼ i ∂

∂k⊥ is the transverse
distance between the two constituents [57]. The resulting
single-variable relativistic equation of motion includes a
harmonic oscillator potential

UðLFÞ
eff ðζÞ ¼ κ4ζ2 þ 2κ2ðJ − 1Þ; ð8Þ

where J is the total angular momentum of the qq̄ meson.
The LF-holography is inspired by Maldacena conjecture
[58]; it does not require that the number of colors is large.
It has been shown that the harmonic oscillator form of

the FF potential arises uniquely when one extends the
formalism of de Alfaro, Fubini, and Furlan [59] to the FF
Hamiltonian theory [60]. The action of the effective
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one-dimensional quantum field theory remains conformally
invariant, which reflects the underlying conformal invari-
ance of the classical QCD chiral Lagrangian. The constant
term 2κ2ðJ − 1Þ is derived from spin-J representations of
dynamics in AdS space [55].
The mass parameter κ is determined outside of QCD

from a single observable, such as the pion decay constant.
One finds consistency with hadron spectroscopy for κ
between 540 and 590 MeV.
It is natural to replace κ4ζ2 ¼ 1

4
κ4r2⊥ in Eq. (8) by

1
4
κ4ðr2⊥ þ r23Þ in the case of massive quarks [61], where

the quark masses are input parameters. ThenUðLFÞ
eff becomes

a 3-dimensional oscillator potential. The corresponding
wave function matches phenomenology, e.g. see Ref. [62].
Thus, excitations in the transverse plane are paired with
excitations in the 3-direction, and 3-dimensional rotation
symmetry is restored in the massive case. This change also
establishes connection with the 3-dimensional Eq. (3), and
it does not require any change of the value of κ. The same
universal value of κ is also obtained when short-range spin-
dependent interactions are included [63,64]. It would be
interesting to extend these results retaining 3-dimensional
rotation symmetry.

B. Gluon condensate model embedded
in the RGPEP

A framework based on the RGPEP [61] allows one to
develop a relativistic quark model inspired by [65], where
the effective particle masses are different from zero and can
be set as the input parameters. The FF potential is quadratic
as a function of a 3-dimensional quark-antiquark distance r,

UðRGPEPÞ
eff ðrÞ ¼

�
π

3
φglue

�
2

r2; ð9Þ

where φ2
glue represents the gluon condensate inside hadrons.

In the operator product expansion [66] the expectation
value corresponding to gluon condensate can also refer to
matrix elements inside hadrons rather than the vacuum
[67–73].
The original value of φ2

glue ¼ 0.012 GeV4 obtained by
Shifman, Vainshtein, and Zakharov [74] has been updated
by Narison [75,76], which in the case of in-hadron
condensate implies (see Eq. (20) in Ref. [76])

φ2
glue ¼

1

π

hGjαsGμνcGc
μνjGi

hGjGi ≃ 0.022ð4Þ GeV4; ð10Þ

where αs is the QCD coupling constant, and jGi represents
the gluons condensed inside a meson.

IV. DISCUSSION

In the IF models, the confinement potential increases
linearly at large distances between static quarks as

exemplified in Eqs. (5)–(7). Other terms contribute at small
distances. The eigenvalues of the IF Hamiltonian are the
energies of the hadrons. In contrast, the eigenvalues of the
Hamiltonian in the frame-independent FF of dynamics is
quadratic in the hadron massM: Eqs. (8) and (9). Note that
M2 ¼ ð2mþ ϵÞ2 ¼ 4m2 þ 4mϵþ ϵ2 where ϵ is the bind-
ing energy. It is essential to retain the ϵ2-term in the FF
eigenvalue equation, Eq. (2), since the ϵ2-term contributes
to the FF potentialUeff even ifm is large, see Eq. (3). Thus,
if the IF potential is linear, then the FF potential in at a large
distance between quarks should be quadratic [49,77]. This
can be seen straightforwardly in the cases where the mass
of constituents m tends to zero.
In order to compare different descriptions of confine-

ment we can adopt the WKB method. It defines the turning
point rmax where the kinetic energy is completely turned
into potential energy. One obtains M ¼ 2mþ σrmax in the
lattice, string and SVM approach,M2¼4m2þðπ

3
φglueÞ2r2max

in the RGPEP approach, and M2 ¼ 4m2 þ 1
4
κ4r2max in the

LF-holography approach. The last factor 1
4
comes from the

fact that x ¼ 1
2
at the WKB turning point, where p⊥ and p3

both vanish.
Figure 1 compares the phenomenological results for the

coefficient of rmax. The values for the effective confinement
scales derived from the WKB analysis in each model
discussed above are sufficiently close to each other that one
can argue that the various confinement models describe the
same effective two-body system in the IF and in the FF of
dynamics. There are different scales of energy in QCD,
determined by quantities such as masses of quarks, ΛQCD,
both possibly multiplied by some powers of αQCD.
Nevertheless, the values of parameters quoted here are
of the same order. Finally, we wish to stress that the linear
confining potential of the IF of dynamics is consistent with
the quadratic confining potential in the FF of dynamics.

FIG. 1. Phenomenological results for the coefficient of rmax
obtained using the WKB method (see the text). We compare the
coefficients obtained from the lattice approach

ffiffiffi
σ

p ¼394ð7ÞMeV,
string theory

ffiffiffi
σ

p ¼ 430ð7Þ MeV, the stochastic vacuum
model

ffiffiffi
σ

p ¼ 410ð11Þ MeV, the LF holography approach
κ=

ffiffiffi
2

p ¼ 381 ÷ 417 MeV, and the in-hadron gluon condensate
in the RGPEP approach

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πφglue=3

p ¼395ð18ÞMeV. The dashed
line is the average of these values.

ARKADIUSZ P. TRAWIŃSKI et al. PHYSICAL REVIEW D 90, 074017 (2014)

074017-4



ACKNOWLEDGMENTS

A. P. T. wants to express his gratitude for the hospitality
extended to him at SLAC where this article was
written. This work was supported by the Polish-U.S.

Fulbright Commission and the Foundation for Polish
Science International Ph.D. Projects Programme, co-
financed by the EU European Regional Development
Fund.

[1] M. Gell-Mann, Phys. Rev. 125, 1067 (1962).
[2] M. Gell-Mann, Phys. Lett. 8, 214 (1964).
[3] P. A. Dirac, Rev. Mod. Phys. 21, 392 (1949).
[4] For the original work, see J. Lioville, J. Math. Pures Appl. 2,

418 (1837); Lord Rayleigh, Proc. R. Soc. A 86, 207 (1912);
H. Jeffreys, Proc. London Math. Soc. s2-23, 428 (1925); G.
Wentzel, Z. Phys. 38, 518 (1926); H. A. Kramers, Z. Phys.
39, 828 (1926); L. Brillouin, Comptes Rendus 183, 24
(1926).

[5] P. Danielewicz and J. M. Namysłowski, Phys. Lett. 81B,
110 (1979).

[6] V. Karmanov, Nucl. Phys. B166, 378 (1980).
[7] S. D. Głazek, Acta Phys. Polon. B 15, 889 (1984).
[8] H. Melosh, Phys. Rev. D 9, 1095 (1974).
[9] H. Leutwyler and J. Stern, Phys. Lett. 69B, 207 (1977).

[10] H. Leutwyler and J. Stern, Phys. Lett. 73B, 75 (1978).
[11] H. Leutwyler and J. Stern, Nucl. Phys. B133, 115 (1978).
[12] H. Leutwyler and J. Stern, Ann. Phys. (N.Y.) 112, 94

(1978).
[13] B. Bakker, L. Kondratyuk, and M. Terentev, Nucl. Phys.

B158, 497 (1979).
[14] T. Regge, Nuovo Cimento 14, 951 (1959).
[15] T. Regge, Nuovo Cimento 18, 947 (1960).
[16] K. G. Wilson, Phys. Rev. D 10, 2445 (1974).
[17] P. Hägler, Phys. Rep. 490, 49 (2010).
[18] J. B. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975).
[19] W. A. Bardeen and R. Pearson, Phys. Rev. D 14, 547 (1976).
[20] T. Appelquist and H. D. Politzer, Phys. Rev. Lett. 34, 43

(1975).
[21] T. Appelquist, A. De Rujula, H. D. Politzer, and S. Glashow,

Phys. Rev. Lett. 34, 365 (1975).
[22] E. Eichten, K. Gottfried, T. Kinoshita, J. B. Kogut, K. Lane,

and T. M. Yan, Phys. Rev. Lett. 34, 369 (1975).
[23] E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, and

T.-M. Yan, Phys. Rev. D 17, 3090 (1978).
[24] T. Kawanai and S. Sasaki, Phys. Rev. Lett. 107, 091601

(2011).
[25] T. Kawanai and S. Sasaki, Phys. Rev. D 85, 091503

(2012).
[26] International Lattice Data Grid/Japan Lattice Data Grid,

http://www.jldg.org/.
[27] S. Aoki et al. (PACS-CS Collaboration), Phys. Rev. D 79,

034503 (2009).
[28] Y. Koma and M. Koma, Proc. Sci., LATTICE2012 140

(2014) [arXiv:1211.6795].
[29] A. Abrikosov, Sov. Phys. JETP 5, 1174 (1957).
[30] H. B. Nielsen and P. Olesen, Nucl. Phys. B61, 45 (1973).
[31] G.’t Hooft, Nucl. Phys. B72, 461 (1974).
[32] A. A. Migdal, Phys. Rep. 102, 199 (1983).

[33] M. Lüscher, G. Münster, and P. Weisz, Nucl. Phys. B180, 1
(1981).

[34] M. Lüscher, Nucl. Phys. B180, 317 (1981).
[35] M. Lüscher, K. Symanzik, and P. Weisz, Nucl. Phys. B173,

365 (1980).
[36] O. Andreev and V. I. Zakharov, Phys. Rev. D 74, 025023

(2006).
[37] T. Goto, Prog. Theor. Phys. 46, 1560 (1971).
[38] Y. Nambu, Phys. Rev. D 10, 4262 (1974).
[39] J. Arvis, Phys. Lett. 127B, 106 (1983).
[40] G. S. Bali, Phys. Rep. 343, 1 (2001).
[41] A. Bazavov, D. Toussaint, C. Bernard, J. Laiho, C. DeTar

et al., Rev. Mod. Phys. 82, 1349 (2010).
[42] H. G. Dosch and Y. Simonov, Phys. Lett. B 205, 339 (1988).
[43] A. Di Giacomo, H. G. Dosch, V. Shevchenko, and Y.

Simonov, Phys. Rep. 372, 319 (2002).
[44] M. D’Elia, A. Di Giacomo, and E. Meggiolaro, Phys. Lett.

B 408, 315 (1997).
[45] S. D. Głazek and K. G. Wilson, Phys. Rev. D 48, 5863

(1993).
[46] S. D. Głazek and K. G. Wilson, Phys. Rev. D 49, 4214

(1994).
[47] K. G. Wilson, T. S. Walhout, A. Harindranath, W.-M. Zhang,

R. J. Perry, and S. Głazek, Phys. Rev. D 49, 6720 (1994).
[48] P. Ehrenfest, Z. Phys. 45, 455 (1927).
[49] S. D. Głazek and A. P. Trawiński, Phys. Rev. D 88, 105025

(2013).
[50] R. J. Perry, Hadron physics 94 Gramado, Brazil, 1994

World Scientific, Gramado, (1995)
[51] M.M. Brisudova, R. J. Perry, and K. G. Wilson, Phys. Rev.

Lett. 78, 1227 (1997).
[52] M.M. Brisudova and R. Perry, Phys. Rev. D 54, 1831

(1996).
[53] G. F. de Téramond and S. J. Brodsky, Phys. Rev. Lett. 94,

201601 (2005).
[54] G. F. de Téramond and S. J. Brodsky, Phys. Rev. Lett. 102,

081601 (2009).
[55] G. F. de Téramond, H. G. Dosch, and S. J. Brodsky, Phys.

Rev. D 87, 075005 (2013).
[56] A. Karch, E. Katz, D. T. Son, and M. A. Stephanov, Phys.

Rev. D 74, 015005 (2006).
[57] S. J. Brodsky and G. F. de Téramond, Phys. Rev. D 77,

056007 (2008).
[58] J. M. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999).
[59] V. de Alfaro, S. Fubini, and G. Furlan, Nuovo Cimento 34,

569 (1976).
[60] S. J. Brodsky, G. F. de Téramond, and H. G. Dosch, Phys.

Lett. B 729, 3 (2014).
[61] S. D. Głazek, Acta Phys. Pol., B 42, 1933 (2011).

EFFECTIVE CONFINING POTENTIALS FOR QCD PHYSICAL REVIEW D 90, 074017 (2014)

074017-5

http://dx.doi.org/10.1103/PhysRev.125.1067
http://dx.doi.org/10.1016/S0031-9163(64)92001-3
http://dx.doi.org/10.1103/RevModPhys.21.392
http://dx.doi.org/10.1098/rspa.1912.0014
http://dx.doi.org/10.1112/plms/s2-23.1.428
http://dx.doi.org/10.1007/BF01397171
http://dx.doi.org/10.1007/BF01451751
http://dx.doi.org/10.1007/BF01451751
http://dx.doi.org/10.1016/0370-2693(79)90500-8
http://dx.doi.org/10.1016/0370-2693(79)90500-8
http://dx.doi.org/10.1016/0550-3213(80)90204-7
http://dx.doi.org/10.1103/PhysRevD.9.1095
http://dx.doi.org/10.1016/0370-2693(77)90645-1
http://dx.doi.org/10.1016/0370-2693(78)90175-2
http://dx.doi.org/10.1016/0550-3213(78)90171-2
http://dx.doi.org/10.1016/0003-4916(78)90082-9
http://dx.doi.org/10.1016/0003-4916(78)90082-9
http://dx.doi.org/10.1016/0550-3213(79)90179-2
http://dx.doi.org/10.1016/0550-3213(79)90179-2
http://dx.doi.org/10.1007/BF02728177
http://dx.doi.org/10.1007/BF02733035
http://dx.doi.org/10.1103/PhysRevD.10.2445
http://dx.doi.org/10.1016/j.physrep.2009.12.008
http://dx.doi.org/10.1103/PhysRevD.11.395
http://dx.doi.org/10.1103/PhysRevD.14.547
http://dx.doi.org/10.1103/PhysRevLett.34.43
http://dx.doi.org/10.1103/PhysRevLett.34.43
http://dx.doi.org/10.1103/PhysRevLett.34.365
http://dx.doi.org/10.1103/PhysRevLett.34.369
http://dx.doi.org/10.1103/PhysRevD.17.3090
http://dx.doi.org/10.1103/PhysRevLett.107.091601
http://dx.doi.org/10.1103/PhysRevLett.107.091601
http://dx.doi.org/10.1103/PhysRevD.85.091503
http://dx.doi.org/10.1103/PhysRevD.85.091503
http://www.jldg.org/
http://www.jldg.org/
http://www.jldg.org/
http://dx.doi.org/10.1103/PhysRevD.79.034503
http://dx.doi.org/10.1103/PhysRevD.79.034503
http://arXiv.org/abs/1211.6795
http://dx.doi.org/10.1016/0550-3213(73)90350-7
http://dx.doi.org/10.1016/0550-3213(74)90154-0
http://dx.doi.org/10.1016/0370-1573(83)90076-5
http://dx.doi.org/10.1016/0550-3213(81)90151-6
http://dx.doi.org/10.1016/0550-3213(81)90151-6
http://dx.doi.org/10.1016/0550-3213(81)90423-5
http://dx.doi.org/10.1016/0550-3213(80)90009-7
http://dx.doi.org/10.1016/0550-3213(80)90009-7
http://dx.doi.org/10.1103/PhysRevD.74.025023
http://dx.doi.org/10.1103/PhysRevD.74.025023
http://dx.doi.org/10.1143/PTP.46.1560
http://dx.doi.org/10.1103/PhysRevD.10.4262
http://dx.doi.org/10.1016/0370-2693(83)91640-4
http://dx.doi.org/10.1016/S0370-1573(00)00079-X
http://dx.doi.org/10.1103/RevModPhys.82.1349
http://dx.doi.org/10.1016/0370-2693(88)91675-9
http://dx.doi.org/10.1016/S0370-1573(02)00140-0
http://dx.doi.org/10.1016/S0370-2693(97)00814-9
http://dx.doi.org/10.1016/S0370-2693(97)00814-9
http://dx.doi.org/10.1103/PhysRevD.48.5863
http://dx.doi.org/10.1103/PhysRevD.48.5863
http://dx.doi.org/10.1103/PhysRevD.49.4214
http://dx.doi.org/10.1103/PhysRevD.49.4214
http://dx.doi.org/10.1103/PhysRevD.49.6720
http://dx.doi.org/10.1007/BF01329203
http://dx.doi.org/10.1103/PhysRevD.88.105025
http://dx.doi.org/10.1103/PhysRevD.88.105025
http://dx.doi.org/10.1103/PhysRevLett.78.1227
http://dx.doi.org/10.1103/PhysRevLett.78.1227
http://dx.doi.org/10.1103/PhysRevD.54.1831
http://dx.doi.org/10.1103/PhysRevD.54.1831
http://dx.doi.org/10.1103/PhysRevLett.94.201601
http://dx.doi.org/10.1103/PhysRevLett.94.201601
http://dx.doi.org/10.1103/PhysRevLett.102.081601
http://dx.doi.org/10.1103/PhysRevLett.102.081601
http://dx.doi.org/10.1103/PhysRevD.87.075005
http://dx.doi.org/10.1103/PhysRevD.87.075005
http://dx.doi.org/10.1103/PhysRevD.74.015005
http://dx.doi.org/10.1103/PhysRevD.74.015005
http://dx.doi.org/10.1103/PhysRevD.77.056007
http://dx.doi.org/10.1103/PhysRevD.77.056007
http://dx.doi.org/10.1023/A:1026654312961
http://dx.doi.org/10.1007/BF02785666
http://dx.doi.org/10.1007/BF02785666
http://dx.doi.org/10.1016/j.physletb.2013.12.044
http://dx.doi.org/10.1016/j.physletb.2013.12.044
http://dx.doi.org/10.5506/APhysPolB.42.1933


[62] S. J. Brodsky, T. Huang, and G. P. Lepage, Report
Nos. SLAC-PUB-2540, C80-07-17-21, 1980.

[63] T. Branz, T. Gutsche, V. E. Lyubovitskij, I. Schmidt, and A.
Vega, Phys. Rev. D 82, 074022 (2010).

[64] T. Gutsche, V. E. Lyubovitskij, I. Schmidt, and A. Vega,
Phys. Rev. D 87, 056001 (2013).

[65] S. D. Głazek and M. Schaden, Phys. Lett. B 198, 42 (1987).
[66] K. G. Wilson, Phys. Rev. 179, 1499 (1969).
[67] A. Casher and L. Susskind, Phys. Rev. D 9, 436 (1974).
[68] P. Maris and C. D. Roberts, Phys. Rev. C 56, 3369 (1997).
[69] P. Maris, C. D. Roberts, and P. C. Tandy, Phys. Lett. B 420,

267 (1998).

[70] S. J. Brodsky and R. Shrock, Phys. Lett. B 666, 95 (2008).
[71] S. J. Brodsky and R. Shrock, Proc. Nat. Acad. Sci. 108, 45

(2011).
[72] S. J. Brodsky, C. D. Roberts, R. Shrock, and P. C. Tandy,

Phys. Rev. C 82, 022201 (2010).
[73] L. Chang, C. D. Roberts, and P. C. Tandy, Phys. Rev. C 85,

012201 (2012).
[74] M. A. Shifman, A. Vainshtein, and V. I. Zakharov, Nucl.

Phys. B147, 385 (1979).
[75] S. Narison, Phys. Lett. B 387, 162 (1996).
[76] S. Narison, Phys. Lett. B 706, 412 (2012).
[77] S. D. Głazek, Phys. Rev. D 69, 065002 (2004).

ARKADIUSZ P. TRAWIŃSKI et al. PHYSICAL REVIEW D 90, 074017 (2014)

074017-6

http://dx.doi.org/10.1103/PhysRevD.82.074022
http://dx.doi.org/10.1103/PhysRevD.87.056001
http://dx.doi.org/10.1016/0370-2693(87)90154-7
http://dx.doi.org/10.1103/PhysRev.179.1499
http://dx.doi.org/10.1103/PhysRevD.9.436
http://dx.doi.org/10.1103/PhysRevC.56.3369
http://dx.doi.org/10.1016/S0370-2693(97)01535-9
http://dx.doi.org/10.1016/S0370-2693(97)01535-9
http://dx.doi.org/10.1016/j.physletb.2008.06.054
http://dx.doi.org/10.1073/pnas.1010113107
http://dx.doi.org/10.1073/pnas.1010113107
http://dx.doi.org/10.1103/PhysRevC.82.022201
http://dx.doi.org/10.1103/PhysRevC.85.012201
http://dx.doi.org/10.1103/PhysRevC.85.012201
http://dx.doi.org/10.1016/0550-3213(79)90022-1
http://dx.doi.org/10.1016/0550-3213(79)90022-1
http://dx.doi.org/10.1016/0370-2693(96)00954-9
http://dx.doi.org/10.1016/j.physletb.2011.11.058
http://dx.doi.org/10.1103/PhysRevD.69.065002

