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In a recent paper we performed a comprehensive study of the impact of new-physics operators with
different Lorentz structures on B̄ → D�þl−ν̄l decays, l ¼ e−, μ−, τ−, involving the b → clνl transition. In
this work we extend the previous calculation by including tensor operators. In the case of B̄ → D�þτ−ν̄τ,
we present the full three-angle and q2 angular distribution with tensor new-physics operators with complex
couplings. The impact of the tensor operators on various observables in the angular distribution, specially
the azimuthal observables including the CP violating triple product asymmetries are discussed. It is shown
that these azimuthal observables are very useful in discriminating different new-physics operators. Finally
we consider new-physics leptoquark models with tensor interactions and show how the presence of
additional scalar operators modify the predictions of the tensor operators.
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I. INTRODUCTION

The search for new physics (NP) beyond the Standard
Model (SM) of particle physics is going on at the
energy frontier in colliders such as the LHC and at the
intensity frontier at high luminosity experiments. In
the intensity frontier, the B factories, BABAR and Belle,
have produced an enormous quantity of data and there is
still a lot of data to be analyzed from both experiments.
The LHCb and Belle II will continue the search for NP
through precision measurements in the b-quark system.
There are a variety of ways in which NP in B decays can
be observed [1]. In this NP search, the second and third
generation quarks and leptons may be quite special because
they are comparatively heavier and could be relatively
more sensitive to NP. As an example, in certain versions of
the two Higgs doublet models the couplings of the new
Higgs bosons are proportional to the masses and so NP
effects are more pronounced for the heavier generations.
Moreover, the constraints on NP involving, especially the
third generation leptons and quarks, are somewhat weaker
allowing for larger NP effects [2].
The semileptonic decays of B meson to the τ lepton is

mediated by a W boson in the SM and it is quite well
understood theoretically. In many models of NP this decay
gets contributions from additional states like new vector
bosons, leptoquarks or new scalar particles. These new
states can affect the semileptonic b → c and b → u
transitions. The exclusive decays B̄ → Dþτ−ν̄τ and B̄ →
D�þτ−ν̄τ are important places to look for NP because, being
three body decays, they offer a host of observables in the
angular distributions of the final state particles. The
theoretical uncertainties of the SM predictions have gone
down significantly in recent years because of the develop-
ments in heavy-quark effective theory (HQET). The exper-
imental situation has also improved a lot since the first
observation of the decay B̄ → D�þτ−ν̄τ in 2007 by the

Belle Collaboration [3]. After 2007 many improved
measurements have been reported by both the BABAR
and Belle Collaborations and the evidence for the decay
B̄ → Dþτ−ν̄τ has also been found [4–6]. Recently, the
BABAR Collaboration with their full data sample of an
integrated luminosity 426 fb−1 has reported the measure-
ments of the quantities [7,8]

RðDÞ ¼ BRðB̄ → Dþτ−ν̄τÞ
BRðB̄ → Dþl−ν̄lÞ

¼ 0.440� 0.058� 0.042;

RðD�Þ ¼ BRðB̄ → D�þτ−ν̄τÞ
BRðB̄ → D�l−ν̄lÞ

¼ 0.332� 0.024� 0.018;

ð1Þ

where l denotes the light lepton ðe; μÞ. The SM predictions
for RðDÞ and RðD�Þ are [7,9,10]

RðDÞ ¼ 0.297� 0.017;

RðD�Þ ¼ 0.252� 0.003; ð2Þ

which deviate from the BABAR measurements by 2σ and
2.7σ respectively. The BABAR Collaboration themselves
reported a 3.4σ deviation from SM when the two mea-
surements of Eq. (1) are taken together. In this work we do
not include the Belle measurements in our average.
These deviations could be sign of NP and already certain

models of NP have been considered to explain the data
[9,11–25]. In Ref. [13], we calculated various observables
in B̄ → Dþτ−ν̄τ and B̄ → D�þτ−ν̄τ decays with NP using
an effective Lagrangian approach. The Lagrangian contains
two quarks and two leptons scalar, pseudoscalar, vector,
axial vector and tensor operators. Considering subsets of
the NP operators at a time, the coefficient of these operators
can be fixed from the BABAR measurements and then one
can study the effect of these operators on the various
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observables. In [23] we extended the work of Ref. [13] by
providing the full angular distribution with NP. In particular
we focused on the CP violating observables which are
the triple product (TP) asymmetries [26]. In the SM these
TPs vanish to a very good approximation as the decay is
dominated by a single amplitude. Hence, nonzero mea-
surements of these terms are clear signs of NP without any
hadronic uncertainties. Note, in the presence of NP with
complex couplings the TPs are nonzero and depend on the
form factors. Another probe of CP violation using the
decay of the τ from B̄ → Dþτ−ν̄τ to multipion decays was
recently considered [27].
In this work we include tensor operators in the NP

effective Hamiltonian and study their effects on various
observables, particularly focusing on the azimuthal observ-
ables, including the triple products. Tensor operators were
discussed earlier for these decays in [18,21,24,25]. In this
work, for B̄ → D�þτ−ν̄τ, we present the full three-angle
and q2 angular distribution including tensor new-physics
operators with complex couplings. This represents the
full angular distribution with the most general new physics.
In our calculations we focus on the effects of the tensor
operators on observables that are sensitive to the azimuthal
angle χ which is the angle between the decay plane of the
D� meson and the off-shell W�. The triple products are the
term proportional to the sin χ in the angular distribution.

For completeness we will also discuss other observables
such as the q2 differential distribution as well as the
polarization and forward-backward asymmetries (FBAs).
Finally, we note that tensor operators are often accom-

panied by other operators in specific NPmodels. Hence as an
example of tensor operators we consider a leptoquark model
that has both tensor and scalar operators. We study how the
presence of the scalar operators modify the predictions of the
different observables in the angular distribution.
The paper is organized in the following manner. In

Sec. II we set up our formalism where we introduce the
effective Lagrangian for NP with tensor operators and
define the various observables in B̄ → D�þτ−ν̄τ decays.
In Sec. III we present an explicit leptoquark NP model
where we show how tensor operators may arise and
consider a few cases. In Sec. IV we present the numerical
predictions which include constraints on the NP couplings
as well as predictions for the various observables with NP
in B̄ → D�þτ−ν̄τ. Finally in Sec. V summarize the results of
our analysis.

II. FORMALISM

In the presence of NP, the effective Hamiltonian for the
quark-level transition b → cl−ν̄l can be written in the
form [28]

Heff ¼
4GFVcbffiffiffi

2
p ½ð1þ VLÞ½c̄γμPLb�½l̄γμPLνl� þ VR½c̄γμPRb�½l̄γμPLνl�

þ SL½c̄PLb�½l̄PLνl� þ SR½c̄PRb�½l̄PLνl� þ TL½c̄σμνPLb�½l̄σμνPLνl��; ð3Þ

where GF ¼ 1.1663787ð6Þ × 10−5 GeV−2 is the Fermi
coupling constant, Vcb is the Cabibbo-Kobayashi-Mas-
kawa matrix element, PL;R ¼ ð1∓γ5Þ=2 are the projectors
of negative/positive chiralities. We use σμν ¼ i½γμ; γν�=2
and assume the neutrino to be always left chiral. Further,
we do not assume any relation between b → ul−νl and
b → cl−ν̄l transitions and hence do not include constraints
from B → τντ. The SM effective Hamiltonian corresponds
to VL ¼ VR ¼ SL ¼ SR ¼ TL ¼ 0.

A. B̄ → D�þτ−ν̄τ angular distribution

The complete three-angle distribution for the decay B̄ →
D�ð→ DπÞl−ν̄l in the presence of NP can be expressed in
terms of four kinematic variables q2, two polar angles θl,
θD� , and the azimuthal angle χ. The angle θl is the polar
angle between the charged lepton and the direction oppo-
site to theD� meson in the (lνl) rest frame. The angle θD� is
the polar angle between the D meson and the direction of
the D� meson in the (Dπ) rest frame. The angle χ is the
azimuthal angle between the two decay planes spanned by
the 3-momenta of the (Dπ) and (lνl) systems. These angles

are described in Fig. 1. The three-angle distribution can be
obtained by using the helicity formalism.
We can write the angular distribution explicitly for easy

comparison with previous literature [29–32] in terms of the
helicity amplitudes

d4Γ
dq2d cos θld cos θD�dχ

¼ 9

32π
NF

�X8
i¼1

Ii þ
m2

l

q2
X8
j¼1

Ji

�
;

ð4Þ

B

D

l

x
y

z

*D*
l

−

FIG. 1 (color online). The description of the angles θl;D� and χ
in the angular distribution of B̄ → D�ð→ DπÞl−νl decay.
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where we can define the Ii and Ji as

I1 ¼ 4cos2θD� ðsin2θljA0j2 þ 8jA0T j2½1þ cos 2θl�Þ;

J1 ¼ 4cos2θD� ð½jA0j2cos2θl þ jAtPj2 − 2Re½AtPA�
0� cos θl� þ 4

�
jA0T j2ð1 − cos 2θlÞ −

�
m2

l

q2

�
−1=2

ReðA0TA0
�Þ
��

;

I2 ¼ sin2θD� ð½ðjA∥j2 þ jA⊥j2Þð1þ cos2θlÞ − 4Re½A∥A�⊥� cos θl� þ 8½ðjA∥T j2 þ jA⊥T j2Þð1 − cos2θlÞ�Þ;

J2 ¼ sin2θD�

�
sin2θlðjA∥j2 þ jA⊥j2Þ þ 8

�
ðjA∥T j2 þ jA⊥T j2Þð4þ cos2θlÞ

− 4ReðA∥TA⊥T
�Þ sin θl − 2

�
m2

l

q2

�
−1=2

ReðA∥TA∥
� þA⊥TA⊥�Þð1 − sin θlÞ

��
;

I3 ¼ −sin2θD�sin2θl cos 2χð½jA∥j2 − jA⊥j2� − 16½jA∥T j2 − jA⊥T j2�Þ;

J3 ¼ sin2θD�sin2θl cos 2χ

�
½jA∥j2 − jA⊥j2� − 16

�
m2

l

q2

�
−1=2

½jA∥T j2 − jA⊥T j2�
�
;

I4 ¼ −2
ffiffiffi
2

p
sin 2θD� sin θl cos χRe½A⊥A�

0�;

J4 ¼ 2
ffiffiffi
2

p
sin 2θD� sin θl cos χ

�
Re½A∥A�

tP� − 16

�
ReðA⊥TA�

0TÞ þ
�
m2

l

q2

�
−1=2

ReðA0TA⊥� þA⊥TA0
� −A∥TA

�
tPÞ

��
;

I5 ¼ 2
ffiffiffi
2

p
sin 2θD� sin θl cos θl cos χðRe½A∥A�

0� − 16Re½A∥TA
�
0T �Þ;

J5 ¼ −2
ffiffiffi
2

p
sin 2θD� sin θl cos θl cos χðRe½A∥A�

0� − 16½A∥TA
�
0T �Þ;

I6 ¼ 2sin2θD�sin2θl sin 2χIm½A∥A�⊥�;
J6 ¼ −2 sin2θD�sin2θl sin 2χIm½A∥A�⊥�;
I7 ¼ −2

ffiffiffi
2

p
sin 2θD� sin θl sin χIm½A∥A�

0�;

J7 ¼ −2
ffiffiffi
2

p
sin 2θD� sin θl sin χ

�
Im½A⊥A�

tP� − 4

�
m2

l

q2

�
−1=2

ImðA0TA∥
� −A∥TA

�
0 þA⊥TA�

tPÞ
�
;

I8 ¼
ffiffiffi
2

p
sin 2θD� sin 2θl sin χIm½A⊥A�

0�;
J8 ¼ −

ffiffiffi
2

p
sin 2θD� sin 2θl sin χIm½A⊥A�

0�: ð5Þ

The various helicity amplitudes are defined in the Appendix.
It will be convenient to rewrite the angular distribution as [33]

d4Γ
dq2d cos θld cos θD�dχ

¼ 9

32π
NFfcos2θD�ðV0

1 þ V0
2 cos 2θl þ V0

3 cos θlÞ þ sin2θD�ðVT
1 þ VT

2 cos 2θl þ VT
3 cos θlÞ

þ VT
4 sin

2θD�sin2θl cos 2χ þ V0T
1 sin 2θD� sin 2θl cos χ þ V0T

2 sin 2θD� sin θl cos χ

þ VT
5 sin

2θD�sin2θl sin 2χ þ V0T
3 sin 2θD� sin θl sin χ þ V0T

4 sin 2θD� sin 2θl sin χg; ð6Þ

where the quantity NF is

NF ¼
�
G2

FjpD� jjVcbj2q2
3 × 26π3m2

B

�
1 −

m2
l

q2

�
2

BrðD� → DπÞ
�
: ð7Þ

The momentum of the D� meson in the B meson rest
frame is denoted as jpD� j ¼ λ1=2ðm2

B;m
2
Dð�Þ ; q2Þ=2mB with

λða; b; cÞ ¼ a2 þ b2 þ c2 − 2ðabþ bcþ caÞ.
The twelve angular coefficients (Vi) depend on the

couplings, kinematic variables and form factors, and are

given in terms of B̄ → D�τν̄τ helicity amplitudes in the
Appendix. We use HQET to expand the form factors in
terms of certain parameters, which are then fixed from the
angular distribution for B → D�l−ν̄l, where l ¼ e; μ [29].
Our basis assumption is that B → D�l−ν̄l decays are
described by the SM.
The following single-differential angular distributions

allow access to various observables that can be used to
probe for NP. The differential decay rate dΓ=dq2 can be
obtained after performing integration over all the angles
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dΓ
dq2

¼ 3NF

4
ðAL þ ATÞ: ð8Þ

Here the D� meson’s longitudinal and transverse polari-
zation amplitudes AL and AT are

AL ¼
�
V0
1 −

1

3
V0
2

�
; AT ¼ 2

�
VT
1 −

1

3
VT
2

�
: ð9Þ

Furthermore, one can also explore the q2 dependent of ratio

RD� ðq2Þ ¼ dBr½B̄ → D�þτ−ν̄τ�=dq2
dBr½B̄ → D�l−ν̄l�=dq2

: ð10Þ

By integrating out the polar angles θl, θD� , and the
azimuthal angle χ in different kinematic regions, various
2-fold angular distributions can be obtained. For a detailed
discussion see our previous work [23]. Here, we have
updated these angular distributions with the new tensor
couplings. Our results agree with the corresponding angular
distributions in [25]. Several observables can be defined
through the 2-fold angular distributions. The D� polariza-
tion fraction FL, the forward-backward asymmetry AFB for

the leptons, the azimuthal asymmetries, including the three

transverse asymmetries Að1;2;3Þ
C , and the three T-odd CP

asymmetries Að1;2;3Þ
T , are defined in terms of angular

coefficients Vi
0s [23]:

FD�
L ðq2Þ ¼ AL

AL þ AT
AD�
FBðq2Þ ¼

VT
3 þ 1

2
V0
3

AL þ AT
;

Að1Þ
C ðq2Þ ¼ 4VT

4

3ðAL þ ATÞ
Að1Þ
T ðq2Þ ¼ 4VT

5

3ðAL þ ATÞ
;

Að2Þ
C ðq2Þ ¼ V0T

2

ðAL þ ATÞ
Að2Þ
T ðq2Þ ¼ V0T

3

ðAL þ ATÞ
;

Að3Þ
C ðq2Þ ¼ V0T

1

ðAL þ ATÞ
Að3Þ
T ðq2Þ ¼ V0T

4

ðAL þ ATÞ
: ð11Þ

In closing this section we note that even though we are
focused on the B̄ → D�þτ−ν̄τ decay the B̄ → Dþτ−ν̄τ decay
is used to constrain the NP operators. The B̄ → Dþτ−ν̄τ
angular distribution, with tensor operators, can be
written as

dΓD

dq2d cos θl
¼ 2NDjpDj

�
jH0j2sin2θl þ

m2
l

q2
ðH0 cos θl −HtSÞ2

þ 8

���
1þm2

l

q2

�
þ
�
1 −

m2
l

q2

�
cos 2θl

�
jHT j2 −

mlffiffiffiffiffi
q2

p Re½HTðH�
0 −H�

tS cos θlÞ�
��

; ð12Þ

where the prefactor ND ¼ G2
FjVcbj2q2
256π3m2

B
ð1 − m2

l
q2 Þ2. The helicity amplitudes are

H0 ¼
ffiffiffiffiffi
λD
q2

s
ð1þ gVÞFþðq2Þ; Ht ¼

m2
B −m2

Dffiffiffiffiffi
q2

p ð1þ gVÞF0ðq2Þ;

HS ¼ −
m2

B −m2
D

mbðμÞ −mcðμÞ
gSF0ðq2Þ; HT ¼ −

ffiffiffiffiffi
λD

p
mB þmD

TLFTðq2Þ; ð13Þ

where gV;A ¼ VR � VL and gS;P ¼ SR � SL. In addition,
the Ht and the HS amplitudes arise in the combination,

HtS ¼
�
Ht −

ffiffiffiffiffi
q2

p
mτ

HS

�
: ð14Þ

The results in Eq. (12) agree with the B̄ → Dþτ−ν̄τ angular
distribution in [25].

III. AN EXPLICIT MODEL

Many extensions of the SM, motivated by a unified
description of quarks and leptons, predict the existence of
new scalar and vector bosons, called leptoquarks, which

decay into a quark and a lepton. These particles carry
nonzero baryon and lepton numbers, color and fractional
electric charges. The most general dimension four
SUð3Þc × SUð2ÞL ×Uð1ÞY invariant Lagrangian of lepto-
quarks satisfying baryon and lepton number conservation
was considered in Ref [34]. As the tensor operators in the
effective Lagrangian get contributions only from scalar
leptoquarks, we will focus only on scalar leptoquarks and
consider the case where the leptoquark is a weak doublet or
a weak singlet. The weak doublet leptoquark, R2 has the
quantum numbers ð3; 2; 7=6Þ under SUð3Þc × SUð2ÞL ×
Uð1ÞY while the singlet leptoquark S1 has the quantum
numbers ð3̄; 1; 1=3Þ.
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The interaction Lagrangian that induces contributions to
the b → clν̄ process is [18]

LLQ
2 ¼ ðgij2LūiRRT

2LjL þ gij2RQ̄iLiσ2ljRR2Þ;
LLQ
0 ¼ ðgij1L; Q̄c

iLiσ2LjL þ gij1R; ū
c
iRljRÞS1; ð15Þ

where Qi and Lj are the left-handed quark and lepton
SUð2ÞL doublets respectively, while uiR, diR and ljR are
the right-handed up, down quark and charged lepton
SUð2ÞL singlets. Indices i and j denote the generations
of quarks and leptons, and ψc ¼ Cψ̄T ¼ Cγ0ψ� is a charge-
conjugated fermion field. The fermion fields are given in
the gauge eigenstate basis and one should make the
transformation to the mass basis. Assuming the quark
mixing matrices to be hierarchical, and considering only
the leading contribution we can ignore the effect of mixing.
After performing the Fierz transformations, one finds the
general Wilson coefficients at the leptoquark mass scale
contributing to the b → cτν̄l process:

SL ¼ 1

2
ffiffiffi
2

p
GFVcb

�
−
g331Lg

23�
1R

2M2
S1

−
g232Lg

33�
2R

2M2
R2

�
;

TL ¼ 1

2
ffiffiffi
2

p
GFVcb

�
g331Lg

23�
1R

8M2
S1

−
g232Lg

33�
2R

8M2
R2

�
: ð16Þ

It is clear from Eq. (16) that the weak singlet leptoquark and
the weak doublet can add constructively or destructively to
the Wilson’s coefficients of the scalar and tensor operators
in the effective Hamiltonian. We can now consider various
scenarios. In the first case the singlet and the doublet scalar
leptoquark couplings are such that the scalar operator
couplings are enhanced and the tensor operator couplings
are suppressed. This scenarios has been studied before
[13,23]. Hence, the first case, called case (a), we will study
is when the tensor operators is enhanced and the scalar
operator suppressed. The results of the pure tensor coupling
are presented in the next section.
In this section we will also consider the possibilities

where both the scalar and the tensor operators are present
and are of similar sizes. In the most general case both the
singlet and doublet leptoquarks are present and so both
the scalar and tensor operators appear in the effective
Hamiltonian. As there is limited experimental information,
including both the singlet and the doublet leptoquarks will
allow us more flexibility in fitting for the Wilson’s
coefficients but this will come with the price of less precise
predictions for the various observables. We can, therefore,
consider the simpler cases when only a singlet or a doublet
leptoquark are present. In these cases, from Eq. (16) the
coefficients of scalar operators and the tensor operators
have the same magnitudes. One can now consider two
further cases:
Case (b): In this case only the weak doublet scalar

leptoquark R2 is present. It was shown recently [35] that

this is one of the two minimal renormalizable scalar
leptoquark model, where the standard model is augmented
only by one additional scalar representation of SUð3Þ ×
SUð2Þ × Uð1Þ and which do not allow proton decay at the
tree level.
The relations between the scalar and tensor couplings in

Eq. (16) are valid at the leptoquark mass scale, mLQ. We
have to run them down to the b-quark mass scale using the
scale dependence of the scalar and tensor currents at
leading logarithm approximation

SLðμbÞ ¼
�
αsðmtÞ
αsðμbÞ

� γS

2β
ð5Þ
0

�
αsðmLQÞ
αsðmtÞ

� γS

2β
ð6Þ
0 SLðmLQÞ;

TLðμbÞ ¼
�
αsðmtÞ
αsðμbÞ

� γT

2β
ð5Þ
0

�
αsðmLQÞ
αsðmtÞ

� γT

2β
ð6Þ
0 TLðmLQÞ; ð17Þ

where the anomalous dimensions of the scalar and tensor
operators are γS ¼ −6CF ¼ −8, γT ¼ 2CF ¼ 8=3 respec-

tively and βðfÞ0 ¼ 11 − 2nf=3 [24]. Choosing a value for the
leptoquark mass we can run the couplings to the b-quark
scale which is chosen to be μb ¼ m̄b ¼ 4.2 GeV.
In the simplified scenario with the presence of only one

type of leptoquark, namely R2 or S1, the scalar SL and
tensor TL Wilson coefficients are no longer independent:
one finds that at the scale of leptoquark mass, mLQ,
SLðmLQÞ ¼ �TLðmLQÞ. Then, using Eq. (17), one obtains
the relation at the bottom mass scale,

SLðm̄bÞ≃�7.8TLðm̄bÞ; ð18Þ
for a leptoquark mass of 1 TeV [18].
It is interesting to note that the same coupling that

appears in the process b → cτν̄l also appears in the
t → cτþτ− decay and if the components of the doublet
leptoquark have the same mass, then we can have a predic-
tion for this decay based on data from the B → Dð�Þτν̄τ
transition.
Case (c): In this case only the singlet leptoquark is

present and the relevant Wilson’s coefficients can be
obtained from Eq. (16).

IV. NUMERICAL ANALYSIS

The model independent and dependent numerical results
for the various observables in the angular distribution of
B̄ → D�þτ−ν̄τ decay are discussed in this section.

A. Model independent results

For the numerical calculation, we use the B → D and
B → D� form factors in the HQET framework [36,37].
A detailed discussions on the B → D� and B → D form
factors and their numerical values can be found in [25]. The
constraints on the complex NP couplings in the b → cl−ν̄l
effective Hamiltonian come from the measured RðDÞ and
RðD�Þ in Eq. (1) at 95% C.L. We vary the free parameters
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in the HQET form factors within their error bars. All
the other numerical values are taken from [38] and [39].
The allowed ranges for the NP couplings are then
used for predicting the possible allowed ranges for the
observables.
It is important to point out that the combination of

couplings gV ¼ VR þ VL appears in both RðDÞ and RðD�Þ,
while gA ¼ VR − VL appears only in RðD�Þ. VR and VL
receive constraints from both RðDÞ and RðD�Þ. While, the
combination of couplings gS ¼ SR þ SL appears only in

RðDÞ, gP ¼ SR − SL appears only in RðD�Þ. If NP is
established in both RðDÞ and RðD�Þ then the cases of
pure gA or gS or gP coupling are ruled out. A detailed
discussion on the effects of vector and scalar couplings on
the various observables in the decays B̄ → D�l−ν̄l and
B̄ → Dþl−ν̄l can be found in our previous works [13,23].
We first consider the case (a) of the previous section

where only the NP tensor operator is present in the effective
Hamiltonian. In Fig. 2, the constraint on the parameter
space of the pure tensor coupling by both RðDÞ and RðD�Þ
measurements at 95% C.L. is shown. We find that the
magnitude of tensor coupling satisfies jTLj < 0.5.
The predictions for the differential branching ratio

(DBR), FD�
L ðq2Þ, RðD�Þðq2Þ and AD�

FBðq2Þ are shown in
Fig. 3 for the allowed values of tensor coupling. It is clear
that, the DBR, FD�

L ðq2Þ, and RðD�Þðq2Þ get considerable
deviation from their SM expectation in this new-physics
scenario. The contribution of pure tensor coupling to the
forward-backward asymmetry is of the order of mτ=

ffiffiffiffiffi
q2

p
,

and AD�
FBðq2Þ behaves similar to its SM expectation.

We now wish to analyze the sensitivity of the q2-
integrated azimuthal symmetries on the new tensor cou-
pling, and we present correlations of these symmetries with
respect to the integrated FBA. The q2-integrated FBA

hAD�
FBi, the three transverse asymmetries hAð1;2;3Þ

C i, and
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FIG. 2 (color online). The allowed region for the complex
coupling TL for case (a) at 95% C.L.
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FIG. 3 (color online). The predictions for the observables FD�
L ðq2Þ, differential branching ratio, RD� ðq2Þ, and AD�

FBðq2Þ for the decay
B̄0 → D�þτντ in the presence of only TL coupling. The green band corresponds to the SM prediction and its uncertainties. The values of
the coupling TL are chosen to show the maximum and minimum deviations from the SM expectations.
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the three T-odd CP asymmetries hAð1;2;3Þ
T i can be obtained

by separately integrating out the q2 dependence in the
numerator and denominator of these quantities as expressed
in Eq. (11). The panels of Fig. 4 show the correlation
between the above six q2-integrated asymmetries and
hAFBi for the decay B̄0 → D�þτντ. Note that, in this plot
we also include predictions for the vector and scalar NP
couplings. In each cases, the NP couplings satisfy the
current measurements of RD and RD� at 95% C.L. It is clear

from these plots that hAD�
FBi and hAð1;2;3Þ

C i get considerable
deviations from their SM expectation once we include the

NP couplings. The T-odd CP asymmetry hAð2Þ
T i is sensitive

to all NP couplings, and is strongly correlated with hAD�
FBi.

The scalar NP couplings can enhance this asymmetry about

5% from its SM value. On the other hand, hAð1Þ
T i and hAð3Þ

T i
are only sensitive to the vector couplings. These asymme-
tries are also strongly correlated with hAD�

FBi in the presence
of vector NP couplings, and can be enhanced up to 3%
from its SM value. Hence, the predictions for hAD�

FBi and
azimuthal symmetries have varying sensitivities to the
different NP scenarios and these observables can be power-
ful probes of the structure of NP.

B. Leptoquark model results

We next move to case (b) and case (c) for the leptoquark
with the mass scale of the order of 1 TeV. The allowed
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FIG. 4 (color online). The correlation plots between hAð1;2;3Þ
C i (hAð1;2;3Þ

T i) and hAD�
FBi in the presence of complex NP couplings. The red,

orange and blue scatter points correspond to pure vector NP couplings ðVL; VRÞ, pure scalar NP couplings ðSL; SRÞ, and pure tensor
NP coupling ðTLÞ. The scatter points are allowed by measurements of RD and RD� at 95% C.L. The green points correspond to the
SM predictions for these quantities.
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ranges for the leptoquark couplings at μ ¼ mb from the
measured RðDÞ and RðD�Þ values within the 2σ level are
shown in Fig. 5. These results suggest that the magnitudes
of the doublet and singlet leptoquark effective couplings,
g232Lg

33�
2R and g331Lg

23�
1R are of Oð1Þ. A similar conclusion is

obtained in [25].

The correlations between the asymmetries hAð1;2;3Þ
C i and

hAð2Þ
T i and RD� are shown in Fig. 6 for three different NP

scenarios: only SL, only R2 leptoquark (SL ¼ 7.8TL), and
only S1 leptoquark (SL ¼ −7.8TL). These results imply

that hAð1;2;3Þ
C i and hAð2Þ

T i can get sizeable contributions from
the leptoquarks within the measured region of RD� . It is

interesting to note that the behavior of hAð2Þ
C i is different for

R2 and S1 leptoquark couplings. Hence this observable can
be used to discriminate between the singlet and the doublet
leptoquark models.
In Fig. 7 we plot the correlations of hAð1;2;3Þ

C i and hAð2Þ
T i

with hAD�
FBi in the presence of R2 and S1 leptoquark

contributions. In each case, the constraints on the lepto-
quark couplings at μ ¼ mb are from the current measure-
ments of RD and RD� within the 2 σ level. As in the case of
pure tensor couplings, these plots show that the different
leptoquark models produce very different predictions for
the azimuthal asymmetries and so these observables can be
very sensitive in ruling out different leptoquark models.
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FIG. 5 (color online). The allowed regions for the leptoquark effective couplings SL and TL at μb ¼ 4.2 GeV. The constraints on these
NP couplings are from the measured RðDÞ and RðD�Þ within the 2σ level. The red (blue) scatter points correspond to S1ðR2Þ leptoquark
models.
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V. DISCUSSION AND SUMMARY

In summary we have discussed the effects of tensor
operators in the decay B̄ → D�þτ−ν̄τ motivated by recent
measurements which show deviation from the SM pre-
dictions in B̄ → D�þτ−ν̄τ and B̄ → Dþτ−ν̄τ. In this work
we have presented the angular distribution for B̄ →
D�þτ−ν̄τ with the most general new-physics structure
including tensor operators. We have then discussed the
effects of the tensor operators on various observables that
can be constructed out of the angular distribution. Our
focus was on the azimuthal observables which include the
important CP violating triple product asymmetries. We
found that these azimuthal asymmetries, integrated over q2,
have different sensitivities to different NP structures and
hence they can be powerful probes of the nature of the NP.
These asymmetries also show strong correlations with the
q2-integrated forward-backward asymmetry. Tensor oper-
ators naturally arise in scalar leptoquark models and are
accompanied by other scalar operators. We considered two
leptoquark models where the leptoquarks are weak singlets
and doublets. We discussed the predictions for the azimu-
thal observables in these models and found that these
observables are very efficient in discriminating between the
two leptoquark models. In particular we found that there is
cancellation between the scalar and tensor components in
the scalar doublet leptoquark model for one of the triple

product asymmetries while this is not the case for the scalar
singlet leptoquark model.

ACKNOWLEDGMENTS

This work was supported in part by the National Science
Foundation under Grant No. NSF PHY-1068052.

APPENDIX: ANGULAR COEFFICIENTS

The twelve angular coefficients Vλ
i in the B → D�ð→

DπÞl−ν̄l angular distribution depend on the couplings,
kinematic variables and form factors. The expressions
for these coefficients are given in terms of the hadronic
helicity amplitudes of the B̄ → D�τν̄τ decay and summa-
rized according to the D� helicity combinations λ1λ2:
The longitudinal V0’s (λ1λ2 ¼ 00) are given by

V0
1 ¼ 2

��
1þm2

l

q2

�
ðjA0j2 þ 16jA0T j2Þ þ

2m2
l

q2
jAtPj2

−
16mlffiffiffiffiffi

q2
p Re½A0TA�

0�
�
;

V0
2 ¼ 2

�
1 −

m2
l

q2

�
½−jA0j2 þ 16jA0T j2�;

V0
3 ¼ −8Re

�
m2

l

q2
AtPA�

0 −
4mlffiffiffiffiffi
q2

p AtPA�
0T

�
: ðA1Þ
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FIG. 7 (color online). The correlation plots between hAð1;2;3Þ
C i, hAð2Þ

T i, and hAD�
FBi in the presence of leptoquark contributions. The

red (blue) scatter points correspond to R2ðS1Þ leptoquarks. These scatter points satisfy the current measurements of RD and RD� within
the 2 σ level. The green points in each panel correspond to the SM predictions for these quantities.
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The transverse VT’s (λ1λ2 ¼ þþ;−−;þ−;−þ) are given by

VT
1 ¼

�
1

2

�
3þm2

l

q2

�
ðjA∥j2 þ jA⊥j2Þ þ 8

�
1þ 3m2

l

q2

�
ðjA∥T j2 þ jA⊥T j2Þ −

16mlffiffiffiffiffi
q2

p Re½A∥TA�
∥ þA⊥TA�⊥�

�
;

VT
2 ¼

�
1 −

m2
l

q2

��
1

2
ðjA∥j2 þ jA⊥j2Þ − 8ðjA∥T j2 þ jA⊥T j2Þ

�
;

VT
3 ¼ 4Re

�
−A∥A�⊥ −

16m2
l

q2
A∥TA�⊥T þ 4mlffiffiffiffiffi

q2
p ðA⊥TA�

∥ þA∥TA�⊥Þ
�
;

VT
4 ¼

�
1 −

m2
l

q2

�
½−ðjA∥j2 − jA⊥j2Þ þ 16ðjA∥T j2 − jA⊥T j2Þ�;

VT
5 ¼ 2

�
1 −

m2
l

q2

�
Im½A∥A�⊥�: ðA2Þ

The mixed V0T’s (λ1λ2 ¼ 0�;�0) are given by

V0T
1 ¼

ffiffiffi
2

p �
1 −

m2
l

q2

�
Re½A∥A�

0 − 16A∥TA�
0T �;

V0T
2 ¼ 2

ffiffiffi
2

p
Re

�
−A⊥A�

0 þ
m2

l

q2
ðA∥A�

tP − 16A⊥TA�
0TÞ þ

4mlffiffiffiffiffi
q2

p ðA0TA�⊥ þA⊥TA�
0 −A∥TA�

tPÞ
�
;

V0T
3 ¼ 2

ffiffiffi
2

p
Im

�
−A∥A�

0 þ
m2

l

q2
A⊥A�

tP þ 4mlffiffiffiffiffi
q2

p ðA0TA�
∥ −A∥TA�

0 þA⊥TA�
tPÞ

�
;

V0T
4 ¼

ffiffiffi
2

p �
1 −

m2
l

q2

�
Im½A⊥A�

0�: ðA3Þ

The expressions for the hadronic helicity amplitudes can be found in terms of form factors for the B → D� matrix
elements [40]

A0 ¼
ðmB þmD�Þ
2mD�

ffiffiffiffiffi
q2

p �
ðm2

B −m2
D� − q2ÞA1ðq2Þ −

λD�

ðmB þmD� Þ2 A2ðq2Þ
�
ð1 − gAÞ;

A� ¼
�
ðmB þmD� ÞA1ðq2Þð1 − gAÞ∓

ffiffiffiffiffiffiffi
λD�

p
ðmB þmD� ÞVðq

2Þð1þ gVÞ
�
;

At ¼
ffiffiffiffiffiffiffi
λD�

p ffiffiffiffiffi
q2

p A0ðq2Þð1 − gAÞ;

AP ¼
ffiffiffiffiffiffiffi
λD�

p
ðmbðμÞ þmcðμÞÞ

A0ðq2ÞgP;

A0T ¼ TL

2mD�

�
ðm2

B þ 3m2
D� − q2ÞT2ðq2Þ −

λD�

m2
B −m2

D�
T3ðq2Þ

�
;

A�T ¼ TL

�
m2

B −m2
D�ffiffiffiffiffi

q2
p T2ðq2Þ �

ffiffiffiffiffiffiffi
λD�

q2

s
T1ðq2Þ

�
: ðA4Þ

The t and the P amplitudes arise in the combination

AtP ¼
�
At þ

ffiffiffiffiffi
q2

p
mτ

AP

�
: ðA5Þ
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Further, we define the transversity amplitudes A∥ðTÞ and A⊥ðTÞ in terms of the helicity amplitudes A�ðTÞ as

A∥ðTÞ ¼
1ffiffiffi
2

p ðAþðþTÞ þA−ð−TÞÞ;

A⊥ðTÞ ¼
1ffiffiffi
2

p ðAþðþTÞ −A−ð−TÞÞ: ðA6Þ

The expressions for the form factors A1ðq2Þ, A2ðq2Þ, A0ðq2Þ, Vðq2Þ, T1ðq2Þ, T2ðq2Þ, and T3ðq2Þ in the heavy-quark
effective theory can be found in [25,41].
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