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Azimuthal B — D*77v, angular distribution with tensor operators
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In a recent paper we performed a comprehensive study of the impact of new-physics operators with
different Lorentz structures on B — D**[~y, decays, £ = e~, u~, 7, involving the b — clv, transition. In
this work we extend the previous calculation by including tensor operators. In the case of B — D**7717,,
we present the full three-angle and ¢ angular distribution with tensor new-physics operators with complex
couplings. The impact of the tensor operators on various observables in the angular distribution, specially
the azimuthal observables including the CP violating triple product asymmetries are discussed. It is shown
that these azimuthal observables are very useful in discriminating different new-physics operators. Finally
we consider new-physics leptoquark models with tensor interactions and show how the presence of

additional scalar operators modify the predictions of the tensor operators.
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I. INTRODUCTION

The search for new physics (NP) beyond the Standard
Model (SM) of particle physics is going on at the
energy frontier in colliders such as the LHC and at the
intensity frontier at high luminosity experiments. In
the intensity frontier, the B factories, BABAR and Belle,
have produced an enormous quantity of data and there is
still a lot of data to be analyzed from both experiments.
The LHCb and Belle II will continue the search for NP
through precision measurements in the b-quark system.
There are a variety of ways in which NP in B decays can
be observed [1]. In this NP search, the second and third
generation quarks and leptons may be quite special because
they are comparatively heavier and could be relatively
more sensitive to NP. As an example, in certain versions of
the two Higgs doublet models the couplings of the new
Higgs bosons are proportional to the masses and so NP
effects are more pronounced for the heavier generations.
Moreover, the constraints on NP involving, especially the
third generation leptons and quarks, are somewhat weaker
allowing for larger NP effects [2].

The semileptonic decays of B meson to the z lepton is
mediated by a W boson in the SM and it is quite well
understood theoretically. In many models of NP this decay
gets contributions from additional states like new vector
bosons, leptoquarks or new scalar particles. These new
states can affect the semileptonic b — ¢ and b — u
transitions. The exclusive decays B — D' v, and B —
D**t~ 1, are important places to look for NP because, being
three body decays, they offer a host of observables in the
angular distributions of the final state particles. The
theoretical uncertainties of the SM predictions have gone
down significantly in recent years because of the develop-
ments in heavy-quark effective theory (HQET). The exper-
imental situation has also improved a lot since the first
observation of the decay B — D**7~r, in 2007 by the
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Belle Collaboration [3]. After 2007 many improved
measurements have been reported by both the BABAR
and Belle Collaborations and the evidence for the decay
B — D*7r7r, has also been found [4-6]. Recently, the
BABAR Collaboration with their full data sample of an
integrated luminosity 426 fb~! has reported the measure-
ments of the quantities [7,8]

= 0.440 £ 0.058 £ 0.042,

= 0.332 +0.024 £ 0.018,
(1)

where [ denotes the light lepton (e, ). The SM predictions
for R(D) and R(D*) are [7,9,10]

R(D) = 0.297 +0.017,
R(D*) = 0.252 + 0.003, (2)

which deviate from the BABAR measurements by 20 and
2.70 respectively. The BABAR Collaboration themselves
reported a 3.40 deviation from SM when the two mea-
surements of Eq. (1) are taken together. In this work we do
not include the Belle measurements in our average.
These deviations could be sign of NP and already certain
models of NP have been considered to explain the data
[9,11-25]. In Ref. [13], we calculated various observables
in B— D't v, and B - D*T771, decays with NP using
an effective Lagrangian approach. The Lagrangian contains
two quarks and two leptons scalar, pseudoscalar, vector,
axial vector and tensor operators. Considering subsets of
the NP operators at a time, the coefficient of these operators
can be fixed from the BABAR measurements and then one
can study the effect of these operators on the various
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observables. In [23] we extended the work of Ref. [13] by
providing the full angular distribution with NP. In particular
we focused on the CP violating observables which are
the triple product (TP) asymmetries [26]. In the SM these
TPs vanish to a very good approximation as the decay is
dominated by a single amplitude. Hence, nonzero mea-
surements of these terms are clear signs of NP without any
hadronic uncertainties. Note, in the presence of NP with
complex couplings the TPs are nonzero and depend on the
form factors. Another probe of CP violation using the
decay of the 7 from B — D*77 7, to multipion decays was
recently considered [27].

In this work we include tensor operators in the NP
effective Hamiltonian and study their effects on various
observables, particularly focusing on the azimuthal observ-
ables, including the triple products. Tensor operators were
discussed earlier for these decays in [18,21,24,25]. In this
work, for B — D**171,, we present the full three-angle
and ¢* angular distribution including tensor new-physics
operators with complex couplings. This represents the
full angular distribution with the most general new physics.
In our calculations we focus on the effects of the tensor
operators on observables that are sensitive to the azimuthal
angle y which is the angle between the decay plane of the
D* meson and the off-shell W*. The triple products are the
term proportional to the siny in the angular distribution.
|
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For completeness we will also discuss other observables
such as the ¢> differential distribution as well as the
polarization and forward-backward asymmetries (FBAs).

Finally, we note that tensor operators are often accom-
panied by other operators in specific NP models. Hence as an
example of tensor operators we consider a leptoquark model
that has both tensor and scalar operators. We study how the
presence of the scalar operators modify the predictions of the
different observables in the angular distribution.

The paper is organized in the following manner. In
Sec. II we set up our formalism where we introduce the
effective Lagrangian for NP with tensor operators and
define the various observables in B — D*Tz~r, decays.
In Sec. IIl we present an explicit leptoquark NP model
where we show how tensor operators may arise and
consider a few cases. In Sec. IV we present the numerical
predictions which include constraints on the NP couplings
as well as predictions for the various observables with NP
in B — D**7~ . Finally in Sec. V summarize the results of
our analysis.

II. FORMALISM

In the presence of NP, the effective Hamiltonian for the
quark-level transition b — cl"y; can be written in the
form [28]

(1 + V) [ey, PLb)[ly* PLy)) + Vg[er* Prb)[ly, Pry)]

+ SL[ePLb[IP )] + Sg[cPgb][IPLv)] + Ty [co* Py b [lo,, Pru)]. (3)

where Gy = 1.1663787(6) x 107> GeV~2 is the Fermi
coupling constant, V., is the Cabibbo-Kobayashi-Mas-
kawa matrix element, P; = (1Fy5)/2 are the projectors
of negative/positive chiralities. We use o, = i[y,.7,]/2
and assume the neutrino to be always left chiral. Further,
we do not assume any relation between b — ul"v; and
b — cl™p, transitions and hence do not include constraints
from B — tv,. The SM effective Hamiltonian corresponds
toV, =Vp=8, =8S=T,=0.

A. B —» D*"7 v, angular distribution

The complete three-angle distribution for the decay B —
D*(— Dr)l"; in the presence of NP can be expressed in
terms of four kinematic variables g, two polar angles 0,
0p+, and the azimuthal angle y. The angle 0, is the polar
angle between the charged lepton and the direction oppo-
site to the D* meson in the (/v;) rest frame. The angle - is
the polar angle between the D meson and the direction of
the D* meson in the (Dx) rest frame. The angle y is the
azimuthal angle between the two decay planes spanned by
the 3-momenta of the (Dx) and (Iv;) systems. These angles

|
are described in Fig. 1. The three-angle distribution can be
obtained by using the helicity formalism.

We can write the angular distribution explicitly for easy
comparison with previous literature [29-32] in terms of the
helicity amplitudes

~n

d‘r 9 8 8
5 :—NF( I,-+m—ZJ,->,
dg-dcos@,dcosOp-dy 32n P

(4)

777

FIG. 1 (color online).  The description of the angles 6, p- and y
in the angular distribution of B — D*(— Dx)l v, decay.
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where we can define the /; and J; as

I} = 4cos*0p (sin?0;| Aol + 8|Agr|*[1 + cos 20))),

J1 = 4cos?0p- ([|Ag|*cos®0; + |Ap|* — 2Re[A,p.Aj] cos 0)] +
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2
mj

1o (1 = c0520) = (7)™ Reldor )| )

1, = sin*0p: ([(|4) > + |AL[*)(1 + cos?0,) — 4Re[ A A" ] cos 0] + 8[(| A [> + [ALr[*) (1 = cos?0)))),

J, = sin’6p. (sinZH,(A”|2 +]AL*) +8 [(|A”T|2 + AL 7]?) (4 + cos?6))

2
ny

—-1/2
- 4R6(A||T.AJ_T*) sin 91 - 2<?> RG(A”T.A”* + AJ_TAJ_*)(l — sin 91):| > s

I3 = —sin®0p-sin0; cos 21 ([|A) > — |AL*] = 16[| A, 1> = A7),

) ) m?\ ~1/2
J; = sin’@p.-sin6, cos 2)(<[|.A|||2 - AP - 16<q—21) (1A 1* = |ALT|2]>,

I, = —2+/25in 20 sin 6, cos yRe[A | Aj],

2
ny

-1/2
J4 = 2\/5 sin 29]_)* sin 9[ COSy <RC[A” ;FP] —16 [Re(ALTAST) + <q2> RC(A()TAL* + ALTAO* - 'AIITA;(P):| ) s

Is = 2v/25in26),- sin 6, cos 0 cos y(Re[ A Aj] — 16Re[A;;A¥;]),
Js = —2V/25sin 20, sin 0, cos 0, cos y(Re[ Ay A5] — 16[A;,Al;]).

Is = 2sin®6)-sin?6; sin 2 Im[A A7 ],
Jo = —2sin*0)-sin’6; sin 2yIm[A} A% ],
I; = —2+/2sin 20 sin 6, sin yIm[.A} Af],

2
m

-1/2
J; = —2+/25sin 20 sin @, siny <Im[ALAfP] -4 <q2) Im(Agr Ay* = Ay ;A + ALTA?P)) ,

Iy = V2sin 20y sin 26, sin yIm[A | A,

Jg = —V/25in 26, sin 26, sin yIm[A, A?]. (5)
The various helicity amplitudes are defined in the Appendix.
It will be convenient to rewrite the angular distribution as [33]
d'T _ 2 NF{cos?0p- (V) + V9 cos 20, + Vi cos 0)) + sin0p. (VI + VI cos 20, + VI cos 6))
dq*dcos 0,dcosOp-dy  32n b2 3 ! 2 3
+ VTsin?@p.sin0; cos 2y + VT sin 20 sin 20, cos y + V97 sin 20, sin §; cos y
+ VIsin®0)sin?0; sin 2y + VY sin 20 sin 0, siny + V{7 sin 260, sin 26, siny }, (6)

where the quantity N is

2 2.2 2\ 2
Np= {GF"’D*6V;”|2‘1 <1 —’"5) Br(D* — Dﬂ)]. (7)
3x 2% my q
The momentum of the D* meson in the B meson rest
frame is denoted as |pp:| = 2'/*(mp, m? ., ¢*)/2mp with
Ma,b,c) = a*+ b*>+ c* =2(ab + bc + ca).
The twelve angular coefficients (V;) depend on the

couplings, kinematic variables and form factors, and are

I
given in terms of B — D*zi, helicity amplitudes in the
Appendix. We use HQET to expand the form factors in
terms of certain parameters, which are then fixed from the
angular distribution for B - D*¢~v,, where £ = e, u [29].
Our basis assumption is that B — D*/ v, decays are

described by the SM.
The following single-differential angular distributions

allow access to various observables that can be used to
probe for NP. The differential decay rate d"/dg”* can be
obtained after performing integration over all the angles
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dl' 3Np
—=—(A, +Ar). 8
= g At A ®)
Here the D* meson’s longitudinal and transverse polari-
zation amplitudes A; and Ay are

1 1

Furthermore, one can also explore the g> dependent of ratio

_ dBr[B - D"t i)/dg?
" dBi[B > D0 v)/dgt

RD*(q2> (10)

By integrating out the polar angles 6;,, 8p-, and the
azimuthal angle y in different kinematic regions, various
2-fold angular distributions can be obtained. For a detailed
discussion see our previous work [23]. Here, we have
updated these angular distributions with the new tensor
couplings. Our results agree with the corresponding angular
distributions in [25]. Several observables can be defined
through the 2-fold angular distributions. The D* polariza-
tion fraction Fp, the forward-backward asymmetry Apg for
|

dTD

_arv mj
dg*dcosO, 2
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the leptons, the azimuthal asymmetries, including the three
transverse asymmetries A<Cl’2’3), and the three T-odd CP

asymmetries A(T1 '2’3>, are defined in terms of angular

coefficients V,'s [23]:

@ = Al =t

M) = A =
WA= s A=

A - s A = s

In closing this section we note that even though we are
focused on the B — D**771, decay the B — D" 71, decay
is used to constrain the NP operators. The B — D777,
angular distribution, with tensor operators, can be
written as

= 2Np|pp| [|H0|2Sin291 + p (Hgcos6, — Hs)*

2 2
" 8<<<1 +%> N (1 _%> cos 201) |HT|2 - mlzRe[HT(HS - H;FS COSQI)]>:| s (12)

2
!

_ GV, m
where the prefactor Np = Zes 5 (1 -7

A
Hy = Uq_g(l + gv)F 1 (4%), H,

9sFo(q%),

Ho—— my — mj,
my(u) — me(p)

where gy 4 = Vy £V, and ggp = Sg £ S5,. In addition,
the H, and the Hg amplitudes arise in the combination,

H; = <H,—\/q_2HS>. (14)

T

The results in Eq. (12) agree with the B — D*z~r, angular
distribution in [25].

III. AN EXPLICIT MODEL

Many extensions of the SM, motivated by a unified
description of quarks and leptons, predict the existence of
new scalar and vector bosons, called leptoquarks, which

Ve

—=1)2. The helicity amplitudes are

myp —m
:%(lJrgv)Fo(qz),
q
Vap
H=——Y"" T F.(q¢? s 13
T mg + mp L T(Q) ( )

|
decay into a quark and a lepton. These particles carry
nonzero baryon and lepton numbers, color and fractional
electric charges. The most general dimension four
SU(3). x SU(2), x U(1)y invariant Lagrangian of lepto-
quarks satisfying baryon and lepton number conservation
was considered in Ref [34]. As the tensor operators in the
effective Lagrangian get contributions only from scalar
leptoquarks, we will focus only on scalar leptoquarks and
consider the case where the leptoquark is a weak doublet or
a weak singlet. The weak doublet leptoquark, R, has the
quantum numbers (3,2,7/6) under SU(3), x SU(2), x
U(1), while the singlet leptoquark S; has the quantum
numbers (3,1,1/3).

074013-4
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The interaction Lagrangian that induces contributions to
the b — c£v process is [18]

L
[’ Q= (QZLMzRRzL/L + QZRQtLlGZKJRRZ)

C(%Q = (glu QiszLjL + 91R’ gt jr)St, (15)

where Q; and L; are the left-handed quark and lepton
SU(2), doublets respectlvely, while u;g, d;g and £ are
the right-handed up, down quark and charged lepton
SU(2), singlets. Indices i and j denote the generations
of quarks and leptons, and ¢ = Cy’ = Cy%* is a charge-
conjugated fermion field. The fermion fields are given in
the gauge eigenstate basis and one should make the
transformation to the mass basis. Assuming the quark
mixing matrices to be hierarchical, and considering only
the leading contribution we can ignore the effect of mixing.
After performing the Fierz transformations, one finds the
general Wilson coefficients at the leptoquark mass scale
contributing to the b — czv; process:

5, = ! [ GiL 9Tk 9%%93%*}
2V2GpV, | 2M5  2M% |
2V2GpV oy, 8M§1 SM%ez

Itis clear from Eq. (16) that the weak singlet leptoquark and
the weak doublet can add constructively or destructively to
the Wilson’s coefficients of the scalar and tensor operators
in the effective Hamiltonian. We can now consider various
scenarios. In the first case the singlet and the doublet scalar
leptoquark couplings are such that the scalar operator
couplings are enhanced and the tensor operator couplings
are suppressed. This scenarios has been studied before
[13,23]. Hence, the first case, called case (a), we will study
is when the tensor operators is enhanced and the scalar
operator suppressed. The results of the pure tensor coupling
are presented in the next section.

In this section we will also consider the possibilities
where both the scalar and the tensor operators are present
and are of similar sizes. In the most general case both the
singlet and doublet leptoquarks are present and so both
the scalar and tensor operators appear in the effective
Hamiltonian. As there is limited experimental information,
including both the singlet and the doublet leptoquarks will
allow us more flexibility in fitting for the Wilson’s
coefficients but this will come with the price of less precise
predictions for the various observables. We can, therefore,
consider the simpler cases when only a singlet or a doublet
leptoquark are present. In these cases, from Eq. (16) the
coefficients of scalar operators and the tensor operators
have the same magnitudes. One can now consider two
further cases:

Case (b): In this case only the weak doublet scalar
leptoquark R, is present. It was shown recently [35] that

PHYSICAL REVIEW D 90, 074013 (2014)

this is one of the two minimal renormalizable scalar
leptoquark model, where the standard model is augmented
only by one additional scalar representation of SU(3) x
SU(2) x U(1) and which do not allow proton decay at the
tree level.

The relations between the scalar and tensor couplings in
Eq. (16) are valid at the leptoquark mass scale, m; . We
have to run them down to the b-quark mass scale using the
scale dependence of the scalar and tensor currents at
leading logarithm approximation

o o R
ri =[] g | T 09

where the anomalous dimensions of the scalar and tensor
operators are yg = —6Cp = =8, yp = 2Cp = 8/3 respec-
tively and ﬁ(()f )= 11-2n /3 [24]. Choosing a value for the
leptoquark mass we can run the couplings to the b-quark
scale which is chosen to be y;, = m;, = 4.2 GeV.

In the simplified scenario with the presence of only one
type of leptoquark, namely R, or S;, the scalar S; and
tensor 7; Wilson coefficients are no longer independent:
one finds that at the scale of leptoquark mass, mygq,
Sp(myq) = £T,(myq). Then, using Eq. (17), one obtains
the relation at the bottom mass scale,

Sy (my) =

for a leptoquark mass of 1 TeV [18].

It is interesting to note that the same coupling that
appears in the process b — cti; also appears in the
t — ct™t” decay and if the components of the doublet
leptoquark have the same mass, then we can have a predic-
tion for this decay based on data from the B — D" 7o
transition.

Case (c): In this case only the singlet leptoquark is
present and the relevant Wilson’s coefficients can be
obtained from Eq. (16).

+7.8T, (iny). (18)

IV. NUMERICAL ANALYSIS

The model independent and dependent numerical results
for the various observables in the angular distribution of
B — D*"t7r, decay are discussed in this section.

A. Model independent results

For the numerical calculation, we use the B — D and
B — D* form factors in the HQET framework [36,37].
A detailed discussions on the B — D* and B — D form
factors and their numerical values can be found in [25]. The
constraints on the complex NP couplings in the b — ¢l 7
effective Hamiltonian come from the measured R(D) and
R(D*) in Eq. (1) at 95% C.L. We vary the free parameters

074013-5
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FIG. 2 (color online). The allowed region for the complex
coupling 7', for case (a) at 95% C.L.

in the HQET form factors within their error bars. All
the other numerical values are taken from [38] and [39].
The allowed ranges for the NP couplings are then
used for predicting the possible allowed ranges for the
observables.

It is important to point out that the combination of
couplings gy = Vi + V| appears in both R(D) and R(D*),
while g, = Vi — V. appears only in R(D*). Vi and V.
receive constraints from both R(D) and R(D*). While, the
combination of couplings g¢ = Sg + S; appears only in

PHYSICAL REVIEW D 90, 074013 (2014)

R(D), gp = Sg— S, appears only in R(D*). If NP is
established in both R(D) and R(D*) then the cases of
pure g4 or gg or gp coupling are ruled out. A detailed
discussion on the effects of vector and scalar couplings on
the various observables in the decays B — D*¢ v, and
B — D" ¢, can be found in our previous works [13,23].

We first consider the case (a) of the previous section
where only the NP tensor operator is present in the effective
Hamiltonian. In Fig. 2, the constraint on the parameter
space of the pure tensor coupling by both R(D) and R(D*)
measurements at 95% C.L. is shown. We find that the
magnitude of tensor coupling satisfies |7;| < 0.5.

The predictions for the differential branching ratio
(DBR), F?"(¢%), R(D*)(q*) and AB;(g*) are shown in
Fig. 3 for the allowed values of tensor coupling. It is clear
that, the DBR, F?"(g?), and R(D*)(q?) get considerable
deviation from their SM expectation in this new-physics
scenario. The contribution of pure tensor coupling to the

forward-backward asymmetry is of the order of m,/ \/_2
and AB;(g?) behaves similar to its SM expectation.

We now wish to analyze the sensitivity of the ¢’-
integrated azimuthal symmetries on the new tensor cou-
pling, and we present correlations of these symmetries with
respect to the integrated FBA. The g*-integrated FBA
4(123)

1.0

Only T, presents

FP (g%

0.0 :
4 5 6 71 8§ 9 10
7'[GeV?]
Only T} presents
1.0 T T r r
]
o8 B -»D**tv, y,
. “=:: --------- o
& 0.6f ‘*::'_ ______
_"Q ’/"’4 =<
X 0.4f I
: 7 Sso
P e
,'6
0.2} &
%
‘0
0.0 -

7*[GeV?*]

(AB;), the three transverse asymmetries (

Only T}, presents

0.5 y r :
B'»D*r Ve
& 04 o .
% /" ™
9 0.3F I/' e :"és\\\
o 7 -~ N\,
\Q\i III //, ) \\\
Nc‘ 0.2+ ’ O \
= /7 ’ Ay
S~ ! l, \
E /7 \
2 01l 7 ’/ \
,/
0.0 :
4 5 6 7 8 9 10
7'[GeV’]
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1.0 T T T . .
B'oD* Ve
0.5-
&
S
af
<

-1.0

7’[GeV?]

FIG. 3 (color online). The predictions for the observables 7" (¢*), differential branching ratio, Rp-(¢*), and AZ;(g*) for the decay
B® — D**zu, in the presence of only T, coupling. The green band corresponds to the SM prediction and its uncertainties. The values of
the coupling T, are chosen to show the maximum and minimum deviations from the SM expectations.
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FIG. 4 (color online). The correlation plots between (A(Cl'2’3)> ((A(T1 ’2’3)>) and (AR;) in the presence of complex NP couplings. The red,
orange and blue scatter points correspond to pure vector NP couplings (V;, V), pure scalar NP couplings (S;, Sk), and pure tensor
NP coupling (7). The scatter points are allowed by measurements of R, and Rp- at 95% C.L. The green points correspond to the

SM predictions for these quantities.

the three T-odd CP asymmetries (A(T1 ’2’3)> can be obtained
by separately integrating out the > dependence in the
numerator and denominator of these quantities as expressed
in Eq. (11). The panels of Fig. 4 show the correlation
between the above six ¢’-integrated asymmetries and
(Apg) for the decay B — D**1v,. Note that, in this plot
we also include predictions for the vector and scalar NP
couplings. In each cases, the NP couplings satisfy the

current measurements of R, and Rp- at 95% C.L. It is clear
from these plots that (AL;) and (A(C1 ’2’3)) get considerable
deviations from their SM expectation once we include the
NP couplings. The T-odd CP asymmetry (A(T2 )> is sensitive

to all NP couplings, and is strongly correlated with (ALg).

The scalar NP couplings can enhance this asymmetry about
5% from its SM value. On the other hand, (A(T1 )> and (A(T3 )>
are only sensitive to the vector couplings. These asymme-
tries are also strongly correlated with (AE;) in the presence
of vector NP couplings, and can be enhanced up to 3%
from its SM value. Hence, the predictions for (AZ;) and
azimuthal symmetries have varying sensitivities to the
different NP scenarios and these observables can be power-
ful probes of the structure of NP.

B. Leptoquark model results

We next move to case (b) and case (c) for the leptoquark
with the mass scale of the order of 1 TeV. The allowed
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FIG. 5 (color online).
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The allowed regions for the leptoquark effective couplings S; and T'; at u;, = 4.2 GeV. The constraints on these
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ranges for the leptoquark couplings at g = m; from the
measured R(D) and R(D*) values within the 2¢ level are
shown in Fig. 5. These results suggest that the magnitudes
of the doublet and singlet leptoquark effective couplings,
By and g3 gix are of O(1). A similar conclusion is
obtained in [25].

The correlations between the asymmetries (Aél ’2’3)> and

<A(T2 )> and Rp- are shown in Fig. 6 for three different NP
scenarios: only S;, only R, leptoquark (S; = 7.8T), and
only S; leptoquark (S; = —7.8T;). These results imply
that (A(C1 ’2’3)) and <A(T2 )> can get sizeable contributions from
the leptoquarks within the measured region of Rp-. It is

interesting to note that the behavior of (A(C2 )) is different for

R, and S leptoquark couplings. Hence this observable can
be used to discriminate between the singlet and the doublet
leptoquark models.

In Fig. 7 we plot the correlations of (A<Cl’2’3)> and (A(T2 )>
with (AZ;) in the presence of R, and S, leptoquark
contributions. In each case, the constraints on the lepto-
quark couplings at 4 = m,, are from the current measure-
ments of Ry and Ry« within the 2 ¢ level. As in the case of
pure tensor couplings, these plots show that the different
leptoquark models produce very different predictions for
the azimuthal asymmetries and so these observables can be
very sensitive in ruling out different leptoquark models.
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V. DISCUSSION AND SUMMARY

In summary we have discussed the effects of tensor
operators in the decay B — D**7~r, motivated by recent
measurements which show deviation from the SM pre-
dictions in B — D**77 7, and B — D*7r,. In this work
we have presented the angular distribution for B —
D**t7, with the most general new-physics structure
including tensor operators. We have then discussed the
effects of the tensor operators on various observables that
can be constructed out of the angular distribution. Our
focus was on the azimuthal observables which include the
important CP violating triple product asymmetries. We
found that these azimuthal asymmetries, integrated over g2,
have different sensitivities to different NP structures and
hence they can be powerful probes of the nature of the NP.
These asymmetries also show strong correlations with the
g*-integrated forward-backward asymmetry. Tensor oper-
ators naturally arise in scalar leptoquark models and are
accompanied by other scalar operators. We considered two
leptoquark models where the leptoquarks are weak singlets
and doublets. We discussed the predictions for the azimu-
thal observables in these models and found that these
observables are very efficient in discriminating between the
two leptoquark models. In particular we found that there is
cancellation between the scalar and tensor components in
the scalar doublet leptoquark model for one of the triple

product asymmetries while this is not the case for the scalar
singlet leptoquark model.
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APPENDIX: ANGULAR COEFFICIENTS

The twelve angular coefficients V# in the B — D*(—
Dr)l"p; angular distribution depend on the couplings,
kinematic variables and form factors. The expressions
for these coefficients are given in terms of the hadronic
helicity amplitudes of the B — D*zi, decay and summa-
rized according to the D* helicity combinations 4;4,:

The longitudinal Vs (1,4, = 00) are given by

2m?

7 |AIP|2

m2
v = 2[(1 +q2’) (Mof? + 161 Aoz 2) +
_ 16m,
V&

0 m12 2 2
;=2 1-? [—[Ao|* + 16] Aoz |?],

Relor A

2
0 _ mj . 4m N
V3 = —8Re |:? -AtP-A() - \/—q_z.A,p.AOT:| . (Al)
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The transverse V'’s (414, = ++, ——, +—, —+) are given by

3m 16
i Re

1
>(|'A||T|2 + |-ALT| ) \/? [AIITAﬁ + -ALTAj_] s

= [2 (3+ q2>(|A”|2+Al| )+8<1 +

vi= (1-25) AR+ ) - <|,4,.T|2+|Au2>],
4ml

. lem? . »
VT 4Re|: A”A q l A”TAJ_T + \/—~ (ALTA” + A”TA ):|

2
Vi= (1 _q_>[ (> = JALP) + 16(J A2 = AL )],

m2
vl =2 (1 — q—é) Im[A A7 (A2)
The mixed V'’s (4,4, = 0+, +0) are given by
0T mj
Vl = \/§<1 - ?> RC[A“.AB - 16A||T~A6T]’
(o * m% * * 477’11 * * *
VT = 2V2Re |- AL A + e (AyAsp — 16A 7 AG) + Nz (Aor AT + AL A — AyrAjp) |
4
VI = 2V/2 Im{ Ay A + ’"’ LA AL + \/’”_’ (Agp Al — Ay A + AHA:P)] ,
(A3)

Vo =2 <1 J:;) Im[A, A7),

The expressions for the hadronic helicity amplitudes can be found in terms of form factors for the B — D* matrix

elements [40]

Ao = I iy = ) = s ()] (1= )
mp- mpg + Mp-
A, = {<m3 )AL (@)1 = g0)F—Y2 ()1 + gv>],
(mp + mp-)
VAp+
,At A 1—g4),
N o(g*)(1 = ga)
Ap = Vi Ao(q?)gp,

(my, (1) + m(p))

T Ap+
Aor = Zm; [(m% +3mpy = ¢*)To(q%) = m%%mszz(qz)],
my — mb, Ap*
A =Ty [ﬁ Ty(q?) + ?Tl(q2>]~ (A4)
q
The ¢ and the P amplitudes arise in the combination
/P

Atp = A[ + AP . (AS)
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Further, we define the transversity amplitudes .A”(T) and A, (7) in terms of the helicity amplitudes A, 7 as

1
AII(T) = ﬁ (A+(+T) + A—(—T))’

1

Ay =—7= (A — An)-

V2

(A6)

The expressions for the form factors A,(q?), A>(¢?), Ao(q?), V(q?), T1(¢%), T2(q?), and T5(g?) in the heavy-quark

effective theory can be found in [25,41].
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