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The entropic approach to dissociation of bound states immersed in strongly coupled systems is
developed. In such systems, the excitations of the bound state are often delocalized and characterized by a
large entropy, so that the bound state is strongly entangled with the rest of the statistical system. If this
entropy S increases with the separation r between the constituents of the bound state, S ¼ SðrÞ, then the
resulting entropic force F ¼ T ∂S=∂r (T is temperature) can drive the dissociation process. As a specific
example, we consider the case of heavy quarkonium in strongly coupled quark-gluon plasma, where lattice
QCD indicates a large amount of entropy associated with the heavy quark pair at temperatures 0.9Tc ≤
T ≤ 1.5Tc (Tc is the deconfinement temperature); this entropy SðrÞ grows with the interquark distance r.
We argue that the entropic mechanism results in an anomalously strong quarkonium suppression in the
temperature range near Tc. This entropic self-destruction may thus explain why the experimentally
measured quarkonium nuclear modification factor at RHIC (lower energy density) is smaller than at LHC
(higher energy density), possibly resolving the “quarkonium suppression puzzle”—all of the previously
known mechanisms of quarkonium dissociation operate more effectively at higher energy densities, and
this contradicts the data. Moreover, we find that near Tc the entropic force leads to delocalization of the
bound hadron states; we argue that this delocalization may be the mechanism underlying deconfinement.
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I. INTRODUCTION

Entropy is one of the key concepts in modern science,
with applications that far transcend the boundaries of its
native thermodynamics. For example, the entropy of the
black hole [1,2] was instrumental in understanding the
interplay of quantum mechanics and gravity, and sub-
sequently led to the holographic [3,4] gauge/gravity corre-
spondence [5–7]. The entanglement entropy provides a
nonlocal order parameter of topological order in strongly
coupled systems [8]. The absence of entropy production
serves as a stringent constraint on anomaly-induced non-
dissipative transport [9], fixing most of the transport coef-
ficients in chiral magnetohydrodynamics [10,11]. Quite
often, the considerations based on the entropy allow us to
understand the behavior of complex systems with compli-
cated dynamics not amenable to microscopic treatment.
In particular, if the entropy S of a composite system

depends on the coordinate r of a constituent, it is useful to
introduce the notion of the entropic force with magnitude

FðrÞ ¼ T
∂S
∂r : ð1Þ

The entropic force does not describe any additional funda-
mental interaction; instead, it is an emergent force that stems
from multiple interactions driving the system, in accord with
the second law of thermodynamics, toward the state with a
larger entropy. The entropic force was originally introduced

[12] to explain the elasticity of polymer strands in rubber.
The rubber polymer strands are long, and when stretched,
possess smaller entropy than in the ground state where their
motions are unrestricted. The stretched polymers thus tend to
contract to the ground state, and this causes a macroscopic
entropic force resulting in the contraction of the stretched
rubber band. The underlying fundamental interactions are of
course electromagnetic, but the notion of entropic force
allows us to bypass the consideration of complicated micro-
scopic dynamics.
The notion of entropic force offers a simple alternative

way of deriving kinetic theory; for reader’s convenience,
we will outline below an entropic approach to diffusion
developed by Neumann [13]. It has been proposed by
Verlinde [14] that the entropic force may play a much more
profound role in physics, being responsible for gravity. This
intriguing idea is a subject of a lively controversy and will
not be discussed here. We will restrict ourselves to
statistical physics where the notion of the entropic force
has been firmly established. Moreover, the entropic force is
even put to practical use in entropic self-assembly, where
nanoparticles arrange themselves in a desired pattern that
maximizes their entropy; see e.g. [15].
In this paper, we address the behavior of bound states in

QCD matter at finite temperature. We will argue that the
process of deconfinement can be viewed as an entropic self-
destruction, when bound hadron states are driven toward a
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delocalized state that maximizes the entropy of the system.
This delocalization occurs at temperatures around the
deconfinement temperature, and may be considered as
an entropic representation of the deconfinement itself.
Specifically, we consider the dissociation of heavy quar-
konia in quark-gluon plasma (originally proposed as a
signature of deconfinement in [16]) within this entropic
framework. In this case, the increase of the entropy
associated with the heavy quark-antiquark pair with
the interquark distance has been observed in lattice QCD
[17–19], and so the entropic force (1) should be present.
The physical reason for this increase of the entropy with

the interquark distance is likely the abundance of the
physical states that become available for the separating
heavy quarks—while at short distances the color dipole
moment of the pair is small and it decouples from the
medium, at larger distances the heavy quarks may form
extended bound states characterized by a larger entropy.
This picture is supported by the recent lattice results [20]
indicating that close to the crossover transition the charmed
degrees of freedom can no longer be described using an
uncorrelated gas of known hadrons. In string picture, this
increasing entropy is associated with the entropy of a “long
string” [21–25] connecting the heavy quark pair; the
condensation of long strings (equivalent to a black hole
formation [26]) describes a deconfined phase. The con-
densation of long strings (or “string nets”) can also describe
the topological phases in condensed matter systems [27],
implying an interesting cross-disciplinary connection.
Indeed, it has been proposed recently that QCD matter
can be viewed as a topological phase [28].
By (1), the increase of the entropy with the quark-

antiquark distance leads to the entropic force that points
outward and can induce the self-destruction of the bound
state. Below we will find that the resulting delocalization of
heavy quarks, and thus the quarkonium suppression rate, is
maximal near the deconfinement transition temperature.
This provides a possible explanation for the puzzling
energy dependence of the heavy quarkonium nuclear
modification factor observed at RHIC [29] and LHC
[30]: even though the density of produced matter is higher
at LHC than at RHIC, the nuclear modification factor at
LHC appears larger than at RHIC. It has been pointed out
[31] that an appropriate measure of charmonium suppres-
sion is the ratio of the hidden-to-open charm, and not the
nuclear modification factor (which is the normalized ratio
of nucleus-nucleus and pp charmonium production cross
sections). Even so, to reconcile the increase of the char-
monium nuclear modification factor at the LHC with the
stronger suppression expected in conventional scenarios
would require a large increase in the production of open
charm at the LHC, which would be a puzzle in itself; the
forthcoming data on open charm production at small
transverse momentum will clarify the situation. A possible
explanation of the charmonium suppression puzzle is the

heavy quark recombination [32,33], see [34] for a recent
review. However, here we propose an alternative explan-
ation linked to the nature of deconfinement transition.

II. ENTROPIC VIEW ON EINSTEIN’S DIFFUSION

Let us begin by summarizing the entropic approach to
diffusion proposed by Neumann [13]; see [35] for a recent
discussion. Consider a particle released at the origin r ¼ 0.
The number of states for the particle at distances between
r and rþ dr is proportional to the volume dVðrÞ ¼
4πr2dr≡ΩðrÞdr, and the corresponding r-dependent part
of the entropy is

SðrÞ ¼ k lnΩðrÞ ¼ 2k ln rþ const; ð2Þ
where we wrote explicitly the Boltzmann constant k. The
resulting entropic force is

FðrÞ ¼ T
∂S
∂r ¼ 2kT

r
: ð3Þ

In a viscous fluid, the ensemble average of the entropic
force is equilibrated by the average of the Stokes force that
is proportional to the particle’s velocity,

hFðrÞi ¼ c

�
dr
dt

�
; ð4Þ

for a spherical particle of radius R the constant c in the
Stokes force is proportional to the shear viscosity of the
fluid η:

c ¼ 6πRη: ð5Þ
In using the hydrodynamical notion of viscosity, we
assume that the number of interactions needed to change
r substantially is very large. The ensemble average is thus
performed over the continuous three-dimensional Gaussian
probability distribution

PðrÞ ¼ 4r2ffiffiffi
π

p
qðtÞ3 exp

�
−

r2

qðtÞ2
�
; ð6Þ

defined as follows: after time t the particle will be located
between r and rþ dr with the probability PðrÞdr normal-
ized by

R
PðrÞdr ¼ 1, and qðtÞ is the most probable value

of rðtÞ. It is well known that the Gaussian distribution as a
limit of Bernoullian distributions when the number of steps
in a walk becomes very large [36].
The averages of different powers of r over the distribu-

tion (6) are given by

hr2ðtÞi ¼ 3q2ðtÞ=2; ð7Þ

hrðtÞi ¼ 2qðtÞ= ffiffiffi
π

p
; ð8Þ

h1=rðtÞi ¼ 2=ð ffiffiffi
π

p
qðtÞÞ: ð9Þ
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Substituting (8) and (9) into (4) and using the expression
for the entropic force (3), we get the differential equation

qdq ¼ 2Ddt; ð10Þ
where D is the diffusion coefficient that according to (5) is
given by

D ¼ kT
c

¼ kT
6πRη

: ð11Þ

The solution of (10) consistent with the initial condition
qðt ¼ 0Þ ¼ 0 is

q2ðtÞ ¼ 4Dt: ð12Þ
Using hx2i ¼ hr2i=3 for isotropic diffusion in three spatial
dimensions, and q2 ¼ 2r2=3 ¼ 2x2, we get the Einstein
relation for diffusion:

hx2ðtÞi ¼ 2Dt: ð13Þ

III. CHANDRASEKHAR’S LAW

Let us now consider the particle bound to the origin by a
quadratic potential UðrÞ ¼ ar2=2 resulting in the Hooke’s
force

FH ¼ −
∂U
∂r ¼ −ar: ð14Þ

Equating the average of the force FH to the average of the
entropic force (3) (pointing in the opposite direction)
similarly to (4), we get

ahri ¼ 2kT

�
1

r

�
: ð15Þ

Using (8), (9), and q2 ¼ 2hx2i we get

hx2i ¼ kT
a
: ð16Þ

This is the classic Chandrasekhar’s law [36] underlying the
theory of thermal expansion. Note that this derivation based
on the entropic force [13] is significantly simpler than the
original one [36].
Ifweconsider the force (14) as resulting from the interaction

among the constituents of a bound state, then we can note that
unlike in the case of diffusion (13), the distance between the
constituents does not increase with time, so the state does not
dissolve. However the square of the effective size of the bound
state grows linearly with temperature.

IV. THE LAW FOR LINEAR CONFINEMENT

Let us now assume a linear confining potential UðrÞ ¼
σr with a string tension σ; the corresponding force is
Fc ¼ −∂U=∂r ¼ −σ. The balance of the confining and
entropic forces yields

σ ¼ 2kT

�
1

r

�
: ð17Þ

Using (9) we get

q2ðtÞ ¼ 16

π

ðkTÞ2
σ2

; ð18Þ

since hx2i ¼ q2=2 we find for the average distance

hx2i ¼ 8

π

�
kT
σ

�
2

: ð19Þ

We thus find that, in analogy with Chandrasekhar’s law, the
square of the average distance between the constituents
grows with temperature, but for the linear confining potential
the dependence on the temperature is quadratic. This means
that hadronic systems bound by the confining potential
undergo a much more pronounced “thermal expansion” than
the ones governed by Chandrasekhar’s law.
Let us investigate the consequences of the relation (19)

for the dissociation of quarkonium in quark-gluon plasma.
As the temperature T of the plasma grows, the average
distance between the heavy quark and antiquark will
increase, and at some value T ¼ Td will reach the distance
xsðTÞ at which the potential is screened and the entangle-
ment entropy no longer depends on the distance, so the
quarks become uncorrelated. It is natural to associate this
temperature Td with the dissociation temperature at which
the heavy quarkonium “melts.” The string tension also has
a mild dependence on the temperature σ ¼ σðTÞ. We thus
get from (19) an equation for the dissociation temperature:

hx2sðTÞi ¼
8

π

�
kT
σðTÞ

�
2

: ð20Þ

The screening length xsðTÞ and the string tension σðTÞ
have been extensively studied in Euclidean lattice QCD
simulations, see e.g. [17–19]; using this input, we can solve
(20) and find the dissociation temperature Td. Using the
lattice data from [19], we get an estimate of the dissociation
temperature, Td ≃ 300 MeV. However, as we will now
discuss, this estimate misses a very important feature of
the lattice data—a substantial entanglement of the heavy
quark pair with the quark-gluon plasma, and the entropy
associated with it [17–19].

V. ENTROPIC SELF-DESTRUCTION

The lattice QCD data clearly indicate the presence of a
significant additional entropy associated with a static heavy
quark-antiquark pair [17–19], see Fig. 1. Moreover, in a
broad range of quark-antiquark distances r, this entropy
S ¼ Sðr; TÞ increases linearly in r, indicating an exponen-
tial growth of the number of states ΩðrÞ with the distance.
The exponential growth of the number of states is in sharp
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contradiction with the conventional power law ΩðrÞ ∼ r2

[see (2)] that drives the usual diffusion described by
Einstein’s law (13). This behavior may result from the
presence of delocalized “long string” states that possess
large entropy far exceeding that of a two-particle quark-
antiquark state, see Fig. 2. In other words, the quark-
antiquark pair is strongly entangled with the rest of the
system.
Within the range of distances where the entropy is

approximately linear in r (see Fig. 1) Sðr; TÞ ¼ ks0ðTÞrþ
const, the entropic force

F ¼ T
∂Sðr; TÞ

∂r ¼ kTs0ðTÞ ð21Þ

does not fall off with the distance unlike (3) and is thus
much more efficient in dissociating the bound states.
At short distances r, the quark and antiquark represent a

small color dipole and decouple from long wavelength
gluon excitations. Because of this, the entanglement of the
pair with the rest of the system is small, the corresponding
entropy as indicated by Fig. 1 vanishes, and the heavy
quarkonium is intact. In this regime the dominant

mechanism of heavy quarkonium dissociation is by the
impact of thermal gluon fluctuations [37] through the QCD
version of photo-effect [38,39]. On the other hand, at large
distances the quark and antiquark are no longer correlated
and the entropy no longer depends on r. In this regime the
entropic force is dominated by the conventional expression
(2), and the motion of heavy quarks is driven by the
Einstein’s diffusion (13).
The difference in the dissociation mechanisms in the

hadron gas at T < Tc and in the deconfined phase around
Tc is illustrated in Fig. 2. In the hadron gas phase, the
confining interaction between the heavy quark and anti-
quark is screened by the produced light quark-antiquark
pair, leading to the production of two open charm mesons
(see left panel of Fig. 2). In this case the number of physical
states can be expected to grow as a square of the distance
between the heavy quark and antiquark, similar to the case
of diffusion (2). In the deconfined phase, the number of
physical states grows exponentially with the interquark
distance r, corresponding to the linear increase of entropy
with r observed at intermediate values of r, see Fig. 1. This
exponential growth likely originates from coupling to the
“long string” excitations that are characterized by a large
density of states, see the right panel of Fig. 2.
The presence of the entropy S associated with the quark

pair means that the free energy A and internal energy U
differ, since A ¼ U − TS. It has been proposed to use the
free energy [40], the internal energy [41,42], or combina-
tion of the two [43] as inputs in potential model calcu-
lations of heavy quarkonium spectra in the medium. In the
present author’s opinion, the entropy associated with the
quark pair signals that the pair couples to on-shell degrees
of freedom, and this coupling invalidates the key
assumption of the potential approach—namely, that the
interaction between the constituents is instantaneous. The
coupling to on-shell degrees of freedom (manifested by the
entropy) inevitably introduces retardation effects and leads
to the breakdown of the potential model. We thus need a
different treatment taking account of the entropy.
In the lattice setup, the quarks are static, and the

measured entropy [let us call it Slatðr; TÞ] does not include
the entropy (3) resulting from the quark motion in coor-
dinate space. Since the entropy is additive, the total entropic
force is thus given by the sum

FðrÞ ¼ T
∂Slatðr; TÞ

∂r þ 2kT
r

: ð22Þ

The balance of the average of (22) and the confining force
yields

T
∂Slatðr; TÞ

∂r þ 4kTffiffiffi
π

p
q
¼ ∂Uðr; TÞ

∂r ; ð23Þ

where we used (9).

FIG. 1 (color online). The additional entropy S1 (multiplied by
temperature T) associated with the color singlet quark-antiquark
state at temperature T ≃ 1.3Tc (Tc is the deconfinement temper-
ature) in 2 flavor lattice QCD as a function of the distance
between the quark and antiquark; from [19].

FIG. 2 (color online). The dissociation of heavy quark-antiquark
state in the hadron gas (left panel) and in the deconfined phase near
the transition temperature (right panel).
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Let us assume that both the entropy and the confining
potential are linear in r, Slatðr; TÞ ¼ ks0ðTÞrþ const and
Uðr; TÞ ¼ σðTÞr, as indicated by the lattice data at inter-
mediate distances r. Using q2 ¼ 2x2 we get from (23)

hx2i ¼ 8

π

�
σðTÞ
kT

− s0ðTÞ
�

−2
: ð24Þ

If we neglect the entropy Slat describing the entanglement
of quarkonium with the plasma and put s0ðTÞ ¼ 0 in (24),
we recover the law (19). The dependence of hx2i on the
temperature as given by (24) is illustrated on Fig. 3; to
produce this plot, we assumed for simplicity the fixed
values of σ ≃ 0.2 GeV2 and s0 ≃ 0.7 GeV.
It is clear from (24) that the entanglement entropy leads

to a dramatic increase of the average distance between the
heavy quarks. In particular, when

s0ðTÞ ¼ σðTÞ
kT

; ð25Þ

the quark-antiquark state becomes completely delocalized.
The condition for dissociation, as before, is hx2i ≥

hx2sðTÞi, where xsðTÞ is the screening distance at which
the confining potential is screened and the entanglement
entropy no longer depends on the distance. When the
condition (25) is met, hx2i → ∞, and no bound states exist
in equilibrium.
In two flavor QCD as in Fig. 1, kTc ≃ 200 MeV [44], so

the divergence of the relative distance occurs at

kT ¼ σðTÞ
s0ðTÞ≃ 280 MeV≃ 1.4kTc: ð26Þ

However the average distance starts to exceed the screening
length already around Tc, as can be seen from Fig. 3. This
means that around Tc all bound hadronic states should
cease to exist. It is thus tempting to speculate that the
condition (25) presents an entropic view on the

deconfinement itself. Namely, the deconfinement occurs
because the excited hadron states become delocalized and
entangled. This resembles the percolation picture of
deconfinement [45,46], in which the size of the percolation
cluster diverges at the deconfinement phase transition.
Our assumption of the linear dependence of the entropy

on the interquark distance r holds only within the range
0.2 fm < r < 0.6 fm, see Fig. 1; at larger distances, the
entropy flattens off. However it is this range of distances
which is crucial for our considerations, since once the
interquark distance exceeds the screening length the quar-
konium dissociates. At interquark distances exceeding the
screening length both the entropy and internal energy cease
to depend on r, and we get back to the Einstein diffusion of
heavy quarks in the plasma described by (13).
It is nevertheless interesting to examine the cases when

the entropy’s dependence on the interquark distance is
slower than linear, e.g. (i) logarithmic SðrÞ ¼ a ln r or
(ii) square root SðrÞ ¼ a0

ffiffiffi
r

p
. Repeating the computations

made above, we find that in the case (i) the square of the
interquark distance hx2i grows quadratically with the ratio
of temperature to string tension, similarly to (19) but with a
larger coefficient ð2aþ 4Þ2=2π; when a → 0, we recover
8=π as in (19). For the case (ii), we need the average of
1=

ffiffiffi
r

p
over the distribution (6); it is given by

�
1ffiffiffiffiffiffiffiffi
rðtÞp

�
¼ 2Γð5

4
Þffiffiffiffiffiffiffiffiffiffiffi

πqðtÞp : ð27Þ

The resulting expression for hx2i is easily obtained by
solving a quadratic equation for

ffiffiffi
q

p
; it has simple low

and high temperature T limits. At low T, we recover (19).
In high T limit, we get

hx2i ¼ a04Γð5
4
Þ4

2π2

�
kT
σ

�
4

; ð28Þ

which is quartic in temperature and is thus much faster
than (19).
We are now ready to address the heavy quarkonium

suppression puzzle. The key lattice observation in this case
is the following: the additional entropy associated with the
heavy quark pair peaks around Tc, and essentially vanishes
above 1.5Tc [19]. Since the entropic force drives the
dissociation process in our scenario, the suppression of
charmonia (which have the sizes affected by the presence of
the entropy) has to be stronger at temperatures close to Tc
(which is the case at RHIC energy) than at higher temper-
atures achieved at the LHC. On the other hand, most of the
bottomonium states have smaller sizes, and are thus much
less affected by the entropic forces. In accord with our
discussion above, this implies that their dissociation
mechanism is mostly conventional (Debye screening
[16] or thermal gluon activation [37]) leading to a sequen-
tial suppression pattern [47], and thus the bottomonium

0.0 0.2 0.4 0.6 0.8
T , GeV

0.5

1.0

1.5

2.0
< x2 >, fm2

FIG. 3 (color online). The mean radius squared hx2i of the
heavy quark-antiquark bound state in strongly coupled quark-
gluon plasma as a function of temperature T, as given by (24).
The value of ðhx2iÞ1=2 that exceeds the screening length implies
the dissociation of the bound state.
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suppression gets stronger at higher energy densities. The
available data indicate that the bottomonium suppression is
indeed stronger at the LHC [48,49] than at RHIC [50,51],
in accord with our scenario.
Of course, a detailed quantitative study including state-

of-the art analysis of the available lattice QCD results and a
real time evolution of the quark-gluon plasma is needed to
reach a definitive conclusion. This study is forthcoming,
and will be presented elsewhere. Nevertheless, the entropic
enhancement of charmonium dissociation at temperatures
close to Tc is a very robust feature of our scenario. Let us
note also a similarity to the peak in jet quenching close to
Tc pointed out theoretically in [52] and indicated by the
data on jet azimuthal distributions.

VI. CONCLUSIONS

The entanglement of a bound state with the rest of the
system can lead to its entropic self-destruction. This
happens in particular when the excitations of the bound
state are delocalized and characterized by a large entropy.
If this entropy increases with the separation between the
constituents of the bound state, then the resulting entropic
force can drive the dissociation process.
We have applied this treatment to the dissociation of

heavy quarkonium in quark-gluon plasma, where lattice
QCD indicates the presence of a large amount of entropy

associated with the heavy quark pair, and this entropy
grows with the interquark distance. We have argued that
“entropic self-destruction” can lead to a strong suppression
of the bound states close to Tc, possibly providing a
solution to the heavy quarkonium suppression puzzle. A
detailed quantitative study of this phenomenon will allow
us to check whether the proposed scenario adequately
describes the experimental observations.
The proposed mechanism of quarkonium dissociation

underlines the importance of entanglement and entropy in
the deconfinement transition. The presented approach to
dissociation of bound states may also find applications
in other systems with delocalized excitations, including
topological phases in condensed matter.
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