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The difference between the Λ and Λ̄ longitudinal spin transfers in the semi-inclusive deep inelastic
scattering process is intensively studied. The study is performed in the current fragmentation region, by
considering the intermediate hyperon decay processes and sea quark fragmentation processes, while the
strange sea ss̄ asymmetry in the nucleon is taken into account. The calculation in the light-cone quark-
diquark model shows that the strange sea asymmetry gives a proper trend to the difference between the Λ
and Λ̄ longitudinal spin transfers. When considering the nonzero final hadron transverse momentum, our
results can explain the COMPASS data reasonably. The nonzero final hadron transverse momentum is
interpreted as a natural constraint to the final hadron z range where the longitudinal spin transfer is more
sensitive to the strange sea ss̄ asymmetry.
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I. INTRODUCTION

The flavor structure of the nucleon sea, especially the
existence of the strange sea ss̄ asymmetry, is of great
importance in modern physics study. In earlier studies it is
commonly assumed that the strange sea of the nucleon is
particle-antiparticle ss̄ symmetric, but in fact this is man-
ifested neither theoretically nor experimentally. In the basis
of nonfundamental symmetry violation, much progress has
been made in the study of the strange sea ss̄ asymmetry. We
divide these studies into two groups. One is the study
mainly focusing on the nonperturbative process that is
believed to be able to produce an asymmetric intrinsic
strange sea [1–18]. The other is the next-to-next-to-leading
order perturbative evolution process which is pointed out to
be able to cause an extrinsic strange sea asymmetry [18,19].
Studies from the nonperturbative aspect have suggested that
the nuclear strange sea ss̄ asymmetry can give a possible
explanation to the experimental CCFR data [20] and the
NuTeV anomaly [21]. However, there is still no obvious
evidence for the existence of the asymmetric strange
nucleon sea.
The COMPASS collaboration measured the Λ and Λ̄

longitudinal spin transfers in the muon-nucleon semi-
inclusive deep inelastic scattering (SIDIS) process [22].
Their measurement shows a quite different behavior for the
Λ and Λ̄ on the x and xF dependences of the longitudinal
spin transfers. The spin transfer to Λ is small, compatible to
zero, in the entire domain of the measured kinematic
variables. In contrast, the longitudinal spin transfer to
the Λ̄ increases with xF reaching values of DΛ̄

LL ¼ 0.4 ∼
0.5. It is pointed out in Ref. [15] that accurate measurement

of the spin transfers to the Λ and Λ̄ in the COMPASS
kinematics has the potential to probe the intrinsic strange-
ness sea and their analysis mainly focuses on the target
fragmentation contribution. The possibility of the strange-
antistrange asymmetry contributing to the spin transfer
difference of the Λ and Λ̄ is pointed out in Refs. [23,24],
analyzed in the current fragmentation region.
In this paper, we provide a systematic study of the Λ and

Λ̄ longitudinal spin transfer difference in the current frag-
mentation region, by considering the intermediate hyperon
decay processes and sea quark fragmentation processes,
while the strange sea ss̄ asymmetry of the nucleon is also
taken into account in a reasonable way.
In Sec. II, we give the expression of the longitudinal spin

transfer in a general lp → lPhX SIDIS process. Also, we
calculate the valence quark distribution functions (PDFs) of
octet baryons and the Σ� hyperon in the light-cone quark-
spectator-diquark model, as they are needed when we use
the phenomenology Gribov-Lipatov relation to obtain the
quark fragmentation functions (FFs). Considering the
CTEQ5 parametrization [25] and the strange-antistrange
asymmetry in the baryon-meson fluctuation model [1], we
present our inputs of the nucleon FFs and PDFs in the
longitudinal spin transfer calculation in Sec. III. In Sec. IV,
we give our results and discussions using the exact
relationship of xF on the y and z kinematical variable
dependences. We compare the calculated results with the
COMPASS data. Our results indicate that the Λ and Λ̄
longitudinal spin transfer difference can be explained
reasonably within the light-cone SU(6) quark-spectator-
diquark model after considering the asymmetry between
the s and s̄ quark distributions in the nucleon as well as the
nonzero final hadron transverse momentum contribution.
Finally, we give a short summary in Sec. V.*mabq@pku.edu.cn
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II. THE LONGITUDINAL SPIN TRANSFER
AND THE LIGHT-CONE QUARK-SPECTATOR-

DIQUARK MODEL

We start from the collinear factorization theorem in the
SIDIS process. From the quantum chromodynamics (QCD)
factorization theorem, the high energy collision cross
section can be calculated by using the perturbation theory
complemented with the soft QCD effects embedded in
quark distributions and fragmentation functions, which are
universal.
The differential scattering cross section at the tree level

of a general lp ⟶ lPhX semi-inclusive deep inelastic
scattering process can be expressed as [26]

dσ

dxdydzd2 ~Ph⊥
¼ πα2em

2Q4

y
z
LμνWμν; ð1Þ

where x ¼ Q2

2P·q, y ¼ P·q
P·l and z ¼ P·Ph

P·q are three Lorentz

invariant variables, ~Ph⊥ is the transverse momentum of the
produced hadron in the γ�P collinear frame. Lμν and Wμν

are leptonic and hadronic tensors respectively and their
specific forms can be referred to Ref. [26].
Then in the parton model, for a longitudinally polarized

charged lepton beam and an unpolarized target, if the
produced hadron is polarized, the helicity asymmetry cross
section is obtained as

Aðx; y; zÞ ¼ dσ⇑ − dσ⇓
dσ⇑ þ dσ⇓

¼
4πα2emS
Q4

P
ae

2
axyð1− y=2Þfaðx;Q2ÞΔDaðz;Q2Þ

4πα2emS
Q4

P
ae

2
ax

1þð1−yÞ2
2

faðx;Q2ÞDaðz;Q2Þ
;

ð2Þ

where the subscript ⇑ or ⇓ denotes the helicity of the
produced baryon being parallel or antiparallel to the
helicity of the initial incident beam, ea is the electric
charge of a, faðx;Q2Þ is the unpolarized parton distribution
function, and Daðz;Q2Þ, ΔDaðz;Q2Þ are the unpolarized
and polarized fragmentation functions respectively, with a
representing the quark or antiquark flavors, −Q2 ¼ −Sxy
being the squared 4-momentum transfer of the virtual
photon, and S ¼ M2

p þm2
l þ 2MpEl being the squared

energy in the lepton-proton center-of-mass frame.
For a longitudinally polarized charged lepton beam and

an unpolarized target, if the longitudinal polarization of the
incoming lepton beam is PB, the struck quark acquires a
polarization Pq ¼ PBDðyÞ directed along its momentum.
The DðyÞ, whose explicit expression is

DðyÞ ¼ 1 − ð1 − yÞ2
1þ ð1 − yÞ2 ; ð3Þ

is the longitudinal depolarization factor taking into account
the loss of polarization of the virtual photon as compared
to that of the lepton. The PBDðyÞ distribution can be
determined by subtraction of the averaged distribution of
the sideband events from the distribution of the events in
the signal region according to the COMPASS experiment
[22]. The spin transfer describes the probability that the
polarization of the struck quark along the primary quan-
tization axis L is transferred to the Λ hyperon along the
secondary quantization axis L0. The longitudinal spin
transfer relates the produced Λ polarization P0

L to the
polarization of incoming lepton beam PB by [27]

PL0 ¼ PBDðyÞAΛ
LL0 ; ð4Þ

where AΛ
LL0 is the longitudinal spin transfer. In the

COMPASS experiment, both the L and L0 are chosen
along the virtual photon momentum [22], thus we can omit
the subscripts.
In this paper, we preserve all the variables appearing in

Eq. (2), trying to give a proper longitudinal spin transfer
form. After removing the depolarization factor DðyÞ from
the asymmetry cross section, the longitudinal spin transfer
is obtained as

Aðx; zÞ ¼
R
dy Sx

Q4

P
ae

2
afaðx;Q2ÞΔDaðz;Q2ÞR

dy Sx
Q4

P
ae

2
afaðx;Q2ÞDaðz;Q2Þ : ð5Þ

After integrating the numerator and denominator on y and x
(or z) sequentially, we can obtain the longitudinal spin
transfer on various kinematical variables.
When we discuss the contributions of Λ hyperons

produced from the intermediate heavier hyperon decays
in the SIDIS process, it is common to think that the struck
quark first fragments to various hadrons, and then some
hadrons decay to Λ according to the branching ratios that
the intermediate hyperons decay toΛ. The probabilities that
the struck quark fragments to various hadrons (Λ;Σ0;Σ�,
etc.) are different considering the mass difference of these
hadrons, and this effect should be taken into account when
we calculate the contributions of the intermediate heavier
hyperon decaying process according to their branching
ratios. However, the probabilities that the struck quark
fragments to various hadrons in the Λ production process
are unknown to us.
In our calculation, the normalization of the fragmenta-

tion functions used in Eq. (5) is chosen as
R
dzDh

aðzÞ=z ¼ 1
for each hadron h, for the convenience to use the relation
between the fragmentation functions and distribution
functions in our discussion later. However, the real defined
fragmentation functions Dh

aðzÞ are normalized asP
h

R
dzzDh

aðzÞ ¼ 1. Considering this difference between
these two normalizations of the fragmentation functions,
there should be factors in front of the fragmentation
functions we used to reflect the probabilities that the quark
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fragments to various hadrons. We notice that this factor in
front of the total quark to Λ fragmentation function makes
no difference to our calculation since fragmentation func-
tions appear both in the numerator and denominator
in Eq. (5).
The Monte Carlo calculation is used to obtain the ratios

of the final Λ hyperons produced from different channels
including the direct quark fragmentation process and the
intermediate hyperon decaying process. Because the prob-
abilities that the struck quark fragments to various hadrons
are already included in these ratios, it is feasible to
multiplying these ratios to our calculated fragmentation
functions.
A Monte Carlo calculation using the LEPTO generator

indicates that only about 40%–50% of Λ’s are produced
directly, 30%–40% originate from Σ�ð1385Þ decay and
about 20% are decay products of the Σ0. The COMPASS
collaboration measured the relative weights of the Σ� and
the Ξ hyperon decaying to the Λπ. The results are about
20% smaller than those of the Monte Carlo calculation [28].
For the semi-inclusive μp → μΛX process, when the

intermediate decay process effects are considered, the
helicity-dependent fragmentation function ΔDaðz;Q2Þ
and the unpolarized fragmentation function Daðz;Q2Þ of
the Λ hyperon can be reasonably written as

ΔDq
Λðz;Q2Þ ¼ a1ΔDqΛðz;Q2Þ þ a2ΔD

q
Σ0ðz0; Q2ÞαΣ0Λ

þ a3ΔD
q
Σ� ðz0; Q2ÞαΣ�Λ

þ a4ΔD
q
Ξðz0; Q2ÞαΞΛ; ð6Þ

and

Dqðq̄Þ
Λ ðz;Q2Þ ¼ a1Dqðq̄ÞΛðz;Q2Þ þ a2D

qðq̄Þ
Σ0 ðz0; Q2Þ

þ a3D
qðq̄Þ
Σ� ðz0; Q2Þ þ a4D

qðq̄Þ
Ξ ðz0; Q2Þ; ð7Þ

where q̄ flavors are assumed to be unpolarized in this
process.
As for the μp → μΛ̄X, we just change the particles into

their antiparticles in Eqs. (6) and (7), and the same
consideration should be kept in the following discussions.
The a’s are weight coefficients which indicate the ratios

of contribution from different decay channels. Their values
are adjusted as

a1 ¼ 0.4; a2 ¼ 0.2; a3 ¼ 0.3; a4 ¼ 0.1; ð8Þ

based on the spirit of the Monte Carlo predictions [26].
In the specific calculation, the weight coefficients of the

Σ� hyperon are divided by three types of particles, that are
Σþð1385Þ, Σ0ð1385Þ and Σ−ð1385Þ, while each type has
two positively polarized spin states, i.e., ð3=2; 3=2Þ and
ð3=2; 1=2Þ. So the contribution to the spin transfer from the
Σ� is actually a mixture. To simplify this issue, we take 10%
for each branch as an average. The same treatment is done

to the Ξ hyperon, which contains the contribution from the
Ξ0 and Ξ−, and 5% is given to each branch.
The α’s are decay parameters, representing the polari-

zation transfer from the decay hyperons to the Λ. In our
study, these parameters are set as

αΣ0Λ ¼ −0.333; αΣ�ð3
2
;3
2
ÞΛ ¼ 1.0;

αΣ�ð3
2
;1
2
ÞΛ ¼ 0.333; αΞ0Λ ¼ −0.406;

αΞ−Λ ¼ −0.458: ð9Þ

The values of αΣ0Λ, αΞ0Λ and αΞ−Λ are taken from
Refs. [29,30], while αΣ�Λ’s are estimated parameters by
us. The decay parameters of Σ� are given separately for the
two types of the positive spin states. The choice of an
αΣ�ð3

2
;3
2
ÞΛ ¼ 1.0 is due to the facts that the spin of Σ� (being

3=2) should be almost total positively correlated with Λ
spin (being 1=2) in the decay process corresponding to the
ðs; szÞ ¼ ð3=2; 3=2Þ components, and the choice of an
αΣ�ð3

2
;1
2
ÞΛ ¼ 0.333 is the calculated result from the ðs; szÞ ¼

ð3=2; 1=2Þ components in the decay mode Σ� → Λπ,
according to the angular-momentum conservation law. In
the decay model Σ� → Λπ, if the spin angular momentum
of Σ� is ðs; szÞ ¼ ð3=2; 1=2Þ, and the spin angular momen-
tums of Λ and π are ðs; szÞ ¼ ð1=2;�1=2Þ and ðs; szÞ ¼
ð0; 0Þ respectively, the orbital angular momentum between
Λ and π is ðL;LzÞ ¼ ð1;�1Þ or ðL; LzÞ ¼ ð1; 0Þ. To obtain
the ðs; szÞ ¼ ð3=2; 1=2Þ component of Σ�, we should take
ðL;LzÞ ¼ ð1; 1Þ or ðL;LzÞ ¼ ð1; 0Þ. From the Clebsch-
Gordan coefficients, we know that the probability of the
production of the ðs; szÞ ¼ ð1=2; 1=2Þ component of Λ is
2=3, and that the probability of the production of the
ðs; szÞ ¼ ð1=2;−1=2Þ component of Λ is 1=3. Thus we
get αΣ�ð3

2
;1
2
ÞΛ ¼ 0.333.

In the intermediate decay process, i.e., q → Hi → Λ, the
longitudinal momentum fraction of the Λ hyperon to the
splitting quark q should be less than that of the decay
hyperon Hi to q. This can be inferred from the momentum

fraction z definition in the light-cone formalism, z ¼ P−
Λ

q− , for
the final detected Λ hyperon. This effect is taken into

account by redefining P−
h

q− ¼ 1.1 � P−
Λ

q− , i.e., z
0 ¼ 1.1 � z. The

relation z0 ¼ 1.1zwe used is a very rough estimate based on
the energy-momentum conservation law and the mass
relation of the particles appearing in the intermediate
hyperon decay process.
We then consider the Melosh-Wigner rotation effect in

the calculation of the parton densities [31–33], and apply
the valence quark distribution functions calculated in the
light-cone SU(6) quark-spectator-diquark model [34] to
estimate the probability of a valence quark directly frag-
menting to a hadron. This can be realized through the
phenomenology Gribov-Lipatov relation [35–38],
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Dh
qðzÞ ∼ zqhðzÞ; ð10Þ

where the fragmentation functionDh
qðzÞ indicates a quark q

splitting into a hadron h with longitudinal momentum
fraction z, and the distribution function qhðzÞ presents the
probability of finding the samequarkq carrying longitudinal
momentum fraction x ¼ z inside the same hadron h.
Although the Gribov-Lipatov relation is only known to
be valid near the z → 1 and on a certain energy scale Q2

0 in
the leading order approximation, it is interesting to note that
such a relation provides successful descriptions of the
available Λ polarization data in several processes
[9,24,39], based on quark distribution of the Λ in the
quark-diquark model and in the pQCD based counting rule
analysis. Thus we can consider Eq. (10) as a phenomeno-
logical ansatz to parametrize the quark to Λ fragmentation
functions, and then check the validity and reasonableness of
this method by comparing the theoretical predictions with
the experimental observations.
The main idea of the light-cone SU(6) quark-spectator-

diquark model is to start from the naive SU(6) wave
function of the hadron and then if any one of the quarks
is probed, reorganize the other two quarks in terms of two
quark wave functions with spins 0 or 1 (scalar and vector
diquarks), i.e., the diquark serves as an effective particle
which is called the spectator.
The unpolarized quark distribution for a quark with

flavor q inside a hadron h is expressed as

qðxÞ ¼ cSqaSðxÞ þ cVq aVðxÞ; ð11Þ

where cSq and cVq are the weight coefficients determined by
the SU(6) wave function, and aDðxÞ (D ¼ S for scalar
spectator or V for axial vector spectator) denotes the
amplitude for quark q to be scattered while the spectator
is in the diquark state D, when expressed in terms of the
light-cone momentum space wave function φðx;k⊥Þ, reads

aDðxÞ ∝
Z

½d2k⊥�jφðx;k⊥Þj2 ðD ¼ S orVÞ; ð12Þ

and the normalization satisfies
R
1
0 dxaDðxÞ ¼ 3. To obtain a

practical formalism of aDðxÞ, the Brodsky-Huang-Lepage
prescription [40] of the light-cone momentum space wave
function for the quark-diquark is employed:

φðx;k⊥Þ ¼ AD exp

�
−

1

8α2D

�
m2

q þ k2⊥
x

þm2
D þ k2⊥
1 − x

��
;

ð13Þ

with the parameter αD ¼ 330 MeV. Other parameters in
this model such as the quark mass mq, vector (scalar)
diquark mass mD (D ¼ S; V) for the octet baryons are just
simply estimated from the masses of the baryons. For u and
d quarks, we takemq ∼mN=3. The masses of the scalar and
vector diquarks should be different taking into account the
spin force from color magnetism or alternatively from
instantons [41]. QCD color-magnetic effects lift the mass
degeneracy between hadrons that differ only in the ori-
entation of quark spins, such as N and Δ. The interaction is
repulsive if the spins are parallel, so that a pair of quarks in

TABLE I. The quark distribution functions of octet baryons in the light-cone SU(6) quark-diquark model [39].

Baryon q Δq
mq

(MeV)
mV

(MeV)
mS

(MeV)

p u 1
6
aV þ 1

2
aS Δu − 1

18
~aV þ 1

2
~aS 330 800 600

(uud) d 1
3
aV Δd − 1

9
~aV 330 800 600

n u 1
3
aV Δu − 1

9
~aV 330 800 600

(udd) d 1
6
aV þ 1

2
aS Δd − 1

18
~aV þ 1

2
~aS 330 800 600

Σþ u 1
6
aV þ 1

2
aS Δu − 1

18
~aV þ 1

2
~aS 330 950 750

(uus) s 1
3
aV Δs − 1

9
~aV 480 800 600

Σ0 u 1
12
aV þ 1

4
aS Δu − 1

36
~aV þ 1

4
~aS 330 950 750

(uds) d 1
12
aV þ 1

4
aS Δd − 1

36
~aV þ 1

4
~aS 330 950 750

s 1
3
aV Δs − 1

9
~aV 480 800 600

Σ− d 1
6
aV þ 1

2
aS Δd − 1

18
~aV þ 1

2
~aS 330 950 750

(dds) s 1
3
aV Δs − 1

9
~aV 480 800 600

Λ0 u 1
4
aV þ 1

12
aS Δu − 1

12
~aV þ 1

12
~aS 330 950 750

(uds) d 1
4
aV þ 1

12
aS Δd − 1

12
~aV þ 1

12
~aS 330 950 750

s 1
3
aS Δs 1

3
~aS 480 800 600

Ξ− d 1
3
aV Δd − 1

9
~aV 330 1100 900

(dss) s 1
6
aV þ 1

2
aS Δs − 1

18
~aV þ 1

2
~aS 480 950 750

Ξ0 u 1
3
aV Δu − 1

9
~aV 330 1100 900

(uss) s 1
6
aV þ 1

2
aS Δs − 1

18
~aV þ 1

2
~aS 480 950 750

YUJIE CHI, XIAOZHEN DU, AND BO-QIANG MA PHYSICAL REVIEW D 90, 074003 (2014)

074003-4



a spin-1 state (vector) has higher energy than a pair of
quarks in a spin-0 state (scalar). The energy shift between
scalar and vector diquarks produces theN-Δmass splitting.
We takemS ¼ 600 MeV andmV ¼ 800 MeV for the scalar
and vector diquarks to explain the N-Δ mass different [42].
To obtain the mass of scalar and vector diquarks containing
one strange quark, we use the phenomenological fact that
the strange quark adds about 150 MeV. Thus we get mS ¼
750 MeV and mV ¼ 950 MeV for scalar and vector
diquarks containing one strange quark; mS ¼ 900 MeV
and mV ¼ 1100 MeV for scalar and vector diquarks con-
taining two strange quarks. The free parameters are reduced
to only a few numbers, which can be referred to in Table I.
The polarized quark distributions are obtained by intro-

ducing the Melosh-Wigner correction factor [32,33],

ΔqðxÞ ¼ ~cSq ~aSðxÞ þ ~cVq ~aVðxÞ; ð14Þ

where the coefficients ~cSq and ~cVq are also determined by the
SU(6) quark-diquark wave function, and ~aDðxÞ is
expressed as

~aDðxÞ ¼
Z

½d2k⊥�WDðx;k⊥Þjφðx;k⊥Þj2 ðD ¼ S orVÞ;
ð15Þ

where

WDðx;k⊥Þ ¼
ðkþ þmqÞ2 − k2⊥
ðkþ þmqÞ2 þ k2⊥

; ð16Þ

with kþ ¼ xM and M2 ¼ m2
qþk2⊥
x þ m2

Dþk2⊥
1−x . The weight

coefficients are also listed in Table I. In this model, though
the mass difference between different quarks and diquarks
breaks the SU(3) symmetry explicitly, the SU(3) symmetry
between the octet baryons is in principle maintained in
formalism.
Based on the same consideration, we give the distribu-

tion functions for the Σ� hyperon, which in the naive quark

model is a member of the SU(3) decuplet with the total spin
of 3=2. Here, we try to use the same parameters to estimate
both the helicity and quark distribution functions in the
light-cone SU(6) quark-spectator-diquark model based on
the following reasons: (1) the mass of Σ� (which is about
1385 MeV) is similar to that of Ξ− (which is about
1321 MeV), so we can use the same effective quark mass
parameters; (2) the total quark orbital angular momentum
of Σ� is 0, so to form a spin 3=2 particle, the diquark can
only be in the vector state. The specific helicity-dependent
and unpolarized quark distribution functions for the Σ�’s in
the quark-spectator-diquark model are shown in Table II.

III. THE INPUTS OF THE NUCLEON FFs AND
PDFs IN THE LONGITUDINAL SPIN

TRANSFER CALCULATIONS

We know that in the naive quark model, there is an SU(3)
flavor symmetry relation between octet baryons.Weconsider
the antiquark distribution inside the octet baryons in the same
way. To compare with the experimental data, the CTEQ5
parametrization (ctq5l) for proton [25] is used as an input:

upv ðxÞ ¼ uctqv ðxÞ;

dΛv ðxÞ ¼ uΛv ðxÞ ¼
uΛ;thv ðxÞ
up;thv ðxÞ � u

ctq
v ðxÞ;

sΛv ðxÞ ¼
sΛ;thv ðxÞ
up;thv ðxÞ � u

ctq
v ðxÞ;

ΔdΛv ðxÞ ¼ ΔuΛv ðxÞ ¼
ΔuΛ;thv ðxÞ
up;thv ðxÞ � uctqv ðxÞ;

ΔsΛv ðxÞ ¼
ΔsΛ;thv ðxÞ
up;thv ðxÞ � uctqv ðxÞ;

dΛs ðxÞ ¼ uΛs ðxÞ ¼ ūΛðxÞ ¼ 1

2
ðūctqðxÞ þ d̄ctqðxÞÞ;

sΛs ðxÞ ¼ s̄ΛðxÞ ¼ d̄ctqðxÞ; ð17Þ

TABLE II. The quark distribution functions of Σð1385Þ’s in the light-cone SU(6) quark-diquark model.

Baryon q Δq ð3=2; 3=2Þ ð3=2; 1=2Þ
mq

(MeV)
mV

(MeV)

Σþð1385Þ u 2
3
aV Δu 2

3
~aV

2
9
~aV 330 950

(uus) s 1
3
aV Δs 1

3
~aV 1

9
~aV 480 800

Σ0ð1385Þ u 1
3
aV Δu 1

3
~aV

1
9
~aV 330 950

(uds) d 1
3
aV Δd 1

3
~aV

1
9
~aV 330 950

s 1
3
aV Δs 1

3
~aV 1

9
~aV 480 800

Σ−ð1385Þ d 2
3
aV Δd 2

3
~aV

1
9
~aV 330 950

(dds) s 1
3
aV Δs 1

3
~aV 1

9
~aV 480 800
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where the uctqv ðxÞ means the PDF for the valence u quark
inside the proton from the CTEQ5L parametrization, and
the uΛ;thv ðxÞ is the PDF for the valence u quark inside the
Λ given by the light-cone SU(6) quark-diquark model,
so as for the other flavors. For the other hyperons, the
same spirit is followed. Applying the Gribov-Lipatov
relation again, we can obtain the antiquark FFs to the
same hyperon.
So far, we have given all the FFs used in the calculation.

In the following, we discuss the input of the nucleon PDFs
in the longitudinal spin transfer calculations.
In the baryon-meson fluctuation model [1], the nucleon

wave function is considered to be a fluctuating system
coupling to intermediate hadronic Fock states such
as noninteracting meson-baryon pairs and the coupling
that the proton to the virtual KþΛ state is figured
out to be of most importance in the production of the
intrinsic strange and antistrange asymmetric sea. In
this picture, the momentum distribution of the intrinsic
s and s̄ quarks can be modeled in a two-level convolution
formula:

sthðxÞ ¼
Z

1

x

dy
y
fΛ=KþΛðyÞqs=Λ

�
x
y

�
;

s̄thðxÞ ¼
Z

1

x

dy
y
fKþ=KþΛðyÞqs̄=Kþ

�
x
y

�
; ð18Þ

where fΛ=KþΛðyÞ, fKþ=KþΛðyÞ are probabilities to find
Λ; Kþ in the KþΛ state with longitudinal momentum
fraction y, qs=ΛðxyÞ, qs̄=KþðxyÞ are probabilities to find q; q̄
in the Λ; Kþ states with longitudinal momentum fraction
x
y and these quantities can be calculated by adopting
the two-body wave functions for p ¼ KþΛ, Kþ ¼ us̄,
Λ ¼ sðudÞ. The Gaussian-type two-body wave function
is

ψGaussianðM2Þ ¼ AGaussianexp

�
−
M2

8α2

�
; ð19Þ

where M2 ¼P2
i¼1ðk2⊥i þm2

i Þ=xi is the invariant mass of
the KþΛ, us̄ or sðudÞ two-body states, and α ¼
330 MeV is the scaling parameter.
As is pointed out, the fluctuation model can give the

intrinsic strange sea asymmetry, which can partly explain
some important experimental phenomena, such as the
strange magnetic momentum and the NuTeV anomaly
etc. [5,6,9,10,13]. However, its predictions do not take
into account QCD evolution effects. We also know that the
CTEQ5L parametrization for the s and s̄ are flavor blind
and the result is in fact an average. In our study, we keep the
asymmetry property given by the fluctuation model while
in order to reflect the evolution effects a reasonable form of
the nucleon strange sea input is given as

spðxÞ ¼ 2sthðxÞ
sthðxÞ þ s̄thðxÞ s

ctqðxÞ;

s̄pðxÞ ¼ 2s̄thðxÞ
sthðxÞ þ s̄thðxÞ s

ctqðxÞ: ð20Þ

As for other flavors, such as u; d; ū etc., the inputs are
directly from the CTEQ5L parametrization.

IV. RESULTS AND DISCUSSION

We examine the longitudinal spin transfer on the x and
the Feynman xF variable dependences. The calculation of
the xF dependent spin transfer in our formula should be
done through a kinematical transformation to relate to the x,
y and z variables.
We give the exact relationship as (see the Appendix)

xF ¼ Syz
M½M2 þ Syð1 − xÞ�

"�
M þ Sy

2M

�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ½4M2ðM2

h þ P2
h⊥Þ�

ðSyzÞ2

s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2y2

4M2
þ Sxy

r #
: ð21Þ

As is known, the factorization of the scattering cross
section in our discussion is given in an ideal condition,
that is Q2 → ∞, Ph⊥ ∝ OM. In this condition, the Ph⊥
can be neglected in Eq. (A6). However, the experimental
data are in fact experimental condition affected, so our
calculation should not be performed in an ideal way. We
try to give some nonzero value for the Ph⊥ valuable
(several GeV, of order M) and find that the nonzero input
of the Ph⊥ may affect the constraints between the xF, x, y
and z kinematical variables. The contour plots of
these variables are given in Fig. 1 in the COMPASS
experiment condition, where S ¼ 320 GeV2. We can see
from the figures that with the increase of the Ph⊥, and
the increase of the x variable, at the same xF numerical
point, the region of the z variable is significantly right
shifted.
We then discuss the longitudinal spin transfer difference

given by the COMPASS collaboration in two steps. In the
first step, we first set Ph⊥ ¼ 0 and consider the influence
from the nucleon asymmetric strange sea input, then on
the asymmetric strange sea input basis, we give two
nonzero values to the Ph⊥ variable. In the second step,
we set the nucleon strange sea symmetric and see the
influence from the nonzero Ph⊥ variable. All these
discussions are performed under the COMPASS experi-
mental cuts 1 GeV2 < Q2 < 50 GeV2, 0.005 < x < 0.65,
0.2 < y < 0.9, 0.05 < xF < 0.5 and by the integration of
equations
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AΛðxÞ ¼
R
dydz Sx

Q4

P
qe

2
qfqðx;Q2ÞΔDq

Λðz;Q2ÞR
dydz Sx

Q4

P
q½e2qfqðx;Q2ÞDq

Λðz;Q2Þ þ ðq → q̄Þ� ;

ð22Þ

and

AΛ̄ðxÞ ¼
R
dydz Sx

Q4

P
q̄e

2
q̄fq̄ðx;Q2ÞΔDq̄

Λ̄
ðz;Q2ÞR

dydz Sx
Q4

P
q½e2qfqðx;Q2ÞDq

Λ̄
ðz;Q2Þ þ ðq → q̄Þ� :

ð23Þ
Equations (6) to (10), (17) to (20) as well as Tables I and

II are all used to do the specific integrations.
The integration results are shown in Figs. 2, 3, 4 and 5.

Among which, Figs. 2 and 3 are the first step calculation
results of the x and xF variable dependences. Figure 2(a)
shows the result from the integration without considering
the asymmetric sea effect or the nonzero Ph⊥ effect, while
in Fig. 2(b), the asymmetric sea effect expressed in Eq. (20)
is taken into account. Figures 2(c) and 2(d) are results by
considering both the asymmetric sea effect and the nonzero
Ph⊥ effect. As is shown, the input of the asymmetric sea
effect gives more proper trend to the spin transfer difference
than the pure integration one. Then after considering
nonzero Ph⊥ values, the difference between the spin
transfers of Λ and Λ̄ get enlarged with an increasing
Ph⊥. At the condition of Ph⊥ ¼ 3.0 GeV, the result we
get is qualitatively comparable with the difference of the
experimental data. Compared with the experimental
squared center of mass energy S ¼ 320 GeV2, the value
of the Ph⊥ is in a reasonable region. The similar situation

appears in the xF-dependent spin transfer calculations, and
we show the results in Figs. 3 and 5.
Combining the first step calculation results with the x, y

and z variable constraints, we can suppose that on the

FIG. 2. The results of the x-dependent longitudinal spin transfer
in the polarized charged lepton DIS process for the Λ and Λ̄
hyperons. Inputs of the proton strange sea asymmetry and the
Ph⊥ nonzero values are considered step by step as shown in the
subfigures. The data are taken from COMPASS [22].

FIG. 3. The results of the xF-dependent longitudinal spin
transfer in the polarized charged lepton DIS process for the Λ
and Λ̄ hyperons. Inputs of the proton strange sea asymmetry and
the Ph⊥ nonzero values are considered step by step as shown in
the subfigures. The data are taken from COMPASS [22].
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a x 0.005, Ph 0.0 GeV
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b x 0.65, Ph 0.0 GeV
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FIG. 1 (color online). The results of the xF on the y and z
kinematical variable dependences. The plot region of the xF
variable is 0.05 ∼ 0.50. The subfigures are a series of results with
different x and Ph⊥ values.
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asymmetric strange sea input basis, the enlarged difference
between the Λ and Λ̄ longitudinal spin transfers with the
increased input value of Ph⊥ is in fact from the right
shifting z responsible region.
Figures 4 and 5 show the second step calculation result.

It is obvious that without the asymmetric nucleon strange
sea input, the influence to the spin transfer difference from
the nonzero Ph⊥ is non-neglected but still too small.
Comparing these two step discussions, we can reason-

ably speculate that the large z region is more sensitive to the
asymmetric nucleon strange sea input, and this sensitivity
can give better explanations to the experimental data. So we
suggest new and precise experimental measurement of the
Λ and Λ̄ production in the large z region to give more
precise examination of the existence of the nucleon strange
sea asymmetry.

V. SUMMARY

In summary, we studied the quark to the Λ and Λ̄
fragmentation properties in the current-fragmentation
region by taking various fragmentation processes into
account. These processes include the intermediate decay

process and the antiquark fragmentation process, while the
strange sea asymmetry in the nucleon is also taken into
account. The calculation in the light-cone quark-diquark
model shows that the strange sea ss̄ asymmetry gives
proper trend to the difference between the Λ and Λ̄
longitudinal spin transfers. While considering the nonzero
final hadron transverse momentum, our calculation results
can explain the COMPASS data reasonably. We interpret
the nonzero final hadron transverse momentum as a natural
constraint to the final hadron z range where the longitudinal
spin transfer is more sensitive to the strange sea asymmetry.
We suggest new and precise experimental measurement
of the Λ and Λ̄ production in the large z region to make
more precise examination on the nucleon strange sea
distributions.
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APPENDIX

Let us first define two Sudakov vectors p and n in the
light-cone form as

pμ ¼ ðΛ; 0; 0⊥Þ; nμ ¼ ð0;Λ−; 0⊥Þ; ðA1Þ
where Λ is arbitrary.
Then the nucleon 4-momentum P and the virtual photon

4-momentum q in the “γ�N collinear frames” can be
represented in the form of the Sudakov vectors as

Pμ ¼ pμ þ 1

2
M2nμ;

qμ ¼ Q2

2M2x

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M2x2

Q2

s !
pμ

þQ2

4x

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M2x2

Q2

s !
qμ; ðA2Þ

where M is the invariant mass of the nucleon, x is the
Bjoken variable and Q2 is defined as Q2 ¼ −q2.
We write the 4-momentum of the final hadron Ph in the

γ�N collinear frame as

Pμ
h ¼ apμ þ bnμ þ Pμ

h⊥; ðA3Þ
where Ph⊥ is the transverse vector of the final hadron which
is perpendicular to the pμ and nμ plat.
The Lorentz invariant variable z is defined as z ¼ P ·

Ph=P · q and for the final hadron it obeys P2
h ¼ M2

h, where
Mh is the final hadron invariant mass. Using these two

FIG. 4. The results of the x-dependent longitudinal spin transfer
in the polarized charged lepton DIS process for the Λ and Λ̄
hyperons. The input of the proton strange sea is symmetry but the
Ph⊥ is nonzero. The data are taken from COMPASS [22].

FIG. 5. The results of the xF-dependent longitudinal spin
transfer in the polarized charged lepton DIS process for
the Λ and Λ̄ hyperons. The input of the proton strange sea is
symmetry but the Ph⊥ is nonzero. The data are taken from
COMPASS [22].
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constraints, we can get the values of a and b. With two
variables,

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2M2x

P · q

s
;

R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

M2ðM2
h þ P2

h⊥Þ
z2ðP · qÞ2

s
; ðA4Þ

Ph can be written as

Pμ
h ¼

zP · q
M2

�
1 −

R0

R

�
Pμ þ z

R0

R
qμ þ Pμ

h⊥: ðA5Þ

Then the Feynman variable xF can be obtained as

xF ¼ Syz
M½M2 þ Syð1 − xÞ�

"�
M þ Sy

2M

�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ½4M2ðM2

h þ P2
h⊥Þ�

ðSyzÞ2

s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2y2

4M2
þ Sxy

r #
: ðA6Þ
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