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Based on the study of the linear response of the fermion propagator in the presence of an external
scalar field, we calculate the staggered spin susceptibility in the low-energy limit in the framework of the
Dyson-Schwinger approach. We analyze the effect of a finite gauge boson mass on the staggered spin
susceptibility in both the Nambu phase and the Wigner phase. It is found that the gauge boson mass
suppresses the staggered spin susceptibility in the Wigner phase. In addition, we try to give an explanation
for why the antiferromagnetic spin correlation increases when the doping is lowered.
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I. INTRODUCTION

Quantum electrodynamics in (2þ 1) dimensions
(QED3) has attracted much interest over the past few years.
It has many features similar to quantum chromodynamics
(QCD), such as dynamical chiral symmetry breaking in the
chiral limit and confinement [1–13]. Moreover, it is super-
renormalizable, so it does not suffer from the ultraviolet
divergence which is present in QED4. Because of these
reasons it can serve as a toy model of QCD. In parallel with
its relevance as a tool through which to develop insight
into aspects of QCD, QED3 is also found to be equivalent to
the low-energy effective theories of strongly correlated
electronic systems. Recently, QED3 has been proved to be
a useful tool to study antiferromagnetic spin correlation in
the so-called staggered flux liquid phase in high Tc cuprate
superconductor theory, where the fermions are described by
massless Dirac fermions [14–20].
Dynamical chiral symmetry breaking (DCSB) occurs

when the massless fermion acquires a nonzero mass
through nonperturbative effects at low energy, but the
Lagrangian keeps chiral symmetry when the fermion mass
is zero. The Dyson-Schwinger equations (DSEs) provide a
natural framework within which to explore DCSB and
related phenomena. It is well known that in massless QED3,
DCSB occurs when the number of fermion flavors N is less
than a critical number Nc [2–6]. Recently, by numerically
solving the DSEs in the chiral symmetric phase of QED3,
Fischer et al. display the anomalous dimension of the
fermion vector dressing function in the infrared domain for
the case of bare vertex. They find that the wave-function
renormalization has a power law behavior in the infrared
region in the Wigner phase, while the fermion vector

dressing function has no power law behavior in the
Nambu phase [11].
It is shown that there exist antiferromagnetic correlations

in the underdoped cuprates. As usual, one uses the spin
susceptibility to represent antiferromagnetic order. The
theoretical calculations of the spin susceptibility are usually
done in the framework of perturbation theory where non-
perturbation effect is neglected. In this paper, we will study
the staggered spin susceptibility in the framework of the
Dyson-Schwinger approach and the effect of gauge boson
mass on the staggered spin susceptibility.

II. A MODEL-INDEPENDENT INTEGRAL
FORMULA FOR THE STAGGERED SPIN

SUSCEPTIBILITY

For N ¼ 2, the spin operators with momenta near the
momentum transfer ~q ¼ ð0; 0Þ, ðπ; πÞ, and ðπ; 0Þ have
different forms when expressed in terms of ψα. In
Refs. [21,22] the spin operator and the corresponding spin
correlation function are defined as follows:

SðxÞ ¼ 1

2
ψ̄αΓσαβψβ ð1Þ

and

hSþðqÞS−ð−qÞi ¼ −
1

4

Z
d3p
ð2πÞ3 Tr½ΓSðpÞΓSðp − qÞ�;

ð2Þ
where

Γ ¼ γ0; 1;

�
0 1

1 0

�
ð3Þ
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near ~q ¼ ð0; 0Þ; ðπ; πÞ; ðπ; 0Þ, respectively. The SðpÞ in
Eq. (2) is fermion propagator of the QED3 model in a large
N expansion, which includes leading order in the 1=N
expansion.
At the mean-field level, the decay exponents of the

three algebraic spin correlation functions are the same.
When the Feynman diagrams for the spin susceptibility to
leading order in the 1=N expansion are included, the decay
exponents of the spin correlation near ~q ¼ ð0; 0Þ and ~q ¼
ðπ; 0Þ do not change [21,22]. Working beyond the mean-
field level and including gauge fluctuations, Rantner and
Wen calculated the nonzero leading Oð1=NÞ order correc-
tions to the staggered spin correlation function and obtain

SðpÞ ¼ −iC
p · γ
p2−ν ; ν ¼ 32

3Nπ2
; ð4Þ

where ν is the nonzero anomalous dimension [21–24],
which deduce the recovery to antiferromagnetic correlation
at low energy.
Up to now, in all the above literature, the theoretical

calculations of the spin susceptibility are usually done in
the framework of perturbation theory where only the
leading 1=N-order corrections to the staggered spin corre-
lation function are added to the mean-field level. The
primary goal of this paper is to derive a model-independent
integral formula for the staggered spin susceptibility based
on the linear response theory of the fermion propagator and
then calculate it in the framework of the Dyson-Schwinger
approach. In the past years, we studied the vacuum
susceptibility which is an important parameter character-
izing the nonperturbative properties of the QCD vacuum.
By differentiating the dressed quark propagator with
respect to the corresponding constant external field, the

linear response of the nonperturbative dressed quark
propagator to the constant external field can be obtained.
Using this general method, we extract a rigorous and
model-independent expression for the scalar, pseudoscalar,
the vector, axial Vector, and the tensor vacuum
Susceptibilities [25–31]. In this paper, we shall take the
same strategy to study the staggered spin susceptibility
in QED3.
The Lagrangian density of QED3 with N flavors of

massless fermion in Euclidean space reads

L ¼
XN
i¼1

ψ̄ ið∂ þ ieAÞψ i þ
1

4
F2
ρν þ

1

2ξ
ð∂ρAρÞ2; ð5Þ

where the 4 × 1 spinor ψ i represents the fermion field,
i ¼ 1; � � � ; N are the flavor indices, and ξ is the gauge
parameter. In order to take into account the influence
of the external field, we add an additional term ΔL ¼
−ψ̄ γðxÞτþγδψδðxÞVðxÞ to the normal QED3 Lagrangian,
where τþ ¼ τ1 þ iτ2 with τi being the Pauli matrices
and VðxÞ is a variable external field.
The fermion propagator Gαβ½V�ðxÞ in the presence of the

external field V can be written as

Gαβ½V�ðxÞ ¼
Z

Dψ̄DψDAψαðxÞψ̄βð0Þ

× exp

�
−
Z

d3x½Lþ ΔL�
�
; ð6Þ

where the subscripts denote the flavor indices. If one
assumes the external field V is weak and only considers
the linear response term of Gαβ½V�ðxÞ, one has

Gαβ½V�ðxÞ ¼
Z

Dψ̄DψDAψαðxÞψ̄βð0Þ expf−Sgþ
Z

Dψ̄DψDA
Z

d3y½ψαðxÞψ̄βð0Þψ̄ γðyÞτþγδψδðyÞVðyÞ� expf−Sgþ � � � ;

≡GαβðxÞ þGV
αβðxÞ þ � � � ; ð7Þ

where GαβðxÞ ¼ h0jTψαðxÞψ̄βð0Þj0i is the fermion propagator in the absence of the external field, GV
αβðxÞ represents the

linear response term of the fermion propagator

GV
αβðxÞ≡ h0jTψαðxÞψ̄βð0Þj0iV ¼

Z
d3zh0jTψαðxÞψ̄βð0Þψ̄ γðzÞτþγδψδðzÞj0iVðzÞ: ð8Þ

Now we expand the inverse fermion propagator G−1½V� in powers of V as follows:

Gαβ½V�ðxÞ ¼ GαβðxÞ −
Z

d3y1d3y2d3zGαγðx − y1Þ½Γðy1; y2; zÞ�γδVðzÞGδβðy2Þ

¼ GαβðxÞ −
Z

d3z
Z

d3P
ð2πÞ3

Z
d3q
ð2πÞ3 e

−iðqþP
2
ÞxeiP·zGαγ

�
qþ P

2

�
½ΓðP; qÞ�γδVðzÞGδβ

�
q −

P
2

�
: ð9Þ

Setting x ¼ 0 in Eq. (9) and comparing it with the linear response term in Eq. (7), we obtain

h0jT½ψαð0Þψ̄βð0Þψ̄ γðzÞτþγδψδðzÞ�j0i ¼ −
Z

d3P
ð2πÞ3

Z
d3q
ð2πÞ3 e

iP·zGαγ

�
qþ P

2

�
½ΓPðq; PÞ�γδGδβ

�
q −

P
2

�
: ð10Þ
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After multiplying τ−βα on both sides of Eq. (10) and summing over the spinor and flavor indices, we obtain

h0jT½ψ̄βð0Þðτ−Þβαψαð0Þψ̄ γðzÞðτþÞγδψδðzÞ�j0i ¼
Z

d3P
ð2πÞ3

Z
d3q
ð2πÞ3 e

iP·zTr

�
G

�
qþ P

2

�
½ΓðP; qÞ�G

�
q −

P
2

�
τ−
�
; ð11Þ

where the trace operation is over spinor and flavor indices. The staggered spin correlation function in momentum space is

hSþðPÞS−ð−PÞi ¼ 1

4

Z
d3q
ð2πÞ3 Tr

�
G

�
qþ P

2

�
Γðq; PÞG

�
q −

P
2

�
τ−
�
; ð12Þ

where the spin density operator S�ðxÞ ¼ 1
2
ψ̄ðxÞτ�ψðxÞ with τ� ¼ τ1 � iτ2.

It is obvious that the staggered spin correlation depends on the precise form of the scalar vertex. In the ladder
approximation, the scalar vertex satisfies the following Bethe-Salpeter equation

Γðq; PÞ ¼ −τþ ⊗ 1 − e2
Z

d3k
ð2πÞ3 γμG

�
kþ P

2

�
Γðk; PÞG

�
k −

P
2

�
γνDμνðk − qÞ; ð13Þ

where 1 is the 4 × 4 unit matrix in spinor space. If one
approximates the full scalar vertex with the bare one
Γ0ðq; PÞ ¼ −τþ ⊗ 1, then our expression of the staggered
spin susceptibility reduces to the one given in Refs. [9,10].
It is obvious that the wave function renormalization Aðp2Þ
is affected by the perturbative and nonperturbative effects
of the scalar vertex.
Now we explicitly separate out the flavor part of the

fermion propagator and the scalar vertex, i.e.,GðkÞ → If ⊗
GðkÞ and Γðq; PÞ → −τþ ⊗ Γðq; PÞ, where If is the unit
matrix in flavor space. Then, using Tr½τþτ−� ¼ 4, we
obtain

hSþðPÞS−ð−PÞi

¼ −
Z

d3q
ð2πÞ3Tr

�
1G

�
qþP

2

�
Γðq;PÞG

�
q−

P
2

��
; ð14Þ

where now the trace operation is over spinor indices andG
is the full fermions propagator. So far we have extracted
a new expression for the staggered spin susceptibility.
Here we note that this formula (14) is formally model
independent. However, the physical quantities which enter
into it, such as the full fermions propagators and the
vertices, are usually obtained from QED3-based models.
Thus in practical calculations of the vacuum susceptibil-
ities one usually resort to various models. For instance,
as will be shown in detail below, in this paper we will
calculate the staggered spin susceptibility within the

framework of the BC1 vertex [6,11,12] approximation
of the Dyson-Schwinger approach.
A diagrammatic representation of the staggered spin

susceptibility is depicted in Fig. 1, where 1 and Γ are the
bare and the full vertex, respectively. Here it is interesting
to compare Eq. (14) with Eq. (2) given by Refs. [21,22].
If one uses the bare scalar vertex approximation, i.e.,
Γ ¼ 1, Eq. (14) reduces into the staggered spin suscep-
tibility given by Refs. [21,22] (apart from the fact that
the calculation of the fermions propagator S given by
Refs. [21,22] is quite different from the calculation of the
full fermions propagator G in the present work). Now it is
clear that the nonperturbative vertex effects are neglected
in the papers.
We now focus on the low-energy behavior of the

staggered spin susceptibility. The dressed scalar vertex
Γðq; P ¼ 0Þ and the staggered spin susceptibility has the
following general form in the low-energy limit:

Γðq; P ¼ 0Þ ¼ −τþ ⊗ ðFðq2Þ þ iγ · qHðq2ÞÞ; ð15Þ

and

hSþð0ÞS−ð0Þi ¼
Z

d3q
ð2πÞ3

Fðq2Þ
½q2A2ðq2Þ þ B2ðp2Þ� ; ð16Þ

where

Fðq2Þ ¼ 1þ 2

Z
d3k
ð2πÞ3

Fðk2Þ
ðk − qÞ2ð1þ Π½ðk − qÞ2�Þ½k2A2ðk2Þ þ B2ðk2Þ� : ð17Þ

The remaining task is then to calculate the staggered
spin susceptibility in the Wigner phase and the
Nambu phase. The wave-function renormalization

Aðp2Þ in the above formula can be easily obtained
by numerically solving the coupled DSEs for the
fermion propagator.
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III. THE EFFECT OF THE GAUGE BOSON MASS

In Refs. [21,22], based on the so-called algebraic spin
liquid picture, the authors analyzed the effect of the gauge
boson mass acquired via the Anderson-Higgs mechanism
on the staggered spin correlation. In order to make gauge
field obtain a mass ζ, we now introduce the additional
interaction term between gauge field and complex scalar
boson field,

LB ¼
XN
i¼1

½jð∂μ þ ieAμÞϕij2 − μ2jϕij2 − λjϕij4�; ð18Þ

which is the so-called Abelian Higgs model or relative
Ginzburg-Landau model [32]. The complex scalar field ϕ
represents the bosonic holons, which have spin-0 and
carry charge e. This Lagrangian describes the motion of the
charge degrees of freedom of electrons on the CuO2 planes
of underdoped cuprate superconductors. When μ2 > 0, the
system stays in the normal state and the vacuum expectation
value of the boson field hϕi ¼ 0, so the Lagrangian respects
the local gauge symmetry. When μ2 < 0, the system enters
the superconducting state and the boson field develops a
finite expectation value hϕi ≠ 0, then the local gauge
symmetry is spontaneously broken and the gauge field
acquires a finite mass ζ after absorbing the massless
Goldstone boson. The finite gauge field mass is able to
characterize the achievement of superconductivity. On the

other hand, the gauge mass obtains a mass via Anderson-
Higgs mechanism implies that the gauge field is in confine-
ment phase [33], which deduce that the spinons and holons
are confined in superconducting phase (the spin-charge
recombination). It is clear that the spinon and holon can
not be observed in high-TC superconducting experiments,
however, a well defined quasiparticle can be observed due
to the spin-charge recombination in superconducting phase.
In QED3 with Abelian Higgs model the gauge field

couples to both the fermion field ψ and the complex scalar
boson field ϕ. ΠμνðqÞ ¼ ΠF

μνðqÞ þ ΠB
μνðqÞ is the total

vacuum polarization tensor and the full inverse gauge
boson propagator is

D−1
μν ðqÞ ¼ Dð0Þ−1

μν ðqÞ þ ΠμνðqÞ; ð19Þ

whereDð0Þ−1
μν ðqÞ is the free inverse gauge boson propagator,

andΠFðqÞ andΠBðqÞ are the polarization function from the
fermion part and the boson part, respectively. The one-loop
vacuum polarization ΠBðqÞ has also been calculated by
evaluating four Feynman diagrams [34,35]. In the simplest
approximation, Rantner and Wen take the following phe-
nomenological form for the gauge propagator [22]:

DμνðqÞ ¼
8

N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ ζ2

p
�
δμν −

qμqν
q2

�
: ð20Þ

Note that the gauge boson mass is added usually by hand in
previous papers. In this paper, We will follow these papers
to add the gauge mass by hand and study the influence of
gauge boson mass on the staggered spin susceptibility in the
framework of the Dyson-Schwinger approach. In this work,
the gauge boson propagator in Landau gauge is given as

DμνðqÞ ¼
1

q2½1þ ΠðqÞ� þ ζ2

�
δμν −

qμqν
q2

�
; ð21Þ

andwe choose the BC1 vertex ansatzΓνðp; kÞ ¼ 1
2
½Aðp2Þ þ

Aðk2Þ�γν [6,11,12]. Thus in the Landau gauge the coupled
DSEs with gauge boson mass ζ is obtained:

Aðp2Þ ¼ 1þ 1

p2

Z
d3k
ð2πÞ3

Aðp2Þ þ Aðk2Þ
A2ðk2Þk2 þ Bðp2Þ

Aðk2Þðp · qÞðk · qÞ=q2
½q2ð1þ Πðq2ÞÞ þ ζ2� ; ð22Þ

Bðp2Þ ¼
Z

d3k
ð2πÞ3

Bðk2Þ½Aðp2Þ þ Aðk2Þ�
½A2ðk2Þk2 þ B2ðk2Þ�½q2ð1þ Πðq2ÞÞ þ ζ2� ; ð23Þ

Πðq2Þ ¼ N
Z

d3k
ð2πÞ3

Aðk2ÞAðp2Þ½Aðp2Þ þ Aðk2Þ�
q2½A2ðk2Þk2 þ B2ðk2Þ�

½2k2 − 4k · q − 6ðk · qÞ2=q2�
½A2ðp2Þp2 þ B2ðp2Þ� ; ð24Þ

where q ¼ p − k. Here we want to stress that the Bðp2Þ in
Eq. (23) has two qualitatively distinct solutions. The
Nambu solution, for which Bðp2Þ ≠ 0, describes a phase
in which (a) chiral symmetry is dynamically broken,

because one has a nonzero fermion mass function, and
(b) the dressed fermions are confined, because the propa-
gator described by these functions does not have a
Lehmann representation. The alternative Wigner solution,

FIG. 1. A diagrammatic representation of the staggered spin
susceptibility.
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for which Bðp2Þ≡ 0 describes a phase in which chiral
symmetry is not broken and the dressed fermions are not
confined. In addition, it should be noted that BC1 vertex
ansatz violates the fundamental QEDWard identity, namely
qμΓμ ¼ G−1ðpÞ − G−1ðkÞ. If the Ward identity is not
satisfied, then the transversality of the photon self-energy
is also compromised (qμΠμνðqÞ ought to vanish, but it does
not). A better ansatz is given in Refs. [36,37]. However, this
particular pathology is not easy to detect at the level of
Eq. (24), because we have suppressed the tensorial struc-
ture of the photon self-energy, keeping only the scalar form
factor Πðq2Þ. Furthermore, the BC1 vertex has the advan-
tage that the equations are simplified significantly and it
already contains main qualitative features of the solution
employing the BC vertex in the infrared region, as was
demonstrated by the numerical calculations given in
Refs. [6,12]. This is the main reason why we still choose
the BC1 vertex in our work.
It is well known that one can obtain two types of solution

by iterating the above coupled DSEs, the Nambu solution
and the Wigner solution. After solving the above coupled
DSEs by means of iteration method, we can numerically
calculate the integration in Eq. (16) in both the Nambu
phase and the Wigner phase. Because of the importance
of the anomalous dimension exponent for the staggered
spin susceptibility [21–24], we first study the momentum
dependence of Aðp2Þ in the infrared region for several
gauge boson mass for N ¼ 2. In Fig. 2, the dependence of
Aðp2Þ on the momentum for several values of the gauge
boson mass are shown. From the obtained numerical results
one finds that in the Wigner phase Aðp2Þ enhances when
the gauge boson mass monotonically increases, while in the
Nambu phase it decreases with the increase of the gauge
boson mass. It is well known that when the gauge boson
mass is zero, the vector dressing function Aðp2Þ in the
Wigner phase has a power law behavior in the infrared
region [11]. From Fig. 2, It is clear that the anomalous
dimension exponent will change for several gauge boson
mass since these curves are not parallel in infrared region.

However, the authors of Refs. [21,22] still use the same
anomalous dimension exponent ν to study the staggered
spin susceptibility when the gauge boson mass is nonzero.
On the other hand, the difference between Aðp2Þ in the

Wigner phase and the Nambu phase is more and more
smaller as the gauge boson mass increases from Fig. 2.
When the gauge boson mass reaches a critical value
ζ ¼ 0.024, the dependence of Aðp2Þ on the momentum
in these two phases become the same, as is shown in Fig. 3.
In fact, the Nambu phase disappears when ζ ¼ 0.024.
Now let us to study qualitatively the influence of the

gauge boson mass on the staggered spin susceptibility from
the competition between the antiferromagnetic order and
the superconducting order. The staggered spin susceptibil-
ity is used to represent the antiferromagnetic order in QED3

model. On the other hand, the gauge boson mass is
proportional to the superfluid density, so the gauge boson
mass can be used to describe the superconducting order.
Due to the competition between the antiferromagnetic order
and the superconducting order in high temperature cuprate
superconductors, it is obvious that the opening of a gap in
the gauge fluctuations will spoil the antiferromagnetic
correlation.

ζ=
ζ=
ζ=

ζ=
ζ=
ζ=

FIG. 2. The dependence of Aðp2Þ on the momentum for several gauge boson mass ζ in the Wigner phase and the Nambu phase.

ζ

FIG. 3. The dependence of Aðp2Þ on the momentum at
ζ ¼ 0.024 in the Wigner phase and the Nambu phase.
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From the large momentum behavior of Aðp2Þ, Bðp2Þ,
and Fðp2Þ, we see that the staggered spin susceptibility
given by Eq. (16) is linearly divergent, and this divergence
cannot be eliminated through the standard renormalization
procedure. In order to extract something meaningful from
the staggered spin correlation, one needs to subtract the
linear divergence of the free staggered spin susceptibility
from Eq. (16), which is analogous to the regularization
procedure for calculating the chiral susceptibility in QCD,
which is quadratically divergent (see for example, Ref. [38]).
We define the regularized staggered spin susceptibility by

hSþð0ÞS−ð0ÞiR ¼ hSþð0ÞS−ð0Þi − hSþð0ÞS−ð0Þifree; ð25Þ

where the free staggered spin susceptibility
hSþð0ÞS−ð0Þifree is calculated at the mean-field level.
The numerical result for the staggered spin susceptibility

for Fðp2Þ ¼ 1 case is given in Fig. 4. We find that the
gauge boson mass suppresses the staggered spin suscep-
tibility in the low-energy limit in the Wigner phase. On the
contrary, the staggered spin susceptibility increase with
the gauge boson mass increasing in the Nambu phase.
When the value of the gauge boson mass reaches 0.024,
the staggered spin susceptibility takes the same value in the
Nambu phase and the Wigner phase. Once the gauge boson
mass exceeds this critical value, the Nambu phase disap-
pears. Here it should be noted that the imaginary part of
staggered spin susceptibility is related to the scattering
function which can be detected by experiment [39],
Therefore, in order to compare the staggered spin suscep-
tibility with the related experiment, one should continue it
into real frequencies (more detail can be found in Ref. [22]),
we will discuss this question in the near future.
Now we focus on the staggered spin susceptibility in the

Wigner phase. Experimentally it has been proved that the
staggered spin correlations decrease with the increase of
the doping x. Rantner and Wen have explained the unusual
property based on the algebraic spin liquid plus the
spin-charge recombination picture [21,22]. In fact, this
strange experimental behavior can be explained naturally in

our paper. At zero temperature, the superfluid density in the
underdoping region depends on the doping x as ρ ¼ x=a,
where a is the lattice spacing [40,41]. As the doping x
increases, the superfluid density increases. Since the gauge
boson mass is proportional to the superfluid density, it also
increases when the doping x increases. That is to say, the
staggered susceptibility decreases with the increase of the
doping. On the other hand, it is shown that the gauge boson
mass suppresses the staggered spin susceptibility in the
low-energy limit in Fig. 4. Our results in the Wigner phase
give a qualitative physical picture on the competition and
coexistence between the antiferromagnetic order (the stag-
gered spin susceptibility) and the superconducting orders
(the gauge boson mass) in high-temperature cuprate super-
conductors. On the contrary, the staggered spin suscep-
tibility increases as the gauge boson mass increases in the
Nambu phase. The conclusion in the Wigner phase fails to
show the true physical picture.

IV. CONCLUSIONS

The primary goal of this paper is to investigate the effect
of the gauge boson mass on the staggered spin suscep-
tibility. Based on the linear response theory of the fermion
propagator in the presence of an external scalar field, we
first derive a model-independent integral formula, which
expresses the staggered spin susceptibility in terms of
objects of the basic quantum field theory: dressed propa-
gator and vertex. When one approximates the scalar vertex
function by the bare one, this expression, which includes
the influence of the nonperturbative dressing effects,
reduces to the expression for the staggered spin suscep-
tibility obtained using perturbation theory in previous
works. Then we calculate numerically the staggered spin
susceptibility in both the Nambu phase and the Wigner
phase when the gauge boson acquires a mass. It is found
that when the gauge boson mass increases, the staggered
spin susceptibility in the Wigner phase decreases, while the
staggered spin susceptibility in the Nambu phase increases.
When the gauge boson mass reaches a critical value, the
Nambu phase disappears. In addition, in the Wigner phase,
we also find that the superconducting order suppresses
the antiferromagnetic order. Our result may help to explain
why in high-temperature superconducting experiments,
the antiferromagnetic order decreases as the doping
increases.
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