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In this paper, we study residual symmetries in the lepton sector. Our first concern is the symmetry of the
charged lepton mass matrix in the basis where the Majorana neutrino mass matrix is diagonal, which is
strongly constrained by the requirement that the symmetry group generated by residual symmetries is
finite. In a recent work, R. M. Fonseca and W. Grimus found that there exists a set of constraint equations
that can be completely solved, which is essential in their approach to the classification of lepton mixing
matrices that are fully determined by residual symmetries. In this paper, a method to handle trigonometric
Diophantine equations is introduced. We will show that the constraint equations found by Fonseca and
Grimus can also be solved by this method. Detailed derivation and discussion will be presented in a self-
contained way. In addition, we will also show that, in the case where residual symmetries satisfy a reality
condition, this method can be used to solve the equation constraining parameters in the symmetry
assignment that controls the group structure generated by residual symmetries and is directly related to
mixing matrix elements.
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I. INTRODUCTION

In recent years, the relation between lepton mixing and
residual symmetries originating from finite flavor groups has
received a fair amount of attention [1–12]. Other aspects of
residual symmetries have also been studied [13]. Although
the idea that leptonmixingmay originate from an underlying
discrete symmetry has been discussed extensively in liter-
ature (for some recent reviews, see, e.g.,Ref. [14]), often only
specific residual symmetries are involved, e.g., in lepton
flavor models (see, e.g., Refs. [15–18] for models based on
various discrete groups includingA4, S4,Δð6n2Þ, etc.).With
the help of the computer algebra system GAP [19], scans of
finite groups have also been performed by several groups to
look for viable discrete flavor symmetries [20]. Hence, it
is worthwhile to see whether there are any general and
model-independent results that can be obtained for residual
symmetries and the corresponding flavor symmetries and
mixing patterns.
In Refs. [6] and [7], Hernandez and Smirnov showed

that, if residual symmetries generate a finite group, then the
mixing matrix elements can be related to parameters in the
symmetry assignment, including several characteristic
parameters of residual symmetries. In Ref. [8], this method
was used to construct full-mixing matrices, i.e., the mixing
matrices that are fully determined by residual symmetries.
In particular, using an algebraic method to solve the unitary
condition that must be satisfied by any symmetry assign-
ment that can generate a full-mixing matrix, we found that
all the full-mixing patterns can be determined in the
minimal scenario in which residual symmetries satisfy a

reality condition. In more general cases, explicit expres-
sions for the mixing matrix elements can be obtained (see,
e.g., Refs. [7] and [8]), and, to obtain specific solutions,
algebraic methods can still be useful, but the problem of
finding the complete set of solutions becomes more
involved. Nevertheless, a clear and complete answer to
this problem certainly can improve our understanding of
the role that residual symmetries might play.
Remarkably, a complete classification of lepton mixing

matrices from residual symmetries was obtained by
Fonseca and Grimus in a recent work [12]. Their approach
is also based on the assumption that residual symmetries
are originated from a finite flavor group. Nevertheless, in
this approach, mixing matrices are not obtained from
symmetry assignments but from T, the generator of the
residual symmetry in the charged lepton sector. Therefore,
it is crucial to find explicitly all the possible forms that T
can assume. In Ref. [12], this is done by first establishing
the constraint equations of jTijj and then showing that these
equations can be solved completely by using some math-
ematical results concerning roots of unity.
In this paper, we will show that those constraint equations

of jTijj can also be solved by a method developed in Sec. III.
Briefly speaking, our method is based on the observation
that the equations to be solved can be written as trigono-
metric Diophantine equations that can be transformed to
arithmetic equations involving only rational integers. They
are not equivalent, but the latter can be used as auxiliary
conditions that may lead to great simplification. The trans-
formation formula can be written in a simple form and will
be derived in a self-contained way. Some mathematical
details are provided in the Appendix.*bohu@ncu.edu.cn
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The solutions to the constraint equations of jTijj are
derived in Sec. IV by using the method introduced in
Sec. III. We will show that these equations admit only a few
solutions from which the basic forms of jTj can be
obtained. Another use of trigonometric algebraic numbers
will also be discussed. In Sec. V, we will show that this
method can also be used to find the complete solution of the
unitary condition in the minimal scenario. The results were
already given and discussed in Ref. [8], but the derivation
was omitted in order to avoid being distracted by math-
ematical details,1 and hence the derivation presented in
Sec. V can complete the discussion of the minimal scenario
in Ref. [8]. We hope that the discussions in this paper and
those in other works including Refs. [8], [9], and [12] may
draw attention to some algebraic notions and techniques
that are much less well known than group theoretical
techniques but may also be useful in the discussions of
discrete flavor symmetries.
Before proceeding to the main discussion, to provide the

necessary background and set our notations, in Sec. II, we
briefly review and discuss the two approaches men-
tioned above.

II. LEPTON MIXING AND
RESIDUAL SYMMETRIES

We denote the generator of the symmetry of the left-
handed charged lepton mass matrix MlM

†
l by T and

those of the neutrino mass matrix Mν by Si where
i ¼ 1, 2, or 3. The symmetry groups generated by T and
Si are denoted by Ge and Gν, respectively. As usual, we
adopt the assumption that neutrinos are Majorana particles
and Gν is the Klein 4-group:

Gν ¼ f1; S1; S2; S3g:

In the basis where Mν is diagonal, Si can be written as

Sd1 ¼ diagf1;−1;−1g;
Sd2 ¼ diagf−1; 1;−1g;
Sd3 ¼ Sd1S

d
2: ð1Þ

On the other hand, in the basis where Ml is diagonal, T
becomes diagonal and will be denoted by Td.
As emphasized in the Introduction, the following dis-

cussion is based on the assumption that T and Si together
generate a finite group G, which may be identified with the
flavor group Gf. A necessary condition for this assumption
to hold is given by the relations [6]

S2i ¼ Tm ¼ ðWiÞpi ¼ I; ð2Þ

where m and pi are integers and Wi ≡ ðSiTÞ−1. Since the
lepton mixing matrix U ¼ U†

l Uν where Ul and Uν are the
matrices diagonalizing T and Si, then from Eq. (2) one
finds that jUρij can be determined by parameters in the so-
called symmetry assignment including m and pi. To see
that, let us begin with Tr½Wi�. From the definition of Wi, it
follows that

ðTr½Wi�Þ� ¼Tr½SiT� ¼Tr½USdi U
†Td� ¼ 2Tr½AiTd�−Tr½Td�;

ð3Þ

where

Ai ¼ diagfjU1ij2; jU2ij2; jU3ij2g:

In general, because Tm ¼ ðWiÞpi ¼ I, one can write

Td ¼ diagfei2πk1=m; ei2πk2=m; ei2πk3=mg;

Tr½Wi� ¼
X3
j¼1

ei2πnj=pi : ð4Þ

Then from Eqs. (3) and (4) the relations between jUρij and
the parameters in Td and Tr½Wi� can be established. More
details including the explicit expressions can be found in
Refs. [6–8] and will not be repeated here except for the
minimal scenario discussed in Sec. V.
To obtain full-mixing matrices, we shall require that all

Si ∈ Gf because one Si fixes only a column in jUj. Then,
from Eq. (3) and

P
3
i¼1 S

d
i ¼ −I, it follows that

X3
i¼1

ðTr½Wi�Þ� ¼ −Tr½Td�: ð5Þ

This equation will be referred to as the unitarity condition
[8], which must be obeyed by any combination of Si and T
that generates a full-mixing matrix2

As mentioned in the Introduction, in Ref. [8], attempts
were made to find possible full-mixing matrices by solving
the unitarity condition given by Eq. (5). It was found that in
the minimal scenario in which Tr½Tα� and Tr½Wi� are real
Eq. (5) can be solved completely, and then all the possible
mixing patterns can also be obtained from its solutions. The
detailed derivation omitted in Ref. [8] can be found in
Sec. V. In nonminimal scenarios, the unitary condition
becomes more involved but less restrictive. Nevertheless,
solutions to Eq. (5) are still severely constrained by its
algebraic nature, as discussed in Ref. [8], which is also
implied by the results of numerical calculations. Therefore,
it is reasonable to think that it might still be possible to

1Some discussions in this paper can also be found in the first
arXiv version of Ref. [8].

2Note that if T has degenerate eigenvalues one will need
another matrix T 0 to determine jUj fully because only one row in
jUj can be obtained from Eq. (3) even if all Si ∈ Gf.
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obtain a complete picture of full-mixing patterns under
assumptions mentioned above, although solving Eq. (5)
alone may not be an efficient way because the relations
in Eq. (2) are not sufficient for Si and T to generate a
finite group.
This problem is solved by Fonseca and Grimus in a

recent work. In Ref. [12], they begin with YðijÞ ¼ T†SiTSj,
which must also have finite orders. Since one can show that
detYðijÞ ¼ 1 and Tr½YðijÞ� are real, it then follows that YðijÞ
have eigenvalues 1, λðijÞ, and ðλðijÞÞ�, where λðijÞ are roots
of unity and hence can be written as

λðijÞ ¼ ei2πk
ðijÞ=mðijÞ

; ð6Þ

where kðijÞ and mðijÞ are coprime. Because Tr½YðijÞ� are
basis independent, from

P
3
i¼1 S

d
i ¼ −I, one finds that

X3
i¼1

Tr½YðijÞ� ¼
X3
j¼1

Tr½YðijÞ� ¼ 1;

which can be written as

X3
i¼1

ðλðijÞ þ ðλðijÞÞ�Þ ¼ −2;

X3
j¼1

ðλðijÞ þ ðλðijÞÞ�Þ ¼ −2: ð7Þ

In addition, in the basis where Si are diagonal, one can
show that

4jTijj2 ¼ Tr½YðijÞ� þ 1 ¼ λðijÞ þ ðλðijÞÞ� þ 2: ð8Þ

Therefore, from λðijÞ satisfying (7), one can construct the
matrix jTj that is defined by jTjij ¼ jTijj. It was found in
Ref. [12] that there exist only five basic forms that jTj can
assume. From these basic forms, one can derive all the
possible full-mixing patterns because in the basis in which
Si are diagonal, the lepton mixing matrix can be obtained
from T alone. For instance, for a given T in the diagonal
basis of Si, one may obtain Td from Tr½T� and det½T� and
then solve Eq. (3) for mixing matrix elements.
In Ref. [12], the two equations in (7) are solved by

employing a theorem related to roots of unity [21]. Here,
we note that substituting Eq. (6) into Eq. (7) leads to

X3
i¼1

2 cos
�
kðijÞ

mðijÞ 2π
�

¼ −2; ð9Þ

X3
j¼1

2 cos

�
kðijÞ

mðijÞ 2π
�

¼ −2: ð10Þ

In addition, in the minimal scenario, the unitary condition
in Eq. (5) can also be written in a similar form, as shown in

Sec. V. In the next section, we introduce a method to handle
trigonometric Diophantine equations, such as the two
equations above. Using this method, we derive the sol-
utions to Eqs. (9) and (10) in Sec. IV.

III. TRIGONOMETRIC DIOPHANTINE
EQUATIONS

In this section, we consider trigonometric Diophantine
equations that can be written as

Xn
j¼1

2 cos
nj
pj

2π ¼ r; ð11Þ

where nj, pj, and r are rational integers. Without loss of
generality, we require that nj and pj are coprime or
gcdðnj; pjÞ ¼ 1, where gcd stands for the greatest common
divisor. To simplify notations, below we denote rational
angles such as 2πn=m by αnm and 2 cos αnjpj

by βj. Then,
Eq. (11) can be written as

Xn
j¼1

βj ¼
Xn
j¼1

2 cos αnjpj
¼ r: ð12Þ

We will show that this equation can be transformed to a
simple arithmetic equation,3 i.e.,

Xn
j¼1

sj
dj

¼ r; ð13Þ

where dj is the degree of the minimal polynomial (MP) of
βj, i.e., the polynomial with integer coefficients satisfied by
βj that has the lowest degree,4 and sj is the sum of all the
roots of that MP. Note that not only dj but also sj are
rational integers, as explained below. From solutions to
Eq. (13), one can find solutions to Eq. (11) because pj can
be determined by dj and sj. To derive Eq. (13), we will
need some notions and results from algebraic number
theory, mostly for convenience. The detailed derivation
is presented below in a rather self-contained way, but, for
conciseness, some details are relegated to the Appendix.
Before proceeding, we should mention that in this paper we
only use polynomials with integer coefficients, unless
otherwise stated. In addition, the set of all rational numbers
and the set of all rational integers are denoted by Q and Z,
respectively.

3Similar results may exist somewhere in literature, but we are
not aware of any of them.

4In other words, it is irreducible or cannot be written as a
product of two monic polynomials with integer coefficients.
More can be found in the Appendix.
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First, note that from

cos 2πnj ¼ cos ðpj · αnjpj
Þ ¼ 1

and the expansion of cos ðpjαnjpj
Þ in powers of cosðαnjpj

Þ,
as shown in the Appendix, one can see that βj ¼ 2 cos αnjpj

are algebraic integers that are defined to be solutions to
monic polynomials with integer coefficients. Moreover, all
the βj ¼ 2 cos ð2πnj=pjÞ in Eq. (12) can be expanded in
powers of

γ1 ≡ 2 cos
2π

q
;

where q≡ LCMðp1;…; pnÞ and LCM stands for the least
common multiple. Obviously, γ1 is also an algebraic
integer. Let polynomial gðxÞ of degree d be the MP for
γ1. It can be written as

gðxÞ ¼ xd þ cd−1xd−1 þ � � � þ c0 ¼
Yd
i¼1

ðx − γiÞ;

where γi are the roots of gðxÞ. Since the degree of an
algebraic integer is defined to be the degree of its MP, we
have degðγ1Þ ¼ d, where degðγ1Þ denotes the degree of γ1.
To proceed, we notice that, using gðγ1Þ ¼ 0, one can

eliminate any term having a power of γ1 higher than d − 1
from a polynomial in γ1. Hence, if an algebraic integer θ
can be written as a polynomial in γ1, then one can always
write θ as

θ ¼ a0 þ a1γ1 þ � � � þ ad−1γd−11 ¼
Xd−1
k¼0

akðγ1Þk ≡ pðγ1Þ;

ð14Þ

where ai ∈ Q. More importantly, the expression for θ in the
form of Eq. (14) is unique. To show that, suppose θ can also
be written as

θ ¼ a00 þ a01γ1 þ � � � þ a0d−1γ
d−1
1 :

Then, one has

ða0d−1 − ad−1Þγd−11 þ � � � þ ða01 − a1Þγ1 þ ða00 − a0Þ ¼ 0:

Since the degree of γ1 is d and thus γ1 cannot satisfy
any polynomial of degree less than d, it then follows that
a0k ¼ ak for all k.
According to the discussion above, we can write βj

uniquely as

βj ¼
Xd−1
k¼0

bjkðγ1Þk ≡ ~βjðγ1Þ; ð15Þ

where bk ∈ Z. Then, from Eqs. (12) and (15), one has

Xn
j¼1

~βjðγ1Þ ¼
Xd−1
k¼0

�Xn
j¼1

bjk

�
ðγ1Þk ¼ r: ð16Þ

Now comes a crucial step. Again, since γ1 cannot satisfy
any polynomial of degree less than d, in Eq. (16) one must
have

Xn
j¼1

bjk ¼ 0

for 1 ≤ k ≤ d − 1 because r is a rational integer. Hence, in
Eq. (16), one may replace γ1 by any number. For our
purpose, we will substitute γ1 by γ2;…; γd, i.e., the other
roots of its MP. Then, besides Eq. (16), we also have

Xn
j¼1

~βjðγiÞ ¼ r

for 2 ≤ i ≤ d. Summing over i leads to

Xn
j¼1

�Xd
i¼1

~βjðγiÞ
�
¼ rd: ð17Þ

In addition, as discussed in the Appendix, one can show
that for any γi the corresponding ~βjðγiÞ is a root of the MP
of ~βjðγ1Þ because γi is a root of the MP of γ1. Now, let dj be
the degree of βj ¼ ~βjðγ1Þ. Because one can also show that
when γi in ~βjðγiÞ runs from γ1 to γd each root of the MP of
~βjðγ1Þ repeats d=dj times, we have

Xd
i¼1

~βjðγiÞ ¼
d
dj

sj; ð18Þ

where sj is the sum of all the roots of the MP of βj. From
Eqs. (17) and (18), it follows that

Xn
j¼1

sj
dj

¼
Xn
j¼1

1

degðβjÞ
X
c

βj ¼ r; ð19Þ

where degðβjÞ ¼ dj and
P

c β
j ¼ sj. We would like to

emphasize that
P

c β
j should not be confused with

P
j β

j.
In addition, since the MP of βj can be written as

xdj − sjxdj−1 þ � � � ;

then sj must be a rational integer.
In the Appendix, the explicit expressions for dm ¼

deg ð2 cos αnmÞ and sm ¼ P
c 2 cos αnm are given in

Eqs. (A2) and (A3). As examples, dm and sm for 2 ≤ m ≤
20 are given in the table below, which will also be used in
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the next two sections. Note that dm and sm together can
determine the value of m in αnm ¼ 2πn=m but not n which
can be any integer that is relatively prime tom. For obvious
reasons, we can require that 0 < n < m=2. In addition, the
value of m may not be determined uniquely by dm and sm,
as can be seen from Table I.
The issues mentioned above indicate that Eq. (19) is only

a necessary condition for any set of pj or, more accurately,
βj ¼ 2 cos ð2πnj=pjÞ to satisfy Eq. (11). Although it is not
a sufficient condition and hence some solutions to Eq. (19)
may not satisfy Eq. (11), because it is not hard to find its
solutions in many cases, Eq. (19) can be regarded as an
auxiliary condition that may greatly simplify the problem
of finding solutions to Eq. (11). As to nj in Eq. (11), one
can find them by trial and error, especially when dj is small
because, as explained in the Appendix, dj is the number of
nj satisfying gcdðnj; pjÞ ¼ 1 and 0 < nj < pj=2.
Equation (19) is most helpful in the cases in which

it can provide enough information for us to solve
Eq. (11) completely. Such a situation may occur if the
number of terms on the left-hand side or n is not large
and jrj is comparable to n. The reason is that sj ¼P

c 2 cos ð2πnj=pjÞ can only be �1 or 0 for all pj (except
for pj ¼ 1 or 2) and the lower bound on dj increases with
pj [see the discussion below Eq. (A2) in the Appendix].
Hence, for a small n and a jrj ∼ n, to satisfy Eq. (19), pj
cannot all be very large in most cases, and thus it might be
possible to solve it completely. This is exactly the situation
for the two cases discussed in the following two sections.
This method may also be useful in some other cases, for
example, when one only wants to find certain specific
solutions or for some reason pj can only be chosen from a
given set of numbers.

IV. RESIDUAL SYMMETRY IN THE
CHARGED LEPTON SECTOR

In this section, we will show that the complete set of
solutions to Eqs. (9) and (10) can be easily obtained by the
method introduced above. Since these two equations are
similar, only Eq. (9) will be discussed in detail. As above, to
simplify notations, we write Eq. (9) as

X3
i¼1

βðijÞ ¼
X3
i¼1

2 cos αðijÞ ¼ −2; ð20Þ

where αðijÞ ¼ 2πkðijÞ=mðijÞ. Then, as shown in the previous
section, this equation can be transformed to

X3
i¼1

yi ¼
X3
i¼1

si
di

¼
X3
i¼1

1

degðβðijÞÞ
X
c

βðijÞ ¼ −2; ð21Þ

where yi ¼ si=di, si ¼
P

c β
ðijÞ, and di ¼ degðβðijÞÞ.

Since, as discussed above, jsij ≤ 1 for mðijÞ > 2 and di
tend to grow with mðijÞ, one can show that

���� sjdj
���� ≤ 2 ð22Þ

for any j. Hence, without loss of generality, we can require
that

2 ≥ jy1j ≥ jy2j ≥ jy3j: ð23Þ

Then, from Eq. (21), it follows that

jy1j ¼
���� s1d1

���� ≥ 2

3
;

and hence in Table I, one finds that

mð1jÞ ¼ 1; 2; 3; or 6:

If mð1jÞ ¼ 1, then

αð1jÞ ¼ 2π; βð1jÞ ¼ 2 cos αð1jÞ ¼ 2: ð24Þ

Substituting βð1jÞ ¼ 2 into Eq. (20) leads to

2 cos αð2jÞ þ 2 cos αð3jÞ ¼ −4:

Therefore, mð2jÞ ¼ mð3jÞ ¼ 2, and hence

βð2jÞ ¼ βð3jÞ ¼ 2 cos

�
1

2
× 2π

�
¼ −2: ð25Þ

In the case in which mð1jÞ ¼ 2, one has αð1jÞ ¼ π and

βð1jÞ ¼ 2 cos αð1jÞ ¼ −2: ð26Þ

Then, from Eq. (20), it follows that

βð2jÞ ¼ −βð3jÞ ¼ 2 cosφ; ð27Þ

where φ ¼ αð2jÞ is an arbitrary rational angle. Note that no
further constraint can be imposed on φ in this case because
Eq. (27) can be satisfied if

TABLE I. The degree of the MP of 2 cos αnm and the sum of its roots.

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
dm 1 1 1 1 2 1 3 2 3 2 5 2 6 3 4 4 8 3 9 4
sm 2 −2 −1 0 −1 1 −1 0 0 1 −1 0 −1 1 1 0 −1 0 −1 0
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kð2jÞ

mð2jÞ þ
kð3jÞ

mð3jÞ ¼
1

2
;

from which one can find a mð3jÞ for any mð2jÞ.
The next case is the one in which mð1jÞ ¼ 3, which is a

bit more complicated. From Table I, one finds that d1 ¼ 1
and s1 ¼ −1 and hence y1 ¼ −1. Then, from Eq. (21), one
has y2 þ y3 ¼ −1. Together with Eq. (23) and jy1j ¼ 1, this
leads to 1=2 ≤ jy2j ≤ 1 and jy3j ≤ 1. From these results,
one finds that −1 ≤ y2 ≤ −1=2. Therefore, y2 ¼ −1 or
−1=2, as can be seen from Table I. If y2 ¼ −1, one has
mð2jÞ ¼ 3. Together with mð1jÞ ¼ 3 and Eq. (20), it leads to
βð3jÞ ¼ 0 and hencemð3jÞ ¼ 4. In short, if y2 ¼ −1, one has

βð1jÞ ¼ βð2jÞ ¼ 2 cos
2π

3
¼ −1;

βð3jÞ ¼ 2 cos
2π

4
¼ 0: ð28Þ

If y2 ¼ −1=2, then y3 ¼ −1=2. From Table I, one has
mð2jÞ ¼ mð3jÞ ¼ 5. Because d2 ¼ d3 ¼ 2, in Eq. (20) both
kð2jÞ and kð3jÞ have two choices. The solution to Eq. (20) is
found to be kð2jÞ ¼ 1 and kð3jÞ ¼ 2. Therefore, one has

βð1jÞ ¼ 2 cos
2π

3
¼ −1;

βð2jÞ ¼ 2 cos
2π

5
;

βð3jÞ ¼ 2 cos
4π

5
: ð29Þ

After that, we are left with the case in which mð1jÞ ¼ 6.
In Table I, one finds that d1 ¼ 1 and s1 ¼ 1. However, from
Eq. (21), it follows that y2 þ y3 ¼ −3, which is not
consistent with Eq. (23), since the latter would lead to
jy2 þ y3j ≤ 2jy1j ¼ 2. Therefore, no solution satisfying
Eq. (23) exists for mð1jÞ ¼ 6.
Now, we have found all the solutions to Eq. (20) that

are given by Eqs. (24)–(29). Since, from Eqs. (6) and (8)
one has

4jTijj2 ¼ βðijÞ þ 2 ¼ 2 cos

�
kðijÞ

mðijÞ 2π
�
þ 2; ð30Þ

then, for each solution, the corresponding jTijj2 can be
obtained from the relation above and written collectively as
ðjT1jj2; jT2jj2; jT3jj2Þ. For the four solutions found above,
one has the following four possibilities:

ð1; 0; 0Þ;
�
1

4
;
3þ ffiffiffi

5
p

8
;
3 −

ffiffiffi
5

p

8

�
;

�
1

2
;
1

4
;
1

4

�
;

�
0;
1þ cosφ

2
;
1 − cosφ

2

�
:

Note that the order of jTijj2 can be changed because in
Eq. (23) the order of y1, y2, and y3 can also be changed,
which may lead to solutions with different orderings.
It is easy to see that the solutions to the second equation

in (7) are the same as the first one. Hence, in matrix jTj2
where ðjTj2Þij ¼ jTijj2, every row and column must be one
of the four possibilities given above. It is then not hard to
find that there exist only five basic forms that jTj can
assume, as shown in Ref. [12]. After that, by a thorough
and careful analysis, which can also be found in Ref. [12],
one can find all the possible full-mixing patterns.
Before proceeding to the next section, we would like to

mention that some results used in our discussions might
also be useful on other occasions. For example, because a
noninteger rational number is not an algebraic integer, as
shown in the Appendix, sometimes this can provide a quick
way to show that for a given complex number η there does
not exist a rational integer m satisfying ηm ¼ 1. If such an
m exists, then η is a root of unity and can be written as
η ¼ ei2πk=m. Hence, ηþ η� ¼ 2 cos ð2πk=mÞ must be an
algebraic integer. But if ηþ η� is a noninteger rational
number, then it cannot be an algebraic integer, and thus η
cannot be a root of unity. For instance, η ¼ ð1þ i3

ffiffiffi
7

p Þ=8
or η ¼ ð−1þ i

ffiffiffiffiffi
15

p Þ=4 cannot be a root of unity because
ηþ η� is a noninteger rational number.5

V. MIXING PATTERNS IN THE
MINIMAL SCENARIO

The derivation of lepton mixing patterns from jTj is
rather complicated. In this section, we will show that, in the
minimal scenario in which both Tr½T� and Tr½Wi� are real,
the unitarity condition (5) can also be solved completely,
and hence full-mixing matrices can be obtained in a rather
straightforward way.
When Tr½T� is real and T belongs to SUð3Þ, from Eq. (2)

it follows that Td can be written as one of the following
three matrices:

Te ≡ T1 ¼ diagf1; e2πin4=p4 ; e−2πin4=p4g;
Tμ ≡ T2 ¼ diagfe2πin4=p4 ; 1; e−2πin4=p4g;
Tτ ≡ T3 ¼ diagfe2πin4=p4 ; e−2πin4=p4 ; 1g; ð31Þ

where n4 and p4 are coprime. It then follows that

Tr½T� ¼ 1þ 2 cos 2πn4=p4: ð32Þ
In this section, we will denote Td by Tα where α ¼ 1, 2, or
3. In addition, we require thatm > 2, because otherwise the
lepton mixing matrix cannot be fully determined. Similarly,
if Tr½Wi� is real, because ðWiÞpi ¼ I, the eigenvalues ofWi
can always be written as 1, e2πini=pi , or e−2πini=pi with
gcdðni; piÞ ¼ 1. Hence,

5These two examples are taken from Ref. [12] where a
somewhat different argument is used.
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Tr½Wi� ¼ 1þ 2 cos 2πni=pi: ð33Þ

Then, from Eqs. (3), (32), and (33) and
P

3
ρ¼1 jUρij2 ¼ 1,

one finds that

jUαij2 ¼
1þ Tr½Wi�
3 − Tr½Tα�

¼ 1þ cos ð2πni=piÞ
2sin2ðπn4=p4Þ

; ð34Þ

jUβij2 ¼ jUγij2 ¼
1

2
ð1 − jUαij2Þ; ð35Þ

where β; γ ≠ α, and β < γ. For detailed derivation,
see Ref. [6].
As discussed in Sec. II, to generate a full-mixing matrix,

Wi and Tα must satisfy the unitary condition in Eq. (5). In
the minimal scenario, substituting Eqs. (32) and (33) into
Eq. (5) leads to

X4
j¼1

βj ¼
X4
j¼1

2 cos αnjpj
¼ −4; ð36Þ

where βj ¼ 2 cos αnjpj
and αnjpj

¼ 2πnj=pj. As in the
previous section, this equation can be transformed to

X4
j¼1

yj ¼
X4
j¼1

sj
dj

¼
X4
j¼1

1

degðβjÞ
X
c

βj ¼ −4; ð37Þ

which can also be easily solved in a way similar to the
previous section.
First, note that Eq. (37) cannot be satisfied if all yj > −1;

then, we can require that y1 ≤ −1 and y1 ≤ yj for j ≥ 2.
From Table I, one finds that y1 ¼ −1 or −2 corresponding
to d1 ¼ 1 and s1 ¼ −1 or −2.
If d1 ¼ 1 and s1 ¼ −1, from Eq. (37) it follows thatP
4
j¼2 yj ¼ −3. Since yj ≥ y1 ¼ −1 for j ≥ 2, it cannot be

satisfied unless all yj ¼ −1. Therefore, from Table I one
finds that sj ¼ −1 and dj ¼ 1, and hence pj ¼ 3 for all j.
If d1 ¼ 1 and s1 ¼ −2, from Table I one finds that

p1 ¼ 2. Since one can only let n1 ¼ 1, from Eq. (36) it
follows that

P
4
j¼2 β

j ¼ −2. Besides that, from Eq. (37) and
y1 ¼ −2, one has

P
4
j¼2 yj ¼ −2. These equations are

identical to Eqs. (20) and (21), and hence their solutions
can be obtained from those found in Sec. IV.
Here, we denote the solutions to Eq. (36) by

fp1; p2; p3; p4g from which the corresponding mixing
matrix can be obtained from Eqs. (34) and (35). In this
notation, the solutions we found can be written as
f3; 3; 3; 3g, f2; 1; 2; 2g, f2; 2; p3; p4g, f2; 3; 3; 4g, and
f2; 3; 5; 5g. As explained in the previous section, in the
third solution, p3 and p4 can be any integers that satisfy the
relation n3=p3 þ n4=p4 ¼ 1=2, where n3 and n4 are
arbitrary integers satisfying 0 < nj=pj ≤ 1=2 and
gcdðnj; pjÞ ¼ 1. In Eq. (37), one may change the order
of yj, and hence the order of pj can also be changed in these
solutions. Nevertheless, as discussed in Ref. [8], only the

last two solutions can lead to phenomenologically interest-
ing mixing patterns including tribimaximal mixing, bimax-
imal mixing, or the golden ratio mixings. For more
discussion, see Ref. [8].

VI. DISCUSSIONS

In the previous two sections, under the assumption that
residual symmetries are originated from a finite group, we
discussed the condition constraining the symmetry of the
charged leptonmassmatrix in the basis in which the neutrino
mass matrix is diagonal and the unitary condition in the
minimal scenario. Both of them can be completely solved by
the algebraicmethod presented in Sec. III, and their solutions
can be used to construct full-mixing matrices. This method
can also be used to solve trigonometric Diophantine equa-
tions similar to those discussed in this paper.
It is interesting to see that, besides group theoretical

techniques, other algebraic techniques can also be useful
and even the key to some important results including the
basic forms of jTj discussed in Sec. IV. As another
example, in Ref. [12] it was found that, under the same
assumptions adopted in this paper, only particular trimax-
imal mixing patterns can survive the current neutrino
oscillation data. The corresponding symmetry groups
include, e.g., Δð600Þ, Δð1536Þ, and ðZ18 × Z6Þ × S3,
which can also be obtained from solutions to Eq. (5) in
nonminimal scenarios. To find those solutions, notions and
tools from algebraic number theory can also be helpful, as
discussed in Ref. [8]. In addition, from Eq. (4) one finds
that the unitary condition in Eq. (5) can be written as a
vanishing sum of 12 roots of unity. The classification of its
solutions can be found in Ref. [22] from which one may
find another approach to the classification of full-mixing
patterns. Hopefully, the works presented in some papers
including Refs. [8,9,12], and this one may draw attention to
those less well-known techniques.
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APPENDIX: TRIGONOMETRIC
ALGEBRAIC NUMBERS

In this Appendix, some mathematical details concerning
trigonometric algebraic numbers will be provided. Below,
we first quickly recall some basic notions from algebraic
number theory [23]:
(1) An algebraic number θ overQ, the set (or field) of all

rational numbers, is a root of a monic polynomial
over Q that can be written as

fðxÞ ¼ xn þ an−1xn−1 þ � � � þ a0; ðA1Þ
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where all ai ∈ Q and n is called the degree of the
polynomial. Moreover, if all ai are rational integers,
θ can also be called an algebraic integer. If α and β
are algebraic numbers (integers), then αþ β and αβ
are also algebraic numbers (integers).

Note that, unless otherwise mentioned, here we consider
only algebraic numbers (integers) and polynomials over Q,
as defined above. Hence, from now on, we will omit the
phrase “over Q” for the sake of conciseness.
(2) The MP of θ is the polynomial of lowest degree that

θ satisfies. One can show that the MP of θ is unique;
otherwise, one can construct a polynomial satisfied
by θ of lower degree than the MP. For the same
reason, the MP is clearly irreducible or cannot be
written as a product of two polynomials.

(3) The degree of θ, denoted by degðθÞ, is defined to be
the degree of its MP. All the roots of its MP are also
called the conjugates of θ, which are denoted by θk,
where k ¼ 1; 2;…; degðθÞ and θ1 ¼ θ. An impor-
tant and frequently used result is that any polynomial
satisfied by θ must be divisible by its MP and hence
satisfied by all θk because the remainder of the
division, if not vanishing, is also satisfied by θ, but of
lower degree than its MP. As a consequence, the MP
of θ is also the MP of θk since it is not reducible.

(4) Since the MP of an algebraic number (integer) θ has
rational (integer) coefficients and can always be
written as

Q
kðx − θkÞ, it is obvious that

P
k θk is a

rational number (integer). One can also show that θk
are distinct because, if θi ¼ θj, then from the MP
one can construct a polynomial satisfied by θi or θj
of lower degree than the MP by taking derivative
with respect to x.

Mostly for convenience, simple algebraic extension of Q
is introduced below. No deep result concerning field
extensions is needed for our discussions.
(5) By adjoining toQ an algebraic number θ, the field of

rational numbers can be extended to another field
denoted by QðθÞ. As shown in Sec. III, every
element λ of QðθÞ can be written uniquely in the
form

λ ¼ a0 þ a1θ þ � � � þ av−1θd−1 ≡ pðθÞ;
where ai ∈ Q and d ¼ degðθÞ. The conjugates of λ
for QðθÞ are defined to be pðθkÞ≡ λ̄k, where θk are
the conjugates of θ and λ̄1 ¼ λ.

We should emphasize that λ̄i defined above are the
conjugates of λ for QðθÞ but not the conjugates of λ over Q
(defined in item 3), which are denoted by λk. Nevertheless,
they are closely related:
(6) The set fλ̄1; λ̄2;…; λ̄dg is not necessarily identical to

the set of the conjugates of λ over Q, i.e.,
fλ1; λ2;…; λdegðλÞg, where λ1 ¼ λ ¼ λ̄1. However,
one can show that in fλ̄1; λ̄2;…; λ̄dg each λk repeats
d= degðλÞ times.

It might be instructive to go over the proof of the result
given in item 6, which is very important in the derivation of
Eq. (13). Below, we follow Ref. [23]. To begin with, one
consider the polynomial6

fðxÞ ¼
Yd
i¼1

ðx − λ̄iÞ ¼
Yd
i¼1

ðx − pðθiÞÞ:

Let the MP of λ be gðxÞ of degree degðλÞ. Since λ ¼ λ̄1 is a
root of fðxÞ, then, for the reason explained in item 3, fðxÞ
must be divisible by gðxÞ. Therefore, one can write

fðxÞ ¼ ½gðxÞ�nhðxÞ;

where gðxÞ∤hðxÞ. Then, one can show that hðxÞ must be a
constant. Otherwise, for some λ̄m, one must have
hðλ̄mÞ ¼ hðpðθmÞÞ ¼ 0. Since θm satisfies hðpðxÞÞ, then
hðpðxÞÞmust also be satisfied by θ1 (see item 3). Therefore,
one has hðpðθ1ÞÞ ¼ hðλ̄1Þ ¼ hðλÞ ¼ 0 from which it fol-
lows that gðxÞjhðxÞ, which contradicts the requirement
gðxÞ∤hðxÞ. After that, it is not hard to see that hðxÞ ¼ 1, and
hence fðxÞ ¼ ½gðxÞ�n and n ¼ d= degðλÞ.
Below, we will concentrate on trigonometric algebraic

numbers, especially the cosines of rational angles, i.e.,
2 cos αnm, where αnm ≡ 2πn=m and gcdðn;mÞ ¼ 1. As in
the main text, below we denote 2 cos αnm by βnm.
First of all, recall that [24]

2 cosmα ¼ ð2 cos αÞm −mð2 cos αÞm−2

þmðm − 3Þ
2

ð2 cos αÞm−4 þ � � � :

Replacing 2 cos α by x in the expression on the right-hand
side, we can define polynomials cmðxÞ as7

cmðxÞ≡
�
xm −mxm−2 þmðm − 3Þ

2
xm−4 þ � � �

�
− 2:

From cosmαnm ¼ 1, one has

cmðβnmÞ ¼ 2 cosmαnm − 2 ¼ 0;

from which it follows that βnm ≡ 2 cos αnm is an algebraic
integer. An immediate consequence is that, if βnm is a
rational number, it must be a rational integer. Note that its

6One can show that the coefficients of fðxÞ are rational
numbers or integers because they can be written as polynomials
of the elementary symmetric functions in θ1;…θk such as

P
k θk,P

k;j θkθj, etc., which can be shown to be rational numbers or
integers since they are the coefficients of the MP of θk, i.e.,Q

kðx − θkÞ. A complete proof of this point would take us too far
afield. One may find the details in Ref. [23].

7If more details are needed, note that cmðxÞ can also be written
as 2Tnðx=2Þ − 2, where TnðxÞ are Chebyshev polynomials of the
first kind [24].
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MP is not cmðxÞ but a factor of cmðxÞ, as discussed above in
item 3. Hence, any conjugate of βnm must also be a root
of cmðxÞ.
Next, except for m ¼ 1 or 2, the algebraic degree of βnm

is given by φðmÞ=2, where φðmÞ is Euler’s φ function [25],
i.e.,

degð2 cos αnmÞ ¼
φðmÞ
2

¼ m
2

Y
Pjm

ð1 − P−1Þ; ðA2Þ

where P are prime numbers and the product involves all the
distinct prime factors of m. Recall that, by definition, φðmÞ
is equal to the number of positive integers that are less than
m and are relatively prime to m. A useful property of φðmÞ
is that φðmÞ tends to increase with m. In fact, various lower
bounds on φðmÞ can be established [26]. For instance,
φðmÞ ≥ ffiffiffiffi

m
p

for m ≠ 2 and m ≠ 6, and φðmÞ > m2=3

for m > 30.
A rigorous proof of Eq. (A2) can be found in Ref. [27]. A

short but less elementary proof can be found in Ref. [28].
Some examples are given in Table I of Sec. III. Below, we
give a simple argument showing that the conjugates of βnm,
i.e., the roots of its MP, can include only those 2 cos αqm
with gcdðq;mÞ ¼ 1, the number of which is exactly
φðmÞ=2 after the equality between 2 cos αqm and
2 cos αðm−qÞm is taken into account. To show that, let us
consider βkp¼ 2cosαkp and βnm¼ 2cosαnm with
gcdðk;pÞ¼ gcdðn;mÞ¼ 1 and p < m. From cpðβkpÞ ¼ 0
and

cpðβnmÞ ¼ 2 cospαnm − 2 ≠ 0;

one finds that βnm cannot be a root of cpðxÞ that contains
the MP of βkp. Therefore, βnm is not a root of the MP of any
2 cos αqm if q is not relatively prime to m. In other words,
the former is not a conjugate of the latter. Since all the
conjugates of βnm are among the roots of cmðxÞ that can be
written as 2 cos αqm with 1 ≤ q ≤ m, we are left with
2 cos αqm with gcdðq;mÞ ¼ 1, as promised.
Now, we turn to the sum of the conjugates of βnm,

including all the distinct 2 cos αqm with gcdðq;mÞ ¼ 1. The
results are given by

X
c

2 cos αnm ¼

8>><
>>:

2; m ¼ 1

−2; m ¼ 2

μðmÞ; m ≥ 3;

ðA3Þ

where
P

c θ denotes the sum of the conjugates of an
algebraic number θ and μðmÞ is the Möbius function [25]
defined as

μðmÞ ¼

8>>><
>>>:

1; m ¼ 1

0; ifm has a square factor

ð−1Þk; ifm ¼ p1p2…pk withpi

being different prime numbers:

For some examples, see Table I in Sec. III. Below, we give
an example to demonstrate how Eq. (A3) is derived. First,
one has

Xm−1

k¼1

cos
k
m
2π ¼ Re

�Xm−1

k¼1

ei
k
m2π

�
¼ −1 ðA4Þ

for any m ≥ 2. Then, one can divide the terms on the left-
hand side into groups of conjugates. For example, for
m ¼ 3 × 7,

X20
k¼1

cos
k
21

2π ¼
X2
i¼1

cos
i
3
2π þ

X6
i¼1

cos
i
7
2π

þ 2
X
j≤10;

ðj;21Þ¼1

cos
j
21

2π; ðA5Þ

where ðj; 21Þ is short for gcdðj; 21Þ. As explained above,
the last term can be written as

P
c 2 cos ð2πn=21Þ where n

can be any integer satisfying gcdðn; 21Þ ¼ 1. From
Eqs. (A4) and (A5), one finds that

X
c

2 cos
n
21

2π ¼ 1:

By induction, the result given by Eq. (A3) can also be
proved for arbitrary m in a similar way. The detailed
derivation is somewhat lengthy and hence will not be
presented here. In addition, for a result like Eq. (A3), it
seems to us that numerical verification might be a simple
way to convince oneself. We have done that for
m ≤ 5 × 104, which should be sufficient for us because
in our discussions m represents the order of a group
element.
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