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We study the process e~ et — ZH where H represents the standard model (SM) Higgs particle Hgy, or
the minimal supersymmetric standard model (MSSM) ones /° and H°. In each case, we compute the one-
loop effects and establish very simple expressions, called supersimple (sim), for the helicity-conserving
(dominant) and the helicity-violating (suppressed) amplitudes. Such expressions are then used to construct
various cross sections and asymmetries, involving polarized or unpolarized beams and Z-polarization
measurements. We examine the adequacy of such expressions to distinguish SM from MSSM effects or

from other types of beyond the standard model contributions.
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I. INTRODUCTION

Our basic motivation for this study is that after the Higgs
boson [1] discovery [2], precise analyses of Higgs proper-
ties are necessary in order to confirm its origin and nature:
standard model (SM), SUSY, other extensions, compos-
iteness, etc. Such searches will be done in several places
and with various processes [3], in particular at the future
ILC [4].

Our aim here is to look for simple tests, using exper-
imental measurements at high energies, which could
immediately distinguish SM or minimal supersymmetric
standard model (MSSM) contributions, from possible
additional (small) anomalous beyond the standard model
(BSM) effects.

For various processes observable at LHC or ILC, we
have already shown that one-loop effects can be described,
at sufficiently high energies, by simple expressions which
reflect in a clear way the nature of the underlying dynamics.
We have called these expressions ““supersimple” (sim) and
we have already derived them for e~e™ — 17, e”e™ —
W~W and other processes [5-9]. In all cases, these simple
expressions can help distinguish SM or MSSM from other
BSM (beyond the standard model) dynamics.

In this paper we concentrate on e~et — ZH. This
process has been considered as the most important one
for studying the Higgs boson at e~e™ colliders [10]. As we
point out below, there are several points that may be added
to the previous analyses of this process, even in the SM
case [10].

In the next sections we examine the contents of the Born
and one-loop amplitudes for this process. At the Born level,
we verify that the helicity-conserving (HC) amplitudes
(those involving longitudinal Z states) are the dominant
ones at high energies, behaving like constants; while the
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helicity-violating (HV) amplitudes (those involving trans-
verse Z states) are high energy suppressed, but only like
my/+/s. This is in agreement with the asymptotic helicity
conservation rule, which claims (to all orders), that the HC
amplitudes are the only ones that may be asymptotically
nonvanishing [5,6].

At the one-loop level, the aforementioned high energy
behavior of the various amplitudes is only modified by
In and In? terms accompanied by constant terms. The
coefficients of these terms possibly involve ratios of
Mandelstam variables. This way, we establish the afore-
mentioned “sim” expressions. Such expressions clearly
emphasize the dynamics behind the high energy values of
the various helicity amplitudes.

We first work in the SM case. Particularly for the HC
amplitudes, it is instructive to see how the sim expressions
are realized through cancellations among various contri-
butions, and how their various logarithmic terms combine
to produce the Sudakov forms expected by the general rules
[11]. For achieving this, it is advantageous to use the
equivalence theorem relating the longitudinal Z amplitudes
to the Goldstone ete~ — G°H ones, not only at tree level
[12], but also to all orders in SM or MSSM [13].

For the HV e"e™ — ZH amplitudes, the rather weak
myz/+/s Born suppression is considerably modified by In
and In? one-loop corrections. Therefore, at intermediately
high energies, we cannot completely neglect the one-loop
corrections for them, as we have done for e“e®™ — t7,
W~=WT [8,9]. Therefore, sim expressions for them are also
needed. It turns out that these one-loop corrections are more
complicated than those for the HC ones, reflecting the fact
that there is no Sudakov rule for the HV amplitudes [11].

In a second step we consider the MSSM cases e"et —
Zh° and e"et — ZH°. Apart from a simple mixing factor
for the Higgs coupling (which strongly suppresses the H°
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amplitudes) the corresponding Born terms are similar to
those of the SM case. At one-loop level though, there are
specific supersymmetric contributions, involving sfer-
mions, charginos and neutralinos and additional Higgs
bosons. We establish the corresponding MSSM sim expres-
sions for the HC and HV amplitudes and we compare them
with those of the SM case.

Finally, as the HV amplitudes always give only small
contributions to the various observables, it is sufficient
to use simple fits for them, which we present in
Appendix B. 1.

In a final step we compare the SM and MSSM effects,
based on either the exact one-loop or sim expressions for
the various amplitudes. In addition the SM effects are
compared to those of a tree-level BSM contribution created
by some anomalous HZZ and HZy couplings [14].

To this aim, we study whether the sim expressions may
be sufficient for a good description of various e~ et — ZH
observables, in either SM or MSSM. As such, we consider
cross sections involving unpolarized eT beams, as well as
forward-backward and polarization asymmetries con-
structed by using polarized e~ beams and/or measuring
the final Z polarization. It turns out that some of these
observables may be useful, not only for distinguishing SM
from a BSM model like the one mentioned above, but they
may also be sensitive to SM-MSSM differences.

The contents of the paper are the following. In Sec. Il we
give the expressions for the Born helicity amplitudes for
Hgyy, h°, and H® production. In Sec. III we present the one-
loop effects in the on-shell renormalization scheme. Their
sim expressions are introduced in Sec. IV for all HC and
HV amplitudes, while the complete results are given in
Appendixes A and B. In Sec. V we give an example of an
effective BSM contribution created by some anomalous
couplings of the Standard Model Higgs particle. The
possibility of a complete amplitude analysis using various
unpolarized and polarized observables is described in
Sec. VI, while the corresponding numerical analysis,
including illustrations, is given in Sec. VIL. Section VIII
contains the conclusions on the possibility of discriminat-
ing SM or MSSM from some types of BSM corrections.
The accuracy of the sim expressions in SM and MSSM is
also discussed.

II. KINEMATICS, BORN
HELICITY AMPLITUDES

We consider the process

e;(Dey () = Z(p)H(p'). (1)

where (4, 1) denote the helicities of the incoming (e, e™)
states, and 7 the helicity of the outgoing Z with its
polarization vector being e. H represents either Hgy;, h°
or H°. As shown in (1), (I, I', p, p) are the various particle
momenta satisfying / + ' = p + p’. We also use
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s=(+0?% 1= (I-p)

u=(l-p)> Pz :ﬂz; (2)

where p, = \/E% — m? denotes the Z-three-momentum in
the ZH-rest frame. Finally, the angle between the incoming
e~ momentum / and the outgoing Z momentum p, in the
center of mass frame, is denoted as 6.

In the SM and its extension MSSM, the Born amplitude

erZZH
(s = m3)

is only due to s-channel Z exchange. Since the electron
mass is neglected, the only possible invariant form it can
contain is

ABom _ _ L[4 P + 0% Pr, (3)

Iy = v(ey Jeu(e;). (4)

The relevant couplings in (3) are

-1 + 2S%V 7 Sw
= ———-- N = — 5 5
ggL ZSWCW geR CW ( )
myz mz .
=— = sin(f — a),
fZZHSM Swew fzzh“ Swew (ﬁ )
Z
S zzm0 = cos(ff — a), (6)
SwCw

where the first term in (6) applies to SM, while the rest
to MSSM.
Since the neglect of the electron mass implies

/l:—/l/::':—

5 9

and (z = =£1,0), there exist six independent helicity
amplitudes, denoted as F,.(€), in the usual Jacob-Wick
convention [15]. In case CP is conserved though, the exact
relation

Fie(0) = Fy(x = 0), (8)

reduces them to only four independent ones.
At the Born level, these are the transverse-Z amplitudes
A==£1/2, 7 =%1)

eszZH\/E
V2(s —m3)
— gig(tcos 0+ 1)5; 4], )

F3om(9) = — (9% (tcosO —1)6; _

and the longitudinal-Z amplitudes (A = £1/2, ¢ = 0)
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FBom(H) e fZZHEZ\/_ Slng[ 7 5/1_
A0 =)

g§R5ﬂ.+}' (10)

Note that the high energy helicity conservation (HCns) rule
[5,6] requires

A+ =1, (11)

which, combined with (7), implies that the transverse
amplitudes in (9) violate HCns, and are indeed suppressed
like my/\/s, according to (9). We call them helicity-
violating (HV) amplitudes.

Contrary to this, the longitudinal-Z amplitudes in (10),
which satisfy (11) and are called helicity conserving (HC),
tend to constants at high energies, given by

eszZH sin @

FBom N
1,0 zmz

- 9§R5/1,+]- (12)

[geLéxl,—

We have checked that this result agrees with the direct
computation of the Goldstone process e”e™ — G°H, and
the asymptotic relation FB™(Z, . H) = iF3*™(G"H)
implied by the equivalence theorem in [12,13].

III. ELECTROWEAK CORRECTIONS
AT ONE LOOP

In all explicit amplitude expressions presented in
Secs. III and IV, we assume for simplicity that CP
symmetry is respected in' SM and MSSM, implying
according to (8) four independent helicity amplitudes,
two HC amplitudes and two HV ones.

The corresponding one-loop amplitudes arise from ZZ
and yZ self-energies and counterterms generating renor-
malized initial and final vertices; triangles (initial and final
in s channel, and up and down in ¢ and u channels); direct,
crossed and twisted boxes; and specific diagrams involving
four-leg bosonic couplings (see [10]). In the MSSM case
additional diagrams exist involving supersymmetric part-
ners like sleptons, squarks, charginos, neutralinos and
additional Higgs bosons. We have recomputed all these
contributions in terms of Passarino-Veltman (PV) functions
[16], which are then expanded, as explained in the next
section, in order to obtain simple high energy expressions.

All one-loop contributions appear in four invariant
forms: the I, form, already appearing at Born level and
given in (4), and the four new ones

ey)e-p'puler), Ii=0(ey)e-l'pule;),
6;)6'1;7”(6;), Jl:_il_)(e;>€ﬂypayﬂ€vp/ppau(ej)’
(13)

"The possibility of CP-violating effects is only considered
with respect to a BSM model in Sec. V.
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the last of which J; would only appear in the case of
CP-violating couplings; see Sec. V.

Concerning the counterterms, we note that they are
calculated in the so-called on-shell scheme [17], leading
to the usual forms for the renormalized initial Zee and the
final ZZH vertices. We assume that the masses of the final
Higgs bosons are well determined, such that one can apply
the corresponding residue and demixing constraints leading
to a contribution 6Zy /2 factorizing the Born term. In the
SM case, we thus get

5ZHSM — _Z/H(M%isM). (14)

Correspondingly in MSSM, where (H, = h°, H, = HY),
we have

1 1
§5ZH,» =73 |:Z/H,»H,» (M)

fzzn, (i, (Miy,) = Zpg, i, (M)
13}
ZfZZH (ME;, —M3;,) ot
(15)
where
_ bsin(f - a) _ bcos(f—a)
e a1

with a being the usual neutral Higgs mixing angle. Using
the purely divergent  renormalization, the quantities in
(16) may be calculated using [18]

otanff  aA
tan f

m m
E}‘Nj COSzﬂ(Sf up si Hzﬂ éf,down s
(17)

while «a is kept fixed at the value given by the benchmark
choice. We have checked the cancellation of the divergen-
ces in such a scheme. The counterterms in (14)—(17) are
expressed in terms of the unrenormalized self-energies
%, that can be found in [8,9,19].

 167s3,m3,

ZH;H‘/-’ 2ZZ’

IV. SUPERSIMPLE (SIM) EXPRESSIONS

For deriving these simple expressions one starts from the
exact one-loop results in terms of PV functions, and then
uses their high energy expansions given in [20]. The sim
results thus obtained for the HC amplitudes are given in
Appendix A, while the corresponding ones for the HV
amplitudes appear in Appendix B.

Before discussing these results, we first note that the
infrared divergencies are regularized by introducing a
photon mass m,. As usual, these divergencies are canceled
by adding to do(e~e™ — ZH)/dcos@, the cross section
for bremsstrahlung of an unobservable soft photon con-
tribution given by [10]
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do, s dO.Born
dct:)sé - dcos@ébremS(my’AE)’ (18)
with
a s 2AE
1) JAE)=——<2(1—-In— |1
brems(my ) ”{ ( nmg> Il< my >
1. m? m: 72
2= 4 In—+=3, 19
Jr2 o i s N 3} (19)

where AE describes the highest energy of the emitted
unobservable soft photon satisfying

m, < AE < \/s. (20)

When (18) is added to do(e” et — ZH)/dcos 0 (for the
same polarizations of the initial e¥ beams or the final Z
boson), it completely cancels the infrared-photon part,
irrespective of the actual value of m,, provided that it
can be treated as infinitesimal. As in [7-9], we always
chose m, = my, which satisfies (20) at the high energies
we are interested in, and considerably simplifies the results
in Appendixes A and B.

This way, the infrared divergencies may be handled, not
only in the differential cross sections, but also in the various
asymmetries defined in Sec. VL.

We next turn to the HC and HV amplitudes.

(a) The HC amplitudes:

For the HC amplitudes, which are the leading ones
at high energy, we follow the procedure used in [7-9].
In the process e"et — ZH, these HC amplitudes
are the two longitudinal Z amplitudes whose Born
expressions are given in (10). At the one-loop level
though, the direct derivation of the high energy
expressions is very delicate, because of huge gauge
cancellations among individual terms growing like
\/s/my. But the derivation is facilitated by working
with the amplitudes of the Goldstone process
e"et — G'H, which are equivalent up to m?/s
corrections [13].

This way, one obtains the sim expressions in
Appendix A. Explicitly, for the SM case, these are
given by the results (AS5), (A6). Correspondingly, for
the MSSM cases of H = h° and H = HY, the results
are given in (AS8), (A9). These expressions clearly
indicate the important dynamical contents.

As in [7-9], these high energy expressions consist
of combinations of the two augmented Sudakov terms
exemplified in (Al), (A2), and the two energy and
mass independent forms (A4), (A3). Such expressions
provide precise high energy predictions, where only
quantities vanishing like powers of energy are neglected.

(b) The HV amplitudes

The HV amplitudes involve transverse-Z states,

which at Born level are given by (9). Assuming for
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simplicity CP invariance for the SM or MSSM
contributions, then the constraint (B1) implies the
existence of only two independent amplitudes. As
such we take F'__, F', _ given in (B2), (B3) at the one-
loop order. Since these amplitudes are only suppressed
like m/+/s at high energy, they are not negligible
at intermediate energies, in both SM and MSSM.
To obtain satisfactory expressions for them at inter-
mediate energies, we start from the direct one-loop
expressions in terms of the PV functions, which we
subsequently expanded. The resulting expressions are
less compact than those in the HC cases, because of
more involved mass dependent terms. The reason for
this is due to the nonexistence of any Sudakov rule
for such mass-suppressed amplitudes [11]. This way
we obtain the expressions (B5)—(B10) in SM, and
(B13)-(B16) in MSSM, which must be used in
conjunction with (B2), (B3) mentioned above.

These expressions are quite complicated. Never-
theless, since the HV amplitudes are much less
important than the HC ones, it is possible to obtain
sufficiently accurate fits for them by neglecting mass
differences in the various loop contributions (most
importantly the logarithms) and only consider a
common mass scale for them. Such fits are given in
(B19) and Table III, expressed in terms of squared log,
linear log and constant contributions.

V. OTHER BSM EFFECTS

BSM effects like anomalous Higgs couplings to vector
bosons may be described by effective operators, like e.g. in
[14]. Here we just want to see how one can differentiate
such effects from the one-loop SM contributions, and
whether the accuracy of the sim expressions are adequate
for that purpose.

For a simple illustration we take the two CP-conserving
operators Oy, Oy, and the two CP-violating ones O,
Oy of [14] with couplings dy;5, dyw, dyg, dyw, inducing
the anomalous yZHgqy; and ZZHgy; couplings

d,z = swew(dys — dyw), dzz = dypciy + dyw)si.

dyz = swew(dyp — dyw). dzz = dygcy + dyw)sp.

(1)

Combining them with the SM Zee couplings given in (5)
and the yee couplings g}, = g/ = g, = —1, we obtain the
tree-level BSM contributions to the invariant amplitudes

2
A(e‘e*eZHSM):—Z ( s~V + 95+ g3 1]
V=Zy s_mV)

X [g¥, Pr + g/ Pr]. (22)
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where the [, I,, J; forms are defined in (4), (13), while the
corresponding effective couplings are

2E,\/5 2E,\/5
91 = _#dyb 9% = z dzz,
mzSwCw mzSyCwy
2 2
gg = _4611/2’ gg = dZZ’
mzSwCwy mzSwCw
2 - 2 _
= d l=——"__d,. 23
g3 o vz 93 S 7z (23)

The last line in (23) indicates that the presence of CP-
violating BSM physics would induce a J; contribution
coming from a Z or photon exchange.

For illustrating BSM contributions somehow comparable
to the SM ones at energies below 5 TeV, we use values of
the effective couplings in (23), of the order of 0.0005.
Such BSM corrections, denoted as “eff,” appear in several
figures below.

VI. OBSERVABLES AND
AMPLITUDE ANALYSIS

In the case that no CP-conservation constraint is avail-
able, there exist six independent e~e™ — ZH helicity
amplitudes, which means that at least six independent
observables are needed. If CP conservation holds, this
number reduces to four.

Such observables may be defined by using the two
different initial e* polarizations and the three possible final
Z polarizations. In constructing them, we first note the
differential unpolarized cross section

do
— 24
dcos 0 128ﬂsz| w(O), (24)

and its integrated over all angles cross section

1 do
= dcos——— 25
/_1 % dcos0’ (25)

where /3, is defined in (2), and one sums over 4 = :I:% and
7 = =1, 0. Cross sections could also be integrated over the
forward (with respect to the ¢~ beam) or the backward
region, leading to o and o respectively.

Another possibility of unpolarized beam cross sections is
when the helicity of the final Z is also observed The
integrated cross section in this case is denoted as o%< with
(z=-1, 0, +1). Similarly oF and 63’ may also be
considered.

Finally, the integrated cross section for initially polarized
e~ beams, in the case the Z helicity is not observed, is
denoted as o, for the cases A= —% and A= —l—%
respectively.

In principle we can also consider more detailed mea-
surements where polarized e~ beams are used and the Z
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helicity is simultaneously measured. The integrated cross
section may then be denoted as o(4, 7) and related useful
definitions are

o(i1) = 0(—%,1) =0, (1), ae,T) = ox(2).

(A, =-1)=0%(A), o(A,t=1)=0c% (1),
c(A,7=0)=0c%(2). (26)

Apart from the unpolarized differential cross section in
(24) and the angularly integrated ones, we next enumerate
some in principle observable asymmetries, for unpolarized
or polarized beams. These are

(1) Initial e~-left-right polarization asymmetries, for the

case that the Z polarization is not looked at,

0], —Op

Ag = (27)

oy, + o0 R ’
or separately for the three cases where the Z helicity

is also measured,

o,(7) —or(r) _ op" — o

Arp(t) = ,
() = ) T or(@) o 1 %

(28)

where 7 = £1, 0.
(i1) Left-right asymmetries obtained by restricting an-
gular integrations in the forward direction,

F orr(t) —ogre(7) _ -
Ark(r) = oLr(7) +ore(7) o7 4 o ]F (29)

and correspondingly in the backward direction.
(iii) Final Z transverse polarization asymmetry for un-
polarized e™ beams

oZ- — g%+

Apol zZ _
o4 + o%+’

(30)
and for a definite e~ helicity 1

az(py — & (A =" (4)
A (/1)_0'2‘(/1)4-0'2*(/1)
Az=-1)—0(z=+1)
(hr=-1)+o(Ar=+1)"

Q

(31)

o

(iv) Forward-backward asymmetries, in the unpolarized
beam case

OF —0Op

AFB = s (32)
o

or
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or(4,7) —0op(A, 1)

App (/1, T) = 0(/1, r) ,

(33)

for any definite e~ and Z polarizations.

(v) Combining (30)—(33), one also obtains a peculiar
forward-backward asymmetry of the above Z
transverse polarization asymmetry,

(627 - O-Z+)F - (627 - GZ+>B (34)

polZ
A Z_ VA
o7~ + o7

for unpolarized e* beams, and

Z+(mp [6%-(2) =% (A)]
0% (4) + 0% (2)

ApolZ(A) _ [627( )
(35)

for any definite electron helicity 4 = L, R. It turns
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useful for disentangling SM, MSSM and BSM
corrections.
In case CP is conserved, then (8) would relate the
forward and backward cross sections by

or(A, 1) = 0p(4, —1), (36)

implying through (33) the following conditions:
®

Apg(A,—1) = =App(4,7), (37)

which remains true also for unpolarized e* beams,
where one sums over A = F1/2, obtaining

Apg(=1) = —App(7)
= App(Zy) = —App(Z_),

out that the asymmetries in (34), (35) are very App(Zo) = 0. (38)
{280 5 JO e e e {280 5 TR e e e
0.02 X ee'-> ZH , sM E 0.02 X ee'—> Zh® , MSSM: S1 E

E < Born Hellclty Amplitudes 7 E < Born Hellclty Amplitudes 7
£ N 9=60° ] C N 9=60° ]
0.01 * B 0.01 * B
o — e _ . ] o - — e _ . ]
E T 0= —p— _ - e et £ —0— — _— - - == — — — 3
-0.00 [ — = -0.00 [ — =
:A/AAA/AAA D",Q_'_D.f--z :A/A/&A/AAA D,,,w"'n'f"f
-0.01 7 o ] -0.01 7 o ]
S ] S ]
-0.02 F 7 ] -0.02 F 7 ]
F ] F ]
~0.03 F [ ] ~0.03 [ FE— I ]
E ceeeo F,, E E ceeeo F,, E
E ceoss F__ ] E ceoss F__ ]
-0.04 wrrrr By, 9 -0.04 srrrk B, 9
C sanaa P, ] C sanaa P_, ]
C 06000 F,_ ] = 06000 F,_ ]
-0.06 [ ] -0.06 [ ]
-0.06 | E -0.06 | E
L ] L ]
0,07 Bl b b b b b b i e 007 Dol bin i becn bbb b b
05 1.0 156 2.0 25 3.0 35 4.0 45 5.0 05 1.0 156 2.0 25 3.0 35 4.0 45 5.0
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0.00020 [ ]
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FIG. 1.

s'% (TeV)

Energy dependence of the six Born helicity amplitudes at & = 60°, for the SM processes e"et — ZH (upper left panel), and

the MSSM processes e~ et — Zh°, ZH® (upper right and the lower panels, respectively). For the SUSY cases we use the S1 MSSM

benchmark of [21].
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If the Z polarization is not measured, then (38) leads

to AFB - 0
(i)
F __ AB (_
App(t) = AfR(=7), (39)
_0-04 LS AL LALLM O A
L [
— - =
L RS i
L ea* —k 4
-0.06 - *
l|goeecosee o0—08-0— 8 —o0— — — o
- ~o_ i
L - i
-0.08 - A 1
L ~ i
|- o 4
N
L N i
-0.10 N B
|- N 4
ee'—> ZH , SM AN
ReF_o(0) , 9=60° N 1
i o=oea Born N ]
-0z - IR N
r aeaea sim N
L oocoo eff N
- N
N Y 1 T N A Y A
05 1.0 1.5 2.0 25 3.0 3.5 4.0 4.5 5.0
s'/% (TeV)
000 7\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\7
L e
L i 4
L I i
= ~ o T il
- /{/u/ o — — — A
|- 2 = P —© 4
|- /ﬂ’ A /o N
L _ ]
-0.01 |- /}é i
L ;0 ]
L / 5 ]
o ]
.y » ]
L/ ee—> ZH , SM 4
L /f/ ReF__(9) , 9=60° ]
-0.02 :” ]
;{ ceoss Born ]
r*f *+kxx [loop ]
,é saasa sim B
= oeoceo eff -
—0.03 Lol b bbb b bl
5 1.0 15 2.0 25 3.0 3.5 4.0 4.5 5.0
s'72 (TeV)
0.000 T T T T T T T T T T T T T T T T T T T T T T T T T T T
E - — ]
-0.001 F e T e -
C > o B ]
-0.002 | AT T ]
L v ]
£ A ]
-0.003 £ )‘1/: P e
C 4 o ]
—0.004 F /g ~ ]
Eoly 1
-0.006 - /¢ E
FyY e’ ZH  SM 1
—~0.006 j//u/ ReF_,(¥) , ¥=60 ]
E/// E
-0.007 i// tso8s Born ]
£l k4 Lloop 1
—-0.008 % sassa gim J
oeoceo eff 3
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induced by the left-right asymmetries in the forward
and backward directions and the definition (29).
This means

AER(Z—):AER(Z+)’ A{R(ZO):AER(ZO)- (40)
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FIG. 2. The six e"e™ — ZH SM amplitudes at & = 60°, in the Born, one-loop and sim approximations, together with amplitudes
containing “eff” BSM contributions. The upper row gives the HC amplitudes, while the HV ones are shown in the lower ones.
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(ii1)) And the condition

arising from (31), (36), for any 4 = L, R. Note that

AR (2) = —AF(2), (41)

the totally integrated asymmetry AP°'Z(1) vanishes.

FIG. 3.
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In the next section we illustrate the above properties for
CP-conserving one-loop corrections to SM or MSSM
models; as well for effective, possibly CP-violating anoma-
lous couplings of the SM Higgs particle. It turns out that
some of the above asymmetries are particularly sensitive to
the dynamical details, and may be very useful for disen-
tangling SM, BSM and MSSM.
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VII. NUMERICAL ANALYSIS

For the MSSM illustrations, we use benchmarks S1 and
S2 of [21]. In both of them, the electroweak (EW) scale
values of all squark masses are at the 2 TeV level, A, =
A, =23 TeV and

=04, M,=025, M,=05 M;=2, (42)
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where all masses are in TeV. These two benchmarks differ
only in the leptonic and Higgs-sector EW scale parameters
given by

S1=m=A,=05  myp=05tanf =20,

2= mj=A, =075  mp=1tanf=30. (43)
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Such benchmarks are consistent with present LHC con-
straints [21].

The computations and various comparisons have been
made for both benchmarks S1 and S2. The resulting
amplitudes are very similar, the differences being at the
order of 0.5%. So we only presentillustrations for the S1 case.
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A. Comparison of basic amplitudes

We first look at the six Born helicity amplitudes versus
energy, at angle 60-. Figure 1 shows these Born amplitudes
for e“et — HZ in SM, and for e"et — h°Z and e"e™ —
HZ in the MSSM benchmark S1 mentioned above [21].
As seen there, the HV amplitudes are suppressed compared
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FIG. 5. The A, asymmetries for unpolarized Z, as defined in (27). See caption in Fig. 4.
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to the HC ones at high energies (above 1 TeV), but they
become comparable to them shortly below 1 TeV.

Note that the H* SUSY amplitudes are very small for the
S1 benchmark, due to the coupling factor cos(ff — a) = 0 in
[21]. This process will probably be unobservable (cross
sections will be about 107> times smaller than for 4°), and it
will not be useful to consider the one-loop corrections.
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Only strong anomalous couplings could lead to observable
effects, in such a case.

We then present the one-loop results for the six ampli-
tudes in e~et — ZH (Fig. 2) for SM, and e~e* — Zh°
(Fig. 3) for MSSM. In both cases, the results are plotted
versus energy at an angle 60°, and compared to their sim
and Born approximations. In the SM case (Fig. 2), we also
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FIG. 6. The A, asymmetries defined in (28), for a final Z of helicity = = 0. See caption in Fig. 4.
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show what the various amplitudes would look like in the
case that an additional effective anomalous coupling of
0.0005, as described in Sec. V, also exists.

Comparing the upper rows of Figs. 2, 3, with the middle
and lowest ones, one recognizes the large logarithmic
(Sudakov) one-loop corrections to the Born amplitudes
in the HC cases; for the HV amplitudes, these corrections
are relatively smaller. In the SM case (Fig. 2), the sim
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accuracy is quite good, already at around 1 TeV. In the h°
case (Fig. 3) though, the accuracy is only at the few percent
level at 1 TeV, but it improves quickly as the various
supersymmetric thresholds are overpassed and the energy
approaches 5 TeV.

As seen in Fig. 2, such a sim accuracy may be sufficient
for discriminating the SM contributions to both the HC and
HV amplitudes, from a BSM contribution, like the one
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FIG. 7. The A, asymmetries defined in (28), for a final Z of helicity = —1. See caption in Fig. 4.
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described by the anomalous couplings in Sec. V. For
achieving this, it is assumed of course that an amplitude
analysis of the experimental data, like the one sketched in
Sec. VI, is successfully performed. In our illustrations we
use constant effective couplings, leading to BSM contri-
butions strongly growing with the energy. Obviously such
contributions could be tempered above some given basic
scale by form factors.
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We now turn to the various observables introduced
in Sec. VI and study their effects in SM, BSM and MSSM.

B. Unpolarized differential cross sections

Figure 4 shows the unpolarized differential cross section
for e~et — ZH in SM (left panels) and for e"e* — Zh% in
MSSM (right panels), first versus the energy at 60° (upper
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panels), and then versus cos@ at 1 TeV (middle) and at
5 TeV (lowest) panels. The various panels intend to
compare the Born, exact one-loop and the sim approxi-
mation. In the left panels the possible effect of an additional
effective anomalous interaction is also shown.

Note that cross sections become largest at angles around
90°, due to the sin @ dependence of the leading Born HC
amplitudes in (10). The one-loop contribution is of the
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order of 20% at 1 TeV, and increasing with the energy. The
sim approximation is already good at 1 TeV and becomes
better at higher energies.

C. Differential asymmetries

Figure 5 shows A, defined in (27) using polarized
eT beams, for e“e™ - ZH in SM (left panels) and
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FIG. 9. AP°'Z asymmetries defined in (30), for unpolarized (e~, e™) beams. See caption in Fig. 4.
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e~et — Zh® in MSSM (right panels), for the cases that
the Z polarization is not looked at. The upper panels
describe the energy dependence at 60°, while the middle
and lower panels show the angular distributions at 1 and
5 TeV respectively.

At the Born level, APY™ =0.14, with the actual
constant value determined by the factor [(¢%,)*—(g%)?]/
[(6%,)*+(g%)?]. In all cases, the one-loop contribution is
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quite large, as compared to the Born one, for all energies
and angles. The sim approximation is good at high energy,
but becomes worse as the energy decreases.

We next turn to A;  defined in (28), where, in addition to
using polarized e™ beams, the Z helicity is also measured.
Figures 6, 7, 8 describe e"et — ZH in SM (left panels)
and e"et — Zh in MSSM (right panels), for Z helicities
=0, —1, +1 respectively. The upper panels give the
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energy dependencies at 60°, while the middle and lower
panels give the angular dependencies at 1 and 5 TeV
respectively. Comparing the complete one-loop results with
the Born contributions, we realize that the one-loop
corrections are important.

In the 7 =0 case shown in Fig. 6, the Born value
of A;p is again =0.14, and strongly affected by one-loop
corrections. In agreement with the CP rule (39), the angular
dependence is forward-backward symmetric.

In the 7 = F1 cases shown in Figs. 7 and 8, the Born
contributions appear almost forward-backward antisym-
metric; see middle and lower panels. This is due to the
terms (1 =+ cos ) in (9) and to their coefficients g7, and g%
being almost opposite. We also note that for CP-invariant
interactions A;»(Z") and A;(Z~) are forward-backward
symmetric to each other; see (39).

When the Z polarization is not looked at, all these 7 = 0
and 7 = F1 effects of course disappear, and the global A;
appears forward-backward symmetric; see Fig. 5.

These implications of the different A; measurements
would produce interesting tests of the nature of the various
contributions. The accuracy of sim is again good for high
energies above 1 TeV.

D. AP'Z and AP°!'Z(]) asymmetries

Figure 9 shows AP°? defined in (30) for unpolarized e
beams, while Fig. 10 shows AP'Z(1) defined in (31)
for polarized e™ beams with electron helicity A = L, R.
The left panels correspond to the SM prediction for
e“et — ZH, and right panels to the MSSM result for
e"e™ — Zh°. The upper panels give the energy dependence
at 60°, while the middle and lower panels present the
angular distributions at 1 and 5 TeV respectively.

It may be interesting to note that at Born level one has

ApolZBom(/l) — _ApOIZBom(_/l)7 (44)

because of the simple Z exchange with a ¢ coupling. At
one-loop level though, this is no longer the case, because of
various diagrams differing for e; and for ep. If CP is
conserved, as is the case for SM and the S1 benchmark
[21], AP'Z(L) and AP?'?(R) are both forward-backward
antisymmetric; see (41). But as their Born parts are
opposite and cancel each other, AP'Z is finally smaller
than AP'Z(R) or AP'Z(L) separately. Consequently AP°'Z
is very sensitive to one-loop contributions, as shown in
Fig. 9. For these reasons, the sim accuracy, although
already good at 1 TeV for AP'Z(L,R), needs higher
energies for AP°'Z; compare Fig. 10 with Fig. 9.

So finally the comparison of the various polarized
asymmetries in the spirit of the relations written in
Sec. VI should produce fruitful tests of the natures of
the corrections to the Born terms and in particular of their
CP conservation property.

PHYSICAL REVIEW D 90, 073007 (2014)

TABLE 1. The asymmetries A% (L), AP%%(R) and AP %, in
SM and S1 [21], integrated in the forward region at 5 TeV.

SM: H MSSM S1: 1°

Born One loop Sim

ARIZ(p)y 074 072 073 074 071 072
ARIZ(R) =074 =073 =073 -074 —073 -0.73
ARz 011 -022 =021 011 =020 =021

Born  One loop Sim

E. Integrated asymmetries

The above illustrations show the angular dependencies at
given energy. In order to accumulate more statistics we can
make angular integrations, over all forward or backward
angles, or only an appropriate domain of angles.

As a nontrivial example we give in Table I the asymme-
tries APRZ(L), APS4(R) and AP%Z, in SM and SI [21],
integrated in the forward region at 5 TeV; compare (34),
(35). As seen there, the individual L, R contributions are
similar but of opposite sign. When they are combined
though, in the unpolarized e™ beam case, a larger sensi-
tivity to the one-loop corrections appears. Table I confirms
what has been seen at the angular level in Figs. 9, 10. Note
that the supersimple expressions reproduce correctly the
exact one-loop contributions.

Turning to CP conservation tests, one may also exper-
imentally check the relations for Azz(4,7), Afx(7) and
APIZ (7). written respectively in (37), (40), (41). In par-
ticular the vanishing of Agp, when the eT beams are not
polarized and the Z polarization is not measured, and the
vanishing of AP°'Z(1), when integrated over all angles, are
rather striking.

Summarizing, we have shown in this Sec. VII that the
polarized asymmetries are very powerful for identifying
small corrections to Born contributions, both in SM and in
MSSM cases. In addition the comparison of these various
asymmetries in the spirit of the relations written in Sec. VI
should produce fruitful tests of CP conservation for these
corrections.

VIII. CONCLUSIONS AND POSSIBLE
DEVELOPMENTS

We have analyzed in detail the Born and one-loop
corrections to the amplitudes for the process e~ et —
ZH in SM and e~ et — Zh" in MSSM, at high energies.
We have separately discussed the behavior of the helicity-
conserving and of the helicity-violating amplitudes, and we
have shown that they can be reasonably approximated by
simple expressions, called supersimple (sim), both in SM
and in MSSM cases.

In the case of the HC amplitudes, the simplicity arises
from gauge cancellations of contributions coming from
various diagrams, and in addition, for MSSM, from typical
cancellations between standard and partner contributions,
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as we have already observed in previous “supersimplicity”
studies [7-9]. The sim expressions thus obtained allow us
to immediately see the dynamical contents and to make a
quick estimate of the size of the amplitudes. We have
illustrated how much and in which high energy domain
these expressions are useful.

While doing this study we have noticed several interest-
ing properties of the process e”e™ — ZH, for H = Hgy,
h°, H°, and we have emphasized the importance of doing a
complete amplitude analysis. It can be obtained by using
the various observables i.e. the cross section measurements
for different e ™ and Z polarizations. We have illustrated the
large sensitivity of the asymmetries A; p, AP Z, AP%7 to the
one-loop contributions. These asymmetries should allow
us to singularize and identify the nature (SM or MSSM or
other BSM) of the corrections to Born predictions.

This work should be useful to the working groups on the
various projects of high energy e~e™ colliders, for studying
the identification of the nature of the Higgs boson and of its
interactions.

APPENDIX A: THE ONE-LOOP SIM
EXPRESSIONS FOR THE HC AMPLITUDES
IN SM AND MSSM

As has been observed in [7,9], there exist only four
different forms that appear in the sim expressions. These
are the two augmented Sudakov forms®

|

PHYSICAL REVIEW D 90, 073007 (2014)

—s — i€ i
Ins;j(a) =In e + by (m2) -2 (A1)
25y, = 2 =S 4 4L, (A2)
my

where explicit expressions for bf)j (m2) and Ly, are given in
e.g. Eqs. (A.6), (A.5) of [9]. In them, quantity a describes
an on-shell particle, (i, j) denote internal exchanges, and V
an internal vector (gauge) exchange; the existence of
nonvanishing tree-order vertices for aij and aVi is
assumed.

The other two forms entering the sim expressions
involve ratios of the Mandelstam variables s, f, u.
Denoting any of them by x, y, these ratios are given by

—x — i€
= , A3
= (A3)
and the two relevant forms by
In?r,, = In’r,, + 7%, Inr,,,. (A4)

Using the definitions introduced in Sec. II, the complete
sim expressions, to the one-loop order, for the various HC
amplitudes in SM are

a 1 1
Fo=Feomd1+ 20— [ In 3l At [-In? 3l ~1
P { +4ﬂ{4sevc%v[ Wozee ANz U G gy e ()~ 1)
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(253, —1) s

1
ciy

+
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(A6)

*The augmented Sudakov definitions used in this paper are more precise than those used in our previous work, but fully consistent

with them.
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where 3 denotes renormalized self-energies, and C p 1s the “pinch term” [22]

2
a Ciy

Cp=—5—"—-1 Z). A7
P st (253, - 1) nsww(Z) (A7)

The corresponding complete sim expressions for the MSSM HC amplitudes with H = h°, H® are

1
Fo= FBom{l +4ﬂ {W[ —In*sz,, + 3Insz,(e) — 1]

1
+ e
253, (253, — 1)

|:—11’12SW,/6 + 311’1 SWI/ Z|Z |211’1 S){ iVel €>]

2
W ) [lnsw,,(e) + 4ln sy (Z Z|Z [’Ins, ;| e)}

S s3(25%, -1
Z V4 2
Z |Zisw ‘Zf‘ 2210W| [ins, 5, (&) - 1]
4sycw oL
ciy
e oy Insy gy + 2In sy (H) + 2In syy(Z)]
wlaSy
1
+ ZS%V(zs%}Vi— 1) [—1n2SWZH + 2ln Sww(H) + 2ln Sww(Z)]
2 Ay .
=3 {mi:; Srtrtzgz> (ho ~ sinﬂ;:ions(; - a) H > sinﬂcs(l)rsl(; - ))
winy

2— .
mpln sy, (Z) [, sina 0 cosa
MBS E) (o oy SME o €84
+ ZS%Vm%V - cospsin(f—a)’ ~ cos fcos(f — a)

1 1
quk H)lns )<h0 T sin(f—a) = cos(f — “)>

W ijk

1 1
2sW W ZX”" H)Insjy ) (h - sin(f — a) H cos(ff — a)>

ijk

2

Cc
+ Wvg_l) []nstZH + 81n2tWZH —2In tww(H) —2ln tww(Z) + 1n2sWZH + SIHZMWZH
w w

4(u—1)

Ciy N i e s o _, Zcos psina _, cosficosa
— | —In"r, +—1 h JH
* -1) [214 W g rm] ( sin(f—a) ~ cos(f—a) cos(f—a)

(253, = 1) [ s s —— sin(f + a) —cos(f +a) 1
-G [ ] (1~ ST ) YAt

4(t —u)

= 2lnuyyw(H) = 2In uyw(Z) — In’r,, — Inr,, + 4Inr,, + 4In rm]

A

Zswew iyz(s) _ZZZ(S> +CP}
s 9

See e.g. [8,9].
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a |1
F+O = Flj_%m{l =+ E {CT [—IHZSZEE =+ 3In Sze(e) - 1} =+ F [_ln2SWZH + 2In Sww(H) + 2In Sww(Z)]
w w
V4| — 1 m?In s, (Z) cosa sina
- s, o (@) = 1]+~ AZ(H) — 3|05\ E) (o | COSX o SW@
Z ck sz, () = 1] + 45t e, (H) 2s59,m3, ~ sin #sin(f — ) ~ sin fcos(f — a)
m2ln s, (Z) W sina 0O cos a
2s5%,m¥ cosfsin(f—a)’ cos fcos(f — a)
1 1 1
X w(H)Ins  (Z)( h° H°
’ %vz,k: ol )< Tsin(p-a) T COS(ﬂ—a)>
1 1 1
X0 (H)ns (Z)(h° » ——— H' 5 ————
253l zk: lHoi(2) < Tsin(f-a) T cos(p- a))

U s (o —sin(p ) B s cos(pt )\ ewSials)  Suls)
[Zu Inri + 2t1n rl”] (h sin(f—a) = cos(f—a) * Sw S s ’ (A9)

where the renormalized gauge self-energies % and the pinch term (A7) have been used.
The exact expressions for AZ(H) for H = h°, H used in (A8), (A9) are

with

Aoy = =In?s 4,050 + 2In s, (h°) + 2Ins,,0(Z),

AHOhO = _IHZSZHOhO + 21n Szz(ho) + 21n SZHO (Z),

Ao = —ln2SZhoH0 + 2In SZZ(HO) + 2Ins40(2),

Apopo = —IHZSZHOHO + 2In SZZ(H()) + 2In s 750 (Z),

AA/’lOHO = _IHZSZAhO + 21n SAZ(H()) + 21nSZh0(Z),

When the mass differences among (h°, H°, A°, Z), which determine the scales of the various augmented Sudakov terms in
(A10), (A11), are neglected we obtain

AZ(h®) = AZ(H®) = —In’s + 4In s, (A12)

with a common mass scale M.
Similarly, the X?jk(H ), X;x(H) expressions in (A8), (A9) are given by the following equations, where the last lines give
the approximate results in case the (h°, H?, A?, Z)-mass differences are negligible:
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X?jk(ho) = - % (247 Z2 = 257 Z35){[(— cos BZ5; — sin pZ7 ) (2 sw — 25 ew)
+ (j = k)](=sinaZy; — cos aZli)(Zisw — Zyjew) + (i = j)}
— (2525 — ZZU)O (= cos BZY; — sin BZI) (ZYsw — Zhycw)
+(j = K)](=sinaZi — cos aZil) (21 sw = 257 ew) + (i = j)}]
= —sin(f —a), (A13)

0
Xijk

(HO) = —% [(ZZ'*thvk - Zé\;*zévk){[(— cosﬂZéVk* - sinﬂZZ(*)(leVj*sW - Z%*CW)
+ (j = k)] (cos azy; — sin aZl))(ZY;sw — Zy;ew) + (i = )}
— (2325 = ZYZI) (= cos PZ5; — sin BZ1) (Zesw — Zew)
4= B)(cosaZy) — sinaZii) (Zsy - Zirew) + (i = )]
=—c

os(fi — a), (A14)

l
— (2372, + bulcly = si))(cos BZ5 Z1; — sin fZ77 237 ) (= sin aZy; Z1; + cos aZy,Z3;)

= —sin(f — a), (A15)

Xij(h°) = [Z3,Z3¢ + Sulciy — sw)](cos BZy Z1, — sin fZ1,Z5,) (= sinaZy Z{ + cos aZii Z5))

Xin(H®) = [Z3,Z7¢ + Sulcyy — sy)](cos ,BZEkZTj - sinﬁZl‘kZ;j)(cos aZgl-*Zf]-* + sin aZl‘i*szi*)
= [Z17Z + Sy = siy)|(cos BZ5 Z1 — sin BZi 23 ) (cos aZy, Z1; + sinaZy,Z3;)

= —cos(fi —a). (Al6)

APPENDIX B: THE ONE-LOOP SIM EXPRESSIONS FOR THE HV AMPLITUDES IN SM AND MSSM

Assuming CP conservation implying (8), which for the HV amplitudes enforces the relation
F_(0)=F__(z-0), Fi(0)=F  (z-0), (B1)

we end up with the two independent HV amplitudes

u\/i ut

F__ = FBom 4 g2y, [WN% + T (NE - Ni)] , (B2)
2 ut

e = P4 Py |2 NE - S (NS - V), (83)

expressed in terms of the Born amplitudes in (9) and the quantities N¥, N¥ — N% and N¥, N¥ — N§ given below.

Since the HV amplitudes are vanishing at high energies though (albeit rather slowly, like M/+/s, as we have seen in the
main text), the mass dependent corrections in the augmented Sudakov terms (A1), (A2) can often be suppressed, and a
common mass scale M may be used in the logarithms, leading to the simplification

Ins = In ‘iw‘;e,
In’s = In? _SM_z ’6 (B4)

In cases this is not sufficient though, the complete augmented Sudakov forms of Appendix A, as well as (A3), (A4), are
used. We thus obtain
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in SM

sNE =

@sy -1 [ 1 [~In%s + 30ns — 1] + [~In%s + 30ns — 1] ar
—Ins s — —————[—In%s s—1]—

2s%c3, | 4skcl 252,(2s3, — 1) 5%, (253,

(1 =2s%)m? — 1 —— (149, +13c¢%) s — (1=2c3, —2c%)

H
1—Ins)+ In“s —
8c3yshym3, ( ) 25t cw st iy 8siychy

_1)[m+1+4m]}

6 m? 253, —1  (2s%,—1 sint  slnu
g e el
Swew miy 25y Cw dswcw t u

-2 28)—— 28 —U)—— 28 —t)——— 1 —
fw [( s)l 2t + —( >ln2u + 7( s —u) In’r,, + —( s )lnzr,”] + > [=In?t — In?u + In?ryy + In?r, ]
2sW 2t 2u 2u 2t dewsyy

1 253, —1)3
—( - 4)>[1nz+ 7 + 20077, (BS)
dey sy 8y sty t

with

Ct =

( 9—|-18sW—|-8SW) S_@_|_] _w m,
72s3,C3y

cp - (S0 185y —dsy) flns Ins (T sw o (B6)
b T2s3,C3y '

and

2cw [(t —u) = @ B @ slnry, n (2u? — 21> + ut)

NY - N§)=-—"=
SN 0 sty | 2tu T4 T ut 4tu?

1 [In’u EJranrus In’r,,
u t t u

2
2cw Sy

1 257, — 1 28—
—[ —l-( Sl )][ (In?t — lnzu)+—s(lnu—lnt)+
ut ut

B7
2ewsy Aty (B7)

In’r,, In? rm]
t 9

-1 — In? Ins 1
[ 3 — 1) b= (1426 4R + s (1426 + 4]
ey CwSiy 4cW W dcyysiy

w

SNR =

1- +—
523 ( 2 5
ey symiy cw |shm?, sW cy Lt u

2 [sIn’t  sln?

Jw SE S, 21n2r,u] , (B8)
5
cy Lt u

with

(B9)

and
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s(NE = NB) = _ﬁ M+25 (lnu—lnt) +ln2rm —1n2r”‘} (B10)
Cy ut ut u t

Correspondingly in MSSM, using the parameters in Table II for H = h°, H°, and the sfermion couplings4

frp=- (15— s Q7). (B11)

SwCw

Sy (B12)

we get
SNL o (ZS%V - 1) [_lnstee + 3In sZe(e) - 1] [_IHZSWW + 31nsz(e) - 1] _ C%V[m +1+ 4m]
I 2s€vc%, 45%{/6’%[/ 252,(2s3, — 1) 53 (253, — 1)
T |ZV.sw + ZNew|? c2 |Z .
+ +* ZzVeL w 2iCwW W
ZZ “1 2sW -1) Z 4chW [1 XE’ 1]+ Z 2 _ ln St (e) +1]

+C1_1{ 1 E_1+9cw+513cwls_1—zcw—2cw _(fG+G-H+fH+HH)(1—25%4/)(1_m)

4 46 }
2SWCW s iy 8swew 4c3, sy my

6SW R 2 R
+— |5 5Cfint+—55Cofon
szW me

_ (t=28)— (u=28)—— (2s—u)—5— (2s—1t)——
+CH{ 7t [ In?7 + 5 ln2u+—2u lnzr,s—l—izt In?r,,

2t

T, 1 2 2 -1 3 o -
[=In?¢ — In?u + In?r,g + In?r,] — < + (25 Z ) ) Eln%‘ + 2% + 21n2rm] }
u

N dey sy dewsl,  8ciysty
253, — 1) sina(M- 253 — DX(MO )\ [sn2r _slnz  sln?u _slnu
(253 12 W ) " )
2V 2¢y stmy 8ctystymw 2t t 2u u

1—2s% (1-2s%)2 sint  slnu 2 2s% —
+< W 4 >C’I';|:T+ p :|+m—WZ}ij}ij?|:Q}—|— W fo:|< IIIS)

3 4 5 4
4eyy sy ey sy

2 [(1—4c} e =
—i{(zic“/)((Ma) cosa — (M},) sina) [—lnzs —Ins + 1}
my | show 4

(1—2s%)
_4s4—c3W 2¢%,(1 = 2s%,) ((M3,) cosa — (M) sina)In s
wCw

l— 1—
— (8¢l —4ct, — 1)((M3,) cosa — (M) sina) <Zln2s —Elns + 1)] }

“In (B12), the Higgs-fermion couplings in the last two lines of Table II are used.
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TABLE II. Parameters for the HV amplitudes in MSSM.
n° H°
Cy sin(f — ) cos(ff —a)
(orn sin(f + a) —cos(f+ a)
foren 2;’;’&‘] cos(2f3) sin(f + ) - Z:‘jl‘z%v cos(2p) cos(f + a)
m 2p) sin(f+a . my 1€0s(2, S a

furbu-u — 2y [COS( ﬂ;;g(/*— ) 4 sin(f — )] oy [009( /})zigj(fﬂ- ) _ cos(f — a)]
f cosa sina

tH sm.[i sin f#
Jon — s

(1-2s5%)
45t chmy
(M) ewsina [~
2\/§s‘v‘vmw {
(1-2s%)
ZC%V

sina (M)

1

N 11—
(M) {4ln2s—élns+ 1} - (

(1—2s) (M}_)
1633[,(:%, My

(4@4@&@1+@aﬂ+

(1= 2s3)* (M)

2
2\/§S“1;VCW my In rtu+ 8s4 4

wClw my

(2u? — 21> + ut)

) c [5 In’r,, + ;lnzrus}

u

— > U—— — S—— S——
Int + In?u + ;lnzrm + In’r,, — 2In%s — ;lnzrm - ;ln2 Fus

[—Inf + In2r,, — In%u + In?r,,]

(B13)

o T 4y

u t t

ut

2ey (t—u)n—2 @_E slnr,
4tu?

1 {E In?t Inr, Inr,
+ e ——

2u? =212 — ut) ——
Inr,, +ul 2rm}

4ur®

u u

1 253, —1)3 —— 25 — — In’r, 1In’r,
—( 1 —l-( SWS 4)){i(lnzt—lnzu)+u—j(lnu—lnt)—l——rt ——rt}}

s Inr,, —Inr,

1 (253, —1)? sin?r,
- ( - 4.5 Ciy

2

u

<Mf2>cwsina[ln2s InZs  Inu

t u u

(1-252) (@ In’u N In?r,,

2
2cy

(1-2s3) (M).) (0t Inlr,
8stycly,  my

1 u

]

In2t — In’u)  2slnr, N In’r,, 1In’r,

n { (M) sina | (1-2s3)* (M},

\/ES;‘VCWmW 4S¢VC€V my

, (B14)
tu 2u 2t
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SNR=—¢ {[ ~In’ sZee+321nsZe( e) —1] Z|Z m_l]}

Cw Cy Cy

1 Ins 1 a(1=2s2)
+CH{H§ L[1+2cw+4cw] - [1+2cw+4cw]}—fG*GH( W) (1 _Tg)

CwSw 4CW W %}V %v 2C€vswmw
6s m> 2 52 slnt sln u s2 [sIn?t  sInu
+_W[2 : thH+ ChfbH]+CH{ 5W|: ]_?W[ + +2In r’“]}
Cw szW me W u oy Lt

2t t 2u u

sy (M) [slnt 2sm+sm 2slnu}+2s_wcg[sl?t sﬂ}
u

cly my 3,
2 Sw . \/z (1 _ 4C2 )
+m—w2;fz;fH; {Q; +af2;} (1-Tns) —— {Ziw

] —
My Swew (<M;1> cosa = <MT2> sin a) [Zln2s —Ins + 1}

toa g [ZCW(I —252,)((M3,) cosa — (M,) sina)lns

25y cyy

l— 11—
— (8¢, —4ck, — 1)({M3,) cosa — (M) sina) <Zln2s - Elns + 1)] }
1 l—5 11— MY
—— (M}) {lnzs —~Ins+ 1} ﬂ[ In2¢ + In2r,, — In2u + In%r,,]
251y Cymy 4 2 dsyclymy
2 MO _

+ e Flnzrm + flnzrw} + Mlnzrw (B1S)

Cy u t CyMmy

S(NE - NF) = W Fr-@ﬂ(ﬂ-ﬁ) L0’ _lnzrm}
ut

5
Cyw ut su st
2s3, . [n?ry In?r,  _Inrg—Inr, (MY ) [n®t In’u  In’r, In’ry,
t—5 Cpyl—7 —— *2 - 4 P + -
Cw u t ut 2syeymy |t u u t

. - (B16)

Cymy ut ut ut u t

sw(M%,) [sm B sin?u 45 Inr, N In’r,, _ lnzrm}

In (B13)-(B16) some mass averages appear, which for h° are

TABLE III.  Fits of the approximate expression (B19) to the HV amplitudes for the S1 (S2) benchmarks of [21], in the energy range
0.6-5 TeV.

SM: H MSSM S1(S2): A°
a b C a b C
F__,F_, —0.0075 0.024 —0.058 —0.015(=0.013) 0.12(0.10) —-0.28(-0.22)
F, ,F., —0.0046 0.017 0.050 —0.0027(—0.0026) —0.005(—0.008) 0.14(0.16)
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myv/2 B my/2 tan

oy = TEL ey =TS
MY, = sina(sy MY, + cyyMY,)
+ cos a(syMY, + cywMY,),
MY_ = —sina(syM?, + cyMb,)
+ cos a(syMY, + cywMY,),
MY_ = sinaM?; — cos aM?,,
MY = sinaM¥, + cos aM?,.
MP_ = sina(syMY; — cyMby)
+ cos a(sy MY, — cyyMY,),
M11v3 __ Thwlw ’ M]2V3 _ ny ,
swy/1+an’p V1 +an’s
v mysytanp v _ —mytanp
Miy=————, My = —F——,
cw/1+ tan’p V1 +tan’p
(B17)

PHYSICAL REVIEW D 90, 073007 (2014)

while the corresponding expressions for H° may be
obtained from them by replacing

sina — —cosa, cosa — sina. (B18)

1. A simpler approximation for the HV amplitudes

As the HV amplitudes are less important than the HC
ones, we can try an even simpler approximation at
intermediate energies, by neglecting mass differences
and using a common mass scale my. Thus at energies
like e.g. in the range 0.6-5 TeV, we try fitting the complete
Born+one-loop contributions by a Sudakov-type expres-
sion” of the form

FV = FB"m{l + alnz%—F bln%%— c}. (B19)
My My

Using this, the fitted constants are given in Table III for the
benchmarks S1(S2) of Ref. [21].

5Although there is no rigorous Sudakov rule for such sup-
pressed amplitudes.
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