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We propose a model based on the gauge group SU(3)- ® SU(3), ® U(1)y with an extra S flavor
symmetry, which accounts for the lepton masses and mixing. The small active neutrino masses are
generated via a double seesaw mechanism. In this scenario, the spectrum of neutrinos presents very light,
light and very heavy masses. The model predicts a quasidegenerate normal hierarchy active neutrino mass
spectrum and the relation Am3; < Am3, arises from effective six-dimensional operators. The obtained
neutrino mixing parameters are in agreement with the neutrino oscillation experimental data. We find
CP violation in neutrino oscillations with a Jarlskog invariant of about 1072
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I. INTRODUCTION

The experimental confirmation of the electroweak
symmetry breaking (EWSB) sector of the Standard
Model (SM) given by the discovery of the Higgs Boson
at the LHC [1,2] has concreted its great success in
describing electroweak phenomena. However, the SM does
not explain neither the pattern of fermion masses and
mixing nor the existence of three generations of fermions.
In consequence, to address these issues it is necessary to
consider a more fundamental theory. The existing pattern
of fermion masses goes over a range of five orders of
magnitude in the quark sector and a much wider range
when neutrinos are included. While in the quark sector the
mixing angles are small, in the lepton sector two of the
mixing angles are large, and one is small; this suggests that
the corresponding mechanisms for masses and mixes
should be different. Experiments with solar, atmospheric
and reactor neutrinos [3-8] have brought evidence of
neutrino oscillations caused by nonzero mass. The global
fits of the available data from the Daya Bay [4], T2K [5],
MINOS [6], Double CHOOZ [7] and RENO [8] neutrino
oscillation experiments, constrain the neutrino mass
squared splittings and mixing parameters [9].

Models with an extended gauge symmetry are frequently
used to tackle the limitations of the SM. In particular, those
based on the SU(3)- ® SU(3), ® U(1)y gauge symmetry,
called 331 for short, can explain the origin of fermion
generations thanks to the introduction of a family nonuni-
versal U(1)y symmetry [10,11]. Specific realizations of 331
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models have several appealing features. First, the three
family structure in the fermion sector is a consequence of
the chiral anomaly cancellation [12] and the asymptotic
freedom in QCD. Second, the large mass splitting between
the heaviest quark family and the two lighter ones can be
explained since the former is in a different U(1)y repre-
sentation [13]. Third, these models include a natural Peccei-
Quinn symmetry, that sheds light on the strong-CP problem
[14]. Finally, versions with heavy sterile neutrinos have
cold dark matter candidates as weakly interacting massive
particles (WIMPs) [15]. We consider 331 models with a
scalar sector composed of three SU(3), scalar triplets, where
one heavy triplet field acquires a vacuum expectation value
(VEV) at a high energy scale, v,, responsible for breaking
the symmetry SU(3); ® U(1)y down to the SM electro-
weak gauge group SU(2); ® U(1),; and two lighter triplets
get VEVs v, and v, at the electroweak scale, thus triggering
the EWSB.

On the other hand, discrete flavor symmetries are
important ingredients in models of particle masses and
mixing, and many of them have been considered to resolve
the fermion mass hierarchy; for recent reviews see
Refs. [16-19]. In particular the S5 flavor symmetry is a
very good candidate for explaining the prevailing pattern of
fermion masses and mixing. The S5 discrete symmetry is
the smallest non-Abelian discrete symmetry group having
three irreducible representations (irreps), explicitly two
singlets and one doublet irreps [20]. Since two of the three
SU(3), scalar triplets of the 331 models belong to the same
U(1)y representation while the third is in a different one,
the scalar fields can be arranged into doublet and nontrivial
S5 singlet irreps. Regarding charged leptons, we accom-
modate left- and right-handed leptons as well as one heavy
Majorana neutrino into S5 singlet representations, and the
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remaining two heavy Majorana neutrinos into a S3 doublet
representation. We assume that the heavy Majorana neu-
trinos have masses much larger than the TeV scale, so that
the hierarchy M, > v, > v, v, is fulfilled, implying that
the small active neutrino masses are generated via a double
seesaw mechanism. This mechanism does not include any
exotic charges, neither in the fermionic nor in the scalar
sector [21]. We predict a quasidegenerate normal hierarchy
active neutrino mass spectrum and the relation Am3, <
Am3, results from effective six-dimensional Yukawa terms.

This paper is organized as follows. In Sec. II we explain
some theoretical aspects of the 331 model with f = — % and
its particle content, as well as the particle assignments under
doublet and singlet S; representations, in particular in the
fermionic and scalar sector. In Sec. IIl we focus on the
discussion of neutrino masses and mixing and give our
corresponding results. Conclusions are given Sec. IV. In the
appendices we present several technical details: Appendix A
gives a brief description of the S5 group; Appendix B shows
the diagonalization of the neutrino mass matrix.

IL A SU(3)e ® SUB3), ® U(l)y ® S5
model with § = \‘/—15

A. Particle content

We consider a 331 model with f# = — % [21-23], where

the electric charge is defined in terms of SU(3) generators
and the identity by

1
=Ty —-—=Ts+ XI, 1
0=T; /3 (1)
with T3 = I Diag(1,-1,0) and Tg = (ﬁ)Diag(l, 1,-2).
To avoid chiral anomalies, fermions are assigned to the

following (SU(3) ., SU(3),, U(1)y) left- and right-handed
representations:

D2 Dy*:(3%,1,-1/3)
=1 -=U'| :(3,3,0), UL :(3*.1,2/3) .
) JR2:i(3%,1,-1/3)
U3 Uy:(3%,1,2/3)
0;=| D | :(3,3,1/3), D} (3%, 1,-1/3),
T ), Tr:(3*.1,2/3)
1,2,3
1123 _ :1.2’3 {(1.3.21/3), {e}f;:(l’ 1,—1)’
Ny*3:(1,1,0)

(y1,2,3)c
(2)
where U} and D, fori = 1,2, 3 are three up- and down-type

quark components in the flavor basis, while v/ and e} are the
neutral and charged leptons. The right-handed components
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transform as singlets under SU(3), with U(1)y quantum
numbers corresponding to the electric charges.

Additionally, the model includes heavy fermions with
the following properties: a single flavor quark 7' with
electric charge 2/3, two flavor quarks J*>? with charge
—1/3, three neutral Majorana leptons (v'23)¢ and three
right-handed Majorana leptons N}gm.

The scalar sector consists of a triplet field y, which
provides the masses to the new heavy fermions, and two
triplets p and #, which give masses to the SM fermions
at the electroweak scale. The (SU(3),.U(l)y) group
structure of the scalar fields is

A+ %wlei‘ﬂz

X = X2 :(3,-1/3)
5, +& il
2
p= \/LQ(U/) +¢,* ié’,,) :(3,2/3)
Ps
\/ii(v,7 +¢,+ iC,?)
n= sy 1(3,-1/3). (3)

0+ e

The electroweak symmetry breaking (EWSB) mecha-
nism follows

SU3), ® U(1)y 25 sU(2), ® U(1), 2%

(Do
where the vacuum expectation values satisfy the hierarchy
v, > v,, v, >w,, w,. Notice that we have introduced
nonvanishing complex vacuum expectation values in the
first and third components of the y and # triplets, respec-
tively, as done in Refs. [24,25].

In order to reduce the number of parameters in the
Yukawa and scalar sectors of the 331 Lagrangian, we
impose a S3 flavor symmetry for fermions and scalars,
making SU(3). ® SU(3), ® U(1)y ® S5 the full sym-
metry of our model. Apart from easily accommodating
maximal mixing through its doublet representation, the S;
discrete group has two different singlet representations
crucial for reproducing the fermion masses [20]. The scalar
fields are assigned into doublet and singlet representations
of S5 as follows,

¢ =my)~2  p~1, (4)

whereas the leptons transform under S3 as

1,2,3 1,23 / 1
LI ~1, e~ NL~1,

Ng = (Ng.Ni) ~2. (5)
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The corresponding S; assignments for quarks as well as
the quark masses and mixing are studied in detail in the
SU3)c ® SU3), ® U(1)y ® S; model of Ref. [23].
With the above spectrum, we obtain the following
Yukawa terms for the lepton sector invariant under Ss:

- - 1 _
—Ly) = hpd Liper + hEDL)LL(q)NR)l +§m§\})N1leN11eC

. h .
+§mN(NRN1g)l +TN}QN1€(‘I)‘I)')2

h, -
5L (L) (@@, + He ©)
Note that the heavy Majorana neutrinos N% and N3
belonging to the same S; doublet have the same mass

my, which is in general different than the mass mg\}) of the
heavy Majorana neutrino N%. Therefore, the S3 flavor
symmetry leads to a heavy Majorana neutrino mass
splitting, so that mg\:) = kmy where the dimensionless
parameter k may differ from 1.

In order to see if there are operators of dimension
larger than four that contribute to the neutrino masses,
first we consider the bilinear combinations of two
leptonic fields of Eq. (5). In the Yukawa terms given
by Eq. (6), we have already found the combinations
L;Ng, NLANL, NgN§, L LS and NLN§; the only
combination missing is L;Nk. Table I shows the
|
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TABLE 1. SU(3), ® S; invariant operators with dimension
larger than four that could contribute to the neutrino masses.
Operator SU3), S3 U(l)y
TL NL(®TDT) Invariant Invariant #0
T NENG(®pT) Invariant Invariant #0
T NENG(DDT) Invariant Invariant =0
2L Npp(®79) Invariant Invariant #0
=L LEp(9TP) Invariant Invariant =0

SU(3), ® S3 invariant operators with dimension larger
than four built from these bilinears that could contri-
bute to the neutrino masses. Only the terms
T NRNG(®DT) and L L Lfp(®'®) have vanishing
U(1)y charge and thus they are invariant under the
group SU(3), @ U(1)y ® S3. The five-dimensional
Yukawa term gives a subleading contribution to the
heavy Majorana neutrino masses. That contribution is

2
supressed by factor of about N% < my where A is the
cutoff of our model.

B. Scalar potential

The scalar potential of the model is constructed with
the S3 doublet ® = (,y) and the nontrivial S5 singlet p
fields, in the way invariant under the group SU(3), ®
SU(3), @ U(1)y ® S;. It is given by

Vi = 15(0"p) + 13 (272)y + 41(p'p) (p'p) + A (272)1 (2T @)y + 25(27 @) (DTR)y + 24(2T @), (27 D),
+25(p"P) (@7 @)y + 26((p" @) (@)1 + fle (P;®;) ppi + Heel], (7)

where ®; = (1;, ;) is a S5 doublet with i = 1, 2, 3 and all parameters of the scalar potential have to be real.
We softly break the S3 symmetry in the quadratic term of the scalar potential since the vacuum expectation values of the

scalar fields 7 and y contained in the S3 doublet @ satisfy the hierarchy v, > v

;- Then, considering the quadratic S5 soft-

breaking terms (u; — p2)(n'n) and pz, (") + H.c using the multiplication rules of the S5 group, the scalar potential can be

written in terms of the three scalar triplets as follows:

Vi =u3(p'p) +uy(n'n) + () + g () + (') + 41 (p7p)* + (o + 24) [ Tx)* + (n'n)?]
+25[(0"0) ) + (0T ) (1™m)] + 2(A0 — ) () (n'n) + 2(As = 243) () (n'x)
+ 26[") (0T ) + (' p) (™)) + (A3 + A0) [ "m)* + (nx)*] + 2f (€% nix jpi + Hoc.). (8)

It is worth mentioning that the S5 soft-breaking term ,u,%x (x'n) + H.c. is not relevant for the minimization conditions of
the scalar potential as well as for the masses of the physical scalars.
Considering f, v, > v,, v,, we found in detail in Ref. [23] the physical scalar mass eigenstates. The CP-even scalar mass

eigenstates are

(H?) <cosa
n° sina

—sina

cosa

) e
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The CP-odd scalar mass eigenstates are

A° cosfp singp O ¢
GY | =| sinp —cosp O & |- (10)
e 0 o -1)\¢

The charged scalar mass eigenstates are
Hy\ [(cosv sinv pi
Gy sinv —cosv /) \ny )’
H5 cosy siny 5
= . . (11)
Gy siny  —cosy /) \ y5
The remaining neutral scalar mass eigenstates are

GY ="
(12)

= =i 6=

The mixing angles of the physical scalar fields are

v v
tany = - tany =-2. (13)
v v

n X

tana = tan f =

Notice that after the spontaneous breaking of the
gauge symmetry SU(3), ® U(1), and rotations into
|
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mass eigenstates, the model contains four massive
charged Higgs (HY, H5), one CP-odd Higgs (A°), three
neutral CP-even Higgs (h° HY,HY) and two neutral
Higgs (HY, H)) bosons. Here we identify the scalar h°
with the SM-like 126 GeV Higgs boson observed at the
LHC. We recall that the neutral Goldstone bosons GY,
GY correspond to the Z, Z' gauge bosons, respectively,
while the remaining neutral Goldstone bosons GY, G
correspond to the K°, K° gauge bosons, respectively.
Furthermore, the charged Goldstone bosons Gi and G5
correspond to the W* and K* gauge bosons, respec-
tively [10,11].

In Ref. [23] we follow the method described in Ref. [26]
to show that the scalar potential is stable when its quartic
couplings satisfy the following relations:

A >0, Ay >0,

/16 > 0, /12 > /13,

Moty >0, A5+l > 234 (A + Aa). (14)

III. LEPTON MASSES AND MIXING

A. Neutrino masses

From Eq. (6), and using the product rules for the S3
group given in Appendix A, it follows that the Yukawa
mass terms for the lepton sector are given by

L _ 1 1) = 1 — _
_£1<na)sg = \/% hpe (53 +$IJL]1 7_ Igh N% +5m§v)NIIQNIIQC +§mN(N%,N§C +N%N?QC>
w,v,sin@, —w,v, Sin @, )v
Ot S0 NI 1) (56h 1€ — 5 hve) + He. (15)

We can rewrite the neutrino mass terms as

1 L
_ﬁggsszi(l/_g Z/_R NR>MD UIC'("
Ng

+Hec.,, (16)

where the S5 flavor symmetry constrains the neutrino mass
matrix to be of the form

033 iev, Fu,
M,=|ie"v, 0355 Gy, |, (17)
FTU,7 GTU)( Mp

with

o (h, — h})(w,v, sing, —w,v, sing,)
V2A?
0 by by
=|-b3 0 b|, (18)
-b, —-b; O
and the submatrices are defined by
0 a O 0 0 aq
F=10 a 0], G=10 0 a |,
0 az O 0 0 a
kmy 0O 0
My = 0 my O |, (19)
0 0 my

where a; =il /\/_forj—l 2, 3.
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The ansatz for the matrices F, G and M follow from the
fermion assignments into S irreducible representations, in
particular the S5 discrete symmetry constrains the heavy
Majorana neutrino mass matrix My to be diagonal.

1. Diagonalization of the mass matrix

Here, for simplicity we assume a scenario corresponding to
a double seesaw mechanism [21] where the heavy Majorana
neutrino masses and the VEV’s satisfy the hierarchy

(Mg)y>wv,>0v

Uy 3> Wy, Wy, 1=1,2,3. (20)

P>
Resulting from this double seesaw mechanism we have
three different mass scales for the neutrinos: very light active
neutrinos ygl), light y;z) and very heavy sterile neutrinos Vz3
(I =1, 2, 3). As shown in detail in Appendix B, their
corresponding mass matrices satisfy the relations:

2
MO M = x? (A - ”—”ZegT) (21)
.X'Un

al+d5+ &4

Mf,])(M,(, ))T = xv% aja, + did,
ajaz —d,d;
where
d' =1 b], ] - 1,25 39 (26)

J NS

and b; are purely imaginary. ,
The squared light neutrino mass matrix M, ,El)(M ,(Jl)) is
diagonalized by a rotation matrix R,, according to:

mi 0 0
RIMPD MY R, = 0 m2 o |,
0 0 m
—cosé;siné, —siné; cosécosé,
R, = cos &, 0 sin &, . (27)
sin; siné, cosé;  cosé&,siné
where
2 2 2
ang =2 tan2g ~—2VATD g
ai (a1 + a3 — a3)

Here we have also assumed that
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2
2 2N\T v,
Mwww-ﬁﬁ@—ﬁﬂ>, (22)
¥
®m% 0
3 3)\T
MPMN = o mk o |. (23
0 0 my
with
v2 v2
x:(a%—i—a%—f—a%)—z, 2= (al+aj+a3) =%,
my my

(24)

where we assumed that the elements of the neutrino mass
matrix of Eq. (B1) are real. Moreover, the active light
neutrino mass matrix satisfies

aray +didy,  ayaz —dds
G+d+ & aay+dyds |, (25)
ayaz+dydy a3+ di + d3
|
d; 2v,b;
0.:7]:@207 J:1,2,3 (29)

7 a, VD, hEI)Lj)
The squared light neutrino masses are given by
4a3(a? + a3) )
(al4+a5+a3)] "
m3 = ¢*(a} + a} + a3)xv},
m3 = (ai + a3 + a3)xv;. (30)

m} =o*|a? +a}+a} -

We thus predict a normal hierarchy neutrino mass spec-
trum, with neutrino mass squared splittings

_4d%a3(ai + af)xv;
(a] + a3 + d3)

Am%1 = (a% + a% + a%)xv%. (31)

2
Amy3,

Notice that both the six-dimensional Yukawa term in
Eq. (6) as well as the nonvanishing vacuum expectation
values in the first and third components of the y and 7
triplets, respectively, are crucial to get a nonzero solar
neutrino mass squared splitting Am3, since they correspond
to ¢ # 0. Furthermore, the hierarchy Am3, < Am3, can be
explained as a consequence of the subleading contribution
to the neutrino mass matrix arising from the six- dimen-
sional Yukawa term in Eq. (6) proportional to b;.
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The orders of magnitude of the SM particles and new
physics give the initial constraints v, 2 1 TeV and

v} 4 v3 = v*. We can choose to set the Yukawa couplings
hprl) ~ hEI)LZ) ~ hg;, following the definition (19) implies
aj~a(j=1,2,3). We also assume that b; ~b (j = 1, 2,
3), which means that the elements of the Yukawa matrix h,

2

are of the same order. From Eq. (24), x ~ a and in first

approximation Am31 NT{’ [see Eq. (31)]. Therefore, in
N

order to get the right order of magnitude of the atmospheric
neutrino mass squared splitting Am3,, we need the heavy
neutrinos N%° to have mass my ~ 10'*a? GeV. In addition,

3 l—ﬁ
e] ~
21

A
gives 6 ~ 107!, which results, according to Eq. (29), in
d~10"'a. From Eq. (31), we get that our estimate
d~107'a yields a’x ~ 1072, which implies, according
to Eq. (26), that |b| ~ 10714, Furthermore, from Eq. (30)
we get for the light active neutrino masses the estimates
my ~ ny ~6 meV and m3 ~ 30 meV, which corresponds
to a quasidegenerate normal hierarchy neutrino mass
spectrum. Besides that, we get that the heaviest sterile
neutrino has a mass of about M3 ~3 keV. Assuming
[(hy)yl~1 (., I=1, 2, 3), taking into account
|b|~10~'* and using Eq. (18) and considering v, ~1TeV
and w, ~w, ~ 1 GeV we get for the cutoff of our model
the estimate

A ~ 10*-10° TeV. (32)

B. Charged leptons

Regarding the charged leptons, we assume that the
corresponding mass matrix is that one given by the
Fukuyama-Nishiura ansatz [27] as follows:

0 /’lleiy ]’llei},
v v , ~
_ pgL) _ Yp - _ i
1‘4[—\/§ pe —\/z l’lle v ]’lz h3 —P[MlPl,
hle_i" ]’l3 h2
(33)
where
—Cy8,C) — %czs,e”’ - \/Lislszsle’V —siC) —
1 i 1 i
U: TZCZCIEW—C1S2Sl+7§S1S2616W

1 iy _ 1 iy
\/§S1S2€ \/EC2€

1 i
75616167 — 818

iy
cie
5 C1
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0 h 10 0
v .
=21 h h hl|, P=10 %7 0
l \/E 1 2 3 i '
hl h3 h2 0 0 e
(34)

Then, the charged lepton masses are given by

—m, = 7— (hy + hy = \/(hy = h3)* + 8h7),  (35)
m, = 7(@ iy (= )+ 8I2), (36)
m; = 7/)2 (hy = h3), (37)

and the mass matrix M ; is diagonalized by a rotation matrix
R, according to

-m, 0 O
RIMR,=| 0 m, 0 [,
0 m,
c 8 0
R=|"v v “u | (38)
AR

with
ny,
¢, =cosl; =, |———, s; =sinf; =
my, +m, my, —|— m,
(39)

Putting it all together, the charged lepton mass matrix M,
is diagonalized by a rotation matrix R; according to

-m, 0 O
R;MIRI = 0 mﬂ O N Rl = Pliél' (40)
0 0 m

C. Lepton mixing

With the rotation matrices in the charged lepton sector R;
given in Eq. (40), and in the neutrino sector R, given in
Eq. (27), we find the Pontecorvo-Maki-Nakagawa-Sakata
leptonic mixing matrix

1 i 1 i
C1CrCy —\/—ESQSle 4 —\/—§C2S1Sle 4

c1Cr8; + %sg:le”’ + \/iiczslclely

1 i
ﬁclsle 4

1 iy — 1 ¢ oir
\/EC251€ \/§S2€
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TABLE II. Range for experimental values of neutrino mass squared splittings and leptonic mixing parameters
taken from Ref. [9] for the case of normal hierarchy.

Parameter Am3,(1075eV?) Am3,(1073eV?) ($i0%012) exp (5in%6023 ) ex,y (5in%013) exp
Best fit 7.62 2.55 0.320 0.613 0.0246

lo range 7.43-7.81 2.46-2.61 0.303-0.336 0.573-0.635 0.0218-0.0275
20 range 7.27-8.01 2.38-2.68 0.29-0.35 0.38-0.66 0.019-0.030
30 range 7.12-8.20 2.31-2.74 0.27-0.37 0.36-0.68

From the standard parametrization of the lepton mixing matrix, it follows that the lepton mixing angles are

U, ?
sin%,, — el 42
1 2 1 - |Ue3|2 ( )
B Lsin?ysin?0;cos?¢; +1(—v2cosysind,cos &, —2cosf;siné; ) (3)
1 — Lsin?ysin®0,(sin &, + sin &, cos &)? — 1 [2cos 0, cos & cos & — v/2cosy sin b, (sin &, + siné, cos &)]*
sin%03 = U, (44)

1 1
=5 sin?ysin’@,(sin &, + sin &, cos &)? + 1 [2cos 6, cos & cos & — V2 cosy sin b (sin&, + sin&; cos &), (45)

U,sl?

in2g,, = Uil 46

S 23 1 _ |Ue3|2 ( )
_ gsin?ycos?0;(sin &, + siné; cos &) + 5 (V2 cosy cos 6)(sin &, + siné; cos &) 4 2sin b cos & cos &)? (47)

11— Lsin?ysin?,(sin &, + sin &, cos &,)? — 1 [2cos 0, cos & cos & — v/2cosysin(sin &, + sin &) cos&)]*

The Jarlskog invariant and the CP violating phase are
respectively given by [3,28,29]

N siny sin 20,
J = Im(UelUﬂtezUﬂl) =

32v2
X [4cos?E, sin 2&; — 6. sin 4&sin’&,
+ sin2&,(cos & — Scos 3&) )], (48)
1= 2
sind = (1= 1Us)J . (49)
| Uel UeZ UeS U/B Ur3 |

Varying the parameters &, £, and y we have fitted the
sin’6); ; to the experimental values in Table II for the normal
hierarchy neutrino mass spectrum. From Eq. (39), we have

sin20, =2, [ (50)
m
U
The best fit result is
£ =212.8°, & =101.7°, y = 66.4°. (51)

sin®0;, = 0.32,  sin®6,; = 0.613,  sin?6,; = 0.0246,
J=-9.81x1073, 5=16° (52)

|
Comparing the results in (52) with the values in Table II, we
see that the mixing parameters sin’,,, sin’,; and sin’@;
are in agreement with the experimental data. We obtain that
CP is violated in neutrino oscillations with a Jarlskog
invariant of about 10~2. Furthermore, the complex phase y
responsible for CP violation in lepton sector arises from the
Yukawa terms for the charged leptons.

IV. CONCLUSIONS

We proposed a model based on the group SU(3). ®
SU3), ® U(1)y ® S3 where lepton masses and mixing
can be reproduced. We assumed that the heavy Majorana
neutrinos have masses much larger than the TeV scale, so
that the hierarchy my > v, > v,, v, is fulfilled, implying
that the small active neutrino masses are generated via a
double seesaw mechanism. We found that the only
SU(3), ® U(1)y ® S3 invariant nonrenormalizable oper-
ators of lowest order that contribute to the neutrino masses
are  NpNG(®9") and ;L L{p(®'®). From these non-
renormalizable terms, > L, L{p(®T®) gives a relevant
contribution to the neutrino masses since the operator
L NLNG(PDPT) gives a subleading contribution to the heavy
Majorana neutrino masses.

In this scenario, the spectrum of neutrinos presents very
light, light and very heavy masses. Assuming that the heavy
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Majorana neutrinos have masses of about my ~ 10'* GeV,
we find for the light active neutrino masses the estimates m; ~
m, ~ 6 meV and m5 ~ 30 meV, while for the heaviest sterile
neutrino mass we get M3 ~ 3 keV. The model predicts a
quasidegenerate normal hierarchy active neutrino mass spec-
trum and the relation Am3, < Am3, can be explained as
consequence of the small mass terms arising from the effective
six-dimensional operators. We find for the scale of these
effective operators the estimate A ~ 10*-~10° TeV. These
effective operators generate a nonvanishing solar neutrino
mass squared splitting Am3,, provided that the first and third
components of the y and # triplets, respectively, should have
nonvanishing vacuum expectation values, where at least one
of them has to be complex. The obtained neutrino mixing
parameters are in excellent agreement with the neutrino
oscillation experimental data. We find that CP is violated
in neutrino oscillations with a Jarlskog invariant of about 1072,
Furthermore, the complex phase responsible for CP violation
in the lepton sector has been assumed to come from the
Yukawa terms for the charged leptons.

ACKNOWLEDGMENTS

A.E.C.H was supported by Fondecyt (Chile), Grant
No. 11130115, and by DGIP internal Grant No. 111458.
R. M. was supported by COLCIENCIAS and by Fondecyt
(Chile), Grant No. 11130115.

APPENDIX A: THE PRODUCT RULES FOR S;

The S5 group has three irreducible representations: 1, 1/
and 2. Denoting (x;,x,)" and (y,,y,)" as the basis vectors
for two S3 doublets and y’ a nontrivial S5 singlet, the
multiplication rules of the S3 group for the case of real
representations are given by [19]

X1 Y1
< ) ®( > = (x1y1 +x2y2)1 + (132 = X2y
X2/ 2 Y2/2
X1V + Xy
+< 12 2 1) ’
X1V1 —X2Y2 /2

X1y

(A1)

(A2)

APPENDIX B: DIAGONALIZATION OF THE
NEUTRINO MASS MATRIX

We consider the neutrino mass matrix

033 iev, Fu, .

. T M, C
M,=|ie'v, 033 Gv, |= . (Bl
- r Cct My

Flv, G'v, My

where the different sub-blocks are given by Egs. (18)—(19).

PHYSICAL REVIEW D 90, 073001 (2014)

For the sake of simplicity we assume that the elements of
the neutrino mass matrix of Eq. (B1) are real. Now, in order
to block-diagonalize the mass matrix M,, we apply the
transformation

WM, W

B (MU—CBT—BCT—i—BMRBT C — BMy )
CT — MgB” Mz +CTB+B'C)’

with

lexs B
W= ( 0x6 ) (B2)
_BT 13><3

Using the method of recursive expansion of Ref. [30], we
find that the block diagonalization condition leads to

B=CM53', BT = Mz'CT. (B3)

Then, it follows that

WM W = <A7ID—CM,;'CT 06X3>
’ 03><6 Mg
. FMR'FTv;  FMp'G"v,v, -
CME C = -1 5T 17,2 |° (B4)
GMy F'v,v, GMp G v,

The previous relations imply:

2
V] .
—A e, 0353

S 0
T ~ . 2 _ v 6x3
WML lgT”P _’Z_INA 033 <03><6 Mpg )7
O3><3 O3><3 MR
(B5)
where
2
—:l—” iev,
S, = Y , (B6)
. T vy
e, —.-
Moreover, the matrix S,S7 gives
r X Y
S,S, = vz ) (B7)
where
X = xvlA — vieeT, Z = zlA —viee,
Y = iyv,v,eA, (B3)

with
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2

2 2 2oy Y vy
= +a; + —, =—-Z
X (al az 03) m%v y mN
)
2= (@i +a3+a3) 7. (BY)
N
Furthermore, the following hierarchy is fullfilled:
1Yl < X5 < (23] (B10)

Now, in order to block-diagonalize the matrix S,S7, we
apply the transformation

PTS, STp
(X—YKT—KYT+KZKT Y-KZ )
YT —7zKT Z+YTK+KTY+KTXK)’
with

lis K
P . (B11)
—K" 1555

The block diagonalization condition leads to the relations

PHYSICAL REVIEW D 90, 073001 (2014)

where

2
MP M) = 2 <A - v—’;eTe) (B15)
z

Uy

Notice that M. (M ,El))T corresponds to the squared active
light neutrino mass matrix. Moreover, Eq. (B14) can be
rewritten as follows:

ad+d*-d& aa+dd, aaz—dds

=xvg| ajay+didy @3 +d*—di ayas+dayd; |,
ajas —did;  ayay+dydy a3+ d*—d

(B16)

where

~ y7-1 T _ 7-1yT 2 —dd
K=yz"' KT =2z'Y" (B12) an2¢, — 2(01623 I 3)2’
al-a3—-di+ &4
Theref btai
erefore, we obtain B 2a2(1 +62)m
tan2&, = VB I T (B17)
MO M) 05,5 (1=0°)(ay + a3 —a3)
PTS,STP = < > (B13)
0 M(Z)(M(Z))T . .
33 v v so that the squared neutrino masses are given by
xv2 xv2
mi ==+ (1+0%)(a] + a3 + &) —7”\/(1 +o%)(al + a3 + a3)’ = 20%((a] + a3 + @3)* - 8a3(at + a3)],
m3 = xo*(ai + a3 + a3)v;,
xv2 xv2
mi =—*(1+0%)(a] + a3 + &3) +7”\/<1 +ot)(al + a3 + a3)* - 20%((a] + a3 + @3)’ - 8di(af + a3)].  (BIB)

Thus, the squared light neutrino mass matrix M, ,(,l) (M 1(,1 ) )T

is diagonalized by a rotation matrix R,, according to

Similarly, the sterile neutrino mass matrix satisfies

2 2\T
) M (M)
my 0 2 2 2
RTM(I)(M(I))TR 1o m o (B19) aj+ps+p3y ayay+ppa  aaz—pip;
v v - 2 ]
) ’ 0 m? =zvy| @ay+pipy a3+ pi+py aas+paps |
3
ajaz—pip3s  aaz+ pops a3+ pi+ p;
where (B21)
where
—cosé;sing —siné; cosé&jcosé, .
. P .
R, = cos &, 0 sin&, (B20) Pi=1 bj,  j=12.3, (B22)
¥
sin & sin &, cosé;  cosé,siné

and b; are purely imaginary.

073001-9



A.E. CARCAMO HERNANDEZ ef al.

PHYSICAL REVIEW D 90, 073001 (2014)

Furthermore, following the same procedure used for the light active neutrinos, we get that the squared sterile neutrino

masses are given by

22 2
M3 =0 a%+a%+a§——4a2(a] +a) | o

(ai +a3+a3)|" "

ME = 0(a3 + 3 + @)z,

M3 = (ai + a3 + a3)zv},

where

Hja

_Pbj_ V20,b;
i \/vahf;j)

(B23)

=0, j=1223. (B24)
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