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This work deals with braneworld models in the presence of auxiliary fields. We investigate the case
where Einstein’s equation is modified with the inclusion of extra, nondynamical terms. We show that the
model supports first-order differential equations that solve the equations of motion, but the standard
braneworld scenario changes under the presence of the parameter that controls the nondynamical or
auxiliary fields that modifies Einstein’s equation.
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I. INTRODUCTION

One important problem in the construction of alternative
theories of gravity with the addition of extra dynamical
fields is the presence of extra degrees of freedom which
in general lead to instabilities in these theories [1,2].
However, as shown very recently by Pani et al. [3], one
may circumvent this problem introducing nondynamical
or auxiliary fields.
The modified gravity with nondynamical or auxiliary

fields has been studied in Refs. [4,5] within the cosmo-
logical context, to see how the auxiliary fields may
contribute to the cosmic evolution. Moreover, it has also
been recently studied within the thick braneworld context,
in five dimensions with a single extra dimension of infinite
extent [6]. There, the authors investigated the problem
numerically and found that the braneworld scenario in the
presence of auxiliary field remains linearly stable.
The above investigations have motivated us to further

study the thick braneworld scenario, but now we extend the
first-order framework developed in Ref. [7] to the presence
of auxiliary fields, searching for exact solutions with a
single extra dimension of infinite extent.

II. PROBLEM

We start with a generalization of Einstein’s equation, in
the form

Rab −
1

2
gabR ¼ 2Tab þ SabðTcd; gcdÞ; ð1Þ

in five-dimensional spacetime, where we are using
4πGð5Þ ¼ 1. Furthermore, the tensor Sab is obtained as a
derivative expansion of the energy-momentum tensor Tab
such that it vanishes when Tab ¼ 0. We note that to keep
the weak equivalence principle we need ∇aTab ¼ 0; also,
the Bianchi identity implies that ∇aSab ¼ 0.
Since the energy-momentum tensor Tab may contain

second-order derivatives, up to fourth order in derivatives,
we can write [3]

Sab ¼ α1gabT þ α2gabT2 þ α3TTab

þ α4gabTcdTcd þ α5Tc
aTcb

þ β1∇a∇bT þ β2gab□T þ β3□Tab

þ 2β4∇c∇ðaTbÞc þ � � � ; ð2Þ

where T ¼ gabTab and αi and βj are real parameters.
In this paper we search for exact solutions. This can be

achieved if we consider only the lowest-order term in the
above equation (2). Thus, we get the modified Einstein’s
equation

Rab −
1

2
gabR ¼ 2Tab þ αgabT; ð3Þ

where we have changed α1 → α.
The line element that describes a thick brane model in

five-dimensional spacetime can be written as

ds2 ¼ gabdxadxb ¼ e2Aημνdxμdxν − dy2; ð4Þ

where ημν is the metric of the four-dimensional flat space-
time, with signature ðþ − −−Þ. Of course, in the braneworld
context with a single extra dimension of infinite extent, the
warp function A controls the warp factor e2A and is assumed
to depend only on the extra dimension y, that is, A ¼ AðyÞ.
We also assume that the background scalar field ϕ is

defined by the standard Lagrange density, in the form

L ¼ 1

2
∇aϕ∇aϕ − VðϕÞ; ð5Þ

where VðϕÞ is the potential that specifies the theory. Also,
the scalar field only depends on the extra dimension, that is,
ϕ ¼ ϕðyÞ. With this, we can write the energy-momentum
tensor in the form

Tab ¼ gab

�
1

2
ϕ02 þ V

�
þ∇aϕ∇bϕ: ð6Þ

In this case, the trace is T ¼ 3ϕ02=2þ 5V.
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Using the line element (4), we can write the components
of the Einstein equation (3) as

6A02 ¼ 2 − 3α

2
ϕ02 − ð2þ 5αÞV ð7Þ

and

−6A02 − 3A00 ¼ 2þ 3α

2
ϕ02 þ ð2þ 5αÞV; ð8Þ

or

A00 ¼ −
2

3
ϕ02: ð9Þ

To find exact solutions, we follow the first-order for-
malism introduced in Ref. [7]. For this we assume that the
warp function AðyÞ can be written in terms of another
function, W ¼ WðϕÞ, in the form

A0 ¼ −
1

3
W; ð10Þ

where W is the superpotential [8]. This is a first-order
equation, which can be used to obtain, from (9), another
first-order equation,

ϕ0 ¼ 1

2
Wϕ; ð11Þ

where Wϕ stands for dW=dϕ. We see from Eqs. (10)
and (11) that the two first-order equations are the same we
get in the standard case, without auxiliary fields. However,
in the present case, the potential has to obey

VðϕÞ ¼ 2 − 3α

8ð2þ 5αÞW
2
ϕ −

2

3ð2þ 5αÞW
2; ð12Þ

and so it is changed by the modification introduced in
Einstein’s equation. One has to consider α > −2=5, to
avoid a problem with the potential.
Moreover, we can also write the energy density as

ρðyÞ ¼ e2A
�

2þ α

4ð2þ 5αÞW
2
ϕ −

2

3ð2þ 5αÞW
2

�
; ð13Þ

and it is also changed by the α term. We note that both the
potential and energy density reproduce the standard results,
for α ¼ 0; see, e.g., Ref. [9].
We can start with a givenWðϕÞ to obtain exact solutions

for ϕ ¼ ϕðyÞ and A ¼ AðyÞ. Although the solutions are the
same we get in the case of a standard thick brane with the
same WðϕÞ, we note here that the model is different, and
the extra parameter α may be used to modify the physical
effects in the braneworld scenario.

III. EXAMPLES

We now consider some specific examples. The first one
is characterized by the polynomial function

WðϕÞ ¼ 2ϕ −
2

3
ϕ3: ð14Þ

In the absence of gravity, this choice represents the well-
known ϕ4 model, with spontaneous symmetry breaking
that has kink solution in the form

ϕðyÞ ¼ tanhðyÞ: ð15Þ

The warp function is obtained by integrating the Eq. (10). It
can be written as

AðyÞ ¼ 4

9
lnðSÞ þ S2

9
−
1

9
; ð16Þ

where S ¼ sechðyÞ.
With the choice (14), we can write the potential (12) as

VðϕÞ¼ 2−3α

2ð2þ5αÞð1−ϕ2Þ2− 8ϕ2

3ð2þ5αÞ
�
1−

1

3
ϕ2

�
2

: ð17Þ

The potential (17) is shown in Fig. 1 for some values of the
parameter α. We see that the two local minima of the
potential in ϕ ¼ �1 give Vmin ¼ −32=ð54þ 135αÞ; also,
the maximum at ϕ ¼ 0 is shifted as Vmax ¼ ð2 − 3αÞ=
ð4þ 10αÞ. Moreover, the energy density has the form

ρðyÞ ¼ −
e−2=9þ2S2=9

27ð2þ 5αÞ S
8=9½32 − 3ð26þ 9αÞS4 − 8S6�: ð18Þ

It is depicted in Fig. 2, for some values of α.
The second example concerns the sine-Gordon model,

which is defined by the following function:

WðϕÞ ¼ 2 sin

� ffiffiffi
2

3

r
ϕ

�
: ð19Þ
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FIG. 1. The potential (17), depicted for α ¼ 0 (solid line),
α ¼ 0.2 (dashed line), and α ¼ 0.4 (dot-dashed line).
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Here the kinklike solution has the form

ϕðyÞ ¼
ffiffiffi
3

2

r
arcsin

�
tanh

�
2

3
y

��
: ð20Þ

For the sine-Gordom model, we get the warp function in
the form

AðyÞ ¼ ln

�
sech

�
2

3
y

��
: ð21Þ

Also, we can write the potential as

VðϕÞ ¼ −
8

6þ 15α
þ 10 − 3α

6þ 15α
cos2

� ffiffiffi
2

3

r
ϕ

�
: ð22Þ

This potential has degenerate minima for each value of α, as
we illustrate in Fig. 3. Moreover, the corresponding energy
density is

ρðyÞ ¼ −
2sech2ð2

3
yÞ

6þ 15α

�
4 − ð6þ αÞsech2

�
2

3
y

��
; ð23Þ

which is depicted in Fig. 4, for some values of α.

IV. STABILITY

The investigation of linear stability of the gravity sector
of the braneworld model can be done assuming that the
metric is perturbed in the form

ds2 ¼ e2AðyÞ½ημν þ hμνðy; xÞ�dxμdxν − dy2: ð24Þ

Furthermore, the scalar field is written in the form

ϕ ¼ ϕðyÞ þ ~ϕðy; xÞ: ð25Þ

The linear contributions to Einstein’s equations are

1

2
h00μν þ 2A0h0μν −

1

2
e−2A□hμν −

1

2
e−2Aημν∂α∂βhαβ

þ 1

2
e−2A½∂μ∂αhαν þ ∂ν∂αhαμ − ∂μ∂νh�

− ημν

�
1

2
h00 þ 2A0h0 −

1

2
e−2A□hþ 2þ 5αþ 12α2

2þ 5α
A00h

þ 8ð1þ αÞ
2þ 5α

A02h
�
¼ ½ð2þ 5αÞVϕξþ ð2þ 3αÞϕ0ξ0�ημν;

ð26Þ

where h ¼ hμμ.
In the gravity sector, we can simplify the investigation of

stability considering the transverse traceless components of
metric fluctuations, that is,

∂μhμν ¼ 0; h ¼ 0: ð27Þ

Thus, we can check that Eq. (26) reduces to the form

ð∂2
y þ 4A0∂y − e−2A□Þhμν ¼ 0: ð28Þ

We introduce the z coordinate in order to make the metric
conformally flat, with dz ¼ e−AðyÞdy, and we write

4 2 0 2 4
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FIG. 2. The energy density (18), depicted for α ¼ 0 (solid line),
α ¼ 0.2 (dashed line), and α ¼ 0.4 (dotted-dashed line).

5 0 5

1.0

0.5

0.0

FIG. 3. The potential (22), depicted for α ¼ 0 (solid line), α ¼
0.2 (dashed line), and α ¼ 0.4 (dot-dashed line).
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FIG. 4. The energy density (23), depicted for α ¼ 0 (solid line),
α ¼ 0.2 (dashed line), and α ¼ 0.4 (dot-dashed line).
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HμνðzÞ ¼ e−ip·xe3=2AðzÞhμν: ð29Þ

In this case, the four-dimensional components of hμν obey
the Klein–Gordon equation, and the metric fluctuations of
the brane solution lead to the Schroedinger-like equation

½−∂2
z þ UðzÞ�Hμν ¼ p2Hμν; ð30Þ

where

UðzÞ ¼ 9

4
A2
z þ

3

2
Azz: ð31Þ

In this case, we can write

−∂2
z þ UðzÞ ¼ S†S; ð32Þ

where

S ¼ d
dz

−
3

2
Az: ð33Þ

The operator −∂2
z þUðzÞ is then non-negative, and the

gravity sector is linearly stable. We note that the stability
behavior in the gravity sector only depends on the warp
factor AðzÞ. Since the warp factor does not depend on
α, the modification introduced by the auxiliary field does
not modify linear stability. For example, for the sine-
Gordon model (19), we can write the quantum potential
explicitly as

UðzÞ ¼ −6
9 − 10z2

ð9þ 4z2Þ2 ; ð34Þ

which was studied before in Ref. [10], in the absence of
auxiliary fields.

V. ENDING COMMENTS

In this work, we extended the first-order framework
developed in Ref. [7] to the new scenario, where Einstein’s
equation is generalized to include nondynamical or aux-
iliary fields. Our results show that the first-order equations
for ϕðyÞ and AðyÞ are

ϕ0 ¼ 1

2
Wϕ; A0 ¼ −

1

3
W

and have the very same form we get in the standard
scenario. Although they remain unchanged, the potential
has to obey

VðϕÞ ¼ 2 − 3α

8ð2þ 5αÞW
2
ϕ −

2

3ð2þ 5αÞW
2:

It explicitly depends on α, the parameter that controls
deviation from Einstein’s equation. Thus, the energy
density also depends on α. It is formally given by

ρ ¼ e2A
�

2þ α

4ð2þ 5αÞW
2
ϕ −

2

3ð2þ 5αÞW
2

�
:

We then see that, although both ϕðyÞ and AðyÞ have the
very same form they get in the absence of auxiliary fields,
the potential and the energy density change in this new
scenario.
This is a significant achievement, since the results

suggest a new braneworld scenario with robust gravity
sector which, differently from the standard braneworld
scenario, engenders an extra parameter, α, real. This
parameter can be used to control physical aspects of the
problem under study. Several issues can be investigated,
and here we mention the splitting of the brane, an
interesting effect that appears in specific models, as in
the one-field model described in Ref. [11] and in the two-
field or Bloch brane model described in Ref. [12]. We are
now investigating how the extra parameter α of the current
model may contribute to enhance the splitting of the brane.
We also mention the hierarchy problem and the addition

and entrapment of other fields to the brane [13–17]. Here
we understand that the parameter α may be of use to drive
the model toward more realistic possibilities. In addition,
the proposed extension can be used to drive the model into
new cosmological scenarios, with α playing interesting
role; see, e.g., Ref. [5]. In the cosmological context,
baryogenesis is an important issue, and the current study
motivates us to approach baryogenesis with the present
extension, as also suggested in Ref. [18].
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