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If two particles collide near a black hole, the energy in their center of mass can, under certain conditions,
grow unbounded. This is Bañados-Silk-West effect. We show that this effect retains its validity even if some
force acts on a particle, provided some reasonable and weak restrictions are imposed on this force. In the
present paper we discuss the case of nonextremal horizons. The result under discussion is similar to that for
extremal horizons considered in our previous paper. The problem can be viewed both in its own right and as
a simple setup in which this force models in the first approximation the complicated gravitational self-force.
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I. INTRODUCTION

It was shown by Bañados-Silk-West (BSW) [1] that
near-horizon collision of two particles moving towards the
extremal Kerr black hole can result in the indefinite growth
of their energy Ec:m: in the center of mass frame. Soon after
this observation, several arguments were pushed forward
against the possibility of physical realization of this effect.
The first one consisted in that realistic astrophysical black
holes cannot be exactly extremal [2]. However, it was
refuted since the BSW effect was extended to the non-
extremal horizons of Kerr [3] and other stationary axially
symmetric black holes [4]. Another objection was based on
the role of gravitational radiation, which was assumed to
bound the BSWeffect [5]. However, recent studies showed
that under rather general and weak assumptions, the BSW
effect survives even if a force (modeling the effect of
radiation, backreaction, etc.) acts on the particles [6]. This
was obtained for the extremal horizons. Now our goal is to
consider the possibility of the BSW effect near horizons of
nonextremal black holes when particles move under the
action of some force.
It is worth mentioning that there are two kinds of

potential limitations on the BSW effect. The first one
concerns the possibility to get unbounded Ec:m:, which
involves only processes in the immediate vicinity of the
horizon. The second kind is related to the issue of
astrophysical relevance and potential observational signifi-
cance of the BSW effect. In this regard the behavior of
debris after collision in the asymptotically flat region is also
important. The observable energy and mass at infinity for
the extremal Kerr metric were found to be restricted by
some upper limits in [7] (built on [8]), and a similar result
was obtained in [9]. Extension to more general “dirty”

black holes was done in [10]. A separate question is
whether fluxes at infinity can exceed the sensitivity of
modern devices. In general, the situation remains contro-
versial [11,12]. Here we discuss only the first kind of
limitation, having obvious theoretical value, and put aside
the second kind, which is important but needs separate
further treatment. Up to date, there are already many other
different aspects of the BSW effect that remain beyond the
scope of the present paper.
In this paper we discuss the BSWeffect under the action

of a force of a rather generic character. When the corre-
sponding results are applied to the question regarding
gravitational self-force, important reservations are in order.
The true gravitational self-force differs from simple exter-
nal force and depends on the particle’s position, velocity,
etc. in a highly nonlinear way. The full analysis also needs
to consider the motion of the particle in nonstationary and
nonaxisymmetric background [13]. In this sense, the
present paper, as well as our previous one [6], should be
considered the first step to understanding BSWeffect under
the action of gravitational self-force, which we model with
the help of a “usual” force.

II. GENERAL FORMULAS

Let us consider the axially symmetric stationary black
hole metric,

ds2 ¼ −N2dt2 þ gϕðdϕ − ωdtÞ2 þ dr2

A
þ gzdz2: ð1Þ

All metric coefficients do not depend on t and ϕ. The lapse
function N turns to zero at the horizon, where N2 ∼ A.
Let us consider a particle’s motion in the equatorial plane

and, for simplicity, put the mass of each particle equal to
unitym1;2 ¼ 1. Hereafter we will use two frames, which are
convenient for description of the processes near horizon—
the “OO frame,” which is attached to an observer orbiting a
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black hole with the zero angular momentum [14] and the
“FO frame,” which is attached to an observer falling into
the black hole.
It is convenient to parametrize a particle’s for-velocity uμ

by its energy E and angular momentum (here μ ¼ t;ϕ; r; z)

uμ ¼ ð−E;L; ur; 0Þ: ð2Þ

Then the normalization condition for the four-velocity
uμuμ ¼ −1 can be presented as

1

A
ðurÞ2 ¼ X2

N2
−
L2

gϕ
− 1; ð3Þ

where

X ¼ E − ωL: ð4Þ

Equation (3) can be rewritten again to give

ur ¼ �
ffiffiffiffi
A

p

N
Z; ð5Þ

Z2 ¼ X2 − N2

�
L2

gϕ
þ 1

�
: ð6Þ

For free motion Eqs. (3) and (5) can be obtained, as
usual, as the first integrals of the geodesic equations. If the
motion is not geodesic, the equations remain valid, but E
and L are not, in general, integrals of motion anymore, and
should be treated as useful notation only.
Let us denote the components of acceleration in the OO

frame by aðμÞo . For simplicity, we assume hereafter that A ¼
N2 (if this is not so, one can redefine the radial coordinate
for motion in the equatorial plane to achieve this). Then,
using Eqs. (112), (116), and (117) of [6], we have

aðϕÞo ¼ −
Zffiffiffiffiffigϕp L0; ð7Þ

aðtÞo ¼ −
Z
N
ðX0 þ Lω0Þ ¼ −

ZðE0 − ωL0Þ
N

; ð8Þ

aðrÞo ¼ −
X
Z
aðtÞo − N

LL0

gϕ
: ð9Þ

By definition, the energy in the center of mass frame of
colliding particles having unit masses is equal to

E2
c:m: ¼ −ðuμ1 þ uμ2Þðu1μ þ u2μÞ ¼ 2þ 2γc:m:; ð10Þ

where

γc:m: ¼ −u1μu
μ
2 ð11Þ

is the relative Lorentz factor. Assuming that both particles
move towards the black hole, so that in (5) we should take
the minus sign, the direct calculation, using (2) and (3),
gives

γc:m: ¼
X1X2 − Z1Z2

N2
−
L1L2

gϕ
: ð12Þ

III. CRITICAL AND NEAR-CRITICAL PARTICLES

In the context of the BSWeffect a particle is called usual
if XH ≠ 0 and “critical” if XH ¼ 0 (subscript “H” here
denotes quantities calculated on the horizon). The effect
near extremal horizons is realized in collision of one usual
and one critical particles. Let us suppose now that there are
two particles colliding near a nonextremal horizon, where

N2 ∼ ξ; ξ≡ r − rH
rH

: ð13Þ

For the critical particle in the horizon limit, according to
(6), we would have Z2 < 0, which means that it cannot
actually reach the horizon [4]: exactly critical particles do
not exist in this case. However, let us then consider a usual
particle, for which the expansion

X ¼ XH þ x1ξþ x2ξ2 þ � � � ð14Þ

starts from the first nonvanishing term XH ≠ 0. Such a
particle evidently can reach the horizon, and we can choose
its point of collision with another particle close to the
horizon ξc ≪ 1 (subscript “c” denotes the point of colli-
sion). Additionally, we can choose XH to be small to the
same order:

XH ∼ Nc ∼
ffiffiffiffiffi
ξc

p
: ð15Þ

Such a particle is called “near critical,” and

ZH ∼ Nc ∼
ffiffiffiffiffi
ξc

p
: ð16Þ

Then, in case the other particle is usual, in accordance with
[3,4], their relative Lorentz factor at the point of collision is

γc:m: ∼ N−1
c ;

which can be made arbitrarily large by choosing the point
of collision ξc sufficiently close to the horizon and tuning
XH accordingly.

IV. BEHAVIOR OF THE FORCE

As seen in the previous section, the formal description of
the BSWeffect on the kinematic level does not change with
the introduction of force [3,4]. However, in order to
understand whether the effect is actually preserved, we
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should check (i) if it is compatible with the force acting on
particles being finite (an obvious physical requirement) and
(ii) whether it is possible, given some reasonably arbitrary
finite force, to find/tune the near-critical particle, which is
needed for the effect. Here we will take advantage of the
results of analysis performed in [6] for extremal horizons to
show that the main conclusions remain valid for nonex-
tremal ones.
The force acting on a particle, which must be bounded, is

the one calculated in that particle’s frame. We are interested
only in usual particles here, as critical ones do not exist near
nonextremal horizons (see above). The FO frame [6] is
constructed so that a usual particle’s Lorentz factor in this
frame is finite, thus the force acting on the particle in the FO
frame must be finite as well. The OO frame is related to the
FO frame through the Lorentz boost, which is singular in
the horizon limit, with γ ∼ 1=N → ∞, so the components
of the force in the OO frame can diverge.
Let us denote the tetrad components of a particle’s

acceleration in the FO frame, which must be finite, as

aðiÞf . The components of acceleration in the OO frame aðiÞo
are related with them via the singular Lorentz boost, and the
explicit relations between their asymptotics are given by
Eqs. (68)–(71) of [6]:

aðtÞf ¼ ðaðtÞf Þ0 þ ðaðtÞf Þ1N þOðN2Þ; ð17Þ

aðrÞf ¼ ðaðrÞf Þ0 þ ðaðrÞf Þ1N þOðN2Þ; ð18Þ

aðtÞo ¼þðaðtÞf Þ0− ðaðrÞf Þ0
N

þ½ðaðtÞf Þ1− ðaðrÞf Þ1�þOðNÞ; ð19Þ

aðrÞo ¼−
ðaðtÞf Þ0− ðaðrÞf Þ0

N
− ½ðaðtÞf Þ1− ðaðrÞf Þ1�þOðNÞ: ð20Þ

Thus aðtÞo and aðrÞo can diverge as 1=N. The ϕ and z
components are the same in the two frames and must be
bounded, so according to Eqs. (72) and (73) of [6],

aðϕÞf ¼ aðϕÞo ¼ Oð1Þ: ð21Þ
This behavior is insensitive to the type of the horizon,
extremal or not.
Let us see if this asymptotic behavior is compatible with

“equations of motion” (7)–(9) for near-critical particles.
Using the asymptotes (15) and (16) and assuming that L, E,
L0 and E0 are finite, we get

aðϕÞo ∼
ffiffiffi
ξ

p
; ð22Þ

aðtÞo ; aðrÞo ∼ 1: ð23Þ

Here we have omitted the subscript “c.” We see that the
kinematic restrictions (19)–(21) are satisfied, and the

dynamic constraints (22) and (23) are even stronger than
the kinematic ones. This means that it is Eqs. (22) and (23)
that constitute the actual constraints on the behavior of the
force near the horizon, where collision occurs, for near-
critical particles to exist.
In the same way, one can check that for usual particles

with XH; ZH ≠ 0 the dynamic constraints, which follow
from (7) and (9), coincidewith the kinematic ones (19)–(21):

aðϕÞo ∼ 1; aðrÞo ; aðtÞo ∼ 1=N: ð24Þ

V. EXAMPLE: REISSNER-NORDSTRÖM METRIC

For the purely radial motion in the Reissner-Nordström
metric the equations of motion of a particle with mass m
and charge q read

maðtÞo ¼ −
qQ
r2

Z
mN

; ð25Þ

maðrÞo ¼ þ qQ
r2

X
mN

; ð26Þ

m2a2 ¼
�
qQ
r2

�
2

: ð27Þ

For near-critical particles withX ∼ Z ∼ N [(15) and (16)],
we get

aðtÞo ; aðrÞo ∼ 1;

analogously to (23). For usual particles, XH; ZH ≠ 0, so we
have

aðtÞo ; aðrÞo ∼ 1=N;

which is still allowed, according to Eqs. (19) and (20).

VI. NEAR-CRITICAL PARTICLES AND
EFFECT OF DISSIPATION

The second question that may not be quite clear a priori
is whether it is always possible to fine-tune a near-critical
particle. Let us suppose that dissipation is neglected. Then,
the solution xμðnÞ is specified by initial data and for each
set of data there exists a single solution. Instead of fixing
conditions at the initial moment of time, however, we can
fix them at the moment when the near-critical particle
reaches the horizon: rð0Þ ¼ rH, _rð0Þ ¼ XH [see (5)].
As, by assumption, dissipation is neglected, the system is

time symmetric with respect to time inversion t ↦ − t.
Therefore, by integrating equations of motion back in time,
we can recover the trajectory that leads to near-horizon
collision with the unbound Ec:m: This is achieved by taking
arbitrarily small XH from the very beginning. Thus the
BSW effect survives in spite of the presence of the force.
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In practice, however, a particle can experience the
influence of dissipative forces, such as gravitational radi-
ation reaction. Either dissipation arises due to terms
proportional to velocity (or its higher odd powers) or it
cannot be described in terms of forces at all. What is
important, dissipation violates the symmetry between the
two directions of time, which devaluates the above reason-
ing. However, if dissipation is small enough, the presented
arguments retain their validity.
Dissipation is small if the time of relaxation τdiss is much

greater than the characteristic dynamic time scales. In the
context of gravity, we should compare proper time inter-
vals. Let us consider motion of the near-critical particle.
Such a particle moves between the horizon and the turning
point r ¼ r0, so collision occurs somewhere within this
interval, which shrinks to zero when XH → 0 (see for
details [15] and [16]).
The proper time of movement until collision is less than

the time of movement from the horizon to the turning point
r ¼ r0, so its upper estimate is

τdyn ¼
Z

r0

rH

dr
jurj : ð28Þ

Then, for small r − rH, we have

N2 ≈ 2κðr − rHÞ ¼ 2κrHξ; 0 ≤ ξc ≤ ξ ≤ ξ0; ð29Þ

where ξ0 corresponds to the turning point. In accordance
with (15), we have X2

H ¼ ξ0b, with b ¼ 2κrHðL2

gϕ
þ 1Þ ¼

Oð1Þ.
Now, it follows from Eqs. (5) and (6) that

τ ≈ 2
rHffiffiffi
b

p ffiffiffiffiffi
ξ0

p
: ð30Þ

Thus the effect of dissipation is small as long as

τdiss
rH

≫ ξc; ð31Þ

which holds automatically for sufficiently small ξc. If a
particle is usual, the effect of dissipation is irrelevant in the
context of the BSW effect at all since it simply transforms
a usual trajectory into another usual one. Thus for near-
horizon collision the dissipation effects can be neglected
and cannot restrict the BSWeffect, so that the energy in the
center of mass frame can be made arbitrarily large.
It is worth noting that the above discussion does not

apply directly to the case of extremal horizon, since the
proper time of reaching the extremal horizon for a critical
particle is infinite. In that case, however, the existence of
the BSW effect is confirmed via different reasoning, based
on the direct analysis of near-horizon trajectories [6].

VII. EXPLICIT PROCEDURE OF TUNING

In this section we demonstrate explicitly, how the
procedure of tuning can be realized for near-critical
particles. As the particle is not exactly critical, tuning
should be understood in the approximate sense (small but
nonzero XH on the horizon). As an example, we consider

the case of the azimuthal force, when aðrÞo ¼ 0. Then, it
follows from (7) that

gϕXðX0 þ Lω0Þ ¼ N2LL0 ð32Þ

which corresponds to Eq. (134) of [6].
Now, we fix small XH and seek the solution in the form

of series

N2 ¼ 2κξþ ν2ξ
2 þ ν3ξ

3 þ � � � ; ð33Þ

ω ¼ ωH − ω1ξþ ω2ξ
2 þ � � � ; ð34Þ

gϕ ¼ gH þ g1ξþ g2ξ2 þ � � � ; ð35Þ

X ¼ XH þ x1ξþ x2ξ2 þ � � � ; ð36Þ

L ¼ lH þ l1ξþ l2ξ2 þ � � � : ð37Þ

Equating the terms of the zeroth order by ξ, we obtain from
(32) that

x1 ¼ ω1lH: ð38Þ

The terms of the first order entail

l1 ¼
2gHXHðx2 þ ω2lHÞ
2κlH þ gHXHω1

: ð39Þ

Repeating the procedure iteratively, we get l2 ¼ l2ðXH;
x1; x2Þ, etc. Substituting (36) into (6), we find

Z2 ¼ X2
H − z1ξ; ð40Þ

z1 ¼ 2κ

�
l2H
gH

þ 1

�
; ð41Þ

where we neglected the term of the order XH in z1.
Then, it follows from (12) that

γc:m: ∼
XH −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
H − z1ξ

p
ξ

: ð42Þ

In the region between the horizon and the turning point
0 ≤ ξ ≤ ξ0 ¼ X2

H=z1 this factor has the order X
−1
H and can

be made as large as one likes.
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VIII. SUMMARY

We have shown that the BSW effect near nonextremal
horizons retains its validity even if the particle experiences
the action of forces, provided some rather weak and
reasonable restrictions are imposed on these forces. For
the near-critical particle that plays the crucial role in the
effect, the corresponding conditions are described by

Eqs. (22) and (23). In combination with the previous
similar results for extremal horizons [6], this means that
the BSW effect turns out to be rather viable and shows
properties of universality. In application of the obtained
results to the issue of gravitation self-force, this should be
considered as the model approach and first approximation
only, so the full analysis requires further study.
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