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We consider whether an external electric field may cause the pair production of open strings in a type IIA
plane-wave background. The boundary states of D-branes with condensates are constructed in the Green-
Schwarz formulation of superstring theory with the light-cone gauge. The cylinder diagrams are computed
with massive theta functions. Although the value of the electric field is bounded by the upper value, there is
no pole in the amplitudes and it indicates that no pair production occurs in the plane-wave background.
This result would be universal for a class of plane-wave backgrounds.
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I. INTRODUCTION

The AdS/CFT correspondence [1–3] gives a nice
laboratory to argue new aspects of string theory and gauge
theories. The classical dynamics of strings on the AdS
space is related to nonperturbative phenomena in strongly
coupled field theories. An example of this fascinating
subject is the pair production of pairs of particle and
antiparticle in the presence of an external electric field. It is
originally studied in quantum electrodynamics (QED) [4]
and often called the Schwinger effect [5] (for further
developments, see [6,7]).
Recently, a holographic scenario to study the Schwinger

pair production was proposed by Semenoff and Zarembo
[8], where the production rate of W bosons in the Coulomb
phase (for various generalizations, see [9–11]). The poten-
tial analysis is done in the holographic way [12]. The
holographic analysis is applicable to confining gauge
theories [13–16].
In relation to this progress, an interesting issue is to

consider the pair production of strings on the AdS space
and argue its holographic dual. However, it is technically
difficult to analyze the dynamics of strings on the AdS
space; hence, it would be reasonable to consider a plane-
wave background as an approximation of the target space
geometry. It is known that the pair production of strings
occurs in flat space [17,18] (for the analysis based on the
Green-Schwarz formulation, see [19]), but it is not obvious
whether it can occur on curved backgrounds.
Here we will focus on a type IIA pp-wave background as

a concrete example. We consider if an external electric field
can induce the pair production of open strings. The
boundary states of D-branes with condensates are consid-
ered in the Green-Schwarz formulation of superstring

theory with the light-cone gauge. The cylinder diagrams
are computed with massive theta functions. The value of
the electric field is found to be bounded by the upper value.
On the other hand, there is no pole in the amplitudes and it
indicates that no pair production occurs in the plane-wave
background.1 Although just one example of plane-wave
backgrounds is studied here, it is expected that this result
would be universal for general plane-wave backgrounds.
This paper is organized as follows. Section II gives a

brief review of the Green-Schwarz formulation of type IIA
superstring theory on a plane-wave background preserving
24 supersymmetries. In Sec. III, boundary states with con-
densates are constructed. In Sec. IV, we compute cylinder
amplitudes between parallel D-branes with condensates.
Section V argues the pole structure of the amplitudes after
moving to the open string picture. It is shown that there is
no pole in the amplitudes, and therefore the pair production
does not occur. This result indicates that there is no pair
production on general plane-wave backgrounds. Section VI
is devoted to the conclusion and discussion. Appendix A
explains in detail that there is no pole in the D2-brane
amplitude.

II. SETUP

This section gives a brief review of the construction of a
light-cone Hamiltonian for a closed superstring in a type
IIA plane-wave background, the details of which can be
found in [21].

A. A type IIA plane-wave background

The type IIA plane-wave background is given by
[22–24]
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1In fact, it has been reported that there is no vacuum
polarization in plane waves in the context of quantum field
theory [20]. Our result may be considered as its stringy version.
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ds2 ¼ −2dxþdx− − AðxIÞðdxþÞ2 þ
X8
I¼1

ðdxIÞ2;

Fþ123 ¼ μ; Fþ4 ¼ −
μ

3
; ð2:1Þ

where xI ¼ ðxi; xi0 Þ and the scalar function AðxIÞ is defined
as

AðxIÞ≡X4
i¼1

μ2

9
ðxiÞ2 þ

X8
i0¼5

μ2

36
ðxi0 Þ2 ðμ∶ constÞ: ð2:2Þ

The relative coefficients are fixed so that the background
preserves 24 supersymmetries.

B. The Green-Schwarz action of type IIA
plane-wave string

The Green-Schwarz action of a type IIA superstring on
this background is simplified by fixing the kappa symmetry
with the light-cone gauge condition,

Γþθ ¼ 0; Xþ ¼ pþτ: ð2:3Þ

Here pþ is the total momentum conjugate to X− and τ is
time on the world sheet. Then the light-cone gauge fixed
action is given by2

SLC ¼ −
1

2

Z
d2σ

�
ηmn∂mXI∂nXI þm2

9
ðXiÞ2 þm2

36
ðXi0 Þ2

þ θ̄Γ−∂τθ þ θ̄Γ−9∂σθ −
m
4
θ̄Γ−

�
Γ123 þ 1

3
Γ49

�
θ

�
;

ð2:4Þ

where a new parameter m is defined as

m≡ μpþ: ð2:5Þ

This is the mass parameter characterizing the masses of
the fields on the world sheet. Then the Majorana fermion θ
is the combination of Majorana-Weyl fermions θ1 and θ2

with opposite ten-dimensional SOð1; 9Þ chiralities; that is,
θ ¼ θ1 þ θ2, where θ1ðθ2Þ has positive (negative) chirality.
The Dirac conjugate of θ is defined as θ̄≡ iθTΓ0.
The fermionic part in the action (2.4) is written in the

32-component notation. It is now convenient to rewrite the
action in the 16-component spinor notation. Let us first
introduce a representation of SOð1; 9Þ gamma matrices as
follows:

Γ0 ¼ −iσ2 ⊗ 116; Γ11 ¼ σ1 ⊗ 116; ΓI ¼ σ3 ⊗ γI;

Γ9 ¼ −σ3 ⊗ γ9; Γ� ¼ 1ffiffiffi
2

p ðΓ0 �Γ11Þ: ð2:6Þ

Here σ’s are Pauli matrices and 116 the 16 × 16 unit matrix.
Then γI are the 16 × 16 symmetric real gamma matrices
satisfying the spin(8) Clifford algebra fγI; γJg ¼ 2δIJ,
which are reducible to the 8s þ 8c representation of spin
(8). Note that, in our representation, Γ9 is taken to be the
SOð1; 9Þ chirality operator and γ9 becomes the SOð8Þ
chirality operator,

γ9 ¼ γ1γ2 � � � γ8: ð2:7Þ
It is convenient to introduce the spinor notation

θA ¼ 1

21=4

�
0

ψA

�
;

so as to satisfy the kappa symmetry fixing condition of
(2.3), where the superscript A denotes the SOð1; 9Þ
chirality. Then the action SLC is rewritten as

SLC ¼ −
1

2

Z
d2σ

�
ηmn∂mXI∂nXI þm2

9
ðXiÞ2 þm2

36
ðXi0 Þ2

− iψ1þ∂þψ1þ − iψ1
−∂þψ1

− − iψ2þ∂−ψ
2þ

− iψ2
−∂−ψ

2
− þ 2i

m
3
ψ2þγ4ψ1

− − 2i
m
6
ψ2
−γ

4ψ1þ

�
;

ð2:8Þ

where we have introduced the light-cone coordinates on the
world sheet and the associated derivatives are defined as
∂� ≡ ∂τ � ∂σ . Here the subscripts � in ψA

� represent the
eigenvalues�1 of γ1234. In our convention, the fermion has
the same SOð1; 9Þ and SOð8Þ chiralities measured by Γ9

and γ9, respectively.

C. Mode expansions (bosons)

The light-cone action (2.8) is quadratic in fields; hence,
the quantization of closed string is carried out exactly.
Let us first consider the bosonic sector of the theory. The

equations of motion for the bosonic coordinates XI are
obtained from the action (2.8) like

ηmn∂m∂nXi −
�
m
3

�
2

Xi ¼ 0;

ηmn∂m∂nXi0 −
�
m
6

�
2

Xi0 ¼ 0: ð2:9Þ

Here the fields are subject to the periodic boundary
condition

XIðτ; σ þ 2πÞ ¼ XIðτ; σÞ:
2We set 2πα0 ¼ 1 for our convention. Here ηmn is the flat

world-sheet metric with the world-sheet coordinates σm ¼ ðτ; σÞ.
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The solutions are given in the form of mode expansion,

Xiðτ; σÞ ¼ xi cos

�
m
3
τ

�
þ 1

2π
pi 3

m
sin

�
m
3
τ

�

þ i

ffiffiffiffiffiffi
1

4π

r X
n≠0

1

ωn
ðαinϕnðτ; σÞ þ ~αin ~ϕnðτ; σÞÞ;

Xi0 ðτ; σÞ ¼ xi
0
cos

�
m
6
τ

�
þ 1

2π
pi0 6

m
sin

�
m
6
τ

�

þ i

ffiffiffiffiffiffi
1

4π

r X
n≠0

1

ω0
n
ðαi0nϕ0

nðτ; σÞ þ ~αi
0
n
~ϕ0
nðτ; σÞÞ;

ð2:10Þ

where xI and pI are center-of-mass variables, coefficients
for zero modes, and αIn and ~αIn are the expansion coef-
ficients for the nonzero modes. The basis functions for
nonzero modes are given by

ϕnðτ; σÞ ¼ e−iωnτ−inσ; ~ϕnðτ; σÞ ¼ e−iωnτþinσ; ð2:11Þ

ϕ0
nðτ; σÞ ¼ e−iω

0
nτ−inσ; ~ϕ0

nðτ; σÞ ¼ e−iω
0
nτþinσ; ð2:12Þ

with the wave frequencies

ωn ¼ signðnÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m
3

�
2

þ n2

s
;

ω0
n ¼ signðnÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m
6

�
2

þ n2

s
: ð2:13Þ

Note that the reality of XI requires that αI†n ¼ αI−n
and ~αI†n ¼ ~αI−n.

The next is to promote the expansion coefficients in
(2.10) to operators with the canonical quantization. The
canonical commutation relations (at equal time) for the
bosonic fields are given by

½XIðτ; σÞ;PJðτ; σ0Þ� ¼ iδIJδðσ − σ0Þ; ð2:14Þ

where PJ ¼ ∂τXJ is the canonical conjugate momentum of
XJ. Then one can read off the following commutation
relations between the mode operators,

½xI; pJ� ¼ iδIJ; ½αin; αjm� ¼ ωnδ
ijδnþm;0;

½αi0n; αj
0
m� ¼ ω0

nδ
i0j0δnþm;0; ½ ~αin; ~αjm� ¼ ωnδ

ijδnþm;0;

½ ~αi0n; ~αj
0
m� ¼ ω0

nδ
i0j0δnþm;0: ð2:15Þ

These relations will be used in considering boundary states
in the next section.

D. Mode expansions (fermions)

For the fermionic sector of the theory, the fermionic
fields are split into the two parts like ðψ1

−;ψ2þÞ and
ðψ1þ;ψ2

−Þ. The equations of motion for the former part
are obtained as

∂þψ1
− þm

3
γ4ψ2þ ¼ 0; ∂−ψ

2þ −
m
3
γ4ψ1

− ¼ 0: ð2:16Þ

The nonzero mode solutions of these equations are given by
using the modes, (2.11). For the zero-mode part of the
solution, we impose a condition that, at τ ¼ 0, the solution
behaves just as that of the massless case. The mode
expansions for the fermionic coordinates are then

ψ1
−ðτ; σÞ ¼ c0 ~ψ0 cos

�
m
3
τ

�
− c0γ4ψ0 sin

�
m
3
τ

�
þ
X
n≠0

cn

�
~ψn

~ϕnðτ; σÞ − i
3

m
ðωn − nÞγ4ψnϕnðτ; σÞ

�
;

ψ2þðτ; σÞ ¼ c0ψ0 cos

�
m
3
τ

�
þ c0γ4 ~ψ0 sin

�
m
3
τ

�
þ
X
n≠0

cn

�
ψnϕnðτ; σÞ þ i

3

m
ðωn − nÞγ4 ~ψn

~ϕnðτ; σÞ
�
; ð2:17Þ

where the chirality condition is that γ1234ψn ¼ ψn and γ1234 ~ψn ¼ − ~ψn for all n. The normalization constants c0 and cn are
given by

c0 ¼
1ffiffiffiffiffiffi
2π

p ; cn ¼
1ffiffiffiffiffiffi
2π

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð3mÞ2ðωn − nÞ2

q :

Then let us consider the other part ðψ1þ;ψ2
−Þ. The equations of motion are given by, respectively,

∂þψ1þ −
m
6
γ4ψ2

− ¼ 0; ∂−ψ
2
− þm

6
γ4ψ1þ ¼ 0: ð2:18Þ

The solutions are found to be
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ψ1þðτ; σÞ ¼ c00 ~ψ
0
0 cos

�
m
6
τ

�
þ c00γ

4ψ 0
0 sin

�
m
6
τ

�
þ
X
n≠0

c0n

�
~ψ 0
n
~ϕ0
nðτ; σÞ þ i

6

m
ðω0

n − nÞγ4ψ 0
nϕ

0
nðτ; σÞ

�
;

ψ2
−ðτ; σÞ ¼ c00ψ

0
0 cos

�
m
6
τ

�
− c00γ

4 ~ψ 0
0 sin

�
m
6
τ

�
þ
X
n≠0

c0n

�
ψ 0
nϕ

0
nðτ; σÞ − i

6

m
ðω0

n − nÞγ4 ~ψ 0
n
~ϕ0
nðτ; σÞ

�
; ð2:19Þ

where the chirality conditions are described by γ1234ψ 0
n ¼

−ψ 0
n and γ1234 ~ψ 0

n ¼ ~ψ 0
n. The normalization constants c0 and

cn are given by

c00 ¼
1ffiffiffiffiffiffi
2π

p ; c0n ¼
1ffiffiffiffiffiffi
2π

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð6mÞ2ðω0

n − nÞ2
q :

Promoting the expansion coefficients to operators with
the canonical quantization again, the canonical anticom-
mutation relations (at equal time) are obtained as

fψA
�ðτ; σÞ;ψB

�ðτ; σ0Þg ¼ δABδðσ − σ0Þ: ð2:20Þ

Then the anticommutation relations between the mode
operators are determined as

fψn;ψmg ¼ δnþm;0; f ~ψn; ~ψmg ¼ δnþm;0; ð2:21Þ

fψ 0
n;ψ 0

mg ¼ δnþm;0; f ~ψ 0
n; ~ψ 0

mg ¼ δnþm;0: ð2:22Þ

E. The light-cone Hamiltonian

The light-cone Hamiltonian of the theory is given by

H ¼ 1

pþ

Z
2π

0

dσH; ð2:23Þ

with the Hamiltonian density H derived from SLC given
in (2.8),

H ¼ 1

2
ðPIÞ2 þ 1

2
ð∂σXIÞ2 þ 1

2

�
m
3

�
2

ðXiÞ2 þ 1

2

�
m
6

�
2

ðXi0 Þ2

−
i
2
ψ1
−∂σψ

1
− þ i

2
ψ2þ∂σψ

2þ þ i
m
3
ψ2þγ4ψ1

−

−
i
2
ψ1þ∂σψ

1þ þ i
2
ψ2
−∂σψ

2
− − i

m
6
ψ2
−γ

4ψ1þ: ð2:24Þ

By plugging the mode expansions for the fields,
Eqs. (2.10), (2.17), and (2.19), into Eq. (2.23), the light-
cone Hamiltonian becomes

H ¼ E0 þ Eþ ~E; ð2:25Þ

where E0, E, and ~E are given by

E0 ¼
π

pþ

��
pI

2π

�
2

þ
�
m
3

�
2

ðxiÞ2 þ
�
m
6

�
2

ðxi0 Þ2

−
i
π

m
3
~ψ0γ

4ψ0 þ
i
π

m
6
~ψ 0
0γ

4ψ 0
0

�
;

E ¼ 1

pþ
X∞
n¼1

ðαI−nαIn þ ωnψ−nψn þ ω0
nψ

0
−nψ

0
nÞ;

~E ¼ 1

pþ
X∞
n¼1

ð ~αI−n ~αIn þ ωn ~ψ−n ~ψn þ ω0
n ~ψ

0
−n ~ψ

0
nÞ: ð2:26Þ

The first part E0 is the zero-mode contribution and the
remaining two parts, E and ~E, are the contributions of the
nonzero modes. Here E and ~E are the normal-ordered
expressions, which do not have zero-point energy in total
because the zero-point energy coming from the bosonic
fields is exactly canceled by that of the fermionic ones.
The zero-mode contribution E0 has the form of simple

harmonic oscillators. Hence, it can be conveniently rewrit-
ten in terms of the creation and annihilation operators. For
the bosonic part, the creation and annihilation operators are
defined as

ai† ≡
ffiffiffiffiffiffi
3π

m

r �
pi

2π
þ i

m
3
xi
�
; ai ≡

ffiffiffiffiffiffi
3π

m

r �
pi

2π
− i

m
3
xi
�
;

ai
0† ≡

ffiffiffiffiffiffi
6π

m

r �
pi0

2π
þ i

m
6
xi

0
�
; ai

0 ≡
ffiffiffiffiffiffi
6π

m

r �
pi0

2π
− i

m
6
xi

0
�
;

ð2:27Þ

and for the fermionic part, those are given by

χ† ≡ 1ffiffiffi
2

p ðψ0 − iγ4 ~ψ0Þ; χ ≡ 1ffiffiffi
2

p ðψ0 þ iγ4 ~ψ0Þ;

χ0† ≡ 1ffiffiffi
2

p ðψ 0
0 þ iγ4 ~ψ 0

0Þ; χ0 ≡ 1ffiffiffi
2

p ðψ 0
0 − iγ4 ~ψ 0

0Þ:

ð2:28Þ

Note that the chirality conditions are now rewritten as
γ12349χ ¼ −χ and γ12349χ0 ¼ χ0. Equations (2.15), (2.21),
and (2.22) lead to the nonvanishing (anti)commutation
relations,

½aI; aJ†� ¼ δIJ; fχ; χ†g ¼ 1; fχ0; χ0†g ¼ 1:

ð2:29Þ
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Then, after taking the normal ordering, the zero-mode
contribution to H is given by

E0 ¼
m
6pþ ð2ai†ai þ ai

0†ai
0 þ 2χ†χ þ χ0†χ0Þ: ð2:30Þ

Here the zero-point energy vanishes as in the case of E
and ~E.
The light-cone Hamiltonian H of (2.25) with (2.26) and

(2.30) will be used to describe time evolution of closed
string states.

III. BOUNDARY STATES WITH CONDENSATES

In this section, boundary states for D-branes with
condensates are constructed in the Green-Schwarz formu-
lation of type IIA superstring theory on the plane-wave
background. The boundary states constructed here will be
utilized to compute the cylinder diagrams between parallel
D-branes in the closed-string description.

A. The bosonic part

It is well known that, in the light-cone gauge (2.3), the
light-cone closed-string coordinates X� satisfy the
Dirichlet boundary condition on the boundary state for
D-brane basically due to the open/closed string channel
duality [25,26]. That is, letting the boundary state jBi, it
follows that

∂σX�jBi ¼ 0:

These conditions imply that D-branes are instantonic
objects and restrict the dimensionality of a Dp-brane to
the range 0 ≤ pþ 1 ≤ 8.
For the spatial coordinates, the boundary condition can

be taken as

ð∂þXI −MIJ∂−XJÞjBi ¼ 0; ð3:1Þ

where ∂� ¼ ∂τ � ∂σ as defined in (2.8). The matrix MIJ
eventually describes a rotation. In the absence of boundary
condensates, its explicit form is given by

MIJ ¼ �δIJ

�þ for I ∈ D

− for I ∈ N
; ð3:2Þ

where I ∈ DðNÞ means that I denotes the Dirichlet
(Neumann) direction. Plugging this matrix into (3.1), the
Dirichlet or Neumann boundary condition is imposed for
XI like

∂σXIjBi ¼ 0; or ∂τXIjBi ¼ 0:

In the presence of boundary condensates, MIJ is no longer
the form of (3.2) as it should be.

Note that, even without knowing the explicit form of
MIJ in the presence of boundary condensates, boundary
states can be constructed at least at the formal level. In
terms of the bosonic modes in the mode expansion (2.10)
with (2.27), the boundary condition (3.1) is rewritten as

ðaI −MIJaJ†ÞjBi ¼ 0;

ðαIn −MIJ ~α
J
−nÞjBi ¼ 0 ðn ≥ 1Þ: ð3:3Þ

Then one can solve these conditions with the method
of constructing the coherent state. The resulting state is
given by

jBiB¼e
P

n>0
ð 1
ωn
Mijα

i
−n ~α

j
−nþ 1

ω0n
Mi0j0α

i0
−n ~α

j0
−nÞe

1
2
Mijai†aj†þ1

2
Mi0j0a

i0†aj0† j0i;
ð3:4Þ

where the subscript B in jBiB means the bosonic part of
the boundary state. This expression shows that the problem
of constructing a boundary state reduces to the problem of
finding an appropriate matrix MIJ under a given setup.
In the following, we are concerned with the nonvanish-

ing boundary condensates. Here the condensates are
supposed to be constant electromagnetic fields F IJ on
the D-brane world volume, and hence all the indices of F IJ
are in Neumann directions.
In the presence of F IJ, the boundary condition for

Neumann directions is given by

ð∂τXI þ F IJ∂σXJÞjBi ¼ 0 ðI; J ∈ NÞ: ð3:5Þ

By rewriting this condition in terms of ∂�, the relation
between MIJ and F IJ is obtained as

MIJ ¼ −
�
1 − F
1þ F

�
IJ

ðI; J ∈ NÞ; ð3:6Þ

while MIJ ¼ δIJ when I; J ∈ D. It is convenient here to
take a frame so that F IJ becomes the block-diagonal form,

F ¼ diagðF ð1Þ;F ð2Þ;…;F ðp=2ÞÞ; ð3:7Þ

where each block F ðaÞ is given by

F ðaÞ ¼
�

0 fa
−fa 0

�
: ð3:8Þ

From (3.6), we see that MIJ has also the block-diagonal
form. Recalling that MIJ is a rotation matrix, the 2 × 2
block MðaÞ of M associated with F ðaÞ represents a rotation
in a certain two-dimensional plane labeled by a:
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MðaÞ ¼ −
1

1þ f2a

�
1 − f2a −2fa
2fa 1 − f2a

�

¼ eφaTðaÞ ¼
�

cosφa sinφa

− sinφa cosφa

�
: ð3:9Þ

Here the first line is derived from (3.6) with (3.7) and (3.8),
TðaÞ is the rotation generator in the two-dimensional plane
labeled by a,

TðaÞ ¼
�

0 1

−1 0

�
; ð3:10Þ

and φa is the rotation angle related to the constant back-
ground fa as follows:

cosφa ¼ −
1 − f2a
1þ f2a

; sinφa ¼
2fa

1þ f2a
: ð3:11Þ

B. The fermionic part

Next we consider the fermionic part. The fermionic
boundary state in the absence of boundary condensates has
been constructed in [27]. Like the bosonic part, the basic
structure of the fermionic boundary state is not changed
even in the presence of boundary condensates. Thus wewill
just quote some essential results obtained in [27] without
repeating the detailed analysis and focus upon the fer-
mionic counterpart of the matrix MIJ.
The fermionic boundary state is constructed by requiring

that the boundary state preserves some amount of super-
symmetries possessed by the IIA plane-wave background.
Here, we demand that half of the supersymmetries are
preserved (i.e., 1/2-BPS condition) and that the fermionic
modes satisfy the following Ansätze as the boundary
conditions,

ðχ − γ123M̂χ†ÞjBi ¼ 0; ðχ0 − γ123M̂χ0†ÞjBi ¼ 0;

ð ~ψnþ iM̂ψ−nÞjBi ¼ 0; ð ~ψ 0
nþ iM̂ψ 0

−nÞjBi ¼ 0 ðn> 0Þ:
ð3:12Þ

Here M̂ is an orthogonal matrix and the fermionic counter-
part of the matrix MIJ. The consistency of the 1/2
supersymmetry preserving condition with these Ansätze
leads to the conditions which determine the matrix M̂,

γJMJI þ M̂γIM̂T ¼ 0;

MJIγ
Jγ123 þ M̂γIγ123M̂ ¼ 0: ð3:13Þ

In the absence of boundary condensates, by usingMIJ of
(3.2), the solution that satisfies the conditions (3.13) is
simply given by the product of gamma matrices with
indices in a particular set of Neumann directions,

M̂ ¼ γI1I2���Ipþ1 ðIm ∈ N; I1 < I2 < � � � < Ipþ1Þ; ð3:14Þ

for each 1/2-BPS Dp-brane boundary state. In general,
possible configurations of Dp-branes are restricted on
plane-wave backgrounds. The possible configurations in
the present case [27] are summarized in Table I.
Like in the bosonic case, the fermionic boundary state

can be constructed even without knowing the explicit
form of M̂ in the presence of boundary condensates.
Namely, by solving the Ansätze (3.12) with the method
of constructing the coherent state, the fermionic boundary
state is obtained as

jBiF ¼ e−i
P

n>0
ðψ−nM̂ ~ψ−nþψ 0

−nM̂ ~ψ 0
−nÞe12χ†γ123M̂χ†þ1

2
χ0†γ123M̂χ0† j0i;

ð3:15Þ
where the subscript F in jBiF means the fermionic part of
the boundary state and the redefined fermionic zero modes
χ and χ0 of (2.28) have been used.
Note that M̂ is related to MIJ under the conditions given

in (3.13). Hence, when boundary condensates in the form
of (3.7) are turned on, M̂ is determined from MIJ of (3.6)
with the 2 × 2 blocks given in (3.9). It should be remarked
that (3.6) is only for the Neumann directions, but MIJ for
the Dirichlet directions is still given by (3.2). Though one
may directly solve (3.13) for M̂, it is easier to determine M̂
by taking the group theoretical viewpoint that M̂ andM are
the rotation matrices in the spinor and vector representa-
tions, respectively.
This can be illustrated by an explicit example. Let us

consider a D2-brane spanning along the 1, 2, and 4
directions (see Table I) and turn on a boundary condensate
on the 1-2 plane. Then, MIJ is given by ðeφTÞIJ for
I; J ¼ 1; 2, and otherwise by (3.2). Here, T is the rotation
generator in the 1-2 plane given by (3.10), and φ is related
to the boundary condensate through (3.11).3 Now, the
spinor representation of the rotation in the 1-2 plane by an
angle φ is simply given by e

φ
2
γ12, which is the part of M̂ that

realizes the rotation. The full form of M̂ is given by

M̂ ¼ e
φ
2
γ12γ4 ¼

�
cos

φ

2
þ γ12 sin

φ

2

�
γ4; ð3:16Þ

TABLE I. Spanning directions of Dp-brane instantons in the
type IIA plane-wave background. The branes are 1/2-BPS when
sitting at the origin of the transverse space. #N denotes the
number of Neumann directions. The indices are defined as î; ĵ ¼
1; 2; 3 and i0; j0 ¼ 5; 6; 7; 8.

#Nð¼ pþ 1Þ Spanning directions

1 ðîÞ
3 ðî; ĵ; 4Þ, ð4; i0; j0Þ
5 ð1; 2; 3; i0; j0Þ, ðî; 5; 6; 7; 8Þ
7 ðî; ĵ; 4; 5; 6; 7; 8Þ

3The subscript in (3.11), which distinguishes two-dimensional
planes, is not necessary in the present case.
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which satisfies (3.13), as it should be. Note that the
boundary condensate is absent when φ ¼ π, as can be
seen from (3.11). Then M̂ is reduced to just γ124, and this is
nothing but the expression implied by (3.14).
Also for the other branes listed in Table I, various

boundary condensates can be turned on and the corre-
sponding M̂’s are determined by following the same

manner. Some examples will be given in the next
section.

C. The full boundary state

In summary, by collecting the bosonic and fermionic
parts of the boundary state, (3.4) and (3.15), the full
boundary state for a Dp-brane instanton jDpi is given by

jDpi ¼ N e
P

n>0
ð 1
ωn
Mijα

i
−n ~α

j
−nþ 1

ω0n
Mi0j0α

i0
−n ~α

j0
−n−iψ−nM̂ ~ψ−nþiψ 0

−nM̂ ~ψ 0
−nÞjDpi0; ð3:17Þ

where N is the normalization constant and jDpi0 is the part composed of zero modes,

jDpi0 ¼ e
1
2
Mijai†aj†þ1

2
Mi0j0a

i0†aj0†e
1
2
χ†γ123M̂χ†þ1

2
χ0†γ123M̂χ0† j0i: ð3:18Þ

In the next section we will compute cylinder diagrams with the constructed boundary states.

IV. PARALLEL BRANES WITH BOUNDARY CONDENSATES

In this section, we compute cylinder diagrams that describe the interaction between two parallel D-branes. The typical
expression of the amplitude is given by

ADp1;Dp2
ðXþ; X−;q1;q2Þ ¼

Z
dpþdp−

2πi
e−ip

þX−−ip−XþhDp1;−pþ;−p−;q1j
�

1

pþðp− −HÞ
�
jDp2; pþ; p−;q2i

¼
Z

∞

−∞

dpþ

pþ e−ip
þX−

θðpþÞhDp1;−pþ;q1je−iHXþjDp2; pþ;q2i; ð4:1Þ

where H is the closed-string light-cone Hamiltonian (2.25)
and X� ¼ ðx�2 − x�1 Þ are the separation of two branes in the
light-cone directions. Then q1 and q2 describe the trans-
verse positions. The iϵ prescription, which induces the step
function θðpþÞ [28], is used in going to the last line.
Let us perform a usual Wick rotation on the world sheet,

t ¼ iτ=π (with π for later convenience), or in terms of the
string coordinate,

t ¼ i
Xþ

πpþ : ð4:2Þ

Then the resulting amplitude has the form

ADp1;Dp2
ðXþ; X−;q1;q2Þ

¼
Z

∞

0

dt
t
e
XþX−

πt ~ADp1;Dp2
ðt;q1;q2Þ; ð4:3Þ

where we have introduced the following quantity,

~ADp1;Dp2
ðt;q1;q2Þ

¼ hDp1;−pþ;q1je−2πtðHpþ=2ÞjDp2; pþ;q2i: ð4:4Þ

In the following, we will consider the amplitude with
identical D-branes (i.e., p1 ¼ p2) sitting at the origin of the
transverse space, that is, q1 ¼ q2 ¼ 0.

A. A general prescription to compute the amplitudes

The amplitude is evaluated in the standard way, and all
the following building blocks for the amplitude calculation
are obtained by following [25,28,29]. Note that the zero-
point energy is not taken into account because it is canceled
out between the bosonic and fermionic contributions in the
final expression.

1. The bosonic part (for nonzero modes)

Let us first see the bosonic oscillator part. For each of the
Neumann directions without boundary condensate and
each of the Dirichlet directions, when the direction is in
the 1234 space (or in the 5678 space), the contribution is
given by

Y
n>0

ð1 − qωnÞ−1
�
or

Y
n>0

ð1 − qω
0
nÞ−1

�
; q≡ e−2πt:

ð4:5Þ
For the presence of boundary condensates in a two-

dimensional plane labeled by a, when the two-dimensional
plane is in the 1234 space, the contribution is given byY

n>0

ð1 − qωneiϕaÞ−1ð1 − qωne−iϕaÞ−1; ð4:6Þ
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where ϕa is the difference between two boundary con-

densates on the two parallel branes represented by φð1Þ
a and

φð2Þ
a , respectively,

ϕa ¼ φð1Þ
a − φð2Þ

a : ð4:7Þ

From (3.11), the angles that describe the boundary con-
densates are represented by

cosφð1Þ
a ¼ −

1 − fð1Þ2a

1þ fð1Þ2a

; cosφð2Þ
a ¼ −

1 − fð2Þ2a

1þ fð2Þ2a

: ð4:8Þ

On the other hand, when the two-dimensional plane is in
the 5678 space, the contribution is given byY

n>0

ð1 − qω
0
neiϕaÞ−1ð1 − qω

0
ne−iϕaÞ−1: ð4:9Þ

2. The fermionic part (for nonzero modes)

For the fermionic oscillator part, the contribution from
the modes ψn and ~ψn is given byY

n>1

Y
s1;s2;…¼�1

ð1 − qωne
i
2
ðs1ϕ1þs2ϕ2þ…ÞÞdðs1;s2;…Þ; ð4:10Þ

where sa’s are the eigenvalues of the spinors for the rotation
generator given by the product of two γ matrices in the
corresponding two-dimensional plane labeled by a.4

The difference ϕa is given in (4.7). Then dðs1; s2;…Þ is
the multiplicity for a given sequence of ðs1; s2;…Þ. Though
it is not explicitly denoted, there is a constraint on the values
of sa such that the product of all sa’s is consistent with the
chiralities of ψn and ~ψn (which are listed in Table II).
Similarly, the contribution from the modes ψ 0

n and ~ψ 0
n is

given byY
n>1

Y
s0
1
;s0
2
;…¼�1

ð1 − qω
0
ne

i
2
ðs0

1
ϕ1þs0

2
ϕ2þ…ÞÞdðs01;s02;…Þ; ð4:11Þ

where the product of all s0a’s should be consistent with the
chiralities of ψ 0

n and ~ψ 0
n listed in Table II. Although the

expressions given in (4.10) and (4.11) are rather symbolic,
the meaning of them will be clarified in later explicit
evaluations of various amplitudes.

3. The zero modes

The next is to consider the contributions from the
bosonic zero modes. For each of the directions without
boundary condensates, if it is in the 1234 space (or in the
5678 space), the contribution is given by

ð1 − qm=3Þ−1=2 ðor ð1 − qm=6Þ−1=2Þ: ð4:12Þ

For a two-dimensional plane labeled by a with a
boundary condensate, if it is in the 1234 space, the
contribution is

ð1 − cosφð1Þ
a cosφð2Þ

a qm=3Þ−1; ð4:13Þ

while if it is in the 5678 space, the contribution is

ð1 − cosφð1Þ
a cosφð2Þ

a qm=6Þ−1: ð4:14Þ

Then let us see the fermionic zero modes. The contri-
bution from the mode χ is given by

Y
s1;s2;…¼�1

ð1 − qm=3e
i
2
ðs1ϕ1þs2ϕ2þ…ÞÞdðs1;s2;…Þ=2; ð4:15Þ

where the product of sa ’s is under the same constraint
given to (4.10). Similarly, the contribution from the
mode χ0 is

Y
s0
1
;s0
2
;…¼�1

ð1 − qm=6e
i
2
ðs0

1
ϕ1þs0

2
ϕ2þ…ÞÞdðs01;s02;…Þ=2; ð4:16Þ

where the product of s0a ’s is under the same constraint given
to (4.11).
By following the general prescription, we will consider

concrete examples in the next subsection.

B. Examples

In the following, let us consider three types of D-branes
concretely and compute the corresponding amplitudes.

1. Parallel D6-branes

First of all, let us consider parallel D6-branes which
extend along the (1,2,4,5,6,7,8) directions (see Table I).
We turn on boundary condensates in the 12, 56, and 78
planes. Then the matrix M is expressed as

TABLE II. The chiralities of the fermionic modes for γ9, γ1234,
and γ5678.

γ9 γ1234 γ5678

ψn, χ − þ −
~ψn þ − −
ψ 0
n, χ0 − − þ

~ψ 0
n þ þ þ

4The eigenvalues of the antisymmetric product of two γ
matrices are �i. The symbol sa for these eigenvalues represents
only the sign.
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M ¼

0
BBBBBBBB@

Mð1Þ
þ1

−1
Mð2Þ

Mð3Þ

1
CCCCCCCCA
: ð4:17Þ

HereMðaÞ ¼ eφaTðaÞ ða ¼ 1; 2; 3Þ is the 2 × 2 block given in
(3.9), where Tð1Þ, Tð2Þ, and Tð3Þ are the rotation generators
in the 12, 56, and 78 planes, respectively.
On the other hand, M̂ is given by

M̂ ¼ e
φ1
2
γ12γ4e

φ2
2
γ56e

φ3
2
γ78 ¼ e

φ1
2
γ12e

φ2
2
γ56e

φ3
2
γ78γ4: ð4:18Þ

For the contributions of ψn, ~ψn, and χ to the amplitude, the
sequences of eigenvalues ðs1; s2; s3Þ in (4.10) and (4.15)
are obtained from Table II as

ðs1; s2; s3Þ ¼ ð�;þ;þÞ; ð�;−;−Þ; ð4:19Þ

for each of which the multiplicity is 1, dðs1; s2; s3Þ ¼ 1.
For ψ 0

n, ~ψ 0
n, and χ0, the sequences of eigenvalues ðs01; s02; s03Þ

are

ðs01; s02; s03Þ ¼ ð�;þ;−Þ; ð�;−;þÞ; ð4:20Þ

for each of which the multiplicity is 1.
The basic building blocks from (4.5) to (4.16) lead to the

following factorized form,

~AD6;D6ðtÞ ¼ ~Að0Þ
D6;D6ðtÞ ~AðoscÞ

D6;D6ðtÞ: ð4:21Þ

Here ~Að0Þ
D6;D6ðtÞ comes from the zero mode,

~Að0Þ
D6;D6ðtÞ ¼ ð1 − qm=3Þ−1ð1 − cosφð1Þ

1 cosφð2Þ
1 qm=3Þ−1

× ð1 − cosφð1Þ
2 cosφð2Þ

2 qm=6Þ−1ð1 − cosφð1Þ
3 cosφð2Þ

3 qm=6Þ−1
× ð1 − qm=3e

i
2
ðϕ1þϕ2þϕ3ÞÞ1=2ð1 − qm=3e

i
2
ð−ϕ1þϕ2þϕ3ÞÞ1=2

× ð1 − qm=3e
i
2
ðϕ1−ϕ2−ϕ3ÞÞ1=2ð1 − qm=3e

i
2
ð−ϕ1−ϕ2−ϕ3ÞÞ1=2

× ð1 − qm=6e
i
2
ðϕ1þϕ2−ϕ3ÞÞ1=2ð1 − qm=6e

i
2
ð−ϕ1þϕ2−ϕ3ÞÞ1=2

× ð1 − qm=6e
i
2
ðϕ1−ϕ2þϕ3ÞÞ1=2ð1 − qm=6e

i
2
ð−ϕ1−ϕ2þϕ3ÞÞ1=2; ð4:22Þ

and ~AðoscÞ
D6;D6ðtÞ is from the nonzero mode,

~AðoscÞ
D6;D6ðtÞ ¼

Y
n>0

ð1 − qωnÞ−2ð1 − qωneiϕ1Þ−1ð1 − qωne−iϕ1Þ−1

× ð1 − qω
0
neiϕ2Þ−1ð1 − qω

0
ne−iϕ2Þ−1ð1 − qω

0
neiϕ3Þ−1ð1 − qω

0
ne−iϕ3Þ−1

× ð1 − qωne
i
2
ðϕ1þϕ2þϕ3ÞÞð1 − qωne

i
2
ð−ϕ1þϕ2þϕ3ÞÞ

× ð1 − qωne
i
2
ðϕ1−ϕ2−ϕ3ÞÞð1 − qωne

i
2
ð−ϕ1−ϕ2−ϕ3ÞÞ

× ð1 − qω
0
ne

i
2
ðϕ1þϕ2−ϕ3ÞÞð1 − qω

0
ne

i
2
ð−ϕ1þϕ2−ϕ3ÞÞ

× ð1 − qω
0
ne

i
2
ðϕ1−ϕ2þϕ3ÞÞð1 − qω

0
ne

i
2
ð−ϕ1−ϕ2þϕ3ÞÞ: ð4:23Þ

It is now convenient to introduce the “massive” thetalike function defined in [30,31]

Θða;bÞðτ; νÞ≡ e4πτ2Δðν;aÞ
Y
n∈Z

j1 − e−2πτ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2þðnþaÞ2

p
þ2πτ1ðnþaÞþ2πibj2; ð4:24Þ

where τ ¼ τ1 þ iτ2 and Δðν; aÞ is the zero-point energy. Actually, we are not concerned with Δðν; aÞ because it disappears
in the final expression.
By using the massive theta functions, the amplitude can be rewritten into a simpler form,
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~AD6;D6ðtÞ ¼
ð1 − qm=3eiϕ1Þ1=2ð1 − qm=3e−iϕ1Þ1=2

ð1 − cosφð1Þ
1 cosφð2Þ

1 qm=3Þ
×
ð1 − qm=6eiϕ2Þ1=2ð1 − qm=6e−iϕ2Þ1=2

ð1 − cosφð1Þ
2 cosφð2Þ

2 qm=6Þ

×
ð1 − qm=6eiϕ3Þ1=2ð1 − qm=6e−iϕ3Þ1=2

ð1 − cosφð1Þ
3 cosφð2Þ

3 qm=6Þ
Θ1=2

ð0;ðϕ1þϕ2þϕ3Þ=4πÞðit;m=3ÞΘ1=2
ð0;ðϕ1−ϕ2−ϕ3Þ=4πÞðit;m=3Þ

Θ1=2
ð0;0Þðit;m=3ÞΘ1=2

ð0;ϕ1=2πÞðit;m=3Þ

×
Θ1=2

ð0;ðϕ1þϕ2−ϕ3Þ=4πÞðit;m=6ÞΘ1=2
ð0;ðϕ1−ϕ2þϕ3Þ=4πÞðit;m=6Þ

Θ1=2
ð0;ϕ2=2πÞðit;m=6ÞΘ1=2

ð0;ϕ3=2πÞðit;m=6Þ
: ð4:25Þ

We would like to note that, if the boundary condensates are
absent, the above amplitude simply becomes one. This is
consistent with the previous result [27] of the amplitude
calculation without boundary condensates.

2. Parallel D4-branes

Let us consider parallel D4-branes. The world volume of
the D4-branes extends along the (1,2,3,5,6) directions.
Then we turn on boundary condensates in the 1-2 and
5-6 planes.

It is possible to compute the amplitude in the same way
as in the case of D6-branes. But it can also be obtained
simply by taking the magnetic background in the 78 plane
to be infinite from the result on D6-branes. Note that x3 (x4)
should be understood as the Neumann (Dirichlet) direction
at that time.

Let us consider the limit fð1Þ3 ; fð2Þ3 → ∞ (equivalently

φð1Þ
3 ;φð2Þ

3 → 0, and thus ϕ3 → 0) in (4.25). Then the x7 and
x8 directions are turned into the Dirichlet ones. The
resulting amplitude is given by

~AD4;D4ðtÞ ¼
ð1 − qm=3eiϕ1Þ1=2ð1 − qm=3e−iϕ1Þ1=2

ð1 − cosφð1Þ
1 cosφð2Þ

1 qm=3Þ
×
ð1 − qm=6eiϕ2Þ1=2ð1 − qm=6e−iϕ2Þ1=2

ð1 − cosφð1Þ
2 cosφð2Þ

2 qm=6Þ

×
Θ1=2

ð0;ðϕ1þϕ2Þ=4πÞðit;m=3ÞΘ1=2
ð0;ðϕ1−ϕ2Þ=4πÞðit;m=3Þ

Θ1=2
ð0;0Þðit;m=3ÞΘ1=2

ð0;ϕ1=2πÞðit;m=3Þ

×
Θ1=2

ð0;ðϕ1þϕ2Þ=4πÞðit;m=6ÞΘ1=2
ð0;ðϕ1−ϕ2Þ=4πÞðit;m=6Þ

Θ1=2
ð0;0Þðit;m=6ÞΘ1=2

ð0;ϕ2=2πÞðit;m=6Þ
: ð4:26Þ

3. Parallel D2-branes

Finally, we shall consider parallel D2-branes. The world-volume of the D2 branes expands along the (1,2,4) directions.
We turn on the boundary condensate in the 1-2 plane. Then it is straightforward to obtain the following amplitude,

~AD2;D2ðtÞ ¼
ð1 − 2 cosðϕ=2Þqm=3 þ q2m=3Þð1 − 2 cosðϕ=2Þqm=6 þ q2m=6Þ

ð1 − qm=3Þð1 − qm=6Þ2ð1 − cosφð1Þ cosφð2Þqm=3Þ

×
Y
n>0

ð1 − 2 cosðϕ=2Þqωn þ q2ωnÞ2ð1 − 2 cosðϕ=2Þqω0
n þ q2ω

0
nÞ2

ð1 − qωnÞ2ð1 − qω
0
nÞ4ð1 − 2 cosðϕÞqωn þ q2ωnÞ : ð4:27Þ

This is also obtained from the amplitude for the D4-branes (4.26) by taking fð1Þ2 ; fð2Þ2 → ∞ (equivalently φð1Þ
2 ;φð2Þ

2 → 0, and
thus ϕ2 → 0).
In terms of the massive theta-like function, the amplitude can be rewritten as

~AD2;D2ðtÞ ¼
ð1 − qm=3eiϕÞ1=2ð1 − qm=3e−iϕÞ1=2

ð1 − cosφð1Þ cosφð2Þqm=3Þ
Θð0;ϕ=4πÞðit;m=3ÞΘð0;ϕ=4πÞðit;m=6Þ

Θ1=2
ð0;0Þðit;m=3ÞΘ1=2

ð0;ϕ=2πÞðit;m=3ÞΘð0;0Þðit;m=6Þ
; ð4:28Þ
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where the subscript 1 has been omitted from all of the
angles because the boundary condensate is turned on only
in the 1-2 plane.

V. NO PAIR PRODUCTION OF OPEN STRINGS

This section considers the possibility of the pair pro-
duction of open strings from the viewpoint of the pole
structure of the amplitudes. As an example, we concentrate
on the case of two parallel D2-branes.
First of all, it is necessary to move from the cylinder

diagram (closed string channel) to an annulus one (open
string channel). It is carried out by performing the trans-
formation t → t0 ¼ 1=t. By the way, the resulting amplitude
is the one containing the magnetic condensate. In order to
investigate the issue of open string pair production, it is
necessary to have an electric condensate. It is difficult to
accomplish it directly because we are now working with

the light-cone gauge. Still, the amplitude with an electric
condensate can be anticipated from the magnetic one
through the replacement f → if (equivalently ϕ → iϕ).5

This anticipation will be supported later from agreement
with the result in the flat limit.
Then the pole structure on the real t0 axis leads to an

imaginary part in the expression of the energy, which is
given by the sum over the residues of the poles. This is
interpreted as the sign of the pair creation of open strings.
To see the pole structure, recall the transformation law

of massive thetalike functions under the S transformation
τ → −1=τ [30,31],

Θða;bÞ

�
−
1

τ
; jτjν

�
¼ Θðb;−aÞðτ; νÞ: ð5:1Þ

Then the D2 amplitude in (4.28) is rewritten as

~AD2;D2ðtÞ ¼
Θð0;ϕ=4πÞðit;m=3ÞΘð0;ϕ=4πÞðit;m=6Þ

Θ1=2
ð0;ϕ=2πÞðit;m=3Þ

× � � �

⟶
t→t0¼1=tΘð−ϕ=4π;0Þðit0;m=3t0ÞΘð−ϕ=4π;0Þðit0;m=6t0Þ

Θ1=2
ð−ϕ=2π;0Þðit0;m=3t0Þ

× � � �

⟶
ϕ→iϕΘð−iϕ=4π;0Þðit0;m=3t0ÞΘð−iϕ=4π;0Þðit0;m=6t0Þ

Θ1=2
ð−iϕ=2π;0Þðit0;m=3t0Þ

× � � � ; ð5:2Þ

where “…” denote the factors irrelevant to the pole
structure. By the definition of the massive thetalike
function (4.24), the last line does not lead to any pole in
the real t0 axis (For details of the proof, see Appendix A).
Thus it has been shown that there is no pair creation of open
strings.
One interpretation of this result is that strings are trapped

in a harmonic potential due to the IIA plane wave back-
ground. In other words, the string coordinates describe the
set of harmonic oscillators. Hence it is impossible to
separate the constituents of the produced pairs in an infinite
distance even if a pair is produced at a certain instance.
At this point, one may ask if the production rate becomes

finite after removing the harmonic potential, that is, after
taking the flat space-time limit (m → 0). If it tends to be
finite, then the well-known result in flat space-time is
reproduced and our interpretation passes an important check.
Let us consider the flat space-time limit. With the help of

the expression of the massive thetalike function in m → 0
limit [31],

lim
m→0

Θða;bÞðτ;mÞ ¼ e−2πτ2a
2

���� θ1ðaτ þ bjτÞ
ηðτÞ

����2; ð5:3Þ

and the usual product form of Jacobi theta function,

θ1ðzjτÞ¼ 2q
1
8 sinðπzÞ

Y∞
n¼1

ð1−qnÞð1−qne2πizÞð1−qne−2πizÞ

ðq≡e2πiτÞ; ð5:4Þ

the last line of (5.2) can be rewritten as

Θð−iϕ=4π;0Þðit0;m=3t0ÞΘð−iϕ=4π;0Þðit0;m=6t0Þ
Θ1=2

ð−iϕ=2π;0Þðit0;m=3t0Þ

× � � �⟶m→0 θ41ðϕt
0

4π jit0Þ
θ1ðϕt

0
2π jit0Þ

× � � � ⟶ sin4ðϕt0
4
Þ

sinðϕt0
2
Þ × � � � : ð5:5Þ

The last line explicitly shows that there are an infinite
number of poles on the real t0 axis. The locations of the
poles are specified by

5The replacement is not to be regarded as the result of
signature change from the Euclidean space to the Minkowskian
one, because the time direction is definitely set by the light-cone
time in our computation. Rather, it should be anticipated as a
natural generalization of the resulting amplitude following the
reasoning of [19]. For the issue of signature change from a
rigorous viewpoint, see for example Ref. [32].
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t0 ¼ 2πð2kþ 1Þ=ϕ ðk ∈ ZÞ:

This is nothing but the result in flat spacetime [25].6

VI. CONCLUSION AND DISCUSSION

We have considered whether an external electric field may
cause the pair production of open strings in a type IIA plane-
wave background. The boundary states of D-branes with
condensates have been constructed in the Green-Schwarz
formulation with the light-cone gauge. The cylinder dia-
grams have been computed with the boundary states and
the resulting amplitudes are shown to be expressed in terms
of massive theta functions. This is a characteristic property
intrinsic to plane-wave backgrounds. As a consequence,
although the value of the electric field is bounded by the
upper value,7 there is no pole in the amplitudes and it
indicates that no pair production occurs in the plane-wave
background. Our result is based on an analysis in a IIA
pp-wave background, but the result would be universal for a
class of plane-wave backgrounds.
In order to confirm our conjecture that no pair production

occurs, it is indispensable to compute the amplitudes in other
plane-wave backgrounds. It would be interesting to classify
the gravitational backgrounds which allows the pair pro-
duction. For example, plane-wave backgrounds with flat
directions are good candidates. In this sense, adding angular
momenta would be able to support the pair production.
The next important question is whether or not the result

of no pair production is intrinsic to plane-wave back-
grounds. As was stated in the Introduction, it is interesting
to study the possibility of the pair production in AdS
backgrounds. A plane-wave background appears as an
approximation of the AdS geometry times an internal
space, while the geometry of flat space always appears
by considering a small and local region and the pair
creation seems possible on it. Actually, a Penrose limit
[33] of the AdS geometry may lead to flat space, depending
on the choice of the null geodesic. Thus, our argument
would not be able to exclude the possibility that the pair
production of strings occurs in the AdS backgrounds.
The phenomenon that no pair production occurs may be
an artifact in the plane-wave approximation.
The study of the pair production of open strings on

curved backgrounds would reveal a new aspect of the string
dynamics.
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APPENDIX: THE POLE STRUCTURE OF THE
D2-BRANE AMPLITUDE

We will show that there is no pole in the D2-brane
amplitude given in (5.2).
Let us begin with the last line of (5.2). The definition of

the massive theta function is given in (4.24). The goal is to
show that there is no pole on the real t0 axis. The amplitude
is divided into (1) the n ≠ 0 contributions and (2) the n ¼ 0
contribution. We will consider each of them below.

1. The n ≠ 0 contributions

In order to study the pole structure, let us consider zero
points of the following part,

Θð−iϕ=2π;0Þ

�
it0;

m
3t0

�
¼ e4πt

0Δðm=3t0;−iϕ=2πÞ

×
Y
n∈Z

���1 − exp
h
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ t02ð2πn − iϕÞ2

q i���2; ðA1Þ

where we have defined

M≡ 2πm
3

:

It is convenient to rewrite the argument of the exponential
part as follows:

M2þ t02ð2πn− iϕÞ2 ¼M2þ t02½ð2πnÞ2−ϕ2�− i ·4πnt02ϕ

≡ reiφ ¼ rcosφþ irsinφ: ðA2Þ
Here the parameters are identified as

r sinφ ¼ −4πnt02ϕ; r cosφ ¼ M2 þ t02½ð2πnÞ2 − ϕ2�;
ðA3Þ

where r and φ are represented by

r2 ¼ ð4πnt02ϕÞ2 þ ðM2 þ t02½ð2πnÞ2 − ϕ2�Þ2;

tanφ ¼ −4πnt02ϕ
M2 þ t02½ð2πnÞ2 − ϕ2� : ðA4Þ

Then it is easy to derive the following expression,

6Although D-strings in type IIB string theory are considered
there, the essential point is the same.

7We note that the upper bound is not the usual constant critical
electric field and comes from the consideration of Eq. (A6), the
zero-mode part that is essential in investigating the pair produc-
tion. From the viewpoint of ϕ, it is easy to see that ϕ has the upper
bound from the non-negativity of the inside of the square root,
which is given by (A7).
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���1 − exp
h
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ t02ð2πn − iϕÞ2

q i���2
¼ 2 − 2e−r

1=2 cosðφ=2Þ cos ðr1=2 sinðφ=2ÞÞ: ðA5Þ

Because r ≠ 0 on the real t0 axis, the only condition that
poles exist is the following,

φ ¼ π; r1=2 ¼ 2πNðN ∈ NÞ:
However, this condition is not satisfied due to the
condition (A4).

2. The n ¼ 0 contribution

The next is to see the contribution from the n ¼ 0 mode.
From the denominator of (5.2), one can read off the

n ¼ 0 contribution as follows:

Θ1=2
ð−iϕ=2π;0Þðit0;m=3t0Þ

⟶ 1 − exp

"
−2πt0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m
3t0

�
2

−
�
ϕ

2π

�
2

s #
: ðA6Þ

It is easy to see that this factor becomes 0 at

t0 ¼ m
3
·
2π

ϕ
: ðA7Þ

At this point, it seems that there should be a pole at
this value.
On the other hand, a massive thetalike function on the

numerator of (5.2) contains the n ¼ 0 contribution given by

Θð−iϕ=4π;0Þðit0;m=6t0Þ

⟶

 
1 − exp

"
−2πt0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m
6t0

�
2

−
�
ϕ

4π

�
2

s #!2

: ðA8Þ

Interestingly, this factor also becomes 0 at the value of t0 in
(A7). Noting that the power of (A8) is higher than that of
(A6), the value of t0 in (A7) does not indicate the existence
of a pole but a vanishing point of the amplitude.
In total, we conclude that the D2-brane amplitude given

in (5.2) does not have any pole on the real t0 axis.
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