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It is well known that charged blackDp branes of type II string theory share a universal phase structure of
van der Waals–Maxwell liquid-gas type except D5 and D6 branes. Interestingly, the phase structure of D5

and D6 branes can be changed to the universal form with the inclusion of particular delocalized charged
lower-dimensional branes. For D5 branes, one needs to introduce delocalized D1 branes, and for D6

branes, one needs to introduce delocalized D0 branes to obtain the universal structure. In a previous paper
[J. High Energy Phys. 04 (2013) 100], Lu with Wei study the phase structure of black D6 branes with the
introduction of delocalized D0 branes in a special case when their charges are equal and the dilaton charge
vanishes. In this paper, we look at the phase structure of the blackD6=D0 system with the generic values of
the parameters, which makes the analysis more involved but the structure more rich. We also provide
reasons why the respective modifications of the phase structures to the universal form for the blackD5 and
D6 branes occur when specific delocalized lower-dimensional branes are introduced.
DOI: 10.1103/PhysRevD.90.066003 PACS numbers: 11.25.-w, 04.50.Gh, 11.25.Uv

I. INTRODUCTION

It is quite well known that charged AdS black holes give
rise to an interesting thermodynamic phase structure iso-
morphic to the van der Waals–Maxwell liquid-gas system
[1,2] (See, also, [3–9] for some recent discussions on
related issues.). The interest in AdS black holes stems from
the fact that they are thermodynamically stable and, hence,
are suitable to study equilibrium thermodynamics [10].
Moreover, by AdS/CFT correspondence, they are holo-
graphically dual to finite temperature field theories [11],
and, indeed, the above-mentioned phase structure in the
field theory has similarities with catastrophe theory [2].
However, it has been noted before that the large part of this
phase structure including the van der Waals–Maxwell
liquid-gas type is not unique to the AdS black holes only
but appear in suitably stabilized dS as well as asymptoti-
cally flat space charged black holes [12,13]. Such universal
structure for the charged black holes with different asymp-
topia suggests that holography might be at work not just for
AdS space, but for dS as well as flat space [12–16].1
Motivated by this, in [14] the phase structure of suitably

stabilized, flat, charged black p brane solutions in arbitrary
dimensions was analyzed, and, surprisingly, it was found
that they also have very similar phase structure as that of

the black holes and, in particular, they have the van der
Waals–Maxwell liquid-gas–type structure when the
charge of the black brane is below a certain nonzero
critical value. However, this happens only when the
dimensions of the space transverse to the p brane satisfy
~dþ 2 ¼ D − p − 1 > 4, where D is the total space-time
dimension. WhenD ¼ 10, i.e., for string theory branes, this
implies that all the charged black Dp branes with p < 5
share the same universal phase structure as the charged
black holes in AdS/dS/flat space, but the phase structures of
D5 and D6 branes differ. It was found in [15,16], that this
difference in phase structure can be removed if one adds
specific delocalized charged lower-dimensional branes to
the system. So, for example, D5 branes restore the same
universal phase structure if one adds delocalizedD1 branes
to the system; on the other hand, D6 branes restore the
universal phase structure if one adds delocalizedD0 branes
to the system. Note that for D5 branes, adding other
lower-dimensional branes, namely, the delocalized charged
D3 branes, does not help produce the universal phase
structure. Similarly, forD6 branes, the other charged lower-
dimensional branes, namely, the delocalized D4 or D2
branes, do not help even though theD6=D2 system belongs
to the same class of Dp=Dðp − 4Þ as the D5=D1 system.
This shows that in order to obtain the universal phase
structure from D5 or D6 branes, it is not a priori clear
which charged lower-dimensional branes one should
include to the system if they can bring about this change
at all. Also, it should be emphasized that the inclusion of
lower-dimensional branes does not automatically imply
that they will make the necessary change in phase structure,
as one might think, since the lower- (<5) dimensional
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1However, the study of the present D6=D0 system, in

particular, indicates that a universal thermodynamical phase
structure of the underlying gravity system merely reflects its
interesting thermal properties and does not necessarily imply a
holography. We discuss this in detail in Sec. IV.
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branes themselves have universal phase structure. In fact,
one can check that the delocalized (in the other four D5
world-volume spatial directions) charged D1 branes and
delocalized (in the six D6 world-volume spatial directions)
charged D0 branes individually have the same phase
structure as D5 branes and D6 branes, respectively
[15,16]. Thus, when they are combined to form bound
states, it is their interactions with each other which makes
the necessary change in the phase structure possible.
The phase structure of the blackD5=D1 system has been

studied with all its generalities in [15]. The black D6=D0
system with the associated phase structure has been studied
in [16]. As the parameter space of the latter system is quite
complicated to analyze in general, only a special case has
been considered which enabled the authors to show the
universal phase structure, postponing the discussion of the
general case as well as the reason behind the appearance of
this universal structure to a later publication. It is this task
that we undertake in this paper. In the previous publication,
the charges of the D6 branes and the D0 branes were
chosen to be equal, which gives the vanishing dilaton
charge from the parameter relation.2 However, in this paper
we look at the general case, which makes the solution of
the parameter space far more complicated, and the phase
structure, which has the expected universal form, becomes
richer than before. We also provide possible reasons why
the additions of delocalized D1 branes in D5 branes and
D0 branes in D6 branes change qualitatively the thermo-
dynamic phase structure of D5 and D6 branes to have the
universal form. In the former case, it is the addition of
extra degrees of freedom or the change in entropy, while in
the latter case, it is the repulsive nature of interaction
between the constituent branes which makes the necessary
change in the thermodynamic phase structure to take the
universal form.
This paper is organized as follows. In Sec. II, we discuss

the general charged black D6=D0 bound state solution in
Euclidean signature and describe the general parameter
space for which there exists a regular horizon such that a
meaningful thermodynamics can be given. The correspond-
ing thermodynamics and the phase structure are described
in Sec. III. We provide reasons for the appearance of the
universal phase structure of van der Waals–Maxwell liquid-
gas type in Sec. IV. Finally, we give our concluding remarks
in Sec. V.

II. D6=D0 BOUND STATE AND THE
PARAMETER SPACE

In this section, we write the spherically symmetric, time-
independent, electrically charged blackD6=D0 bound state
solution in Euclidean signature for the purpose of studying
thermodynamics and phase structure [17,18]. As we will

see, the solution contains three independent parameters: the
mass and the charges of D6 branes and D0 branes. We will
argue that the parameters cannot take arbitrary values, as
naked singularities can develop in general. We will deter-
mine the region of the parameter space for which there
exists a regular horizon. The D6=D0 solution is given as3

ds2 ¼FA−1
8B−7

8dt2þðB=AÞ18
X6
i¼1

dx2i

þA
7
8B

1
8ðF−1dρ2þ ρ2dΩ2

2Þ;

A½1� ¼ ie−3ϕ0=4Q

� 1− Σ
ρþ

ffiffi
3

p

ρþBðρþÞ
−
1− Σ

ρ
ffiffi
3

p

ρBðρÞ
�
dt;

A½7� ¼ ie3ϕ0=4P

�1þ Σ
ρþ

ffiffi
3

p

ρþAðρþÞ
−
1þ Σ

ρ
ffiffi
3

p

ρAðρÞ
�
dt∧ dx1…∧ dx6;

e2ðϕ−ϕ0Þ ¼ ðBðρÞ=AðρÞÞ3=2; ð1Þ

where the metric in (1) is given in the Einstein frame, and
the various functions appearing in the metric are defined as

FðρÞ ¼
�
1 −

ρþ
ρ

��
1 −

ρ−
ρ

�
;

AðρÞ ¼
�
1 −

ρAþ
ρ

��
1 −

ρA−
ρ

�
;

BðρÞ ¼
�
1 −

ρBþ
ρ

��
1 −

ρB−
ρ

�
; ð2Þ

with

ρ� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ Σ2 − P2=4 −Q2=4

q
;

ρA� ¼ Σffiffiffi
3

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2Σ=2

Σ −
ffiffiffi
3

p
M

s
;

ρB� ¼ −
Σffiffiffi
3

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2Σ=2

Σþ ffiffiffi
3

p
M

s
: ð3Þ

In (3), there are four parameters, namely, the mass
parameter M, the delocalized D0 brane charge parameter
Q, theD6 brane charge parameter P, and the dilaton charge
parameter Σ. However, not all of them are independent,
and, in fact, dilaton charge parameter Σ is related to M, P,
and Q by the relation

2The other two solutions each give a naked singularity and,
therefore, are not relevant for thermodynamical consideration.

3Here we use the configuration given in [17] with some
modifications. The magnetic part of the 1-form given there
has been changed to an electric 7-form. In D ¼ 10, D0 branes
and D6 branes are electric-magnetic dual to each other. Also, we
change the sign of the charge parameters Q and P there and
assume without any loss of generality Q > 0, P > 0 for con-
venience. Further, we correct a typo in the electric 1-form
potential given there by replacing the dilaton charge Σ by Σ=

ffiffiffi
3

p
.
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8

3
Σ ¼ Q2

Σþ ffiffiffi
3

p
M

þ P2

Σ −
ffiffiffi
3

p
M

; ð4Þ

leaving only three of them independent. As noted in [17],
under the electric-magnetic duality, the parameters of the
solution transform as Q ↔ P, Σ ↔ −Σ, and M ↔ M.
Also, in (1), A½1� and A½7� are the electric 1-form and
7-form to which D0 branes and D6 branes couple and give
the corresponding charges Q and P, respectively. The form
fields are chosen to vanish at ρþ so that they are well
defined in the local inertial frame, and ϕ0 is the asymptotic
value of the dilaton.
Note that the solution (1) given in terms of three

parameters M, Q, and P is not always physical as it can
have naked singularity for generic values of these param-
eters. We will see in this section that for some restricted
region of the parameter space, we can, indeed, have a
physical solution with a well-defined horizon, which, in
turn, will be suitable for studying thermodynamics and the
associated phase structure. Also, in addition to P;Q > 0,
we will assume by duality symmetry that Σ ≥ 0 without
loss of generality. The Σ < 0 branch can be obtained from
Σ > 0 simply by exchanging Q ↔ P. The three quantities,
which will be useful for showing the existence of a regular
horizon, are ρþ, ρAþ, and ρBþ and are given in terms of the
parameters of the solution as

ρþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ Σ2 − P2=4 −Q2=4

q
;

ρAþ ¼ Σffiffiffi
3

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2Σ=2

Σ −
ffiffiffi
3

p
M

s
;

ρBþ ¼ −
Σffiffiffi
3

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2Σ=2

Σþ ffiffiffi
3

p
M

s
: ð5Þ

Actually, ρ ¼ ρþ is the horizon as long as it is greater than
both ρAþ and ρBþ.

4 Let us first assume that Σ ≥
ffiffiffi
3

p
M. Now

it can be easily checked from (5) that with this ρAþ > ρBþ.
So, in order to get a horizon at ρþ, we must have ρþ > ρAþ.
However, using their expressions from (5), we find that
this condition cannot be satisfied. Thus, if Σ ≥

ffiffiffi
3

p
M, the

solution has a naked singularity at ρ ¼ ρAþ. Therefore, in
order to have a horizon (if it exists at all), we must take
0 < Σ <

ffiffiffi
3

p
M. Note that we have excluded the Σ ¼ 0 case

since it corresponds to [from (4)] Q2 ¼ P2, which has been
considered in [16]. Now, as Σ <

ffiffiffi
3

p
M, we can see from (3)

that ρA� are both imaginary and, therefore, do not play any
role in determining whether there exists a horizon. We,
therefore, must demand ρþ > ρBþ in order to have a well-
defined horizon. Note that ρBþ > 0, which can be verified
using (4). Using the form of ρþ and ρBþ from (5) and after

some algebraic manipulation and further using (4), the
condition ρþ > ρBþ gives

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ Σ2 − P2=4 −Q2=4

q

>

ffiffiffi
3

p

4

P2ffiffiffi
3

p
M − Σ

−
1ffiffiffi
3

p ð
ffiffiffi
3

p
M − ΣÞ: ð6Þ

It can be easily checked that if the rhs of (6) is positive, i.e.,

if
ffiffiffi
3

p
M − Σ ≤

ffiffi
3

p
2
P, then (6) implies Σ < 0 when (4) is

used. This is a contradiction to our assumption that Σ > 0.

Therefore, we must have
ffiffiffi
3

p
M − Σ >

ffiffi
3

p
2
P, or, in other

words, the rhs of (6) must be negative. So, to summarize, in
order to have a well-defined horizon, we must have at least

Σ > 0; and
ffiffiffi
3

p
M − Σ >

ffiffiffi
3

p

2
P ⇒

ffiffiffi
3

p
M > Σþ

ffiffiffi
3

p

2
P

ð7Þ
along with (4).
We will see that the condition (4) and the positivity of the

quantity inside the square root of the expression of ρþ given
in (5) will put more restrictions on Σ in terms of P and Q
in order to have well-defined horizon. Let us first look at the
condition (4). Defining X ¼ ffiffiffi

3
p

M > 0, we rewrite it as

X2 þ 3ðP2 −Q2Þ
8Σ

X þ 3

8
ðQ2 þ P2Þ − Σ2 ¼ 0; ð8Þ

from which we solve X to get

X� ¼ 3ðQ2 − P2Þ
16Σ

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ðQ2 − P2Þ2

64Σ2
þ 4Σ2 −

3

2
ðQ2 þ P2Þ

s
: ð9Þ

Let us now check the condition (7), i.e., Xþ > Σþ
ð ffiffiffi

3
p

=2ÞP. Using Xþ given in (9) we get

3ðQ2 − P2Þ
8Σ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ðQ2 − P2Þ2

64Σ2
þ 4Σ2 −

3

2
ðQ2 þ P2Þ

s

> 2Σþ
ffiffiffi
3

p
P;

or
9ðQ2 − P2Þ2

64Σ2
þ 4Σ2 −

3

2
ðQ2 þ P2Þ

>

�
2Σþ

ffiffiffi
3

p
P −

3ðQ2 − P2Þ
8Σ

�
2

: ð10Þ

In writing the second inequality in (10), we have assumed
2Σþ ffiffiffi

3
p

P ≥ 3ðQ2 − P2Þ=ð8ΣÞ, which is certainly true
if Q2 < P2. However, we note that the second inequality
in (10) leads to a contradiction since it gives

4Note that the metric (1) has curvature singularities at both
ρ ¼ ρAþ and ρ ¼ ρBþ.
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2Σþ ffiffiffi
3

p
P < 3ðQ2 − P2Þ=ð8ΣÞ. Therefore, we must have

2Σþ ffiffiffi
3

p
P < 3ðQ2 − P2Þ=ð8ΣÞ. This not only implies

Q > P but also ensures that the quantity inside the square
root of the expression of X� given in (9) is positive definite.
From this condition, we have

�
Σþ

ffiffiffi
3

p

4
ðQþ PÞ

��
Σ −

ffiffiffi
3

p

4
ðQ − PÞ

�
< 0; ð11Þ

which gives a restriction on Σ as

Σ <

ffiffiffi
3

p

4
ðQ − PÞ: ð12Þ

For X−, it can be easily checked that the condition
X− > Σþ ð ffiffiffi

3
p

=2ÞP is contradictory with 2Σþ ffiffiffi
3

p
P <

3ðQ2 − P2Þ=ð8ΣÞ, and, therefore, X− is not a valid solution
for our discussion. In summary, so far we find that the
solution (1) has a horizon, i.e., ρþ > ρBþ, if

ffiffiffi
3

p
M¼3ðQ2−P2Þ

16Σ
þ1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ðQ2−P2Þ2

64Σ2
þ4Σ2−

3

2
ðQ2þP2Þ

s
;

0<Σ<

ffiffiffi
3

p

4
ðQ−PÞ; Q>P: ð13Þ

We may think that we have fixed the parameter space,
but this is not quite true. We have to consider, as we
mentioned before, one more condition coming from the
quantity inside the square root of ρþ given in (5) which
must be positive semidefinite.
Therefore, from the expression of ρþ given in (5), we

have

M2 ≥
P2 þQ2

4
− Σ2: ð14Þ

Using the expression forM given in (13), the above relation
reduces to

3ðQ2 − P2Þ
16Σ

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ðQ2 − P2Þ2

64Σ2
þ 4Σ2 −

3

2
ðQ2 þ P2Þ

s

≥
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þQ2

4
− Σ2

r
: ð15Þ

From the above, it is clear that (15) will be automatically
satisfied if we have

ffiffiffi
3

p

16

Q2 − P2

Σ
≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þQ2

4
− Σ2

r
: ð16Þ

From this, we will determine the condition for Σ.
Equation (16) can be simplified as

Σ4 −
P2 þQ2

4
Σ2 þ 3ðQ2 − P2Þ2

162
≥ 0; ð17Þ

which gives

ðΣ2 − Σ2þÞðΣ2 − Σ2
−Þ ≥ 0; ð18Þ

where

Σ2
� ¼ P2 þQ2

8
� 1

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P4 þQ4 þ 14P2Q2

4

r
: ð19Þ

From (18), we have either Σ2 ≥ Σ2þ or Σ2 ≤ Σ2
−. We also

need Σ <
ffiffiffi
3

p ðQ − PÞ=4 from (13). But it can be easily
shown that Σþ >

ffiffiffi
3

p ðQ − PÞ=4 and so it is not relevant;
however, Σ− <

ffiffiffi
3

p ðQ − PÞ=4, and, therefore, Σ− sets a
new bound on Σ, i.e., Σ < Σ−.
However, this is not the complete story. We still need to

consider the case

ffiffiffi
3

p

16

Q2 − P2

Σ
<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þQ2

4
− Σ2

r
; ð20Þ

such that the inequality (15) holds. This can give further
restrictions on Σ. We rewrite (15) as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ðQ2 − P2Þ2

64Σ2
þ 4Σ2 −

3

2
ðQ2 þ P2Þ

s

≥ 2
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þQ2

4
− Σ2

r
−
3ðQ2 − P2Þ

8Σ
> 0: ð21Þ

Now, squaring both sides and doing some algebraic
manipulations, we get

9

32
ðQ2 þ P2Þ − Σ2 ≤

3
ffiffiffi
3

p ðQ2 − P2Þ
32Σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ P2

4
− Σ2

r
:

ð22Þ

Now, let us define a dimensionless variable
y ¼ 4Σ2=ðP2 þQ2Þ, then in terms of y, (22) can be
rewritten as

y3 −
9

4
y2 þ 81þ 27k2

64
y −

27k2

64
≤ 0; ð23Þ

where

k ¼ Q2 − P2

Q2 þ P2
< 1: ð24Þ

The left side of the above inequality (23) can actually be
factorized, and it can be written as
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�
y −

3

4

�
1 −

A
2

����
y −

3

4

�
1þ A

4

��
2

þ 33

162
ð1 − k2Þ23

�
ð1þ kÞ13 − ð1 − kÞ13

�
2
�
≤ 0; ð25Þ

where

A ¼ ð1 − k2Þ1=3½ð1þ kÞ1=3 þ ð1 − kÞ1=3� < 2: ð26Þ

We, therefore, have

y ≤
3

4

�
1 −

A
2

�
; ð27Þ

which gives, after plugging the definition for y,

Σ ≤ Σ0 ¼
ffiffiffi
3

p

4
ðQ − PÞ

�
1 −

ðQPÞ2=3
ðQ2=3 þ P2=3 þQ1=3P1=3Þ2

�
1=2

<

ffiffiffi
3

p

4
ðQ − PÞ: ð28Þ

Now, in order to show that Σ0 is the correct bound, we need
to show Σ0 > Σ−, where Σ− is given in (19). For this, let us
compare the expressions for Σ2

0 from (28) and Σ2
− from (19).

They have the forms,

Σ2
0 ¼

3

16
½ðQ − PÞ2 − ðQPÞ2=3ðQ1=3 − P1=3Þ2�;

Σ2
− ¼ Q2 þ P2

8
−

1

16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P4 þQ4 þ 14P2Q2

p
<

ðQ − PÞ2
8

:

ð29Þ

So, all we need to show is Σ2
0 > ðQ − PÞ2=8. Now,

substituting the form of Σ0 from (28), this condition
leads to

ðQ1=3 − P1=3Þ2 þ 3ðQPÞ1=3 >
ffiffiffi
3

p
ðQPÞ1=3; ð30Þ

which obviously holds true, and, therefore, this shows
that Σ0 > Σ−.
So, finally we conclude that for the existence of a

sensible horizon for the D6=D0 black brane bound state
solution, we must have

ffiffiffi
3

p
M ¼ 3ðQ2 − P2Þ

16Σ

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ðQ2 − P2Þ2

64Σ2
þ 4Σ2 −

3

2
ðQ2 þ P2Þ

s
; ð31Þ

with

0 < Σ ≤ Σ0; ð32Þ

and Q > P, where Σ0 is given in (28). We can extend the
above range of Σ to −Σ0 ≤ Σ < 0 if we require P > Q. For
our purpose, we will focus on the Q > P branch in what
follows.

III. THE GENERAL PHASE
STRUCTURE OF D6=D0

In this section, we will analyze the phase structure of the
black D6=D0 system with generic charges with the param-
etersM and Σ satisfying the condition given in (31) and (32)
for the existence of a well-defined horizon. Since this
system is asymptotically flat, we need to stabilize it by
placing it in a cavity following [14,19], and in this paper we
will analyze the phase structure in a canonical ensemble
which will be specified later on. All we need to know is the
form of the local temperature (or the inverse of the local
temperature to be precise) of the system at the location of
the wall of the cavity, which can be obtained from the black
D6=D0 metric in Euclidean signature as given in (1) by
demanding the absence of conical singularity at the horizon.
We will express the inverse of the local temperature at the
given location as a function of the horizon radius only, and,
therefore, we need to express the other parameters, namely,
M and Σ, also in terms of the horizon radius. However, for
this system and from our past experience [16], we know that
ρ is not a good coordinate for this purpose, and we will
define a new radial coordinate by

r ¼ ρþ a; ð33Þ
where a is a parameter to be determined later. From now on,
we will assume Q > P and 0 < Σ ≤ Σ0. From (33) and
using the new radial coordinate r, we have rþ ¼ ρþ þ a
and r− ¼ ρ− þ a, where rþ defines the location of horizon,
and using these two we have

rþr− ¼ ρþρ− þ ðρþ þ ρ−Þaþ a2

¼ P2 þQ2

4
− Σ2 þ 2Maþ a2; ð34Þ

where in writing the second equality, we have used the form
of ρ� as given in (3). Now, since we know from [16] that
rþr− ¼ Q2 when P ¼ 0 (also from [16] that rþr− ¼ P2

when Q ¼ 0), so we generalize it to the present case as

rþr− ¼ P2 þQ2; ð35Þ
which can be used to determine r− in terms of rþ.
Equation (35) along with (34) fixes the parameter a as

a ¼ −M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ Σ2 þ 3

4
ðP2 þQ2Þ

r
; ð36Þ

where we have used only the plus sign in front of the square
root since this reduces to the correct form when P ¼ 0. We,
thus, find
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rþ ¼ ρþ þ a

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ Σ2 −

P2 þQ2

4

r

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ Σ2 þ 3

4
ðP2 þQ2Þ

r
; ð37Þ

which can be further simplified to give

1

4

�
rþ −

P2 þQ2

rþ

�
2

¼ M2 þ Σ2 −
P2 þQ2

4
: ð38Þ

Note that our intention here is to express Σ and M in terms
of the horizon radius rþ, and for this purpose. we will use
Eq. (38). To eliminate M2 from this equation, we first have
from (4)

M2 ¼ Σ2

3
þQ2 − P2

8

ffiffiffi
3

p
MΣ
Σ2

−
P2 þQ2

8
: ð39Þ

We then use (31) to obtain
ffiffiffi
3

p
MΣ and substitute it in the

above (39) to obtain M2 in terms of Σ and the known
charges P and Q. Using this expression of M2 in (38) and
after some algebraic manipulation, we obtain

�
32

3

�
3

Σ6 − 2

�
32

3

�
2

GðrþÞΣ4

þ 32

3
G2ðrþÞ

�
1þ 3

ðQ2 − P2Þ2
G2ðrþÞ

�
Σ2

− 4ðQ2 − P2Þ2GðrþÞ
�
1 −

Q2 þ P2

GðrþÞ
�

¼ 0; ð40Þ

where we have defined GðrþÞ ¼ 2ðrþ − ðP2 þQ2Þ=
rþÞ2 þ 3ðP2 þQ2Þ. Note that (40) is an equation involving
Σ and rþ, whose explicit solution ΣðrþÞ is what we want.
For this purpose, we further define the following quantities

Y¼32

3

Σ2

G
; d¼Q2−P2

G
<
1

3
; c¼P2þQ2

G
<
1

3
; ð41Þ

and rewrite (40) as

Y3 − 2Y2 þ ð1þ 3d2ÞY − 4d2ð1 − cÞ ¼ 0: ð42Þ

This is a cubic equation and has three roots in general. We
should, of course, take only the real roots. However, as we
will see, even for the real roots, not all of them are allowed.
From the definition of Y and for having a well-defined
horizon, we conclude that the allowed solution must be such
that

Y ¼ 32

3

Σ2

G
<

32

3

3
16
ðQ − PÞ2

2
�
rþ − Q2þP2

rþ

�
2 þ 3ðP2 þQ2Þ

<
2

3
;

ð43Þ

where we have used (28) and the definition of GðrþÞ as
given before. Thus, we conclude that the allowed values of
Y ¼ 32Σ2=ð3GÞ must be less than 2=3.
The equation for Y, i.e., (42), can be solved, and we get

the three solutions as follows:

Y1 ¼
2

3
−
ðCþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 −D

p
Þ1=3 þ ðC −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 −D

p
Þ1=3

3
;

Y2 ¼
2

3
þ 1

6
½ð1þ i

ffiffiffi
3

p
ÞðCþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 −D

p
Þ1=3

þ ð1 − i
ffiffiffi
3

p
ÞðC −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 −D

p
Þ1=3�;

Y3 ¼
2

3
þ 1

6
½ð1 − i

ffiffiffi
3

p
ÞðCþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 −D

p
Þ1=3

þ ð1þ i
ffiffiffi
3

p
ÞðC −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 −D

p
Þ1=3�; ð44Þ

where

C ¼ 1 − 27d2ð1 − 2cÞ; D ¼ ð1 − 9d2Þ3; ð45Þ
with c and d given in (41). Note that when C2 > D, we
have only one real positive root Y1. The other two roots Y2

and Y3 are complex conjugate to each other and must be
discarded. Since Y1 < 2=3, it is an allowed solution. On the
other hand, when C2 < D, all three roots are real and
positive. In this case, let us define C ¼ R cos θ
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D − C2

p
¼ R sin θ, where R2 ¼ D ¼ ð1 − 9d2Þ3

and cos θ ¼ C=
ffiffiffiffi
D

p
which lies between 0 and 1 and so,

θ lies between 0 and π=2. With these, (44) can be written as

Y1 ¼
2

3
− R1=3 e

iθ=3 þ e−iθ=3

3

¼ 2

3
ð1 − R1=3 cos θ=3Þ > 0;

Y2 ¼
2

3
þ R1=3 e

iðπþθÞ=3 þ e−iðπþθÞ=3

3

¼ 2

3
ð1þ R1=3 cosðπ þ θÞ=3Þ > 2

3
;

Y3 ¼
2

3
þ R1=3 e

−iðπ−θÞ=3 þ eiðπ−θÞ=3

3

¼ 2

3
ð1þ R1=3 cosðπ − θÞ=3Þ > 2

3
: ð46Þ

Note that since θ < π=2, cos½ðπ � θÞ=3� > 0, and, there-
fore, both Y2 and Y3 are greater than 2=3 and, therefore,
should be discarded. However, Y1 < 2=3, and this is the
only allowed solution. Thus, we obtain that no matter
whether C2 > D or C2 < D, Y1 is the only allowed
solution. We then write
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Y ¼ 32

3

Σ2

G

¼ 2

3
−
ðCþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 −D

p
Þ1=3 þ ðC −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 −D

p
Þ1=3

3
; ð47Þ

where C and D are as given in (45), and c and d in the
expression of C, D are as given in (41). Also, GðrþÞ is a
function of rþ and is given right after (40). Equation (47),
therefore, uniquely determines Σ in terms of rþ. Further,M
can also be expressed in terms of rþ using (38) and (39) as

M ¼ Σffiffiffi
3

p ðQ2 − P2Þ

�
GðrþÞ −

32

3
Σ2

�
; ð48Þ

once we have Σ in terms of rþ. Using (38), (36), and the
above, we have

a ¼ Σffiffiffi
3

p ðQ2 − P2Þ

�
32

3
Σ2 −GðrþÞ

�

þ 1

2

�
rþ þQ2 þ P2

rþ

�
; ð49Þ

which will be useful later on.
Once we expressM and Σ in terms of rþ, we can express

the entire solution (1) in terms of this single parameter rþ
(note that P and Q are fixed charges and, therefore, do not
vary). To do this, we replace ρ by r − a, where a is given in
(36). Then the functions FðρÞ, AðρÞ, and BðρÞ given in (2)
can be expressed in terms of r as

FðρÞ¼▵þ▵−

�
1−

a
r

�
−2
;

AðρÞ¼
�
1−

rAþ
r

��
1−

rA−
r

��
1−

a
r

�
−2≡AðrÞ

�
1−

a
r

�
−2
;

BðρÞ¼
�
1−

rBþ
r

��
1−

rB−
r

��
1−

a
r

�
−2≡BðrÞ

�
1−

a
r

�
−2
;

ð50Þ

where we have defined, as usual,

▵� ¼ 1 −
r�
r
; ð51Þ

and

rA� ¼ aþ ρA� ¼ aþ Σffiffiffi
3

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2Σ=2

Σ −
ffiffiffi
3

p
M

s
;

rB� ¼ aþ ρB� ¼ a −
Σffiffiffi
3

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2Σ=2

Σþ ffiffiffi
3

p
M

s
: ð52Þ

In terms of the new radial coordinate r, the configuration
(1) is

ds2¼ ▵þ▵−

AðrÞ18BðrÞ78dt
2þ

�
BðrÞ
AðrÞ

�1
8

Σ6
i¼1dx

2
i

þA
7
8ðrÞB1

8ðrÞ
�

dr2

▵þ▵−
þr2dΩ2

2

�
;

A½1�¼ie−3ϕ0=4Q

"
1−

ffiffi
3

p
aþΣffiffi
3

p
rþ

rþBðrþÞ
−
1−

ffiffi
3

p
aþΣffiffi
3

p
r

rBðrÞ

#
dt;

A½7�¼ie3ϕ0=4P

"
1−

ffiffi
3

p
a−Σffiffi
3

p
rþ

rþAðrþÞ
−
1−

ffiffi
3

p
a−Σffiffi
3

p
r

rAðrÞ

#
dt∧ dx1∧ ���∧dx7;

e2ðϕ−ϕ0Þ¼
�
BðrÞ
AðrÞ

�
3=2

: ð53Þ

Assuming that this configuration has a well-defined hori-
zon at r ¼ rþ, the metric can be made free of conical
singularity at the horizon if the Euclidean time “t” is
compact with periodicity

β� ¼ 4πr2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrþÞBðrþÞ

p
rþ − r−

: ð54Þ

This is the inverse of the temperature of the black D6=D0
system at infinity. The inverse of the local temperature at a
given r, which is important for the analysis of the phase
structure, is given as

βðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrþÞBðrþÞ

A1=8ðrÞB7=8ðrÞ

s
4πrþð▵þ▵−Þ1=2

1 − r−
rþ

: ð55Þ

As mentioned in [14,16], we should use physical radius
r̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A7=8ðrÞB1=8ðrÞ

p
r instead of the coordinate radius r

and also the physical paramaters r̄� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A7=8ðrÞB1=8ðrÞ

p
r�

at a given r. Note that with these, ▵�ðrÞ ¼ ▵�ðr̄Þ. For other
related parameters, their physical correspondences should
also be used accordingly. For example, given rþr− ¼ Q2 þ
P2 from (35), the physical Q̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A7=8ðrÞB1=8ðrÞ

p
Q and so

it is for P̄. Now, in terms of the physical coordinate, the
inverse of the local temperature (55) at the given radius r̄
takes the form

βðr̄Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðr̄þÞBðr̄þÞ
Aðr̄ÞBðr̄Þ

s
4πr̄þð▵þðr̄Þ▵−ðr̄ÞÞ1=2

1 − r̄−
r̄þ

: ð56Þ

To study the equilibrium thermodynamics [20] in the
canonical ensemble, as mentioned in the beginning of this
section, the allowed configuration must be placed in a
cavity with fixed radius r̄ ¼ r̄B > r̄þ. The other quantities
which are held fixed are the cavity temperature, 1=β̄, the
physical periodicity of each xi, for i ¼ 1; 2;…; 6, the
dilaton value ϕ̄ on the surface of the cavity (at r̄ ¼ r̄B),
and the charges enclosed in the cavity P̄, Q̄. In equilibrium,
these values are taken to be equal to the corresponding
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values of the allowed configuration enclosed in the cavity.
Note that the usual asymptotic value of dilaton ϕ0 is not
fixed but is expressed in terms of the fixed ϕ̄ via (53) as
eϕ0 ¼ eϕ̄ðAðr̄BÞ=Bðr̄BÞÞ3=4 where we have set ϕðr̄BÞ ¼ ϕ̄.
In what follows, we use a “bar” above the symbol to denote
the corresponding physical/or fixed parameter.
In the canonical ensemble, the stability analysis can

be performed using the Helmholtz free energy F of the
system under consideration which, to leading order, is
given as F ¼ IE=β̄ with IE the Euclidean action [20].
We actually ask this question: in the given condition set
by the canonical ensemble, i.e., with fixed r̄B; Q̄; P̄; ϕ̄; β̄,
what thermodynamically stable phase of charged black

D6=D0 in the cavity can exist? Note that in the
canonical ensemble, the only variable for this system
is the horizon size r̄þ, and so the local minimum of F
with respect to r̄þ will determine the local stability of
the underlying system. With β̄ fixed, this can, in turn, be
determined from the local minimum of IE with respect
to r̄þ.
Following our previous work [14–16], the Euclidean

action IE for the charged black D6=D0 configuration (53)
in the canonical ensemble as specified above can be
explicitly computed and its so-called reduced Euclidean
action ~IE is actually relevant for the above-mentioned
stability analysis and is given as

~IE ≡ 2κ2IE
4πΩ2V̄6r̄2B

¼ b̄

�
q2þ − q2−

16ð▵þ▵−Þ1=2
�
A−ðr̄þÞ
xAðr̄þÞ

−
A−ðr̄BÞ
Aðr̄BÞ

�
þ 7ðq2þ þ q2−Þ
16ð▵þ▵−Þ1=2

�
Aþðr̄þÞ
xBðr̄þÞ

−
Aþðr̄BÞ
Bðr̄BÞ

�

þ 4 − 2

�
▵þ
▵−

�
1=2

−
ð▵þ▵−Þ1=2

4

�
7Aþðr̄BÞ
Aðr̄BÞ

þ A−ðr̄BÞ
Bðr̄BÞ

��
− x2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðr̄þÞBðr̄þÞ
Aðr̄BÞBðr̄BÞ

s
; ð57Þ

where Ωn denotes the volume of a unit n-sphere, the physical volume V̄6 is related to the coordinate volume V�
6 ≡R

dx1dx2…dx6 via V̄6 ¼ ðBðr̄BÞ=Aðr̄BÞÞ3=8V�
6 from the metric given in (53), and κ is a constant with 1=ð2κ2Þ appearing in

front of the Hilbert-Einstein action in canonical frame but containing no asymptotic string coupling gs ¼ eϕ0 . Also in the
above, as usual, for simplicity we introduce the so-called reduced quantities at the fixed radius r̄ ¼ r̄B by the relations,

x≡ r̄þ
r̄B

< 1; b̄≡ β̄

4πr̄B
; qþ ≡ Q̄þ

r̄B
< x; q− ≡ Q̄−

r̄B
< qþ; ð58Þ

with Q̄2þ ¼ Q̄2 þ P̄2; Q̄2
− ¼ Q̄2 − P̄2 (assuming Q > P).5 In (57), we also define

A�ðr̄Þ ¼ 1 −
ffiffiffi
3

p
ā� Σ̄ffiffiffi
3

p
r̄

: ð59Þ

In terms of these reduced quantities, the functions Aðr̄Þ, Aðr̄þÞ, Bðr̄Þ, and Bðr̄þÞ can be written as

Aðr̄BÞ ¼ A2þðr̄BÞ þ
q2−
4

−
2

3

�
Σ̄
r̄B

�
2

þ 2

3q2−

�
32

3

�
Σ̄
r̄B

�
2

− gðxÞ
��

Σ̄
r̄B

�
2

;

x2Aðr̄þÞ ¼
�
x −

ffiffiffi
3

p
āþ Σ̄ffiffiffi
3

p
r̄B

�2

þ q2−
4

−
2

3

�
Σ̄
r̄B

�
2

þ 2

3q2−

�
32

3

�
Σ̄
r̄B

�
2

− gðxÞ
��

Σ̄
r̄B

�
2

;

Bðr̄BÞ ¼ A2
− −

q2−
4
−
2

3

�
Σ̄
r̄B

�
2

−
2

3q2−

�
32

3

�
Σ̄
r̄B

�
2

− gðxÞ
��

Σ̄
r̄B

�
2

;

x2Bðr̄þÞ ¼
�
x −

ffiffiffi
3

p
ā − Σ̄ffiffiffi
3

p
r̄B

�2

−
q2−
4
−
2

3

�
Σ̄
r̄B

�
2

−
2

3q2−

�
32

3

�
Σ̄
r̄B

�
2

− gðxÞ
��

Σ̄
r̄B

�
2

; ð60Þ

where gðxÞ ¼ 2x2ð1 − q2þ
x2 Þ

2 þ 3q2þ.

5As mentioned earlier, we assume Q > P in our discussion, and the Q < P case can be obtained from the Q > P by the duality
following the discussion after (4).

J. X. LU, JUN OUYANG, AND SHIBAJI ROY PHYSICAL REVIEW D 90, 066003 (2014)

066003-8



Note that IE ¼ β̄E − S where E is the internal energy of
the system, and S is the entropy. In terms of the reduced
Euclidean action and the reduced quantities, we have
~IEðx; qþ; q−Þ ¼ b̄ ~Eqþ;q−ðxÞ − ~Sqþ;q−ðxÞ. By comparing this

with (57), one can read both ~Eqþ;q−ðxÞ and ~Sqþ;q−ðxÞ,
explicitly. As stressed earlier, in the canonical ensemble,
both qþ; q− are fixed; the only variable is the reduced
horizon size x, and so we have

d~IE
dx

¼ d ~Eqþ;q−ðxÞ
dx

ðb̄ − bqþ;q−ðxÞÞ; ð61Þ

where

bqþ;q−ðxÞ≡
dSqþ;q−ðxÞ=dx
dEqþ;q−ðxÞ=dx

: ð62Þ

From (61), we have

d~IE
dx

¼ 0 ⇒ bqþ;q−ðx̄Þ ¼ b̄; ð63Þ

where the extremal condition of ~IE is nothing but the
thermal equilibrium of the charged black system, with a
horizon size x ¼ x̄ determined by the above equation, with
the cavity with a preset reduced temperature 1=b̄. At x ¼ x̄,
we further have

d2~IE
dx2

				
x¼x̄

¼ −
d ~Eqþ;q−ðxÞ

dx

				
x¼x̄

dbqþ;q−ðxÞ
dx

				
x¼x̄

: ð64Þ

Since Eqþ;q−ðxÞ is an increasing function of x for

0 < x < 1, the minimum of ~IE implies then, as usual,
the negative slope of bqþ;q−ðxÞ at x ¼ x̄. So, the function
bqþ;q−ðxÞ is the key for determining the underlying phase
structure. The explicit expression of bqþ;q−ðxÞ can be
obtained as described above but with a lengthy computa-
tion, and it turns out, as expected, to be nothing but the βðr̄Þ
given in (56) at r̄ ¼ r̄B and expressed in terms of the
reduced quantities. It is given as6

bqþ;q−ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðr̄þÞBðr̄þÞ
Aðr̄BÞBðr̄BÞ

s
xð1 − xÞ1=2

×

�
1 −

q2þ
x

�
1=2

�
1 −

q2þ
x2

�−1
; ð65Þ

where functions Aðr̄þÞ; Bðr̄þÞ, and Aðr̄BÞ; Bðr̄BÞ are given
in (60). From our experience [14–16], we know that
the existence of the universal van der Waals–Maxwell

liquid-gas–type phase structure depends crucially on
whether the bqþ;q−ðxÞ blows up at x → qþ, i.e., the extremal
limit.
For this we need to examine the behaviors of Aðr̄BÞ,

Aðr̄þÞ, Bðr̄BÞ, and Bðr̄þÞ. When qþ ¼ q−, i.e., P ¼ 0, we
can obtain from (47), Σ̄=r̄B ¼ ffiffiffi

3
p

qþ=ð4xÞ and from there
we obtain ā=r̄B ¼ 3q2þ=ð4xÞ. We then have from (60),

Aðr̄BÞ ¼
�
1 −

q2þ
x

�
2

; Bðr̄BÞ ¼ 1 −
q2þ
x
;

Aðr̄þÞ ¼
�
1 −

q2þ
x2

�
2

; Bðr̄þÞ ¼ 1 −
q2þ
x2

: ð66Þ

Substituting these into (65), we get

bqþ;qþðxÞ ¼ xð1 − xÞ1=2
�
1 −

q2þ
x

�−1�
1 −

q2þ
x2

�
1=2

: ð67Þ

This is precisely the result obtained in [14] for charged
black D6 branes when D ¼ 10. Note here that the structure
of the inverse of the reduced local temperature (67) for D6
branes is different (it is actually regular as x → qþ) from
the structure obtained for theD6=D0 system (it blows up in
the extremal limit) for a special case with Q ¼ P in [16].
We now look at the case when q− < qþ. For this, let us find
the expressions for Σ̄=r̄B and ā=r̄B first. From the solution
of Y in (47), we find

Σ̄
r̄B

¼ 1

4
g
1
2ðxÞ

"
1 −

ðCþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 −D

p
Þ13 þ ðC −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 −D

p
Þ13

2

#1
2

:

ð68Þ

From (49), we have

ā
r̄B

¼ 1

2
x

�
1þ q2þ

x2

�
þ

ffiffiffi
3

p

q2−

�
32

9

Σ̄2

r̄2B
−
1

3
gðxÞ

�
Σ̄
r̄B

: ð69Þ

Note that the parameters c and d given in (41) can now
be written as cðxÞ ¼ q2þ=gðxÞ and dðxÞ ¼ q2−=gðxÞ, and,
therefore, as x → qþ, gðxÞ → 3q2þ and so cðxÞ, dðxÞ, as
well as CðxÞ, DðxÞ [given in (45)] go to

cðxÞ → 1

3
; dðxÞ → q2−

3q2þ
;

CðxÞ → 1 −
q4−
q4þ

; DðxÞ →
�
1 −

q4−
q4þ

�
3

: ð70Þ

Now, substituting these in (68) and in (69), we find that
Σ̄=r̄B ≈ qþðq−=qþÞ2=6 and ā=r̄B ≈ qþ=2 both are regular
as x → qþ. Using (60), we have then

6Note that with r̄B; qþ; q− fixed, βðr̄Þ in (56) at r̄ ¼ r̄B is the
only function of the reduced horizon size x and bqþ;q−ðxÞ≡ βðr̄BÞ

4πr̄B
.
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Aðr̄Þ ≈
�
1 −

qþ
2

�
2

þ q2−
12

;

Bðr̄Þ ≈
�
1 −

qþ
2

�
2

−
q2−
12

> 0;

Aðr̄þÞ ¼ Bðr̄þÞ ≈
1

4
; ð71Þ

which are all regular as x → qþ. From these, we have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðr̄þÞBðr̄þÞ
Aðr̄ÞBðr̄Þ

s
≈

1

4½ð1 − qþ
2
Þ4 − q4−

122
�1=2

; ð72Þ

which is also regular. Thus, the singular structure of
bqþ;q−ðxÞ given in (65) for qþ > q− as x → qþ is the same
as the Q ¼ P case studied previously in [16].7 Therefore,
the phase structure essentially remains the same as in the
Q ¼ P case; however, we expect the phase structure to be
much richer here [since the first square-root factor in (65)
will change the details of the phase structure], similar to
that of the D5=D1 system. Given the complicated depend-
ence of bqþ;q−ðxÞ on x (also on qþ; q− as well) as given in
(65) with Aðr̄BÞ; Bðr̄BÞ; Aðr̄þÞ, and Bðr̄þÞ given in (60),
unlike theD5=D1 system, we are unable to give an analytic
analysis of the underlying phase structure, in particular,
the critical phenomenon, here. However, we can still say
something about the critical charge ðqþc; q−cÞ in the
present case vs the qc ¼

ffiffiffi
5

p
− 2 ≈ 0.24 in the case of

Q ¼ P (or q− ¼ 0) given in [16]. For each q− ≠ 0 with
0 < q− < qþ, we expect the corresponding critical charge
qþc > qc ¼

ffiffiffi
5

p
− 2 for the following reason. For this, let

us denote the first square-root factor in (65) as wqþ;q−ðxÞ
and the remaining as bqþðxÞ. We can then rewrite

bqþ;q−ðxÞ ¼ wqþ;q−ðxÞbqþðxÞ: ð73Þ

Note that for q− ¼ 0, the corresponding inverse of the
reduced local temperature is precisely the same as the
bqþðxÞ since now wqþ;q−ðxÞ ¼ 1 [16]. We also know that
for q− ≠ 0 wqþ;q−ðx → 1Þ → 1 from (60) and
wqþ;q−ðx → qþÞ < 1. Actually, wqþ;q−ðxÞ is an increase
function of x for qþ < x < 1. We use two figures with
different pairs of (qþ; q−) values for showing this. From
Figs. 1 and 2, we see that wqþ;q−ðx → 1Þ → 1, and close to
x → 1, this function is more sensitive to qþ values, while
close to x → qþ, it is sensitive to both qþ and q− values.
For the q− ¼ 0 case, bqþðxÞ gives the corresponding critical
charge qc ¼

ffiffiffi
5

p
− 2 which is determined by requiring that

both its first and second derivatives vanish [16]. For this
critical qc, we also have a critical reduced horizon size xc ¼
5 − 2

ffiffiffi
5

p
[16], and if x is close to xc, we have bqcðx>xcÞ¼

bqcðx<xcÞ up to the order Oððx − xcÞ3Þ. Now, for qþ ¼ qc
and q− ≠ 0, we must have bqþ;q−ðx < xcÞ ¼ wqþ;q−×
ðx < xcÞbqþðx < xcÞ < bqþ;q−ðx > xcÞ ¼ wqþ;q−ðx > xcÞ×
bqþðx > qcÞ since wqþ;q−ðx < xcÞ < wqþ;q−ðx > xcÞ even
though we still have bqþðx > xcÞ ≈ bqþðx < xcÞ in the
sense described above. Given our experience about the
van der Waals–Maxwell liquid-gas–type phase structure
[14,16], the qþ ¼ qc ¼

ffiffiffi
5

p
− 2 is less than the actual

critical charge qþc for the present system since, otherwise,
we should have bqþ;q−ðx < xcÞ ≥ bqþ;q−ðx > xcÞ. In other

words, the critical charge qþc > qc ¼
ffiffiffi
5

p
− 2 ≈ 0.24 in the

case of q−c ≠ 0. In the following, we give a few figures to
show this and also indicate how the underlying phase
structure depends on both qþ and q−.
Figures 3–5 each consider the behavior of bqþ;q−ðxÞ vs x

for a given qþ value and three different q− values. Once
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(0.90, 0.05)
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0.6

0.8

1.0

1.2

FIG. 1 (color online). The behavior of wqþ;q−ðxÞ vs x for a given
q− ¼ 0.05 and three different qþ ¼ 0.30; 0.50; 0.90, respectively.
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0.8
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1.2

FIG. 2 (color online). The behavior of wqþ;q−ðxÞ vs x for a given
q− ¼ 0.25 and three different qþ ¼ 0.30; 0.50; 0.90, respectively.

7Note that for the Q ¼ P case, Aðr̄BÞ ¼ Bðr̄BÞ ¼ Aðr̄þÞ ¼
Bðr̄þÞ ¼ 1, and so, in that case, the inverse of the reduced
temperature has the form given in (65) without the first square-
root factor.
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again, we see that in each case, q− has its influence on
bqþ;q−ðxÞ mainly for x close to the end of x ¼ qþ while it
has almost no influence for x close to the other end of
x ¼ 1. In each case, we consider a small q− corresponding
to Q≳ P, a characteristic value q− corresponding to
Q > P, and a q− ≲ qþ corresponding to P≳ 0.
From Figs. 4 and 5, we see that the corresponding critical

charge qþc falls between 0.30 and 0.50, consistent with
what we discuss above about qþc > qc ¼

ffiffiffi
5

p
− 2. Figure 5

indicates that the influence of q− on the behavior of
bqþ;q−ðxÞ becomes less important even for x close to the
end of x ¼ qþ when qþ > qþc. Here we give three more
figures (Figs. 6–8), each of which is now for a given
q− value and three different qþ values, to indicate what has
been said about the critical charge qþc. Similar to the
D5=D1 system [15], the charges qþ and q− span a two-
dimensional region bounded by qþ ¼ q−; q− ¼ 0; 0 ≤
qþ ≤ 1 and qþ ¼ 1; 0 ≤ q− ≤ 1, as shown in Fig. 9. In
this figure, we draw also a characteristic critical line
determined by the vanishing of the first and the second
derivatives of bqþ;q−ðxÞ with respect to x. As mentioned
above, the complicated expression of bqþ;q−ðxÞ makes it

impossible for us to give an analytic analysis of this critical
line, unlike the case of the D5=D1 system [15]. As
discussed above already, this critical line starts at
qþc ¼ qc ¼

ffiffiffi
5

p
− 2; q−c ¼ 0, and once q−c > 0, qþc >

qc ¼
ffiffiffi
5

p
− 2, but the ending point cannot be determined

analytically since qþ ¼ q− can never be even a fake
“critical point”8 since this corresponds to the P ¼ 0 case,
and the corresponding system has no van der Waals–
Maxwell liquid-gas–type phase structure [16]. Our numeri-
cal tries indicate that the ending point is around qþ ¼ 0.52
with a q− very close to this value but not reaching the
q− ¼ qþ line. Figure 10 gives a flavor of this for
ðqþc; q−cÞ ¼ ð0.520000000; 0.519999999Þ. From this,
one can see that the critical size xc should fall between
0.52 and 0.64. This critical line separates the ðqþ; q−Þ
region into two parts, the small one on the left and the large
one on the right, as shown in Fig. 9.
For each given pair of ðqþ; q−Þ with q− < qþ in the left

part, bqþ;q−ðxÞ has a minimum bmin and a maximum bmax in
the region of qþ < x < 1 occurring at xmin and xmax,
respectively. If the given b̄ on the surface of the cavity
falls between bmin and bmax, then b̄ ¼ bqþ;q−ðx̄Þ gives three
solutions x1 < x2 < x3, which can be easily understood
from, for example, Fig. 3. Only at x1 or x3, the correspond-
ing slope of bqþ;q−ðxÞ is negative, giving the local minimal
free energy. For this given pair of ðqþ; q−Þ, there exists a
unique bt in the range bmin < bt < bmax such that the local
minimal free energy at x1 and that at x3 (where x1 and x3 are
now determined from bt ¼ bqþ;q−ðx̄Þ) are equal. Therefore,
these two phases, one with the reduced horizon x1 and the
other with size x3, can coexist, and the phase transition
between the two is a first-order one since it involves an
entropy change (note that the entropy for each phase is
determined by its horizon size). One expects that like for
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FIG. 3 (color online). The behavior of bqþ;q−ðxÞ vs x for a given
qþ ¼ 0.20 and three different q− ¼ 0.01; 0.10; 0.19, respectively.
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FIG. 4 (color online). The behavior of bqþ;q−ðxÞ vs x for a given
qþ ¼ 0.30 and three different q− ¼ 0.02; 0.15; 0.28, respectively.
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FIG. 5 (color online). The behavior of bqþ;q−ðxÞ vs x for a given
qþ ¼ 0.50 and three different q− ¼ 0.05; 0.30; 0.45, respectively.

8In the sense that the first and the second derivatives of
bqþ;q−ðxÞ vanish, similar to the D5=D1 system, even though this
point is not a true critical point.
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the D5=D1 system, bt is a function of both qþ
and q− and, therefore, spans a first-order transition two-
dimensional surface ending on a one-dimensional critical
line, rather than a first-order transition line ending on a
critical point as for a charged black p brane with p < 5. For
b̄ > bt, following the analysis given in [14], we know that
the phase with the smaller horizon size x1 has the lowest
free energy, therefore, the stable phase, while for b̄ < bt,
now the phase with the larger horizon size x3 is the stable
one. In other words, the smaller stable black D6=D0 is like
the liquid phase, while the large one is like the gas phase.
For a given pair of (qþ; q−) with q− < qþ in the right part,
for each given b̄ we have a unique solution x̄ from
b̄ ¼ bqþ;q−ðx̄Þ, and the slope of bqþ;q−ðxÞ at this x̄ is always
negative, as can be seen, for example, from Fig. 5, the
corresponding free energy is lowest, and, therefore, the
phase is stable.
Now the reader might wonder why adding charge to the

uncharged black configuration (Schwarzschild black hole
or black p branes with p < 5) or adding particular
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FIG. 6 (color online). The behavior of bqþ;q−ðxÞ vs x for a given
q− ¼ 0.05 and three different qþ ¼ 0.20; 0.30; 0.40, respectively.
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FIG. 7 (color online). The behavior of bqþ;q−ðxÞ vs x for a given
q− ¼ 0.10 and three different qþ ¼ 0.20; 0.30; 0.40, respectively.
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FIG. 8 (color online). The behavior of bqþ;q−ðxÞ vs x for a
given q− ¼ 0.18 and three different qþ ¼ 0.20; 0.30; 0.40,
respectively.

FIG. 9. The two-dimensional region of allowed reduced charge
qþ and q−.
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FIG. 10 (color online). The critical behavior of bqþ;q−ðxÞ vs x
for a given pair of ðqþ; q−Þ ¼ ð0.520000000; 0.519999999Þ.

J. X. LU, JUN OUYANG, AND SHIBAJI ROY PHYSICAL REVIEW D 90, 066003 (2014)

066003-12



delocalized charged lower-dimensional branes to the origi-
nal branes (for D5 or D6 branes) can modify the usual
Hawking-Page–type phase structure to the van der Waals–
Maxwell liquid-gas type? This is what we try to address in
the next section.

IV. ORIGIN OF THE PHASE STRUCTURE
MODIFICATION

One key observation for the qualitative change of the
phase structure from the uncharged black configuration
to the charged one is the appearance of the divergent
behavior of the reduced inverse temperature at one end
bðx → qÞ → ∞, while the condition at the other end
bðx → 1Þ → 0 remains the same (note that 1 and q are the
upper and the lower end points of the variable x, respec-
tively). The limit x → q is actually the extremal limit, and so
we can use the extremal black holes/branes to understand the
reason behind the qualitative change of phase structure, a
great simplification. Before we address the black holes/
branes, let us understand the usual van der Waals liquid-gas
phase structure described by its equation of state,9�

pþ a
v2

�
ðv − bÞ ¼ kT; ð74Þ

where parameter a is related to the molecular attractive
interaction, while b is related to the repulsion. If we set
b ¼ 0, i.e., turn off the repulsive interaction, we have

p ¼ kTv − a
v2

; ð75Þ

whose behavior is shown in Fig. 11. This is quite similar
to the bðxÞ vs x diagram of uncharged black holes/branes.
When we turn on the repulsive interaction, i.e., b ≠ 0, we
have the usual van der Waals–Maxwell liquid-gas struc-
ture. The exact same thing happens when we add charge
to the uncharged black hole (in other words, in this case
we add the repulsive interaction due to the added charge
to the original gravitational attractive interaction due to
mass), giving also the van der Waals–Maxwell liquid-
gas–type phase structure. This seems to suggest that
the van der Waals liquid-gas–type phase structure is the
result of competition between the attractive and
the repulsive interactions and is independent of whether
the underlying system is a liquid-gas system or a gravi-
tational system.
This also does seem to help us understand the phase

structure of the charged black p brane systems. For
example, adding the delocalized charged Dðp − 2Þ branes
to the charged black Dp branes does not change the phase

structure of the original Dp branes, since in the extremal
limit the interaction between the delocalized Dðp − 2Þ
branes and Dp branes is attractive.10 However, adding the
delocalized charged D0 branes to the original D6 branes
increases the repulsive interaction and, therefore, changes
the phase structure from something similar to the charge-
less case to the van der Waals–Maxwell liquid-gas type. For
D5 branes, this picture does not resolve the puzzle; namely,
we know that in the extremal limit, there is no interaction
between the delocalized D1 branes and D5 branes, but the
phase structure still qualitatively changes to have the
van der Waals–Maxwell liquid-gas type when we add
delocalized D1 branes to D5 branes.
This hints at the fact that having the additional repulsive

interaction is not the complete story. In addition to
providing repulsive interaction, adding charge or additional
delocalized charged lower-dimensional branes can also
increase the degeneracy or the entropy of the underlying
system. Note that in the canonical ensemble, the underlying
phase structure is determined by the Helmholtz free energy,
which consists of two parts, the internal energy and the
entropy. Therefore, it is natural to expect that entropy also
has a role to play in addition to what has been mentioned
about the nature of interactions. Let us examine in detail the
origin of the divergent behavior mentioned earlier, which is
the key to the underlying phase structure.
First, let us focus on the van der Waals isotherm. We

have

E ¼ 3

2
NkT −

aN
v

; S ¼ Nk

�
ln
ðv − bÞT3=2

Φ
þ 5

2

�
;

p ¼ −
1

N

�∂F
∂v

�
T;N

¼ T
N

�∂S
∂v

�
T;N

−
1

N

�∂E
∂v

�
T;N

¼ kT
v − b

−
a
v2

; ð76Þ

FIG. 11. The typical behavior of p vs v when we set b ¼ 0 for
the van der Waals equation of state.

9We caution the reader not to confuse the van der Waals
parameters a and b used here with the same parameter used for
describing the D6=D0 system in the earlier sections.

10For interactions between branes with different dimension-
alities, see, for example, [21].
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where F;E, and S are the free energy, internal energy, and
entropy, respectively, with F ¼ E − TS. From the above, it
is clear that the divergence p → ∞ as v → b actually
originates from the entropy. When b ¼ 0, given that v ≥
v0 ¼ a=kT (see Fig. 11), both the internal energy and the
entropy of the system are finite when v → v0. However,
when we turn on b, i.e., b ≠ 0, the entropy blows up when
v → b, while the internal energy essentially remains
unchanged (except that we need to replace the lower end
limit v → v0 by v → b). In other words, the appearance of
the phase structure of van der Waals–Maxwell liquid gas
is due to the dramatic change of entropy when v → b (with
nonzero repulsive interaction b). So, the repulsive core of
molecules or atoms has more dramatic influence on the
entropy than on the internal energy.
Let us see what happens for the black holes. Here we

have the following expressions for the so-called reduced
internal energy, reduced entropy, and reduced inverse
temperature, for example, from11 [13]

~E ¼ 4

"
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − xÞ

�
1 −

q2

x

�s #
; ~S ¼ x2;

bqðxÞ ¼
ð∂ ~S=∂xÞq
ð∂ ~E=∂xÞq

¼ xð1 − xÞ1=2ð1 − q2

x Þ
1=2

1 − q2

x2

: ð77Þ

Here we have denoted the reduced inverse temperature with
a subscript q to indicate that this is a charged case, and for a
chargeless case, q should be put to zero. It is clear from (77)
that the divergence of bqðxÞ as x → q is due to the fact that
ð∂ ~E=∂xÞq vanishes and ð∂ ~S=∂xÞq remains finite in this
limit. This is quite different from the previous case where
the divergence of p was due to the blowing up of dS=dv as
v → b. Note that here both the entropy and the internal
energy change in the same way, i.e., from zero in the
chargeless case to a finite value in the charged case, in the
respective lower end limit, i.e., x → 0 (for the chargeless
case) or x → q (for the charged case). However, their rate
with respect to x changes in the opposite way. For the
entropy, the rate changes from zero to a positive finite value
in the above respective lower end limit, while for the
internal energy, the corresponding rate changes from a
positive finite value to zero in the same respective lower
end limit. Such a change of rate for either entropy or
internal energy is due to the addition of charge since adding
charge not only gives rise to the repulsive interaction but
also to the increase of degrees of freedom of the system,
therefore, the entropy. So, the vanishing of ð∂ ~E=∂xÞq in the
limit x → q is due to the addition of charge and is mostly
responsible for the blowing up of bqðxÞ in this same limit,
therefore, for the underlying phase structure [given that
the nonvanishing of ð∂ ~S=∂xÞq in this same limit is also

important]. So, the reason for the underlying phase struc-
ture in the present case (where the rate of entropy is finite)
is quite opposite to the van der Waals isotherm (where the
rate of entropy blows up) we discussed earlier.
Now, let us move on to the black p brane case and see

what happens there. For simple charged black p branes, we
have [14]

~EðxÞ ¼ 2

�
ð8 − pÞ − 7 − p

2

ffiffiffiffiffiffiffiffiffiffiffiffi
▵þ▵−

p
−
9 − p
2

ffiffiffiffiffiffi
▵þ
▵−

r �
;

~SðxÞ ¼ x1=2
�
1 −

▵þ
▵−

� 9−p
2ð7−pÞ

;

bqðxÞ ¼
ð∂ ~S=∂xÞq
ð∂ ~E=∂xÞq

¼ x1=2

7 − p

ffiffiffiffiffiffi
▵þ
▵−

r �
1 −

▵þ
▵−

� p−5
2ð7−pÞ

; ð78Þ

where q < x < 1 and

▵þ ¼ 1 − x; ▵− ¼ 1 −
q2

x
: ð79Þ

Notice that the reduced entropy vanishes in the lower end
limit either in the chargeless case (x → 0) or the charged
case (x → q) for p ≤ 7. Further, ð∂ ~SðxÞ=∂xÞq vanishes in
the chargeless case for all p ≤ 7 in the x → 0 limit, but it
blows up in the charged case only for p < 5, becomes a
finite value for p ¼ 5, and vanishes again for p ¼ 6 in the
extremal limit x → q. The internal energy itself changes
from zero in the chargeless case to a positive finite value in
the charged case in its respective lower end limit, and
ð∂ ~E=∂xÞq is always positively finite in either case in the
corresponding extremal limit for p ≤ 7. So, the divergent
behavior of bqðxÞ as x → q is once again due to the blowing
up of ð∂ ~S=∂xÞq for p < 5, and this divergent rate of entropy
is responsible for the underlying phase structure. In other
words, p < 5 systems behave much like the van der Waals
isotherm in the phase structure, as we discussed.
Let us consider the special case of p ¼ 5. A previous

study [14] showed that when a D5 brane is charged, the
phase structure is essentially of the same type as the
chargeless case without a van der Waals–Maxwell
liquid-gas structure, even though there are three different
substructures, analogous to the p < 5 cases. Further study
[15] demonstrated that this phase structure can be quali-
tatively modified to a van der Waals–Maxwell liquid-gas
type by adding delocalized charged D1 branes to the black
charged D5 branes. As discussed previously, since in the
extremal limit x → q5, there is no interaction between D1
branes and D5 branes, the divergent behavior of bq1;q5ðxÞ
must come from the blowing up of ð∂S̄=∂xÞq1;q5 in this
limit. This can be understood as the addition of delocalized
charged D1 branes increases the degeneracy of the under-
lying system, therefore, the entropy. Let us examine in
detail to see if this is, indeed, the case. For the D1=D5
system, we have [15]11Our definition differs from [13] by a factor of 4.
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From the above, we have bq1;q5ðxÞ → ∞ as x → q5. Note
that ~S continues to vanish in the extremal limit x → q5 but
ð∂ ~S=∂xÞq1;q5 blows up in the same limit. Both the reduced
internal energy ~E and its rate ð∂ ~E=∂xÞq1;q5 are nonzero
finite in the same limit. So, the divergent behavior of
bq1;q5ðxÞ in the limit x → q5 is, indeed, due to the blowing
up of ð∂ ~S=∂xÞq1;q5 in the same limit, as anticipated.
Finally, let us consider the special case of p ¼ 6. As

shown in [14], when charge is added to black D6 branes,
the resulting phase structure of charged black D6 branes
remains the same as its chargeless counterpart (except that
we need to replace the zero of the lower end of x by finite
q). It was also shown in [15] and discussed in [16] as well
as in the previous sections in this paper that this phase
structure cannot be modified to the van der Waals–Maxwell
liquid-gas type by adding either delocalized charged D4 or
D2 branes except by adding the delocalized charged D0
branes. We demonstrated in the previous sections that the
phase structure for a general D6=D0 system is essentially
the same as that of the special case when D0 brane charge
Q is set equal to D6 brane charge P [16]. For this reason,
for simplicity, we, in what follows, just use this special case
to uncover the reason behind such a change of phase
structure. For the D6=D0 system with q0 ¼ q6 ¼ q (here
we are using the reduced charges ofD0 andD6 branes), we
have

~EðxÞ ¼ 4
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1=2
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; ð82Þ

where now bqðxÞ → ∞ as x → q. If we compare this case
with the charged black hole discussed earlier in (77), we
find that we have exactly the same ~E; ~S; bqðxÞ in both cases.
This is not surprising since it is well known that when we
dimensionally reduce this system to D ¼ 4, we end up
precisely with theD ¼ 4 charged black hole. So, we expect
that the discussion given there applies here, too. In other
words, the qualitative change of phase structure is due to
the added “repulsive interaction.” The deep reason behind
this can also be understood from string/M theory since we
know that the interaction between D0 and D6 branes is
repulsive, and adding delocalized D0 branes to the charged
black D6 branes precisely adds this repulsive interaction to
the system making the qualitative change of phase structure
possible.
With the above analysis, we understand the underlying

reason for the appearance of van der Waals–Maxwell
liquid-gas–type phase structure in various cases. The key
to this is to scrutinize what causes the divergent behavior of
the local function, the inverse temperature bqðxÞ, for the
various black systems in the extremal limit x → q. Since
we consider a canonical ensemble, the thermodynamical
function of interest is the Helmholtz free energy
F ¼ EðxÞ − TSðxÞ, where EðxÞ and SðxÞ are the internal
energy and the entropy, and T is the preset temperature of
the cavity. So, it is the rate of change of entropy and the
internal energy with respect to x which are responsible for
the divergent behavior of bqðxÞ in the extremal limit x → q
and not the entropy and internal energy themselves. When
q ¼ 0, EðxÞ, SðxÞ, and bqðxÞ all vanish in the limit x → 0.
This has to be true given the physical context of chargeless
black system. For q ¼ 0, the black system has just mass,
and, therefore, the interaction is only attractive. In the
string/M theory context, we know that the system has an
equal number of branes and antibranes, and the net
interaction has to be attractive. However, when a nonzero
charge q is added, actually two ingredients are added to the
system: one is the repulsive interaction (in addition to the
already existing attractive one due to mass), and the other is
the increase in the degeneracy, therefore, the entropy (since
adding charge is to add additional degrees of freedom).
This is particularly obvious in the context of string/M
theory. These two new ingredients brought to the system
when charge is added are needed for modifying the phase
structure, since the phase structure is determined by the free
energy or, in turn, by the internal energy and the entropy. In
string/M theory, since there exist various kinds of branes,
there are various ways to add these two ingredients to the
already existing system. So, for example, we can add
charges to the chargeless branes to provide both the
repulsive interaction and the additional entropy or add
different kind of branes to provide more repulsive inter-
action (as in the case of adding D0 branes to D6 branes) or
add different kind of branes to increase the entropy (as in
the case of adding D1 branes to D5 branes) of the system.
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This is precisely what we have tried and succeeded for D5
and D6 branes. The addition of particular delocalized
branes makes bqðxÞ divergent in the x → q limit by either
the blowing up of dSðxÞ=dx, or making dEðxÞ=dx vanish,
or both.
In the above, we have provided reasons for the appear-

ance of the universal phase structure of the van der Waals–
Maxwell liquid-gas type for various systems. This universal
phase structure is also shared by the charged AdS black
hole, and in the corresponding field theory, it has similar-
ities with the so-called catastrophic holography [1]. This
universal phase structure is clearly the result of the
boundary condition rather than the precise details of
asymptotic metrics which can be either flat, AdS, or dS
[12,13]. The boundary condition realized in each case by
the reflecting wall actually provides a confinement to the
underlying system. This may suggest that the AdS holog-
raphy is a result of such confinement rather than the detail
properties of the AdS space. Then the natural speculation is
that a similar holography should hold even in asymptoti-
cally flat space. If, indeed, such a holography holds, the
natural and interesting questions are how do we define the
corresponding field theory on the underlying holographic
screen (which is supposed to be the spherical cavity in the
present case), and what do the various thermodynamical
phase transitions correspond to in the field theory so
defined?
For an asymptotically flat black hole without an origin

from branes in string/M theory, establishing such a field
theory description will be extremely difficult, not to
mention the issue associated with the cavity. However,
for asymptotically flat black branes, it is very natural to
suppose that there exists an associated dual field theory
arising on the world volume of the corresponding branes.
Here one of the issues is how to properly consider the
cavity effect, which may be viewed as imposing certain
boundary conditions on the fields. Note that such a field
theory, if it exists at all, is neither supersymmetric nor
conformal in general, due to the presence of a cavity. If we
presume such a holography for the D6=D0 system con-
sidered, the phase structure and the related properties of the
charged black D6=D0 system placed in a cavity in a
canonical ensemble are related, by the holographic map, to
the physics of the (6þ 1)-dimensional dual field theory
with its fields satisfying the proper boundary conditions
(which are not clear to us at present). For example, for each
given q− with q− < qþ on the left side of the critical line
given in Fig. 9, the phases are also controlled, just like the
AdS cases [1], by the universal “swallowtail” shapes
familiar from the catastrophe theory. However, unlike
the nondilatonic (or conformal) cases and certain dilatonic
(or nonconformal) cases (i.e., the Dp brane cases with
p ≤ 4) [22–25], we do not have dual field theory inter-
pretations for the entropy and free energy at a temperature
for the D6=D0 system. Since the world-volume theory of

the present system is related to the (6þ 1)-dimensional
gauge theory, one thing is clear to us that the D0 brane
charge for the system is related to the condensate
hR TrF ∧ F ∧ Fi ≠ 0 on the field theory side while keep-
ing hR TrFi ¼ 0; hR TrF ∧ Fi ¼ 0 [26]. We could say
more on field theory for the D6=D0 system, for example,
along a similar line as for the AdS cases following [1,2].
However, before we embark on such discussions, we

must be cautious whether the corresponding dual field
theory exists at all for the present case. It is well known
that there is no decoupling limit for the D6 brane theory
[25,27–30]. Actually, the D6 brane theory itself is as
complicated as the M theory, and for any N (with N the
number of D6 branes), it is described in the UV by M
theory on a flat background with AN−1 singularity. Note
that there is no (6þ 1)-dimensional field theory in the
UV (in fact, such a theory does not exist without gravity
[27,28]) which can flow, in the IR, to super Yang-Mills
[the D6 theory itself flows in the IR to the (6þ 1)-
dimensional super Yang-Mills]. In [25], it was also
argued from the D6 brane low energy Hilbert space
based on the result from [29] that, most likely, there is no
underlying field theory. Adding D0 branes is not
expected to change the situation given the undecoupled
interaction of massless states from both D0 and D6
systems [27].
So, the important lesson we learn from this study on the

universal thermodynamical phase structure for the present
D6=D0 system is as follows: adding the delocalized D0
branes to the D6 brane system changes its phase structure
dramatically to a very rich one exhibiting the universal
feature of the van der Waals–Maxwell liquid-gas type as all
the other brane systems (Dp branes with p ≤ 4 andD5=D1
system) studied previously. However, this merely reflects
the thermodynamical properties of the system in its valid
description region and has its own interest. This particular
system, unlike the others for which the corresponding dual
field theory might exist, does indicate that uncovering a
universal thermodynamical phase structure does not nec-
essarily imply the existence of a holography, since for the
present case the underlying field theory does not exist as
indicated in the previous paragraph. In other words, a
universal thermal property and a general holography may
not be necessarily related to each other. On the other hand,
if there is a holography, one should expect to see the same
feature on both sides. In our discussion of the origin for the
universal phase structure for different systems in this
section, we do see the difference between the D6=D0
system and all the other brane systems (i.e., theDp systems
for p ≤ 4 and D5=D1 system), and we do not know if such
a difference plays a role in the existence of a dual field
theory description. For the former, we do not have a dual
description, but for the latter, the corresponding dual
description for each case might exist, since at least the
near-horizon geometry of the corresponding system in the
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usual case has a dual description. Exploration of this and
the related issues will be our future program and is beyond
the scope of the present paper.

V. CONCLUSION

To conclude, in this paper we have studied the charged
black D6=D0 bound state configuration of type IIA super-
gravity and its thermodynamic phase structure with all
generality. The phase structure of the same system has been
studied before but only in a special case when the charges
associated with D6 branes and D0 branes are equal and
that associated with the dilaton is zero. But here we have
considered all the parameters of the solution to take generic
values. In general, the solution is characterized by three
independent parameters. We have argued that the solution
is not well defined in the entire parameter space. There are
naked singularities in a certain region of the parameter
space. We have given general arguments to show that when
we restrict ourselves to a certain other region of the
parameter space, then only the D6=D0 solution has a
well-defined horizon and is suitable for studying thermo-
dynamics. We have studied the equilibrium thermodynam-
ics and the phase structure of the general black D6=D0
solution in the canonical ensemble. For this purpose, we
have computed the Euclidean action, the form of the so-
called reduced inverse temperature in a suitable coordinate
and expressed this inverse temperature in terms of a single

parameter x (the reduced horizon radius of the black
D6=D0 solution). We argued that the phase structure,
which is governed by the singularity structure of the
reduced inverse temperature as x → q, is similar to the
special case studied before. But here the analysis is much
more involved, and the phase structure is richer than that of
the special case. This shows that it is a general feature (not a
consequence of the special case) that when charged
delocalized D0 branes are added to charged D6 branes,
the phase structure of D6 branes gets qualitatively changed
and takes the universal form (as for other Dp branes with
p < 5) which has van der Waals–Maxwell liquid-gas–type
structure. We have tried to unravel the reasons why such a
drastic change in phase structure occurs when charges and/
or other branes are added to the existing system. We have
shown in a case-by-case basis that adding charge and/or
other branes actually adds either the repulsive interaction or
the additional degrees of freedom, i.e., entropy to the
system. These two ingredients are actually causing the
qualitative change of phase structure to the universal form
in various cases.
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