PHYSICAL REVIEW D 90, 066002 (2014)
Exceptional field theory. III. Eg g,

Olaf Hohm'" and Henning Samtleben®"
'Center for Theoretical Physics, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139, USA
*Université de Lyon, Laboratoire de Physique, UMR 5672, CNRS Ecole Normale Supérieure de Lyon 46,

allée d’Italie, F-69364 Lyon cedex 07, France
(Received 18 July 2014; published 4 September 2014)

We develop exceptional field theory for Eg s), defined on a (3 +- 248)-dimensional generalized spacetime
with extended coordinates in the adjoint representation of Eggy. The fields transform under Egg)
generalized diffeomorphisms and are subject to covariant section constraints. The bosonic fields include
an “internal” dreibein and an Egg)-valued “zweihundertachtundvierzigbein” (248-bein). Crucially, the
theory also features gauge vectors for the Egg) E bracket governing the generalized diffeomorphism algebra
and covariantly constrained gauge vectors for a separate but constrained Eg) gauge symmetry. The
complete bosonic theory, with a novel Chern-Simons term for the gauge vectors, is uniquely determined by
gauge invariance under internal and external generalized diffeomorphisms. The theory consistently
comprises components of the dual graviton encoded in the 248-bein. Upon picking particular solutions of
the constraints the theory reduces to D = 11 or type IIB supergravity, for which the dual graviton becomes

pure gauge. This resolves the dual graviton problem, as we discuss in detail.
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I. INTRODUCTION

In this paper we present the details of the recently
announced ‘“exceptional field theory” (EFT) [1] for the
group Egg), complementing the construction for Eg ) and
E;(7) given in [2] and [3], respectively. The approach is a
generalization of double field theory (DFT) [4-91," with the
goal to render the dynamics of the complete D =11
supergravity [11], and that of type IIB [12,13], covariant
under the exceptional groups that are known to appear
under dimensional reduction [14]. We refer to the
Introduction of [2] for a more detailed outline of the
general ideas, previous approaches, and extensive refer-
ences. Here we will mainly present and discuss the novel
aspects relevant for the group Egg) which brings in some
distinctive new features as compared to the formulations for
the smaller exceptional groups.

The Egg) EFT is based on a generalized (3 + 248)-
dimensional spacetime, with the ‘“external” spacetime
coordinates x* and “internal” coordinates Y in the adjoint
representation 248 of Egg), with dual derivatives 8M.2 The
dependence of all fields on the extended 248 coordinates
YM s restricted by Eg(g)-covariant section constraints
[16,17] that project out subrepresentations in the tensor
product 248 ® 248,
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See [10] for a review and further references.

Such generalized spacetimes also appear in the proposal of
[15].
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(1.1)

As in double field theory, this constraint is meant to hold
on any fields, parameters, and their products. This con-
straint has nontrivial solutions, which break Eg(g) to GL(8)
or GL(7) x SL(2), for which the EFT reduces to D = 11
supergravity or type IIB, respectively, for appropriate
reformulations of these theories, as pioneered in [18,19]
for Eg(g).

The bosonic field content of the Egg) EFT is given by

(P11248+3875) )y "0k @ 9 = 0.

{e, . Vi, AM By} (1.2)
It incorporates an external frame field (“dreibein”) e,
u=0,1,2, and an internal generalized frame field
(“zweihundertachtundvierzigbein™) VMM, M=1,...,248,
parametrizing the coset space Eg)/SO(16). From the
latter, we may construct the “generalized metric” as
Myn = (W), Crucially, the theory also requires
the presence of generalized gauge connections AMM and
B, y» in order to consistently describe the complete degrees
of freedom and dynamics of D = 11 supergravity (neces-
sarily including also some of the dual fields). The theory is
invariant under gauge symmetries with parameters AY, ¥,
acting as

U_(A.Z) VM = AKaKVM - 60PMNKL(9KAL VN
+ AONANVM — 3, FLM YN, (1.3)

onavector VM of weight A. The A transformations generate
the generalized diffeomorphisms on the 248-dimensional
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space, following the definition for the smaller exceptional
groups [16] with P denoting the projector onto the adjoint
representation. The X, gauge symmetry is a new feature of
the Egg) EFT and describes a separate Egg) gauge sym-
metry, however, with parameters X, that are “covariantly
constrained.” This means that they obey the same algebraic
constraints as the derivatives in (1.1), for instance
PunXtZx ® 9, = 0, etc. As a result, most of the compo-
nents vanish after explicitly solving the section constraints,
and the Egg) gauge symmetry is much smaller than is
apparent from (1.3) [as it should be, for otherwise all fields
encoded in the Eg)/SO(16) coset space would be pure
gauge]. This additional gauge symmetry is necessary for
consistency. For instance, the generalized diffeomorphisms
in (1.3) with parameter A¥ do not close into themselves
which has been recognized as an obstacle in [16,17]. They
do however close in presence of the additional covariantly
constrained gauge symmetry that constitutes a separate
invariance of the theory. In other words, invariance of an
action under generalized diffeomorphisms AM implies its
invariance under further X,, gauge transformations, as we
shall explicitly confirm. This type of gauge structure
has first been revealed in the baby example of an SL(2)
covariant formulation of four-dimensional Einstein
gravity [20].

The constraints on the gauge parameter X, imply that
also the associated connection B, is covariantly con-
strained in the same sense, i.e. it satisfies Py v ‘B, x ®
d; = 0, etc. Such covariantly constrained compensating
gauge fields are a generic feature of the exceptional field
theories and show up among the (D — 2)-forms (with D
counting the number of external dimensions). Therefore in
D = 5, these fields do not even enter the Lagrangian [2], in
D = 4 they appear among the 2-forms with Stiickelberg
coupling to the Yang-Mills field strengths [3], while in
D =3 they feature among the vector fields and thus
directly affect the algebra of gauge transformations (1.3).
In all cases, these constrained gauge fields are related to the
appearance of the dual gravitational degrees of freedom as
we discuss shortly.

The full Eg-covariant action is given by

S = /d3xJ248Ye<R + e_l‘CCS

1

+ 240

FDMYD, Moy — VM, g)), (1.4)

and closely resembles the structure of three-dimensional
gauged supergravities [21]. The various terms comprise a
(covariantized) Einstein-Hilbert term, a Chern-Simons-type
term for the gauge vectors, a covariantized kinetic term for
the Egs)/SO(16) coset fields, and a “potential” V. The
Chern-Simons term is a topological term that is needed to
ensure the proper on-shell duality relations between
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“scalars” and ‘“vectors.” The potential depends only on
internal derivatives d,; and can be written in a manifestly
Eg(g)-covariant form as follows:

1
V(M,g) = —mMMNaMMKLaNMKL
1
5 MYV MEED, Myg

1
+ WfNQPfMSRMPKaMM QKMRLaNMSL

1 1
- Eg_laMgaNMMN - ZMMNg_laMgg_laNg

1
—ZMMNaMg”DaNng. (15)

Its form is determined such that it leads to a gauge-invariant
action both with respect to the AY and X, gauge
transformations of (1.3). Previous attempts to construct
an Egg)-covariant formulation (of truncations of D = 11
supergravity) missed the third line of (1.5) involving the
explicit Eg(g) structure constants f*" ¢ [22]. This term is
indispensable for gauge invariance of the potential V and
for the match with D = 11 supergravity as we shall explain.
All four terms in the action (1.4) are separately gauge
invariant with respect to A and X, but the theory is also
invariant under nonmanifest external diffeomorphisms of
the x* generated by a parameter &“(x, Y). This symmetry
fixes all the relative coefficients in (1.4), such that this is the
unique two-derivative action with all the required
symmetries.

We close the Introduction by a discussion of how the
above EFT resolves what is often referred to as the “dual
graviton problem.” This problem comes about because the
Egg) coset representative M,y depends on components
@, m=1,...,8, that in three dimensions are dual to the
Kaluza-Klein vectors A,”. As the latter originate from
components of the D = 11 metric, this amounts to includ-
ing in the theory components of a “dual graviton” [23-26]
at the full nonlinear level, something that is considered
impossible on the grounds of the no-go theorems in
[27,28]. In EFT this problem is resolved due to the presence
of the extra Eg) gauge symmetry from (1.3). Solving the
section constraints (1.1) such that the theory reduces to
D = 11 supergravity, this covariantly constrained gauge
symmetry reduces to a Stiickelberg shift symmetry with
eight parameters, which can be used to gauge away all the
dual graviton components ¢,,. Consequently, in the gauge-
invariant potential (1.5) all components ¢,, drop out upon
solving the section constraint, which is necessary for the
theory to match D = 11 supergravity. The same conclu-
sions hold for the solution corresponding to type IIB. Let us
finally note that although the dual graviton components ¢,,
are pure gauge for the D =11 and D = 10 solutions,
once we consider strict dimensional reduction to D = 3,
the ¢,, are propagating fields among the scalars of the
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Eg(s)/SO(16) coset space. Indeed, in this case the Chern-
Simons term implies that B, is pure gauge, so the extra
gauge symmetry can be fixed by gauging B, away.

This paper is organized as follows. In Sec. II we
introduce the Eg) generalized Lie derivatives and the
covariantly constrained Egg) gauge symmetry. Next, we
introduce gauge vectors for these symmetries and define
covariant derivatives and field strengths. In Sec. III we
present the various terms in the action and prove its gauge
invariance under internal and external diffeomorphisms. In
particular, we fix all relative coefficients in the action (1.4)
by requiring invariance under external diffeomorphisms.
Finally, in Sec. IV, we discuss the match with D =11
supergravity and type IIB. Specifically, we discuss how the
dual graviton (problem) disappears. We conclude in Sec. V.
Some details on the proof of closure of the Eg ) generalized
Lie derivatives are presented in the Appendix.

IL Eg5 GAUGE STRUCTURE

In this section we introduce Egg)-covariant generalized
Lie derivatives, which close according to an E bracket, up
to a separate covariantly constrained Eg ) gauge symmetry.
This mean that the Egg) gauge parameter is subject to the
same section constraints as the extended derivatives. Then
we introduce gauge fields AMM for the E bracket and
covariantly constrained gauge fields B, for Egg).

A. Egs) generalized lie derivatives

We start by recalling a few generalities of Egg). Its Lie
algebra is 248 dimensional, and the adjoint representation
is the smallest fundamental representation. We denote the
generators by ()N, = —fMN . with structure constants
fMN . and adjoint indices M, N = 1, ..., 248. The maximal
compact subgroup is SO(16), under which Eg) decom-
poses as 248 — 120p128. There is an invariant sym-
metric tensor #7,y, the Cartan-Killing form, which we
normalize by

1 1
N = (M) = @fMKLfNLlo (2.1)

60

and which we freely use to raise and lower adjoint indices.
Given this invariant metric, the tensor product of the
adjoint with the coadjoint representation is equivalent to
248 ® 248 and decomposes as follows:

248 ® 248 — 162483875627000630380.  (2.2)

In particular, it contains the adjoint representation, and in
the following we need the corresponding projector:
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1
PMNKL = @fMNPfPKL

1 7
= %5%\/5” - % (P3875)MKNL
1 1
— "8y + —== M5 PN

240 120 (23)

Here we used Egs. (2.15) in [29], and the projector onto the
3875 which is given by

1 1 1
(P3875)MKNL = *5(MN52() - 7’7MK77NL - ﬁfPN(MfPLK)~

7 56
(2.4)

We refer to [19,29] for other useful Egg) identities.

Let us now discuss the generalized spacetime and
geometry based on Egggy. We introduce 248 coordinates
YM in the adjoint representation, but we subject all
functions (i.e. including all fields and gauge parameters
and all their products) to the covariant section constraints
(1.1). These are necessary in order for the symmetries of the
theory to close into an algebra. These symmetries comprise
generalized diffeomorphisms on the 248-dimensional
space, together with a covariantly constrained Egg) gauge
symmetry. Specifically, denoting by AM and X, the
parameters for generalized diffeomorphisms and con-
strained Egg)s respectively, we define the generalized Lie
derivative on a vector by

SVM = Ly 5 VM
= AKBKVM - 60PMNKL8KALVN + X(V)aNANVM
— %, fM YN, (2.5)

Analogously, one may define the generalized Lie derivative
acting on tensors with an arbitrary number of adjoint Eg g,
indices. The second line of (2.5) defines the generalized Lie
derivative with respect to AY, in accordance with the
definition for the smaller exceptional groups [16,17], where
we also allowed for a general density weight A. The third
line is a novel feature of the Egg) EFT. It defines the
covariantly constrained Egg) action, i.e. describes an Egg)
rotation with a parameter X,, which itself satisfies the same
algebraic conditions (1.1) as the partial derivatives.
Concretely, we require that

(Pl+248+3875)MNKL Ck ® C/L =0,

(2.6)

for CM, C;Vl S {8M, BﬂM’ ZM}?
where B, ), denotes the gauge connection associated to the
2y symmetry of (2.5). This means that for any expression
containing two objects, C), and C), from the list above, the
part in the tensor product that is projected out by this
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constraint can be consistently set to zero. Explicitly, we

have for the individual irreducible representations,
nMNCy ® Cly =0,

(P3g75)un™"Cx ® Cp, = 0.

fMNKCN ® C/K — O,
(2.7)

This implies in particular 7V 9,,04A = M0, A = 0, but
also OMA9,,B = 0, for arbitrary functions A, B, and rela-
tions like fMNKB yOxA =0 involving the covariantly
constrained gauge field B, ). These relations imply that
for any solution of the section constraint only a subset of
coordinates among the Y¥ survives, while also only the
“corresponding” components of B, ), are present, as we
will explain in more detail below.

Before determining the gauge algebra satisfied by (2.5)
we briefly discuss that the above gauge transformations
(2.5) possess “trivial” gauge parameters. For these param-
eters the action of the associated generalized Lie derivative
on any field vanishes by virtue of the section constraints
(2.7). The following parameters are trivial in this sense,

AM =gMNQ, Qy covariantly constrained a la (2.6),
AM = (Pagys) My Oxa™". (2.8)

Here, in the first line, Qy is covariantly constrained in the
sense that it satisfies the same constraints as the Cy in (2.6),
(2.7). E.g. choosing Qy = dyy we infer that AM = 9My is
a trivial parameter, in analogy to DFT. For the first
parameter in (2.8) it is straightforward to see with (2.4)
and the constraints (2.7) that the generalized Lie derivative
(2.5) is zero on fields. As an illustration for the use of
constraints, we prove explicitly the triviality of the second
parameter in (2.8). We first note that in this case the
transport term and density term (i.e. the first and third
terms) in (2.5) immediately vanish as a consequence of the
third constraint in (2.7). Thus, the action of the generalized
Lie derivative reads

|]—AVM = —60PMN(PQ('P3875>R)QST5P8RZSTVN

= =M x (¥ o(P3r5) Vs )0pOry ST VY. (2.9)
Next, we use that P3g75 is an invariant tensor under the
adjoint action of Egg), as is manifest from its definition
(2.4). This means

fX(PQ(P3875)R)QST - fXQ(S(P3875)PRT)Q =0. (2.10)
Thus, we can replace the structure in (2.9) by the second
term in here. Being contracted with dp0y it then follows
from the third constraint in (2.7) that this vanishes,
completing the proof that the associated generalized Lie
derivative acts trivially.
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Next, we discuss a novel phenomenon for the Egg) case:
there are combinations of parameters A and X whose
combined action is trivial on all the fields. Specifically,
the generalized Lie derivative (2.5) with parameters

M _ tMN K
A - f KQN )
QX covariantly constrained in first index,

ZM — aMQNN + 6NQMN, (211)
acts trivially for a general tensor QyX that is covariantly
constrained in the first index in the sense of (2.6), (2.7). An
example is given by QY = 9,,¢" with arbitrary y", so we
conclude as a special case of (2.11) that

AM = fMNKaN)(K, ZM = 28M8N)(N (212)
has trivial action on all the fields. In order to verify the
triviality of (2.11) let us first prove the following useful
lemma:

SPu fentCx @ C; = Cyy @ Cy + Cy @ Cjy. (2.13)

for any covariantly constrained objects Cy;, C},. To prove
this we compute

fPMKfPNLCK ® C/L
= (fPu®font + P K fon™)Cx ® €

1
= (— EfPKLfPNM + 255‘45%

1
- ZWMN”KL - ]4(P3875)KLMN> Ck®C;

=Cy®Cy+Cy®C). (2.14)
In the second line we used the Jacobi identity and rewrote
the symmetrized ff term in terms of the 3875 projector
(2.4). In the final step we used the section constraints (2.7).
This completes the proof of (2.13). It is now straightfor-
ward to verify the triviality of (2.11). First, the transport and
density terms vanish immediately as a consequence of the
second constraint in (2.7). The remaining projector term, in
the first form of the projector in (2.4), can then be
simplified by (2.13) to show that this cancels the X terms
from (2.11). Another immediate consequence of (2.13) is
that for a generalized vector Q,, (of weight 0) that is
covariantly constrained, the generalized Lie derivative
reduces to
A Qy = ANONQy + ONAN Q) + 0y ANQy,  (2.15)
which will be used below.
We close this section by discussing closure of the gauge
transformations. In contrast to the analogous structures for
E, with n <7, the generalized Lie derivatives do not
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close by themselves, but only up to (constrained) local Eg g,
gauge transformations. Specifically, one finds closure

[0(a, 21+ 00y 3)] = S[(8y30). (A 2

(A2, Z5), (AL Z))]p = (A2, Zp2), (2.16)

with the effective parameters

A/lVé = ZAﬁaNA% - 14(P3875)MKNLA1[\218KAﬁ

1 1
- Z”MKWNLAgaKAlL] + ZfMNPaN (fP kL AXAT),

- Zch’)MAl]N + fNKLA[’gaMaNAf]. (2.17)
Note that here is an ambiguity in the form of the effective
gauge parameters, because they can be redefined by trivial
gauge parameters, (2.8) or (2.11), without spoiling closure.
In particular, the term in the second line of A, could have
been dropped, using (2.11), at the cost of extra terms in X 5.
The form here has been chosen for later convenience. We
stress again that closure only holds because of the separate
(covariantly constrained) Eg(g) gauge symmetry. Note that
this is a rather nontrivial statement, because the effective
X, parameter needs to be compatible with the covariant
section constraints (2.7). The compatibility is manifest
from the form in (2.17), because in each term the free index
M is carried by a constrained object, £, or J,. As this
interplay between generalized diffeomorphisms and a
separate but constrained gauge symmetry is somewhat
unconventional we prove gauge closure (2.16), (2.17)
explicitly in the Appendix. We finally note that the gauge
|
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algebra of X transformations with themselves is Abelian,
for the effective parameter X}, = fMNKS, 5 o is actually
zero by the section constraints (2.7).

B. Gauge fields for Eg) E-bracket

We now introduce gauge fields for the local symmetries
generated by AM and X,,. Specifically, these parameters are
functions of x* and Y, requiring in particular covariant
derivatives D, for the external coordinates. Denoting the
gauge fields for the AY symmetries by A,* and those for
the X, symmetries by B,,, the covariant derivative on any
tensor with an arbitrary number of adjoint Egg) indices is
defined by

D,=0,—-L,z,), (2.18)
where the generalized Lie derivative L acts according to the
representation the tensor field lives in. For instance, using
(2.5) one finds its action on a vector of zero weight

D”VM == 8ﬂVM - AﬂKaKVM + 60 PMNKLaKA”LVN
+ B, LMy VY. (2.19)
The transformation rules for A and B are determined by the
requirement that the covariant derivatives (2.18) transform
covariantly. In general, their gauge transformations can be
computed from
(6(ax)A. (A x)B) = (0N, 0Z) + [(A,2), (A, B)|g,  (2.20)
with the E bracket defined by (2.16). Using (2.17) one
computes for the components

5(A’Z)A”M - D”AM - aNAMNAM + 7 [FD3875MNKL<AK8NA”L + AﬂKaNAL)

1 1
- Bl My AN + §’1MN’7KL (AKoNAE 4+ ARONAE) + ZfMNPfPKL (ONAKAE — AROyALL),

1
5(A,Z)B;4M - DﬂZM —|— aN(B”MAN) + B”NaMAN + EfNKL(AKaMaNAﬂL —A”K(?MaNAL).

Note in particular, that the gauge field A and its parameter A
carries weight 1 [and we have explicitly spelled out the
weight term in (2.21)], whereas B and X carry weight 0.

Because of the existence of trivial gauge parameters,
cf. (2.8) and (2.11) discussed in the previous subsection, the
gauge transformations of A and B are determined from the
covariance of (2.18) only up to redefinitions by trivial
parameters. Specifically, the covariant derivatives (2.18) are
invariant under the following vector shift transformations

M _ AaM= MK — NL MN — K
6A,M =0 —u + ([p3875) NLaK~u3875 +f K—=un »

5BMM - QME”NN + aNE”MN, (222)

(2.21)

|
with =,V constrained in the first index. We now redefine
the gauge transformations of A and B by adding trivial

gauge transformations of this form, with parameters

= KL _ KL P
—u3875 — _7(P3875) PQAM AL,
1
= K
== _§Aﬂ Ag,

(1]

1
”NK = _BﬂNAK + ZfKPQAPaNAﬂQ

- % FEpoOnAPA,L. (2.23)
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The gauge transformations (2.21) then take the more
compact form

5A,M =DV AM,
5By =Dy Ty — AV Oy B,y + fN g AKOy OnA L, (2.24)

where we have indicated the respective weights by the
superscripts D() This is the final form of the gauge
transformatlons that we use in the following.

Let us now turn to the definition of gauge covariant
curvatures or field strengths. Part of these curvatures can be
read off from the commutator of covariant derivatives,

M M
[D,.D,|V" = L, 6)V"- (2.25)
More precisely, this determines the field strengths up to

trivial terms that drop out of the generalized Lie derivatives,
for which we find

M _ 2a[ﬂAy]M _ 2A[;¢N6NAD]M
1
+ 14(P3875)MNKLA[},K8NAL,]L + ZAWN(?MA”]N
1
=5 /" kLA OnAY

G/ll/M — ZD[}JBD]M - fNKLA[”KaMaNAy]L (226)
These field strengths do not transform covariantly, but the
failure of covariance is of a trivial form that can be
compensated by adding 2-form couplings and assigning
to them appropriate gauge transformations in the general

spirit of the p-form tensor hierarchy [30]. We thus
introduce the fully covariant curvatures
F/MJM = F;wM + 14(P3875)MNKL8NC;AD(I§§75)
1
+ ZaMC/w + 2fMNKprNK9
gle - G/U/M + 23NCMDMN + 20MCWNN, (227)
with 2-form fields Cﬂ,,(3875) Cyp» and C,,,", where as in

(2.11) the 2-form C,,/" is covariantly constrained in the
first index. The general variation of these curvatures takes a
covariant form,

SF M = 2D[) 54, M 4 14(Pgrs)

1
+ ZaMAC;w + 2fMN  AC,, N ¥,

xkLON Acuvg]éﬁ

8G,y = 2D, 5B

- ZfNKLéA[ﬂKaMaNAU]L + ZaNAC”UMN
+ 20 AC,,\",

(2.28)
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where we defined the covariant variations

CKL

w (3575) = 0C, (3875 +A[/4K5AV]L’

AC,, =5C,, + A, K6A,) .
1
ACW/NK = SCMUNK + B[”NéAU]K — ZfKPQ(A[/dPaNéAU]Q

- (?NA[ﬂpéA,,]Q). (2.29)

We stress that although we had to introduce the addi-
tional 2-forms in order to define gauge covariant curva-
tures, all of them will eventually drop out from the action
and the transformation rules. They can be viewed as a
convenient tool that allows us to define the Lagrangian in a
rather compact form in terms of manifestly covariant
quantities whereas we could also have defined the
Lagrangian directly in terms of the original fields and
confirmed its gauge invariance by an explicit computation.
The 2-forms C,, and C;w (3875) already show up in the
dimensionally reduced theory upon extending on-shell the
supersymmetry algebra and first order duality equations
beyond the fields present in the Lagrangian [30].

We now specialize to the transformation of the curva-
tures under A and X gauge transformations (2.21). The field
strength F,,™ transforms covariantly in that

5,\2}" L, 2).7-"”/"’, (2.30)

with weight 4 = 1, provided the 2-forms C,, transform as

AC

Hv

(3875 =F, JEAL),
- .7: AM’

AC, N = f po(OnF W, PAC — OyACF,,P)

+§gﬂDNAK +§2NfﬂyK. (231)

On the other hand, the field strength QWM transforms as

6A,EgﬂyM = H—(A,Z)g/u/M _fNKLf/wkaMaNAL

+ (?MZN}"WN, (2.32)
where the generalized Lie derivative acts on a tensor of
weight 0. These turn out to be the proper transformation
rules in order to define a gauge-invariant Chern-Simons
term below. To this end we will furthermore derive a set of
generalized Bianchi identities (3.14) satisfied by the
curvatures 7, and G,

III. THE ACTION

With the structures set up in the previous section we
are now in position to define the various terms in the
action (1.4)
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5= / PxdPSY (Lggy + Los + Ly — V(M. g)). (3.1)

We describe them one by one. We then verify that the action
is invariant under generalized internal and properly defined
external diffeomorphisms, which in turn fixes all the
relative coupling constants.

A. Einstein-Hilbert and Kkinetic term
As in [1,31], the Einstein-Hilbert term in (3.1) reads

Ley = eR = eg”"f?lw, (3.2)
and is constructed from contraction of the improved
Riemann tensor

B oab —

R, =R, "]+ F, Mel90ye,”,  (3.3)
where R,,*’[w] denotes the covariantized curvature of the
spin connection wﬂ“b, which in turn is defined by the
covariantized vanishing torsion condition

0= Dwey]a

= 8[#6,1]“ - A[ﬂKaKeD]“ - 8KA[#KeD]“ + a)[},”he,,]b. (34)
In particular, the dreibein e, is an Egg) scalar density of
weight 4 = 1. Note from the second form in (3.2) that with
this weight the Einstein-Hilbert term has a total weight of 1,
as needed for local AM gauge invariance. The second term
in (3.3) ensures covariance of the Riemann tensor under
local Lorentz transformations. As a result, the Einstein-
Hilbert term Lgy is invariant under local Lorentz trans-
formations and internal generalized diffeomorphisms. We
note that the term is also invariant under the vector shift
symmetries (2.22), notably all 2-form contributions in
F M drop out from (3.3).

The matter sector of the theory comprises 128 scalar
fields which as in the three-dimensional maximal theory
[32] parametrize the coset space Eg(g)/SO(16). In terms of
the symmetric group-valued 248 x 248 matrix M,y (and
its inverse MMV), the kinetic term in (3.1) takes the form

1 1 .M
Lyin :mBQ”DDﬂMMNDDMMN = —Zeg’wijJyM, (3-5)
in terms of the current j,™ defined by

MKNDyMNL = ijfNLKa

MMijN = nMNjﬂN'

and satisfying
(3.6)

All derivatives D, here are covariantized with respect to
generalized internal diffeomorphisms according to (2.18),
with the matrix M,y carrying weight 4 = 0. The second
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equation in (3.6) can be verified with (2.1) and the
relation,3

MPMMEN £, K — _fMN| ALK (3.7)

B. Chern-Simons term

The vector fields A,,M and B, ), do not carry propagating
degrees of freedom, but describe on-shell duals to the
scalar fields. Consequently their dynamics in (3.1) is not
described by a Yang-Mills coupling but rather by a
topological Chern-Simons term which is explicitly given by

L:CS = 2K et (F/“/MB/’M - fKLNaﬂAUKaNApL

2
- ngKL aMaNAMKAzzMA/)L

1
- gfMKLfKPQfLRSAﬂMaPAyQaRApS> 5 (38)
with coupling constant k that we will determine below. The
structure and covariance of the Chern-Simons term become
more transparent by calculating its general variation which
is given by

5£CS = 2K8”Up(FﬂyMéBpM + (G;u/M _fMNKaKFﬂUN)(SApM)
=2k’ (FﬂvM(sBpM + (g/wM _fMNKaKf;wN)(SA/JM)'
(3.9)

Indeed it follows directly with the section constraints (2.8)
and (2.11) that all extra 2-form contributions proportional
to C,,, from (2.28) cancel in the second line of (3.9), such that
the variation may be expressed entirely in terms of the
covariant quantities. Similarly, one confirms with (3.9) that
the Chern-Simons term is invariant under the vector shift
transformations (2.22). With alittle more calculation we may
furthermore verify invariance of the Chern-Simons term
under generalized internal diffeomorphisms that act as
gauge transformations (2.24) on the vector fields. Specifically,
after partial integration, the variation (2.24) yields

0Lcs = 2k f””pAK(fﬂuM(—aMBpk + fNKLaMaNApL)

— DGk — s OnF ™))

— 2ty DYV F M. (3.10)
The vanishing of the rhs of this variation corresponds to
establishing some generalized Bianchi identities for the
curvatures (2.28). This is most conveniently achieved by
evaluating three covariant derivatives gﬂ”PDMD,,DpVM on a
vector VM of weight 0, from which we deduce the identity

*Note the sign, which is due to the fact that unlike 7,y the
matrix M,y is not a group invariant tensor, but commutes with
the involution which defines the maximal compact subgroup
SO(16) C Eg(g).
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&L x, 6D,V = e’D, (L5, ¢, V™). (3.11)

Its rhs takes the explicit form
eﬂy/)D/)(ﬂ—(]:m,gw)VM) = eﬂpr/)(FﬂuNanM - (g/wL - fLPKaKfMDP)fLMNVN)7

and upon using that
DpaNVM - aNDpVM —fLMPVP(aNBpL —fLQKaNaKApQ), (312)

for a vector VM of weight 0, the rhs of (3.11) may be further rewritten as

gﬂpr("—(ﬂb,gﬂu)VM> = gﬂyp(fﬂDNaND/)VM (% L — fLP 81( )fLMND VN)
+ & (Dp]:/wNaNVM -D ( L — frp® Ik F, )fLMNVN)
- E#DprMNVN]:ﬂyP(aPBpL _fLQ 8P8KAp ) (313)

Now the first line in (3.13) reproduces the lhs of (3.11), such that together we obtain the generalized Bianchi identities

0=eDF,N @ dy,
y 0
0=¢ /)(D/() )(gpr - fKMNaNJT/wM) + ~¢.ﬂuM(aMB,{)K - fNKLaMaNA/JL))' (314)
These are sufficient to show that (3.10) vanishes, confirming that the Chern-Simons term is invariant under generalized internal

diffeomorphisms. Let us finally note that a more compact presentation of the Chern-Simons term (3.8) can be given as the
boundary contribution of a gauge-invariant exact form in four dimensions as

1
SCS O(/ d4X/d248Y<.FM/\gM —EfMNK}_M/\ﬁK]:N>, (315)
%

where again all 2-form contributions C,,, can be checked to drop out from the action. Gauge invariance of (3.15) follows from the
transformation behavior of the field strengths under gauge transformations
SasFM =LiasFM,
ors(FYu kONF ") = Lias) (FM " kOnF ) + 2F M0y ONAR N L FE = 2F MOy Zn F Y,
SasOu = Lias)Gu — [Nk FROMONA" + 0y 2y FN. (3.16)

C. Scalar potential

The last term in the action (3.1) is the scalar potential V which can be given as a function of the external metric g, and the
internal metric My

V= —mMMNa MKLaNMKL + = MMNa MKLaLMNK +%fNQ fMS MPKaMMQKMRLaNMSL
1

=59 Ongoy MM =5 LMY G194 97 O - ZMMN " ONGpu- (3.17)

The relative coefficients in this potential are determined by AM and ¥ gauge invariance by a computation similar to the one

presented for the E¢ ), E7(7) potentials in [2,3], that we briefly sketch in the following. For the calculation it turns out to be
convenient to rewrite the potential as

1. .. 1 _ .
V= Z]MR]NS(MMN”IRS - 2MKLfRLNfSKM + 25RN5SM) - 59 laMgMMNfNKP]PK

1 1
- ZMMNQ_I Om99™ ' Ong — ZMMNaMg’waNgﬂw (3.18)
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in terms of the current j,,” defined in analogy to (3.6) as

MEPOuMp = ju" " (3.19)
A short calculation shows that the noncovariant variation of
the current j,,V under generalized diffeomorphisms (2.5) is
given by

Ay = (MK V) (fro"OpA? = Zg),  (3.20)
where we have used the invariance property (3.7) of the
structure constants. It is then straightforward to verify that
the noncovariant contributions from the variation of the
various terms in (3.18) precisely cancel. In particular, we
find that under A transformations the first line of (3.18)
transforms according to

1 C R
2 AT U™ inS MMV g = 2MEL fpi N foe™ + 26N 55M))
= 23M8PAP8NMMN + (9M3LAN3NMML,

whereas the second line of (3.18) transforms into

(3.21)

A((3.18), second line)
= _38M6KAK8PMPM — e_laMeMMPapaRAR

+ e_laMe/\/lSPf)pf)SAM. (322)
Together, this shows that the scalar potential term (eV) in
the Lagrangian is invariant up to total derivatives.
Comparing the expression of (3.17) to other results in the
literature [22] shows that the third term of (3.17) has been
missed in previous constructions. Here, this term is
essential for AY and X, invariance of the scalar potential.
Absence of this term is the reason for the observed
discrepancy of the scalar potential of [22] with D =11
supergravity as we discuss in more detail in the last section.

D. External diffeomorphism invariance

The various terms of the EFT action (3.1) have been
determined by invariance under generalized internal AY,
2, diffeomorphisms. In contrast, the relative coefficients
between the four terms are determined by invariance
of the full action under the remaining gauge symmetries,
which are a covariantized version of the external (2 4 1)-
dimensional diffeomorphisms with parameters & (x,Y).
For the Y-independent parameter, external diffeomorphism
invariance is manifest. On the other hand, gauge invariance
for general & (x, Y) determines all relative coefficients, as
we shall demonstrate in the following. The computation
closely follows the analogous discussion for the SL(2, R)-
covariant formulation of four-dimensional Einstein
gravity [20].*

*We note that here we use a field basis for A and B that is
related to the SL(2, R) treatment of [20] by a field redefinition.
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Under general external diffeomorphisms, the external
and internal metric transform in the standard (but cova-
riantized) way
6§MMN = fﬂDﬂMMN’ 55614‘1 = prpeﬂ“ + Dﬂfpep”,

(3.23)

where we recall that the dreibein is an Egg) scalar density of
weight 4 = 1. The transformation behavior of the gauge
vectors is more complicated. Inspired by the SL(2, R) case
[20], for these fields we start from the ansatz

520)A”M — fyFy,,M + MMNgWaNéu’
0 v ; v
555 >B/4M = é Gl/ﬂM _.]ng;wal(é

1
+— EE‘MMQZPDD (gpaaMfa)v

i (3.24)

where the noncovariant contributions will be required for
particular cancellations in the variation of the Lagrangian.
The full variation of these fields will be determined as we
go along. Note that the form of the variation ééO)Bﬂ M 18
manifestly compatible with the constraints (2.7) which this
field is required to satisfy, because in the extra noncovariant
terms the external index is carried by a derivative.

Let us now compute the variation of the Lagrangian (3.1)
under (3.23), (3.24). To start with, let us work out the
general variation of the Lagrangian (3.1) with respect to the
vector fields which takes the form

5L = e (EM 5B,y + ELSAM).  (3.25)
with
1
Sfﬁ)M =2«F, M+ 3 e€,,,J"™,
5,(451)&4 =2kGm — fMNKakgl(f;)N
-7 eeﬂv[}(jMijK + 2‘7PM)’ (326)

4

with the currents j,V, j)" from (3.6) and (3.19), respec-
tively, and the current J#; describing the contribution from
the covariantized Einstein-Hilbert term,

SAEEH = ej”MﬁA”M
= —2ee, e, (O, — D, (e’lDye,"))5A,M.

(3.27)

Note that not all components of Ef,f,)M in (3.26) correspond
to real equations of motion of the theory, as the field B, is
constrained by means of (2.7).

Next we consider the noncovariant variation of the
covariantized Einstein-Hilbert term, which is given by [20]
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5 (eR) = eF"ND,(0y&g,,) + eMMN],, Oy, (3.28)

where the second term comes from the noncovariant transformation (3.24) of the vector field AﬂM via (3.27). The
noncovariant variation of the Chern-Simons term follows from (3.9) and yields

0 .
52 )ECS = —EFWMDﬂ (QmaMfg) - ZKgﬂprﬂl/M.]MKgpﬂaK€A - 2’<(‘?Wpf/v11vK81{F,WN/\/l[w“gpaaLf‘7
+ 2k Gy MMN g, ONET + k" P O E frn® F M F )", (3.29)

up to total derivatives. The first term cancels against the contribution from (3.28). Let us further rewrite the last term of
(3.29) in terms of (3.26) as

y - Lo ” AYM o(A)N ” 1 UM
Ke"P O & fMNKF,uyMFpnN = @5’ POk & fMNKgl(w) 5/()6) — k& fun®™J MFWN - §€yupaK§ﬂfMNK] MjPN. (3.30)
For the variation of the scalar kinetic term, we start from the variation
8D, Myy) = Le(D,Myy) + &[Dy, D) My — |]—<5£:0)A”M75{0)BﬂM)MMN7 (3.31)

which induces the following variation of the kinetic term (3.5):
1 N . K-
5éo)£kin =5 eMELjN G OLE + ef MK Py F R OkE 4 e K Lok
. 1 .
- efMKL]ﬂMaK(MLNgﬂDaNgy) - Z( Sm/pJﬂLDU (g/)(raLgo.) . (332)

Upon integration by parts, the last term gives rise to

1 , 1 M
- 4_K' sﬂupgpaaLgo—Dy.}yL eﬂypgpaaLgafKLMMKN [Dw DD]MMN + a ‘E#ngpaal(gngNK]ﬂM]yN’ (333)

~ 480«

and evaluating the commutator of covariant derivatives yields terms that precisely cancel the three terms linear in ¥, and

G, m from (3.29), provided we choose

Bl

K=-. (3.34)

for the coupling constant of the CS term. Putting everything together, for the variation of the first three terms of the
Lagrangian (3.1) we find up to total derivatives

5£§0>(£EH + Les + Liin) = %e(MKL’//RS + 26885 = 2MMN Ky o ns) g T R Ok €
+ eMMN(jMMaNZf” — X" k0L (9 ONE)) + €”V/)8K§”fMNK5;(£)M5/<$)N- (3.35)
It remains to compare this variation to the noncovariant variation of the scalar potential (3.17) under (3.23). Noting that
Oe(Ox Myy) = &'D,(0xk My ) + &' D, My,
0:(Omguw) = Le(Omgu) + (Ou&”)DyGuy + 20mD (u& 9u)p» (3.36)

itis straightforward to see from (3.18) that the noncovariant variation of the potential due to &3 (Ox M) precisely cancels
the first line of (3.35). Upon further calculation, the remaining contributions from variation of the potential combine with
(3.35) into

o 1
520)5 = (eJ#M —2eD,(e7'dye) — D, (eg,,0mg") + EeDﬂgyp(‘?Mg””> MMNY,, &

+ e O fun € €5 (3.37)
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Using the definite expression (3.27) for J upy an explicit
calculation shows that the first line of (3.37) vanishes
identically. We have thus shown that under external diffeo-
morphisms (3.23), (3.24), the variation of the Lagrangian
(3.1) takes the compact form

80 L = e de funkERMEWN.  (3.38)
Just as in the SL(2, R) case we conclude that invariance of
the Lagrangian can be achieved by a further modification of
the vector field transformation rules according to [20]

:AM =80 AM 1228,

8By = 82 By + 28 (€00 + fan®0xEW™).  (3.39)

It is straightforward to see that the new contributions due to

the respective terms in £& /([,é)M and 5”5[(5}‘4 take the form of

an equation of motion symmetry and mutually cancel. The
last term in (3.39) precisely cancels the variation of (3.38).
Moreover, we note that the new variation 6:B,), continues
to be consistent with the constraints (2.7) that this field is
required to satisfy.

We may summarize the result of this subsection as
follows: the action (3.1) is invariant under external diffeo-
morphisms parametrized by & that on the internal and
external metric act according to (3.23), while their action on
the gauge fields follows from combining (3.24) and (3.39),

6§AﬂM = esﬂupébjﬂM + MMNg,uyaN§D9
A Ty - 1 v: K :p v yp
5§B;4M = €&, gD (gﬂaaMé: )—55 N Sk

- jMKg;waKE/' (340)
We have shown that invariance under external diffeomor-
phisms fixes all the relative coefficients in (3.1); the action
is thus uniquely determined by combining internal and
external generalized diffeomorphism invariance.

IV. EMBEDDING OF D = 11 SUPERGRAVITY

In the previous sections, we have constructed the unique
Egg)-covariant two-derivative action for the fields (1.2),
that is invariant under generalized internal and external
diffeomorphisms. It remains to establish its relation to D =
11 supergravity. Evaluating the field equations descending
from (3.1) for an explicit appropriate solution of the section
constraints (2.7), one may recover the full dynamics of D =
11 supergravity after rearranging the 11-dimensional fields
according to a 3 + 8 Kaluza-Klein split of the coordinates,
but retaining the full dependence on all 11 coordinates as
first explored in [18,19]. We have done this analysis in all
detail in the Eg-covariant construction [2] and repro-
duced the full and untruncated action of 11-dimensional
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supergravity from the Eq) EFT after various redefinitions
and redualizations of fields. Here, we keep the discussion
brief, sketching the essential steps for the embedding of
D =11 supergravity and concentrating on the novel
features of the Eg(g) case. The complete analysis is left
for future work.

The relevant solution of the section condition (1.1) is
related to the splitting of coordinates according to the
decomposition of the adjoint representation of Egg) under
its maximal GL(8) subgroup:

248—8_ @28/, 56, ®(1963),®56_,H28_,B8 5,
MY — 3™, Yo Y Y™ Yimns Y™ Y} (4.1)

with the subscripts referring to the grading with respect to
the GL(1) c GL(8) generator f,. The section constraints
(2.7) are solved by truncating the coordinate dependence of
all fields and gauge parameters to the coordinates in the

8+3:

O(xH, YM)—D(x#, y™). (4.2)
In order to see that this truncation provides a solution for
the section constraints (2.7), it is sufficient to observe that
in the decomposition of the 3875 analogous to (4.1), the
space of highest grading is an 85, which shows that

(P3g75)sn™" = 0. (4.3)
Accordingly, for the compensating gauge field constrained
by (2.7) we set all but the associated eight components B,,,,,
to zero,

Bﬂm -0, Bﬂ mn = 0,

B,," =0,

nk
B, — 0,

B i = 0, B, — 0, (4.4)

In order to recover the fields of D = 11 supergravity, we
first express the scalar matrix M,y = (VVT),,y in terms
of a coset-valued vielbein V € Eg(s)/SO(16) parametrized
in triangular gauge associated to the grading of (4.1) as [33]

V= exp [gb[(o)]Vg exXp [Ckmntécj_lln)}

X exp [eklmnpqrsCklmnpq[(+2)rs]exp {(pmﬂ(?y},)} . (45)
Here, t(g) is the Eg) generator associated to the GL(1)
grading of (4.1), Vg denotes a general element of the
SL(8) c GL(8) subgroup, whereas the 7., refer to the
Eg(g) generators of positive grading in (4.1).° The scalar
fields  cppk = Cppnig a0 Counkipg = Clmnkipg) have an
obvious origin in the internal components of the 11-
dimensional 3-form and 6-form. The scalar fields on the

5Explicit expressions for the matrix exponential (4.5) have
been worked out in [22].
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other hand represent the degree of freedom dual to the
Kaluza-Klein vector fields A,” in the standard decom-
position of the 11-dimensional metric. Hence, formally
they carry the degrees of the freedom of the dual graviton
[23-26] which can be written in more suggestive form by
defining
Cm,nl...ng = enl...ngfpm' (46)

Similarly, the gauge field A," is split according to the
decomposition (4.1) into
A n

pm

{AﬂM}_){Aym’ A/,t mn> Aﬂ kmnpgq»

Aﬂkmnpq’A”mn’A”m } (47)
Together with the surviving eight components from (4.4)
we count 256 vector fields which appear to largely exceed
the number of fields with possible 11-dimensional origin.
Rather, from 11 dimensions we expect only the Kaluza-
Klein vector fields A, together with gauge fields A, ,,,, and
Aykmnpg from the 3- and the 6-form, respectively.
Fortunately, many of the fields in (4.7) do not in fact enter
the Lagrangian (3.1). They are pure gauge as a consequence
of the invariance of the action under the vector shift
symmetry (2.22). Indeed, closer inspection of the covariant
derivatives (2.18) and the Chern-Simons couplings (3.8)
shows that out of (4.7) only the components {A,”, A, .
A, kmnpg» Ay} enter the Lagrangian. More precisely, the
covariant derivatives on the scalar fields evaluated in the
parametrization of (4.5) are of the schematic form

Duckmn = Duckmn + a[I<A|/4|mn]v
Dy, Climnpg = DuCrimnpg + A ulimnpg) + OkAulimCnpq)»
D/Aqom = Dﬂ(pm +o anAymn + Byma (48)

where we have denoted by D, the derivative covariantized
with the Kaluza-Klein vector field A,” with respect to
eight-dimensional internal diffeomorphisms. The unspeci-
fied terms in (4.8) refer to nonlinear couplings involving the
scalar fields cy,,, and cy,p,- Integrating out the gauge
field B, thus not only eliminates all the dual graviton
components ¢,, but simultaneously eliminates all vector
fields A,,," from the Lagrangian. In this process, it is
important that the scalar potential (3.17) does not depend
on the scalar fields ¢,,. Indeed, invariance of the
Lagrangian under the shift ¢,, - ¢,, + ¢, is a direct
consequence of the invariance under generalized diffeo-
morphisms (2.5) with parameter X,,. This illustrates once
more the role played by the additional covariantly con-
strained gauge symmetries X;,. Their presence and asso-
ciated gauge connection B, allow us to establish a
covariant duality relation involving the degrees of free-
dom from the 11-dimensional metric and subsequently to
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eliminate the dual graviton degrees of freedom ¢,, from the
Lagrangian.

In turn, this procedure of integrating out B, induces a
Yang-Mills-type coupling for the vector fields A,™ in a
standard mechanism of three-dimensional supergravities
[34]. To see this, note that the first line of the field
equations (3.26) precisely relates the Yang-Mills field
strength F,," to the scalar current as

(4.9)

F,"=—ee

pmo mn
wpl’" = —ee, ,M"" D’ @, + ...,

with M™" = (V8V8T)mn .
The resulting Lagrangian then only depends on the fields

{gyw Vg, Ckmn > Cklmnpq’ Aﬂm’ Ay mn» Ay kmnpq} (4 10)
corresponding to the various components of the 11-
dimensional metric, 3-form and 6-form. Its field equations
are proper combinations of the 11-dimensional field equa-
tions and the duality equation relating the 3-form and the
6-form. As an example, consider the field equations (3.26).
With the first line corresponding to (4.9), we observe that

the (,,,,) component of the second line gives rise to

fmn,NKaKgl(llyN =0= a[k(F\/uAmn] + ej/)mn]guy/)) =0,
(4.11)

which can be integrated to the duality equation

F;wmn + eg,uy/)jpmn = a[mB|yy|n]’ (412)
with an undetermined 2-form B,,. The latter can be
identified with the corresponding component of the 11-
dimensional 3-form. Indeed, further derivation 6"””8p of

(4.12) shows that it is compatible with the component

F

pvpm

= e€p€mn, 0, FM T+ (4.13)
of the 11-dimensional duality equation (3-form <> 6-form)
relating the field strength of B,,,, on the lhs to the 7-form
field strength F,, ., =70, c.,. ]+ ..., whose internal
derivative 0, F™" appears as a source in the field
equation for 0,j*,,. Equations (4.12) and (4.13) can
further be used to eliminate all components Cyppgs
Aykmnpq from the 11-dimensional 6-form from the equa-
tions, and the resulting equations of motion coincide with
those coming from D = 11 supergravity with its standard
field content.

On the level of the action, we get further confirmation
from inspecting the scalar potential (3.17). After para-
metrization (4.5) of the 248-bein, evaluation of (4.2), and
truncation of the external metric g, to a warped
Minkowski; geometry, the potential reduces to the sche-
matic form
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R(g) + F{,) + F(, (4.14)

Virune ~

reproducing the contributions from the D = 11 kinetic
terms and Einstein-Hilbert term in the internal directions in
terms of the fields from (4.10). This can be directly inferred
from the analysis of [22] which obtains for the first line of
(3.17) the expression (4.14) up to a term F3 dual gray TESEM-
bling a kinetic term for the dual graviton components (4.6).
The role of the third term in the full potential (3.17) (absent
in [22]) is precisely to cancel this unwanted contribution.
Indeed, the form of (3.18) shows that after imposing (4.2),
the extra term is of the form

jMNjNM - jmnjnm = MmlM”k(am(on)(akwl)
+. F(Ziual grav* (415)

Moreover, since the full potential (3.17) by construction
does not depend on ¢,,, this confirms the result (4.14).

In view of the duality equation (4.13), the last two terms
of the potential (4.14) both correspond to contributions
F%,,, and F2%, . from the original D = 11 3-form kinetic
term. This shows the necessity of the F7, 2 term in (4.14),
carrying the contribution of the 2-forms Bmm which are not
among the EFT fields in (4.10). The situation is different
for the graviton. The D = 11 metric gives rise to the
external and internal metric and the Kaluza-Klein vector
fields, all of which are already encoded in the Eg(g) EFT and
show up in (4.10). Thus, there is no room for the inclusion
of a dual graviton for this would double the number of
metric degrees of freedom. Consequently, the match with
D = 11 supergravity requires that the dual graviton term is
absent in (4.14), as observed here. We conclude that there is
no dual graviton problem. Summarizing, after rearranging
all fields and coordinates of the Egg) EFT, putting the
appropriate solution of the section constraint, the action
may eventually be matched to the one obtained by properly
parametrizing 11-dimensional supergravity in the standard
3 + 8 Kaluza-Klein split.

Let us finally mention that also IIB supergravity can be
embedded into the Eg(g) EFT (3.1). Just as for the E¢ () and
E;(7) EFT [1-3], there is another inequivalent solution to
the section conditions (2.7) that describes the embedding of
the full ten-dimensional 1IB theory [12,13] into the Egs)
EFT, generalizing the situation of type II double field
theory [37,38]. For Egg) the embedding of the IIB theory
goes along similar lines as the D =11 embedding
described above, with the relevant decomposition Egg) —
GL(7) x SL(2) given by

®An analogous solution of the SL(5) covariant section con-
dition, corresponding to some three-dimensional truncation of
type IIB, was discussed in the truncation of the theory to its
potential term [35]. For a more general discussion of section
constraints and type IIB solutions see [36].
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248—(7.1) 4@®(7.2) ,0(35". 1) ,®(21. 1),
S((43, N@(1,3)&(1, 1))y &(21",1)_,
(

©(35,1)_,8(7,2) (7', 1)_4 (4.16)
The section constraint is then solved by having all fields
depend on only the coordinates y” in the (7,1) 4 and
setting to zero all components of B, other than the B,,,, in
the (7',1)_,

V. Summary and Outlook

In this paper we have given the details of the Egs)
exceptional field theory. As discussed in detail in the main
text, the novel feature of this case is that the Egg) valued
generalized metric M,y encodes components of the dual
graviton but nevertheless allows for a consistent (in
particular gauge-invariant) dynamics thanks to the mecha-
nism of constrained compensator fields introduced in [20]
(that in turn is a duality-covariant extension of the proposal
in [39]). This mechanism requires the presence of cova-
riantly constrained gauge fields, which in the D = 3 case
feature among the gauge vectors entering the covariant
derivatives. These fields are unconventional, but seem to be
indispensable for a gauge and duality invariant formulation.
They are a generic feature of the exceptional field theories,
corresponding in each case to a subset of the (D — 2)-forms
with D denoting the number of external dimensions [2,3].

Studying the truncations of these theories to the internal
sector (i.e. neglecting all external coordinate dependence,
external metric, and p-form fields), it has been a puzzle for
a while how Ejgg generalized diffeomorphisms might be
implemented as a consistent structure, given that their
transformations do not close into an algebra [16,17]. In the
full EFT the resolution is remarkably simple. Also in this
case there is a gauge-invariant action (3.1) and nonclosure
of generalized diffeomorphisms simply indicates an addi-
tional symmetry: the covariantly constrained X,, gauge
transformations of (2.5). The associated gauge connection
B, then takes care of the dynamics of the dual graviton
degrees of freedom, just as the analogous (D — 2)-forms do
in higher dimensions.

We have restricted the analysis to the bosonic sector of
the theory, where generalized diffeomorphism invariance
has proved sufficient to uniquely determine the action. We
are confident that the extension to include fermions and the
construction of a supersymmetric action is straightforward
along the lines of the supersymmetric D =3 gauged
supergravity [21]. The fermions will transform as scalar
densities under generalized diffeomorphisms (2.5) and in
the spinor representations of the local “Lorentz group”
SO(1,2) x SO(16), as in [18,32]. For the E;7) EFT [3] the
full supersymmetric completion has recently been con-
structed in [40].

After completing the detailed construction of exceptional
field theory for Ed(d), d=06,7,8, the question arises
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whether one can go even further, perhaps starting with
the affine Kac-Moody group Eg). The pattern of com-
pensating gauge fields in this case would suggest a new
set of “covariantly constrained scalars” on top of the
infinite hierarchy of fields parametrizing the coset space
Eg(9)/ K (Eq(9)). We refrain from further speculations.
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APPENDIX : CLOSURE OF Egg, GENERALIZED
LIE DERIVATIVES

Before proving closure of the gauge transformations, it is
convenient to first derive the following lemma:

fRUVfUPKfVQLa(P ® 6Q)
= fRuv Uk fV210p ® 0g

= —(25f;(fQRL] +0® [k )0p ® Dg). (A1)

In order to verify this, we compute by repeated use of the
Jacobi identity

FRovfP 2oy = =P FUkvif Ve
— ok sV

1
== EfRUPfUQVfVKL

— fRuwfm VP Y 2. (A2)
Inserting this form back into (A.1) we can apply in each
term the Lemma (2.13), which then yields the right-hand
side of (A.1). This completes the proof.

Next, we verify closure of the gauge transformations on a
vector of weight 0,

[61,6,]VM = (8p,, + J5,) VY, (A3)
according to the effective parameters (2.17). We compute
for the left-hand side, first including only the A trans-
formations,

[61,8,] VM = AKX (ALOL VM — M1 fTP 0 0pALVY)
- fMNTfTKLaKAé (AfaPVN

- fNPUfURsakAfVP) - (1<2). (A4)

Some terms cancel directly under the (1<>2) antisymmet-
rization, and one finds
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(61 8]V = [Ag, A JEOL VM — Y fTP o AK O 0p AT VY
+ M TN py fUR s Ok AL ORATVE

- (1<2). (A5)
Here, we denoted by [,] the conventional Lie bracket. It
turns out, however, that the extra terms in the E bracket
(2.17), as compared to the Lie bracket, vanish in the
transport term due to the section constraints, so that the
transport term already has the desired form. We find it
convenient to work for now with a different but equivalent
effective parameter,

Al]‘g = A12\!8NA11M - 7(P3875)MKNLA12V8KA%

1
- _;,]MK;,]NLAQ/aKA{, — (1(—)2)

. (A6)

Comparing then with the form of the gauge transformation
with respect to this A, we read off for the remaining
terms

[61,8,]VM = AL o, VM — M\ (TP, 0p AL VY
+ fMNTfTPQaPAéaLAlQ vy
= TN fTF oPOK sdp(AF O ATV
+ N fTE LY pufUR 5O A5 DR ATVP

- (1+2), (A7)
where here and in the following we omit the representa-
tion label on the 3875 projector P, as it can always be
distinguished from its index structure. The terms in the first
line are the ones desired for closure, while the remaining
terms are extra. We next have to show that these are zero or
else can be brought to the form of X, gauge
transformations.

We investigate terms with JAOA and AOOA separately.
The latter originate from the term in the third line. Inserting
the projector (2.4) we compute

_7fMNTfTPQ |]:DQKRSaP (AgaKAf) VN

1
=~ 3 nrf T o255 — fV pOf usMAF 050 AS.
(A8)

Writing this out yields four terms, two with ff and two
with ffff. Using the Lemma (A.1) we can then reduce the
[fff terms to ff terms. After some algebra, one finds that
all ff terms cancel, proving that the AOOA structures in
(A.7) actually drop out. Next, we turn to the JAOA
structures. The strategy here is to implement the antisym-
metry in (1<>2) by decomposing the terms into structures

of the form 9 PA[2R8K>Af] and G[PAQROK] Af). In the former,
ffff terms can then be reduced to ff terms by means
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of (A.1). After some algebra, one then finds for the terms in
the second line of (A.7)
=TfMNrfTP oPOK RsOp NSO AT — (1452)
= =2fMrf T o0 AL O A

— My f s UK o T ASR DAY (A9)

Combing with the first term in the second line of (A.7) one
obtains

TP 00p AL AL — T My fTF GPOK o cDp AROKAS
—(1+2)
= 2™y TP o0 p AY D AT

— M fSUCF K e f o TOp AT DAY (A10)

Next, we have to simplify the terms in the fourth line of
(A.7). We first note that the antisymmetrization in (1<>2)

imposes an antisymmetrization of the 7, U indices in
fTK, fUR ¢ This structure can thus be written as

2 N f T LN pn fUR s Ok AS O AY

= =My fNurfTE L fUR 5Ok A5 O A, (Al1)
where we used the Jacobi identity for the contraction of the
first and third structure constants. In this form the anti-
symmetry in (1<>2) is manifest. Next, we can decompose
the index pair in OgA,0grA; into its symmetric and
antisymmetric part. Applying then for the symmetric part
the Lemma (A.1), one finds after some straightforward
algebra that these terms equal

(A1) = fMypfN o fT8 L fUR Ok A5 O A
— My fRN 5Ok A5 Oy AT
+ My RN L0k A5 Oy AT

— MK ROk A5 OR) AT (A12)
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Combining now (A.10) and (A.12) in the gauge algebra
(A.7) one finds that the ffff terms, after relabeling of
indices, combine into

— M f UK (Fsu2f of T = £5P2f ouT )0 A D AT VN
(A13)

The terms in parentheses can now be combined by the
Jacobi identity to give the structure f37¢f o, after which
it follows with the Lemma (2.13) that this term vanishes.
The ff terms combine to give the following final result

6. 8,]VM = 6,5, VM — MK b (fR 5Ok A5 Op) AT) VP
(A14)

As required, the extra term can be interpreted as a X, gauge
transformation, so that we established in total

[61,8,]VM =6y VM 4 65 VM,

Zom = _fNPQa(MAgaN)AlQ' (A15)
Note that the X, gauge parameter is manifestly covariantly
constrained in that its free index is always carried by a
derivative. This completes the proof of closure. Finally, we

may redefine these gauge parameters by trivial parameters
of the form (2.12),

1
)(K = ZfKPQAgAlg' (A16)

This brings the gauge algebra into the equivalent form
(2.17) that we used in the main text. We finally note that the
closure of ¥ and A transformations as indicated in (2.17)
follows by a straightforward computation that uses the
Lemma (2.13) for the constrained parameters X,,. This
concludes our proof of closure of the Eg(s) generalized Lie
derivatives.

[1] O. Hohm and H. Samtleben, Phys. Rev. Lett. 111, 231601
(2013).

[2] O. Hohm and H. Samtleben, Phys. Rev. D 89, 066016
(2014).

[3] O. Hohm and H. Samtleben, Phys. Rev. D 89, 066017
(2014).

[4] W. Siegel, Phys. Rev. D 48, 2826 (1993).

[5] C. Hull and B. Zwiebach, J. High Energy Phys. 09 (2009)
099.

[6] C. Hull and B. Zwiebach, J. High Energy Phys. 09 (2009)
090.

[7] O. Hohm, C. Hull, and B. Zwiebach, J. High Energy Phys.
07 (2010) O16.

[8] O. Hohm, C. Hull, and B. Zwiebach, J. High Energy Phys.
08 (2010) 008.

[9] O. Hohm and S. K. Kwak, J. Phys. A 44, 085404 (2011).

[10] O.Hohm, D. Liist, and B. Zwiebach, Fortschr. Phys. 61, 926

(2013).

066002-15


http://dx.doi.org/10.1103/PhysRevLett.111.231601
http://dx.doi.org/10.1103/PhysRevLett.111.231601
http://dx.doi.org/10.1103/PhysRevD.89.066016
http://dx.doi.org/10.1103/PhysRevD.89.066016
http://dx.doi.org/10.1103/PhysRevD.89.066017
http://dx.doi.org/10.1103/PhysRevD.89.066017
http://dx.doi.org/10.1103/PhysRevD.48.2826
http://dx.doi.org/10.1088/1126-6708/2009/09/099
http://dx.doi.org/10.1088/1126-6708/2009/09/099
http://dx.doi.org/10.1088/1126-6708/2009/09/090
http://dx.doi.org/10.1088/1126-6708/2009/09/090
http://dx.doi.org/10.1007/JHEP07(2010)016
http://dx.doi.org/10.1007/JHEP07(2010)016
http://dx.doi.org/10.1007/JHEP08(2010)008
http://dx.doi.org/10.1007/JHEP08(2010)008
http://dx.doi.org/10.1088/1751-8113/44/8/085404
http://dx.doi.org/10.1002/prop.201300024
http://dx.doi.org/10.1002/prop.201300024

OLAF HOHM AND HENNING SAMTLEBEN

[11] E. Cremmer, B. Julia, and J. Scherk, Phys. Lett. B 76, 409
(1978).

[12] J. H. Schwarz and P. C. West, Phys. Lett. B 126, 301 (1983).

[13] P.S. Howe and P. C. West, Nucl. Phys. B238, 181 (1984).

[14] E. Cremmer and B. Julia, Nucl. Phys. B159, 141 (1979).

[15] P.C. West, Phys. Lett. B 575, 333 (2003).

[16] A. Coimbra, C. Strickland-Constable, and D. Waldram, J.
High Energy Phys. 02 (2014) 054.

[17] D.S. Berman, M. Cederwall, A. Kleinschmidt, and D. C.
Thompson, J. High Energy Phys. 01 (2013) 064.

[18] H. Nicolai, Phys. Lett. B 187, 316 (1987).

[19] K. Koepsell, H. Nicolai, and H. Samtleben, Classical
Quantum Gravity 17, 3689 (2000).

[20] O. Hohm and H. Samtleben, J. High Energy Phys. 09 (2013)
080.

[21] H. Nicolai and H. Samtleben, Phys. Rev. Lett. 86, 1686
(2001).

[22] H. Godazgar, M. Godazgar, and M. J. Perry, J. High Energy
Phys. 06 (2013) 044.

[23] T. Curtright, Phys. Lett. B 165, 304 (1985).

[24] C. Hull, Nucl. Phys. B583, 237 (2000).

[25] P.C. West, Classical Quantum Gravity 18, 4443 (2001).

[26] C. Hull, J. High Energy Phys. 09 (2001) 027.

[27] X. Bekaert, N. Boulanger, and M. Henneaux, Phys. Rev. D
67, 044010 (2003).

PHYSICAL REVIEW D 90, 066002 (2014)

[28] X. Bekaert, N. Boulanger, and S. Cnockaert, J. Math. Phys.
(N.Y.) 46, 012303 (2005).

[29] K. Koepsell, H. Nicolai, and H. Samtleben, J. High Energy
Phys. 04 (1999) 023.

[30] B. de Wit, H. Nicolai, and H. Samtleben, J. High Energy
Phys. 02 (2008) 044.

[31] O. Hohm and H. Samtleben, Phys. Rev. D 88, 085005
(2013).

[32] N. Marcus and J.H. Schwarz, Nucl. Phys. B228, 145
(1983).

[33] E. Cremmer, B. Julia, H. Lu, and C. N. Pope, Nucl. Phys.
B523, 73 (1998).

[34] H. Nicolai and H. Samtleben, Nucl. Phys. B668, 167 (2003).

[35] C.D. Blair, E. Malek, and J.-H. Park, J. High Energy Phys.
01 (2014) 172.

[36] C. Strickland-Constable, arXiv:1310.4196.

[37] O. Hohm, S. K. Kwak, and B. Zwiebach, Phys. Rev. Lett.
107, 171603 (2011).

[38] O. Hohm, S. K. Kwak, and B. Zwiebach, J. High Energy
Phys. 09 (2011) 013.

[39] N. Boulanger and O. Hohm, Phys. Rev. D 78, 064027
(2008).

[40] H. Godazgar, M. Godazgar, O. Hohm, H. Nicolai, and
H. Samtleben, arXiv:1406.3235 [J. High Energy Phys.
(to be published)].

066002-16


http://dx.doi.org/10.1016/0370-2693(78)90894-8
http://dx.doi.org/10.1016/0370-2693(78)90894-8
http://dx.doi.org/10.1016/0370-2693(83)90168-5
http://dx.doi.org/10.1016/0550-3213(84)90472-3
http://dx.doi.org/10.1016/0550-3213(79)90331-6
http://dx.doi.org/10.1016/j.physletb.2003.09.059
http://dx.doi.org/10.1007/JHEP02(2014)054
http://dx.doi.org/10.1007/JHEP02(2014)054
http://dx.doi.org/10.1007/JHEP01(2013)064
http://dx.doi.org/10.1016/0370-2693(87)91102-6
http://dx.doi.org/10.1088/0264-9381/17/18/308
http://dx.doi.org/10.1088/0264-9381/17/18/308
http://dx.doi.org/10.1007/JHEP09(2013)080
http://dx.doi.org/10.1007/JHEP09(2013)080
http://dx.doi.org/10.1103/PhysRevLett.86.1686
http://dx.doi.org/10.1103/PhysRevLett.86.1686
http://dx.doi.org/10.1007/JHEP06(2013)044
http://dx.doi.org/10.1007/JHEP06(2013)044
http://dx.doi.org/10.1016/0370-2693(85)91235-3
http://dx.doi.org/10.1016/S0550-3213(00)00323-0
http://dx.doi.org/10.1088/0264-9381/18/21/305
http://dx.doi.org/10.1088/1126-6708/2001/09/027
http://dx.doi.org/10.1103/PhysRevD.67.044010
http://dx.doi.org/10.1103/PhysRevD.67.044010
http://dx.doi.org/10.1063/1.1823032
http://dx.doi.org/10.1063/1.1823032
http://dx.doi.org/10.1088/1126-6708/1999/04/023
http://dx.doi.org/10.1088/1126-6708/1999/04/023
http://dx.doi.org/10.1088/1126-6708/2008/02/044
http://dx.doi.org/10.1088/1126-6708/2008/02/044
http://dx.doi.org/10.1103/PhysRevD.88.085005
http://dx.doi.org/10.1103/PhysRevD.88.085005
http://dx.doi.org/10.1016/0550-3213(83)90402-9
http://dx.doi.org/10.1016/0550-3213(83)90402-9
http://dx.doi.org/10.1016/S0550-3213(98)00136-9
http://dx.doi.org/10.1016/S0550-3213(98)00136-9
http://dx.doi.org/10.1016/S0550-3213(03)00569-8
http://dx.doi.org/10.1007/JHEP01(2014)172
http://dx.doi.org/10.1007/JHEP01(2014)172
http://arXiv.org/abs/1310.4196
http://dx.doi.org/10.1103/PhysRevLett.107.171603
http://dx.doi.org/10.1103/PhysRevLett.107.171603
http://dx.doi.org/10.1007/JHEP09(2011)013
http://dx.doi.org/10.1007/JHEP09(2011)013
http://dx.doi.org/10.1103/PhysRevD.78.064027
http://dx.doi.org/10.1103/PhysRevD.78.064027
http://arXiv.org/abs/1406.3235
http://arXiv.org/abs/1406.3235

