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We develop exceptional field theory for E8ð8Þ, defined on a (3þ 248)-dimensional generalized spacetime
with extended coordinates in the adjoint representation of E8ð8Þ. The fields transform under E8ð8Þ
generalized diffeomorphisms and are subject to covariant section constraints. The bosonic fields include
an “internal” dreibein and an E8ð8Þ-valued “zweihundertachtundvierzigbein” (248-bein). Crucially, the
theory also features gauge vectors for the E8ð8Þ E bracket governing the generalized diffeomorphism algebra
and covariantly constrained gauge vectors for a separate but constrained E8ð8Þ gauge symmetry. The
complete bosonic theory, with a novel Chern-Simons term for the gauge vectors, is uniquely determined by
gauge invariance under internal and external generalized diffeomorphisms. The theory consistently
comprises components of the dual graviton encoded in the 248-bein. Upon picking particular solutions of
the constraints the theory reduces to D ¼ 11 or type IIB supergravity, for which the dual graviton becomes
pure gauge. This resolves the dual graviton problem, as we discuss in detail.
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I. INTRODUCTION

In this paper we present the details of the recently
announced “exceptional field theory” (EFT) [1] for the
group E8ð8Þ, complementing the construction for E6ð6Þ and
E7ð7Þ given in [2] and [3], respectively. The approach is a
generalization of double field theory (DFT) [4–9],1 with the
goal to render the dynamics of the complete D ¼ 11
supergravity [11], and that of type IIB [12,13], covariant
under the exceptional groups that are known to appear
under dimensional reduction [14]. We refer to the
Introduction of [2] for a more detailed outline of the
general ideas, previous approaches, and extensive refer-
ences. Here we will mainly present and discuss the novel
aspects relevant for the group E8ð8Þ which brings in some
distinctive new features as compared to the formulations for
the smaller exceptional groups.
The E8ð8Þ EFT is based on a generalized ð3þ 248Þ-

dimensional spacetime, with the “external” spacetime
coordinates xμ and “internal” coordinates YM in the adjoint
representation 248 of E8ð8Þ, with dual derivatives ∂M.

2 The
dependence of all fields on the extended 248 coordinates
YM is restricted by E8ð8Þ-covariant section constraints
[16,17] that project out subrepresentations in the tensor
product 248 ⊗ 248,

ðP1þ248þ3875ÞMN
KL∂K ⊗ ∂L ¼ 0: ð1:1Þ

As in double field theory, this constraint is meant to hold
on any fields, parameters, and their products. This con-
straint has nontrivial solutions, which break E8ð8Þ to GLð8Þ
or GLð7Þ × SLð2Þ, for which the EFT reduces to D ¼ 11
supergravity or type IIB, respectively, for appropriate
reformulations of these theories, as pioneered in [18,19]
for E8ð8Þ.
The bosonic field content of the E8ð8Þ EFT is given by

feμa;VM
M; Aμ

M; BμMg: ð1:2Þ

It incorporates an external frame field (“dreibein”) eμa,
μ ¼ 0; 1; 2, and an internal generalized frame field
(“zweihundertachtundvierzigbein”) VM

M, M ¼ 1;…; 248,
parametrizing the coset space E8ð8Þ=SOð16Þ. From the
latter, we may construct the “generalized metric” as
MMN ¼ ðVVTÞMN . Crucially, the theory also requires
the presence of generalized gauge connections Aμ

M and
BμM, in order to consistently describe the complete degrees
of freedom and dynamics of D ¼ 11 supergravity (neces-
sarily including also some of the dual fields). The theory is
invariant under gauge symmetries with parameters ΛM, ΣM
acting as

LðΛ;ΣÞVM ≡ ΛK∂KVM − 60PM
N
K
L∂KΛLVN

þ λ∂NΛNVM − ΣLfLMNVN; ð1:3Þ

on avectorVM ofweight λ. TheΛM transformations generate
the generalized diffeomorphisms on the 248-dimensional
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space, following the definition for the smaller exceptional
groups [16] with P denoting the projector onto the adjoint
representation. The ΣM gauge symmetry is a new feature of
the E8ð8Þ EFT and describes a separate E8ð8Þ gauge sym-
metry, however, with parameters ΣM that are “covariantly
constrained.” This means that they obey the same algebraic
constraints as the derivatives in (1.1), for instance
PMN

KLΣK ⊗ ∂L ¼ 0, etc. As a result, most of the compo-
nents vanish after explicitly solving the section constraints,
and the E8ð8Þ gauge symmetry is much smaller than is
apparent from (1.3) [as it should be, for otherwise all fields
encoded in the E8ð8Þ=SOð16Þ coset space would be pure
gauge]. This additional gauge symmetry is necessary for
consistency. For instance, the generalized diffeomorphisms
in (1.3) with parameter ΛM do not close into themselves
which has been recognized as an obstacle in [16,17]. They
do however close in presence of the additional covariantly
constrained gauge symmetry that constitutes a separate
invariance of the theory. In other words, invariance of an
action under generalized diffeomorphisms ΛM implies its
invariance under further ΣM gauge transformations, as we
shall explicitly confirm. This type of gauge structure
has first been revealed in the baby example of an SLð2Þ
covariant formulation of four-dimensional Einstein
gravity [20].
The constraints on the gauge parameter ΣM imply that

also the associated connection BμM is covariantly con-
strained in the same sense, i.e. it satisfies PMN

KLBμK ⊗
∂L ¼ 0, etc. Such covariantly constrained compensating
gauge fields are a generic feature of the exceptional field
theories and show up among the ðD − 2Þ-forms (with D
counting the number of external dimensions). Therefore in
D ¼ 5, these fields do not even enter the Lagrangian [2], in
D ¼ 4 they appear among the 2-forms with Stückelberg
coupling to the Yang-Mills field strengths [3], while in
D ¼ 3 they feature among the vector fields and thus
directly affect the algebra of gauge transformations (1.3).
In all cases, these constrained gauge fields are related to the
appearance of the dual gravitational degrees of freedom as
we discuss shortly.
The full E8ð8Þ-covariant action is given by

S ¼
Z

d3xd248Y e

�
R̂þ e−1LCS

þ 1

240
gμνDμMMNDνMMN − VðM; gÞ

�
; ð1:4Þ

and closely resembles the structure of three-dimensional
gauged supergravities [21]. The various terms comprise a
(covariantized) Einstein-Hilbert term, a Chern-Simons-type
term for the gauge vectors, a covariantized kinetic term for
the E8ð8Þ=SOð16Þ coset fields, and a “potential” V. The
Chern-Simons term is a topological term that is needed to
ensure the proper on-shell duality relations between

“scalars” and “vectors.” The potential depends only on
internal derivatives ∂M and can be written in a manifestly
E8ð8Þ-covariant form as follows:

VðM; gÞ ¼ −
1

240
MMN∂MMKL∂NMKL

þ 1

2
MMN∂MMKL∂LMNK

þ 1

7200
fNQ

PfMS
RMPK∂MMQKMRL∂NMSL

−
1

2
g−1∂Mg∂NMMN −

1

4
MMNg−1∂Mgg−1∂Ng

−
1

4
MMN∂Mgμν∂Ngμν: ð1:5Þ

Its form is determined such that it leads to a gauge-invariant
action both with respect to the ΛM and ΣM gauge
transformations of (1.3). Previous attempts to construct
an E8ð8Þ-covariant formulation (of truncations of D ¼ 11
supergravity) missed the third line of (1.5) involving the
explicit E8ð8Þ structure constants fMN

K [22]. This term is
indispensable for gauge invariance of the potential V and
for the match withD ¼ 11 supergravity as we shall explain.
All four terms in the action (1.4) are separately gauge
invariant with respect to Λ and Σ, but the theory is also
invariant under nonmanifest external diffeomorphisms of
the xμ generated by a parameter ξμðx; YÞ. This symmetry
fixes all the relative coefficients in (1.4), such that this is the
unique two-derivative action with all the required
symmetries.
We close the Introduction by a discussion of how the

above EFT resolves what is often referred to as the “dual
graviton problem.” This problem comes about because the
E8ð8Þ coset representative MMN depends on components
φm, m ¼ 1;…; 8, that in three dimensions are dual to the
Kaluza-Klein vectors Aμ

m. As the latter originate from
components of the D ¼ 11 metric, this amounts to includ-
ing in the theory components of a “dual graviton” [23–26]
at the full nonlinear level, something that is considered
impossible on the grounds of the no-go theorems in
[27,28]. In EFT this problem is resolved due to the presence
of the extra E8ð8Þ gauge symmetry from (1.3). Solving the
section constraints (1.1) such that the theory reduces to
D ¼ 11 supergravity, this covariantly constrained gauge
symmetry reduces to a Stückelberg shift symmetry with
eight parameters, which can be used to gauge away all the
dual graviton components φm. Consequently, in the gauge-
invariant potential (1.5) all components φm drop out upon
solving the section constraint, which is necessary for the
theory to match D ¼ 11 supergravity. The same conclu-
sions hold for the solution corresponding to type IIB. Let us
finally note that although the dual graviton components φm
are pure gauge for the D ¼ 11 and D ¼ 10 solutions,
once we consider strict dimensional reduction to D ¼ 3,
the φm are propagating fields among the scalars of the
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E8ð8Þ=SOð16Þ coset space. Indeed, in this case the Chern-
Simons term implies that Bμm is pure gauge, so the extra
gauge symmetry can be fixed by gauging Bμm away.
This paper is organized as follows. In Sec. II we

introduce the E8ð8Þ generalized Lie derivatives and the
covariantly constrained E8ð8Þ gauge symmetry. Next, we
introduce gauge vectors for these symmetries and define
covariant derivatives and field strengths. In Sec. III we
present the various terms in the action and prove its gauge
invariance under internal and external diffeomorphisms. In
particular, we fix all relative coefficients in the action (1.4)
by requiring invariance under external diffeomorphisms.
Finally, in Sec. IV, we discuss the match with D ¼ 11
supergravity and type IIB. Specifically, we discuss how the
dual graviton (problem) disappears. We conclude in Sec. V.
Some details on the proof of closure of the E8ð8Þ generalized
Lie derivatives are presented in the Appendix.

II. E8ð8Þ GAUGE STRUCTURE

In this section we introduce E8ð8Þ-covariant generalized
Lie derivatives, which close according to an E bracket, up
to a separate covariantly constrained E8ð8Þ gauge symmetry.
This mean that the E8ð8Þ gauge parameter is subject to the
same section constraints as the extended derivatives. Then
we introduce gauge fields Aμ

M for the E bracket and
covariantly constrained gauge fields BμM for E8ð8Þ.

A. E8ð8Þ generalized lie derivatives

We start by recalling a few generalities of E8ð8Þ. Its Lie
algebra is 248 dimensional, and the adjoint representation
is the smallest fundamental representation. We denote the
generators by ðtMÞNK ¼ −fMN

K, with structure constants
fMN

K , and adjoint indicesM;N ¼ 1;…; 248. The maximal
compact subgroup is SO(16), under which E8ð8Þ decom-
poses as 248 → 120⊕128. There is an invariant sym-
metric tensor ηMN, the Cartan-Killing form, which we
normalize by

ηMN ¼ 1

60
trðtMtNÞ ¼ 1

60
fMK

LfNL
K; ð2:1Þ

and which we freely use to raise and lower adjoint indices.
Given this invariant metric, the tensor product of the
adjoint with the coadjoint representation is equivalent to
248 ⊗ 248 and decomposes as follows:

248 ⊗ 248 → 1⊕248⊕3875⊕27000⊕30380: ð2:2Þ

In particular, it contains the adjoint representation, and in
the following we need the corresponding projector:

PM
N
K
L ¼ 1

60
fMNPfPKL

¼ 1

30
δMðNδ

K
LÞ −

7

30
ðP3875ÞMK

NL

−
1

240
ηMKηNL þ 1

120
fMK

PfPNL: ð2:3Þ

Here we used Eqs. (2.15) in [29], and the projector onto the
3875 which is given by

ðP3875ÞMK
NL ¼ 1

7
δMðNδ

K
LÞ −

1

56
ηMKηNL −

1

14
fPN ðMfPLKÞ:

ð2:4Þ

We refer to [19,29] for other useful E8ð8Þ identities.
Let us now discuss the generalized spacetime and

geometry based on E8ð8Þ. We introduce 248 coordinates
YM in the adjoint representation, but we subject all
functions (i.e. including all fields and gauge parameters
and all their products) to the covariant section constraints
(1.1). These are necessary in order for the symmetries of the
theory to close into an algebra. These symmetries comprise
generalized diffeomorphisms on the 248-dimensional
space, together with a covariantly constrained E8ð8Þ gauge
symmetry. Specifically, denoting by ΛM and ΣM the
parameters for generalized diffeomorphisms and con-
strained E8ð8Þ, respectively, we define the generalized Lie
derivative on a vector by

δVM ¼ LðΛ;ΣÞVM

≡ ΛK∂KVM − 60PM
N
K
L∂KΛLVN þ λðVÞ∂NΛNVM

− ΣLfLMNVN: ð2:5Þ

Analogously, one may define the generalized Lie derivative
acting on tensors with an arbitrary number of adjoint E8ð8Þ
indices. The second line of (2.5) defines the generalized Lie
derivative with respect to ΛM, in accordance with the
definition for the smaller exceptional groups [16,17], where
we also allowed for a general density weight λ. The third
line is a novel feature of the E8ð8Þ EFT. It defines the
covariantly constrained E8ð8Þ action, i.e. describes an E8ð8Þ
rotation with a parameter ΣM which itself satisfies the same
algebraic conditions (1.1) as the partial derivatives.
Concretely, we require that

ðP1þ248þ3875ÞMN
KLCK ⊗ C0

L ¼ 0;

for CM;C0
M ∈ f∂M; BμM;ΣMg;

ð2:6Þ

where BμM denotes the gauge connection associated to the
ΣM symmetry of (2.5). This means that for any expression
containing two objects, CM and C0

N , from the list above, the
part in the tensor product that is projected out by this
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constraint can be consistently set to zero. Explicitly, we
have for the individual irreducible representations,

ηMNCM ⊗ C0
N ¼ 0; fMNKCN ⊗ C0

K ¼ 0;

ðP3875ÞMN
KLCK ⊗ C0

L ¼ 0: ð2:7Þ

This implies in particular ηMN∂M∂NA ¼ ∂M∂MA ¼ 0, but
also ∂MA∂MB ¼ 0, for arbitrary functions A;B, and rela-
tions like fMNKBμN∂KA ¼ 0 involving the covariantly
constrained gauge field BμM. These relations imply that
for any solution of the section constraint only a subset of
coordinates among the YM survives, while also only the
“corresponding” components of BμM are present, as we
will explain in more detail below.
Before determining the gauge algebra satisfied by (2.5)

we briefly discuss that the above gauge transformations
(2.5) possess “trivial” gauge parameters. For these param-
eters the action of the associated generalized Lie derivative
on any field vanishes by virtue of the section constraints
(2.7). The following parameters are trivial in this sense,

ΛM ≡ ηMNΩN; ΩN covariantly constrained à la ð2.6Þ;
ΛM ≡ ðP3875ÞMK

NL∂Kχ
NL: ð2:8Þ

Here, in the first line, ΩN is covariantly constrained in the
sense that it satisfies the same constraints as the CN in (2.6),
(2.7). E.g. choosing ΩN ¼ ∂Nχ we infer that ΛM ¼ ∂Mχ is
a trivial parameter, in analogy to DFT. For the first
parameter in (2.8) it is straightforward to see with (2.4)
and the constraints (2.7) that the generalized Lie derivative
(2.5) is zero on fields. As an illustration for the use of
constraints, we prove explicitly the triviality of the second
parameter in (2.8). We first note that in this case the
transport term and density term (i.e. the first and third
terms) in (2.5) immediately vanish as a consequence of the
third constraint in (2.7). Thus, the action of the generalized
Lie derivative reads

LΛVM ¼ −60PM
N
ðP

QðP3875ÞRÞQST∂P∂Rχ
STVN

¼ −fMNXðfXðPQðP3875ÞRÞQSTÞ∂P∂Rχ
STVN: ð2:9Þ

Next, we use that P3875 is an invariant tensor under the
adjoint action of E8ð8Þ, as is manifest from its definition
(2.4). This means

fXðPQðP3875ÞRÞQST − fXQðSðP3875ÞPRTÞQ ¼ 0: ð2:10Þ

Thus, we can replace the structure in (2.9) by the second
term in here. Being contracted with ∂P∂R it then follows
from the third constraint in (2.7) that this vanishes,
completing the proof that the associated generalized Lie
derivative acts trivially.

Next, we discuss a novel phenomenon for the E8ð8Þ case:
there are combinations of parameters Λ and Σ whose
combined action is trivial on all the fields. Specifically,
the generalized Lie derivative (2.5) with parameters

ΛM ¼ fMN
KΩN

K;

ΩN
K covariantly constrained in first index;

ΣM ¼ ∂MΩN
N þ ∂NΩM

N; ð2:11Þ

acts trivially for a general tensor ΩN
K that is covariantly

constrained in the first index in the sense of (2.6), (2.7). An
example is given by ΩM

N ¼ ∂Mχ
N with arbitrary χN, so we

conclude as a special case of (2.11) that

ΛM ≡ fMN
K∂Nχ

K; ΣM ≡ 2∂M∂Nχ
N ð2:12Þ

has trivial action on all the fields. In order to verify the
triviality of (2.11) let us first prove the following useful
lemma:

fPMKfPNLCK ⊗ C0
L ¼ CM ⊗ C0

N þ CN ⊗ C0
M; ð2:13Þ

for any covariantly constrained objects CM, C0
M. To prove

this we compute

fPMKfPNLCK ⊗ C0
L

¼ ðfPM ½KfPNL� þ fPMðKfPNLÞÞCK ⊗ C0
L

¼
�
−
1

2
fPKLfPNM þ 2δKðMδ

L
NÞ

−
1

4
ηMNη

KL − 14ðP3875ÞKLMN

�
CK ⊗ C0

L

¼ CM ⊗ C0
N þ CN ⊗ C0

M: ð2:14Þ

In the second line we used the Jacobi identity and rewrote
the symmetrized ff term in terms of the 3875 projector
(2.4). In the final step we used the section constraints (2.7).
This completes the proof of (2.13). It is now straightfor-
ward to verify the triviality of (2.11). First, the transport and
density terms vanish immediately as a consequence of the
second constraint in (2.7). The remaining projector term, in
the first form of the projector in (2.4), can then be
simplified by (2.13) to show that this cancels the Σ terms
from (2.11). Another immediate consequence of (2.13) is
that for a generalized vector ΩM (of weight 0) that is
covariantly constrained, the generalized Lie derivative
reduces to

δΛΩM ¼ ΛN∂NΩM þ ∂NΛNΩM þ ∂MΛNΩN; ð2:15Þ

which will be used below.
We close this section by discussing closure of the gauge

transformations. In contrast to the analogous structures for
EnðnÞ with n ≤ 7, the generalized Lie derivatives do not
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close by themselves, but only up to (constrained) local E8ð8Þ
gauge transformations. Specifically, one finds closure

½δðΛ1;Σ1Þ; δðΛ2;Σ2Þ� ¼ δ½ðΛ2;Σ2Þ;ðΛ1;Σ1Þ�E ;

½ðΛ2;Σ2Þ; ðΛ1;Σ1Þ�E ≡ ðΛ12;Σ12Þ; ð2:16Þ

with the effective parameters

ΛM
12 ≡ 2ΛN

½2∂NΛM
1� − 14ðP3875ÞMK

NLΛ
N
½2∂KΛL

1�

−
1

4
ηMKηNLΛN

½2∂KΛL
1� þ 1

4
fMN

P∂NðfPKLΛK
2 Λ

L
1 Þ;

Σ12M ≡ −2Σ½2M∂NΛN
1� þ 2ΛN

½2∂NΣ1�M

− 2ΣN
½2∂MΛ1�N þ fNKLΛK

½2∂M∂NΛL
1�: ð2:17Þ

Note that here is an ambiguity in the form of the effective
gauge parameters, because they can be redefined by trivial
gauge parameters, (2.8) or (2.11), without spoiling closure.
In particular, the term in the second line of Λ12 could have
been dropped, using (2.11), at the cost of extra terms in Σ12.
The form here has been chosen for later convenience. We
stress again that closure only holds because of the separate
(covariantly constrained) E8ð8Þ gauge symmetry. Note that
this is a rather nontrivial statement, because the effective
Σ12 parameter needs to be compatible with the covariant
section constraints (2.7). The compatibility is manifest
from the form in (2.17), because in each term the free index
M is carried by a constrained object, ΣM or ∂M. As this
interplay between generalized diffeomorphisms and a
separate but constrained gauge symmetry is somewhat
unconventional we prove gauge closure (2.16), (2.17)
explicitly in the Appendix. We finally note that the gauge

algebra of Σ transformations with themselves is Abelian,
for the effective parameter ΣM

12 ¼ fMNKΣ2NΣ1K is actually
zero by the section constraints (2.7).

B. Gauge fields for E8ð8Þ E-bracket

We now introduce gauge fields for the local symmetries
generated by ΛM and ΣM. Specifically, these parameters are
functions of xμ and YM, requiring in particular covariant
derivatives Dμ for the external coordinates. Denoting the
gauge fields for the ΛM symmetries by Aμ

M and those for
the ΣM symmetries by BμM, the covariant derivative on any
tensor with an arbitrary number of adjoint E8ð8Þ indices is
defined by

Dμ ≡ ∂μ − LðAμ;BμÞ; ð2:18Þ

where the generalized Lie derivative L acts according to the
representation the tensor field lives in. For instance, using
(2.5) one finds its action on a vector of zero weight

DμVM ¼ ∂μVM − Aμ
K∂KVM þ 60PM

N
K
L∂KAμ

LVN

þ Bμ
LfMNLVN: ð2:19Þ

The transformation rules for A and B are determined by the
requirement that the covariant derivatives (2.18) transform
covariantly. In general, their gauge transformations can be
computed from

ðδðΛ;ΣÞA; δðΛ;ΣÞBÞ≡ ð∂Λ; ∂ΣÞ þ ½ðΛ;ΣÞ; ðA;BÞ�E; ð2:20Þ

with the E bracket defined by (2.16). Using (2.17) one
computes for the components

δðΛ;ΣÞAμ
M ¼ DμΛM − ∂NAμ

NΛM þ 7P3875
MN

KLðΛK∂NAμ
L þ Aμ

K∂NΛLÞ

− Bμ
LfMNLΛN þ 1

8
ηMNηKLðΛK∂NAμ

L þ AK∂NΛLÞ þ 1

4
fMN

PfPKLð∂NΛKAμ
L − ΛK∂NAμ

LÞ;

δðΛ;ΣÞBμM ¼ DμΣM þ ∂NðBμMΛNÞ þ Bμ
N∂MΛN þ 1

2
fNKLðΛK∂M∂NAμ

L − Aμ
K∂M∂NΛLÞ: ð2:21Þ

Note in particular, that the gauge field A and its parameterΛ
carries weight 1 [and we have explicitly spelled out the
weight term in (2.21)], whereas B and Σ carry weight 0.
Because of the existence of trivial gauge parameters,

cf. (2.8) and (2.11) discussed in the previous subsection, the
gauge transformations of A and B are determined from the
covariance of (2.18) only up to redefinitions by trivial
parameters. Specifically, the covariant derivatives (2.18) are
invariant under the following vector shift transformations

δAμ
M ¼ ∂MΞμ þ ðP3875ÞMK

NL∂KΞμ
NL
3875

þ fMN
KΞμN

K;

δBμM ¼ ∂MΞμN
N þ ∂NΞμM

N; ð2:22Þ

with ΞμM
N constrained in the first index. We now redefine

the gauge transformations of A and B by adding trivial
gauge transformations of this form, with parameters

Ξμ
KL
3875

¼ −7ðP3875ÞKLPQAμ
PΛQ;

Ξμ ¼ −
1

8
Aμ

KΛK;

ΞμN
K ¼ −BμNΛK þ 1

4
fKPQΛP∂NAμ

Q

−
1

4
fKPQ∂NΛPAμ

Q: ð2:23Þ
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The gauge transformations (2.21) then take the more
compact form

δAμ
M¼Dð1Þ

μ ΛM;

δBμM¼Dð0Þ
μ ΣM−ΛN∂MBμNþfNKLΛK∂M∂NAμ

L; ð2:24Þ

where we have indicated the respective weights by the
superscripts DðλÞ

μ . This is the final form of the gauge
transformations that we use in the following.
Let us now turn to the definition of gauge covariant

curvatures or field strengths. Part of these curvatures can be
read off from the commutator of covariant derivatives,

½Dμ; Dν�VM ¼ −LðFμν;GμνÞV
M: ð2:25Þ

More precisely, this determines the field strengths up to
trivial terms that drop out of the generalized Lie derivatives,
for which we find

Fμν
M ¼ 2∂ ½μAν�M − 2A½μN∂NAν�M

þ 14ðP3875ÞMN
KLA½μ

K∂NAν�L þ 1

4
A½μN∂MAν�N

−
1

2
fMN

PfPKLA½μK∂NAν�L;

GμνM ¼ 2D½μBν�M − fNKLA½μK∂M∂NAν�L: ð2:26Þ

These field strengths do not transform covariantly, but the
failure of covariance is of a trivial form that can be
compensated by adding 2-form couplings and assigning
to them appropriate gauge transformations in the general
spirit of the p-form tensor hierarchy [30]. We thus
introduce the fully covariant curvatures

F μν
M ≡ Fμν

M þ 14ðP3875ÞMN
KL∂NCμν

KL
ð3875Þ

þ 1

4
∂MCμν þ 2fMN

KCμνN
K;

GμνM ¼ GμνM þ 2∂NCμνM
N þ 2∂MCμνN

N; ð2:27Þ

with 2-form fields Cμν
KL
ð3875Þ, Cμν, and CμνM

N , where as in

(2.11) the 2-form CμνM
N is covariantly constrained in the

first index. The general variation of these curvatures takes a
covariant form,

δF μν
M ¼ 2Dð1Þ

½μ δAν�M þ 14ðP3875ÞMN
KL∂NΔCμν

KL
ð3875Þ

þ 1

4
∂MΔCμν þ 2fMN

KΔCμνN
K;

δGμνM ¼ 2Dð0Þ
½μ δBν�M − 2∂MB½μNδAν�N

− 2fNKLδA½μK∂M∂NAν�L þ 2∂NΔCμνM
N

þ 2∂MΔCμνN
N; ð2:28Þ

where we defined the covariant variations

ΔCμν
KL
ð3875Þ ≡ δCμν

KL
ð3875Þ þ A½μKδAν�L;

ΔCμν ≡ δCμν þ A½μKδAν�K;

ΔCμνN
K ≡ δCμνN

K þ B½μNδAν�K −
1

4
fKPQðA½μP∂NδAν�Q

− ∂NA½μPδAν�QÞ: ð2:29Þ

We stress that although we had to introduce the addi-
tional 2-forms in order to define gauge covariant curva-
tures, all of them will eventually drop out from the action
and the transformation rules. They can be viewed as a
convenient tool that allows us to define the Lagrangian in a
rather compact form in terms of manifestly covariant
quantities whereas we could also have defined the
Lagrangian directly in terms of the original fields and
confirmed its gauge invariance by an explicit computation.
The 2-forms Cμν and Cμν

KL
ð3875Þ already show up in the

dimensionally reduced theory upon extending on-shell the
supersymmetry algebra and first order duality equations
beyond the fields present in the Lagrangian [30].
We now specialize to the transformation of the curva-

tures under Λ and Σ gauge transformations (2.21). The field
strength F μν

M transforms covariantly in that

δΛ;ΣF μν
M ¼ LðΛ;ΣÞF μν

M; ð2:30Þ

with weight λ ¼ 1, provided the 2-forms Cμν transform as

ΔCμνð3875ÞKL ¼ F μν
ðKΛLÞ;

ΔCμν ¼ F μν
MΛM;

ΔCμνN
K ¼ 1

4
fKPQð∂NF μν

PΛQ − ∂NΛQF μν
PÞ

þ 1

2
GμνNΛK þ 1

2
ΣNF μν

K: ð2:31Þ

On the other hand, the field strength Gμν
M transforms as

δΛ;ΣGμνM ¼ LðΛ;ΣÞGμνM − fNKLF μν
K∂M∂NΛL

þ ∂MΣNF μν
N; ð2:32Þ

where the generalized Lie derivative acts on a tensor of
weight 0. These turn out to be the proper transformation
rules in order to define a gauge-invariant Chern-Simons
term below. To this end we will furthermore derive a set of
generalized Bianchi identities (3.14) satisfied by the
curvatures F μν

M and GμνM.

III. THE ACTION

With the structures set up in the previous section we
are now in position to define the various terms in the
action (1.4)
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S ¼
Z

d3xd248YðLEH þ LCS þ Lkin − eVðM; gÞÞ: ð3:1Þ

We describe them one by one. We then verify that the action
is invariant under generalized internal and properly defined
external diffeomorphisms, which in turn fixes all the
relative coupling constants.

A. Einstein-Hilbert and kinetic term

As in [1,31], the Einstein-Hilbert term in (3.1) reads

LEH ¼ eR̂≡ egμνR̂μν; ð3:2Þ

and is constructed from contraction of the improved
Riemann tensor

R̂μν
ab ≡ Rμν

ab½ω� þ F μν
Meρ½a∂Meρb�; ð3:3Þ

where Rμν
ab½ω� denotes the covariantized curvature of the

spin connection ωμ
ab, which in turn is defined by the

covariantized vanishing torsion condition

0 ¼ D½μeν�a

≡ ∂ ½μeν�a − A½μK∂Keν�a − ∂KA½μKeν�a þ ω½μabeν�b: ð3:4Þ

In particular, the dreibein eμa is an E8ð8Þ scalar density of
weight λ ¼ 1 . Note from the second form in (3.2) that with
this weight the Einstein-Hilbert term has a total weight of 1,
as needed for local ΛM gauge invariance. The second term
in (3.3) ensures covariance of the Riemann tensor under
local Lorentz transformations. As a result, the Einstein-
Hilbert term LEH is invariant under local Lorentz trans-
formations and internal generalized diffeomorphisms. We
note that the term is also invariant under the vector shift
symmetries (2.22), notably all 2-form contributions in
F μν

M drop out from (3.3).
The matter sector of the theory comprises 128 scalar

fields which as in the three-dimensional maximal theory
[32] parametrize the coset space E8ð8Þ=SOð16Þ. In terms of
the symmetric group-valued 248 × 248 matrix MMN (and
its inverse MMN), the kinetic term in (3.1) takes the form

Lkin¼
1

240
egμνDμMMNDνMMN ¼−

1

4
egμνjμMjνM; ð3:5Þ

in terms of the current jμM defined by

MKNDμMNL ≡ jμNfNL
K; and satisfying

MMNjμN ¼ ηMNjμN: ð3:6Þ

All derivatives Dμ here are covariantized with respect to
generalized internal diffeomorphisms according to (2.18),
with the matrix MMN carrying weight λ ¼ 0. The second

equation in (3.6) can be verified with (2.1) and the
relation,3

MPMMQNfPQK ¼ −fMN
LMLK: ð3:7Þ

B. Chern-Simons term

The vector fields Aμ
M and BμM do not carry propagating

degrees of freedom, but describe on-shell duals to the
scalar fields. Consequently their dynamics in (3.1) is not
described by a Yang-Mills coupling but rather by a
topological Chern-Simons term which is explicitly given by

LCS ¼ 2κ εμνρ
�
Fμν

MBρM − fKLN∂μAν
K∂NAρ

L

−
2

3
fNKL∂M∂NAμ

KAν
MAρ

L

−
1

3
fMKLfKPQfLRSAμ

M∂PAν
Q∂RAρ

S

�
; ð3:8Þ

with coupling constant κ that we will determine below. The
structure and covariance of the Chern-Simons term become
more transparent by calculating its general variation which
is given by

δLCS¼2κεμνρðFμν
MδBρMþðGμνM−fMN

K∂KFμν
NÞδAρ

MÞ
¼2κεμνρðF μν

MδBρMþðGμνM−fMN
K∂KF μν

NÞδAρ
MÞ:

ð3:9Þ

Indeed it follows directly with the section constraints (2.8)
and (2.11) that all extra 2-form contributions proportional
toCμν from (2.28) cancel in the second line of (3.9), such that
the variation may be expressed entirely in terms of the
covariant quantities. Similarly, one confirms with (3.9) that
the Chern-Simons term is invariant under the vector shift
transformations (2.22).With a littlemore calculationwemay
furthermore verify invariance of the Chern-Simons term
under generalized internal diffeomorphisms that act as
gauge transformations (2.24)on thevector fields. Specifically,
after partial integration, the variation (2.24) yields

δLCS ¼ 2κ εμνρΛKðF μν
Mð−∂MBρK þ fNKL∂M∂NAρ

LÞ
−Dð0Þ

ρ ðGμνK − fKMN∂NF μν
MÞÞ

− 2κ εμνρΣMD
ð1Þ
ρ F μν

M: ð3:10Þ
The vanishing of the rhs of this variation corresponds to
establishing some generalized Bianchi identities for the
curvatures (2.28). This is most conveniently achieved by
evaluating three covariant derivatives εμνρDμDνDρVM on a
vector VM of weight 0, from which we deduce the identity

3Note the sign, which is due to the fact that unlike ηMN the
matrix MMN is not a group invariant tensor, but commutes with
the involution which defines the maximal compact subgroup
SOð16Þ ⊂ E8ð8Þ.
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εμνρLðF μν;GμνÞDρVM ¼ εμνρDμðLðF νρ;GνρÞV
MÞ: ð3:11Þ

Its rhs takes the explicit form

εμνρDρðLðF μν;GμνÞV
MÞ ¼ εμνρDρðF μν

N∂NVM − ðGμνL − fLPK∂KF μν
PÞfLMNVNÞ;

and upon using that

Dρ∂NVM ¼ ∂NDρVM − fLMPVPð∂NBρL − fLQK∂N∂KAρ
QÞ; ð3:12Þ

for a vector VM of weight 0, the rhs of (3.11) may be further rewritten as

εμνρDρðLðF μν;GμνÞV
MÞ ¼ εμνρðF μν

N∂NDρVM − ðGμνL − fLPK∂KF μν
PÞfLMNDρVNÞ

þ εμνρðDρF μν
N∂NVM −DρðGμνL − fLPK∂KF μν

PÞfLMNVNÞ
− εμνρfLMNVNF μν

Pð∂PBρL − fLQK∂P∂KAρ
QÞ: ð3:13Þ

Now the first line in (3.13) reproduces the lhs of (3.11), such that together we obtain the generalized Bianchi identities

0 ¼ εμνρDð1Þ
ρ F μν

N ⊗ ∂N;

0 ¼ εμνρðDð0Þ
ρ ðGμνK − fKMN∂NF μν

MÞ þ F μν
Mð∂MBρK − fNKL∂M∂NAρ

LÞÞ: ð3:14Þ

These are sufficient to show that (3.10) vanishes, confirming that the Chern-Simons term is invariant under generalized internal
diffeomorphisms. Let us finally note that a more compact presentation of the Chern-Simons term (3.8) can be given as the
boundary contribution of a gauge-invariant exact form in four dimensions as

SCS ∝
Z
Σ4

d4x
Z

d248Y

�
FM∧GM −

1

2
fMN

KFM∧∂KFN

�
; ð3:15Þ

where again all 2-form contributionsCμν can be checked to drop out from the action.Gauge invariance of (3.15) follows from the
transformation behavior of the field strengths under gauge transformations

δΛ;ΣFM ¼ LðΛ;ΣÞFM;

δΛ;ΣðFMfMN
K∂NFKÞ ¼ LðΛ;ΣÞðFMfMN

K∂NFKÞ þ 2FM∂M∂NΛKfNLKFL − 2FM∂MΣNFN;

δΛ;ΣGM ¼ LðΛ;ΣÞGM − fNKLFK∂M∂NΛL þ ∂MΣNFN: ð3:16Þ

C. Scalar potential

The last term in the action (3.1) is the scalar potential V which can be given as a function of the external metric gμν and the
internal metric MMN

V ¼ −
1

240
MMN∂MMKL∂NMKL þ 1

2
MMN∂MMKL∂LMNK þ 1

7200
fNQ

PfMS
RMPK∂MMQKMRL∂NMSL

−
1

2
g−1∂Mg∂NMMN −

1

4
MMNg−1∂Mgg−1∂Ng −

1

4
MMN∂Mgμν∂Ngμν: ð3:17Þ

The relative coefficients in this potential are determined byΛM and ΣM gauge invariance by a computation similar to the one
presented for the E6ð6Þ, E7ð7Þ potentials in [2,3], that we briefly sketch in the following. For the calculation it turns out to be
convenient to rewrite the potential as

V ¼ 1

4
jMRjNSðMMNηRS − 2MKLfRLNfSKM þ 2δR

NδS
MÞ −

1

2
g−1∂MgMMNfNK

PjPK

−
1

4
MMNg−1∂Mgg−1∂Ng −

1

4
MMN∂Mgμν∂Ngμν; ð3:18Þ

OLAF HOHM AND HENNING SAMTLEBEN PHYSICAL REVIEW D 90, 066002 (2014)

066002-8



in terms of the current jMP defined in analogy to (3.6) as

MKP∂MMPL ≡ jMPfPLK: ð3:19Þ

A short calculation shows that the noncovariant variation of
the current jMN under generalized diffeomorphisms (2.5) is
given by

ΔncjMN ¼ ðMNK þ ηNKÞ∂MðfKQP∂PΛQ − ΣKÞ; ð3:20Þ

where we have used the invariance property (3.7) of the
structure constants. It is then straightforward to verify that
the noncovariant contributions from the variation of the
various terms in (3.18) precisely cancel. In particular, we
find that under Λ transformations the first line of (3.18)
transforms according to

1

4
Δnc

Λ ðjMRjNSðMMNηRS − 2MKLfRLNfSKM þ 2δR
NδS

MÞÞ
¼ 2∂M∂PΛP∂NMMN þ ∂M∂LΛN∂NMML; ð3:21Þ

whereas the second line of (3.18) transforms into

Δnc
Λ ðð3.18Þ; second lineÞ
¼ −3∂M∂KΛK∂PMPM − e−1∂MeMMP∂P∂RΛR

þ e−1∂MeMSP∂P∂SΛM: ð3:22Þ

Together, this shows that the scalar potential term ðeVÞ in
the Lagrangian is invariant up to total derivatives.
Comparing the expression of (3.17) to other results in the

literature [22] shows that the third term of (3.17) has been
missed in previous constructions. Here, this term is
essential for ΛM and ΣM invariance of the scalar potential.
Absence of this term is the reason for the observed
discrepancy of the scalar potential of [22] with D ¼ 11
supergravity as we discuss in more detail in the last section.

D. External diffeomorphism invariance

The various terms of the EFT action (3.1) have been
determined by invariance under generalized internal ΛM,
ΣM diffeomorphisms. In contrast, the relative coefficients
between the four terms are determined by invariance
of the full action under the remaining gauge symmetries,
which are a covariantized version of the external ð2þ 1Þ-
dimensional diffeomorphisms with parameters ξμðx; YÞ.
For the Y-independent parameter, external diffeomorphism
invariance is manifest. On the other hand, gauge invariance
for general ξμðx; YÞ determines all relative coefficients, as
we shall demonstrate in the following. The computation
closely follows the analogous discussion for the SLð2;RÞ-
covariant formulation of four-dimensional Einstein
gravity [20].4

Under general external diffeomorphisms, the external
and internal metric transform in the standard (but cova-
riantized) way

δξMMN ¼ ξμDμMMN; δξeμa ¼ ξρDρeμa þDμξ
ρeρa;

ð3:23Þ

where we recall that the dreibein is an E8ð8Þ scalar density of
weight λ ¼ 1. The transformation behavior of the gauge
vectors is more complicated. Inspired by the SLð2;RÞ case
[20], for these fields we start from the ansatz

δð0Þξ Aμ
M ¼ ξνFνμ

M þMMNgμν∂Nξ
ν;

δð0Þξ BμM ¼ ξνGνμM − jMKgμν∂Kξ
ν

þ 1

4κ
eεμνλgλρDνðgρσ∂Mξ

σÞ; ð3:24Þ

where the noncovariant contributions will be required for
particular cancellations in the variation of the Lagrangian.
The full variation of these fields will be determined as we
go along. Note that the form of the variation δð0Þξ BμM is
manifestly compatible with the constraints (2.7) which this
field is required to satisfy, because in the extra noncovariant
terms the external index is carried by a derivative.
Let us now compute the variation of the Lagrangian (3.1)

under (3.23), (3.24). To start with, let us work out the
general variation of the Lagrangian (3.1) with respect to the
vector fields which takes the form

δL ¼ εμνρðEðAÞM
νρ δBμM þ EðBÞ

νρMδAμ
MÞ; ð3:25Þ

with

EðAÞM
μν ≡ 2κFμν

M þ 1

2
eεμνρjρM;

EðBÞ
μνM ≡ 2κGμνM − fMN

K∂KE
ðAÞN
μν

−
1

4
eεμνρðjMKjρK þ 2ĴρMÞ; ð3:26Þ

with the currents jμN , jMN from (3.6) and (3.19), respec-
tively, and the current ĴμM describing the contribution from
the covariantized Einstein-Hilbert term,

δALEH ≡ eĴμMδAμ
M

¼ −2eeaμebνð∂Mων
ab −Dνðeρ½a∂Meρb�ÞÞδAμ

M:

ð3:27Þ

Note that not all components of EðAÞM
μν in (3.26) correspond

to real equations of motion of the theory, as the field BμM is
constrained by means of (2.7).
Next we consider the noncovariant variation of the

covariantized Einstein-Hilbert term, which is given by [20]
4We note that here we use a field basis for A and B that is

related to the SLð2;RÞ treatment of [20] by a field redefinition.
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δð0Þξ ðeR̂Þ ¼ eFμνNDμð∂Nξ
ρgρνÞ þ eMMNĴμM∂Nξ

μ; ð3:28Þ

where the second term comes from the noncovariant transformation (3.24) of the vector field Aμ
M via (3.27). The

noncovariant variation of the Chern-Simons term follows from (3.9) and yields

δð0Þξ LCS ¼ −eFμνMDμðgνσ∂Mξ
σÞ − 2κεμνρFμν

MjMKgρλ∂Kξ
λ − 2κεμνρfMN

K∂KFμν
NMMLgρσ∂Lξ

σ

þ 2κεμνρGμνMMMNgρσ∂Nξ
σ þ κεμνρ∂Kξ

σfMN
KFμν

MFρσ
N; ð3:29Þ

up to total derivatives. The first term cancels against the contribution from (3.28). Let us further rewrite the last term of
(3.29) in terms of (3.26) as

κεμνρ∂Kξ
σfMN

KFμν
MFρσ

N ¼ 1

4κ
εμνρ∂Kξ

σfMN
KEðAÞM

μν EðAÞN
ρσ − ∂Kξ

μfMN
KjνMFμν

N −
1

8κ
εμνρ∂Kξ

μfMN
KjνMjρN: ð3:30Þ

For the variation of the scalar kinetic term, we start from the variation

δð0ÞðDμMMNÞ ¼ LξðDμMMNÞ þ ξν½Dμ; Dν�MMN − Lðδð0Þξ Aμ
M;δð0Þξ Bμ

MÞMMN; ð3:31Þ

which induces the following variation of the kinetic term (3.5):

δð0Þξ Lkin ¼
1

2
eMKLjKNjμN∂Lξ

ν þ efMK
LjμMFμν

L∂Kξ
ν þ ejLKjμL∂Kξ

μ

− efMK
LjμM∂KðMLNgμν∂Nξ

νÞ − 1

4κ
εμνρjμLDνðgρσ∂Lξ

σÞ: ð3:32Þ

Upon integration by parts, the last term gives rise to

−
1

4κ
εμνρgρσ∂Lξ

σDμjνL ¼ 1

480κ
εμνρgρσ∂Lξ

σfKLMMKN ½Dμ; Dν�MMN þ 1

8κ
εμνρgρσ∂Kξ

σfMN
KjμMjνN; ð3:33Þ

and evaluating the commutator of covariant derivatives yields terms that precisely cancel the three terms linear in Fμν
M and

GμνM from (3.29), provided we choose

κ ≡ 1

4
; ð3:34Þ

for the coupling constant of the CS term. Putting everything together, for the variation of the first three terms of the
Lagrangian (3.1) we find up to total derivatives

δð0Þξ ðLEH þ LCS þ LkinÞ ¼
1

2
eðMKLηRS þ 2δKRδ

L
S − 2MMNfKMRfLNSÞjμSjLR∂Kξ

μ

þ eMMNðĴμM∂Nξ
μ − fKLMjμK∂Lðgμν∂Nξ

νÞÞ þ εμνρ∂Kξ
σfMN

KEðAÞM
μν EðAÞN

ρσ : ð3:35Þ

It remains to compare this variation to the noncovariant variation of the scalar potential (3.17) under (3.23). Noting that

δξð∂KMMNÞ ¼ ξμDμð∂KMMNÞ þ ∂Kξ
μDμMMN;

δξð∂MgμνÞ ¼ Lξð∂MgμνÞ þ ð∂Mξ
ρÞDρgμν þ 2∂MDðμξρgνÞρ; ð3:36Þ

it is straightforward to see from (3.18) that the noncovariant variation of the potential due to δncξ ð∂KMMNÞ precisely cancels
the first line of (3.35). Upon further calculation, the remaining contributions from variation of the potential combine with
(3.35) into

δð0Þξ L ¼
�
eĴμM − 2eDμðe−1∂MeÞ −Dνðegμρ∂MgνρÞ þ

1

2
eDμgνρ∂Mgνρ

�
MMN∂Nξ

μ

þ εμνρ∂Kξ
σfMN

KEðAÞM
μν EðAÞN

ρσ : ð3:37Þ
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Using the definite expression (3.27) for ĴμM, an explicit
calculation shows that the first line of (3.37) vanishes
identically. We have thus shown that under external diffeo-
morphisms (3.23), (3.24), the variation of the Lagrangian
(3.1) takes the compact form

δð0Þξ L ¼ εμνρ∂Kξ
σfMN

KEðAÞM
μν EðAÞN

ρσ : ð3:38Þ

Just as in the SLð2;RÞ case we conclude that invariance of
the Lagrangian can be achieved by a further modification of
the vector field transformation rules according to [20]

δξAμ
M ¼ δð0Þξ Aμ

M þ 2ξνEðAÞM
μν ;

δξBμM ¼ δð0Þξ BμM þ 2ξνðEðBÞ
μνM þ fMN

K∂KE
ðAÞN
μν Þ: ð3:39Þ

It is straightforward to see that the new contributions due to

the respective terms in ξνEðAÞM
μν and ξνEðBÞ

μνM take the form of
an equation of motion symmetry and mutually cancel. The
last term in (3.39) precisely cancels the variation of (3.38).
Moreover, we note that the new variation δξBμM continues
to be consistent with the constraints (2.7) that this field is
required to satisfy.
We may summarize the result of this subsection as

follows: the action (3.1) is invariant under external diffeo-
morphisms parametrized by ξμ that on the internal and
external metric act according to (3.23), while their action on
the gauge fields follows from combining (3.24) and (3.39),

δξAμ
M ¼ eεμνρξνjρM þMMNgμν∂Nξ

ν;

δξBμM ¼ eεμνρ

�
gρλDνðgλσ∂Mξ

σÞ − 1

2
ξνjMKjρK − ξνĴρM

�

− jMKgμν∂Kξ
ν: ð3:40Þ

We have shown that invariance under external diffeomor-
phisms fixes all the relative coefficients in (3.1); the action
is thus uniquely determined by combining internal and
external generalized diffeomorphism invariance.

IV. EMBEDDING OF D ¼ 11 SUPERGRAVITY

In the previous sections, we have constructed the unique
E8ð8Þ-covariant two-derivative action for the fields (1.2),
that is invariant under generalized internal and external
diffeomorphisms. It remains to establish its relation to D ¼
11 supergravity. Evaluating the field equations descending
from (3.1) for an explicit appropriate solution of the section
constraints (2.7), one may recover the full dynamics ofD ¼
11 supergravity after rearranging the 11-dimensional fields
according to a 3þ 8 Kaluza-Klein split of the coordinates,
but retaining the full dependence on all 11 coordinates as
first explored in [18,19]. We have done this analysis in all
detail in the E6ð6Þ-covariant construction [2] and repro-
duced the full and untruncated action of 11-dimensional

supergravity from the E6ð6Þ EFT after various redefinitions
and redualizations of fields. Here, we keep the discussion
brief, sketching the essential steps for the embedding of
D ¼ 11 supergravity and concentrating on the novel
features of the E8ð8Þ case. The complete analysis is left
for future work.
The relevant solution of the section condition (1.1) is

related to the splitting of coordinates according to the
decomposition of the adjoint representation of E8ð8Þ under
its maximal GLð8Þ subgroup:

248⟶8þ3⊕280þ2⊕56þ1⊕ð1⊕63Þ0⊕560−1⊕28−2⊕80−3;

fYMg⟶fym; ymn; ykmn; ymn; ykmn; ymn; ymg; ð4:1Þ

with the subscripts referring to the grading with respect to
the GLð1Þ ⊂ GLð8Þ generator t0. The section constraints
(2.7) are solved by truncating the coordinate dependence of
all fields and gauge parameters to the coordinates in the
8þ3:

Φðxμ; YMÞ⟶Φðxμ; ymÞ: ð4:2Þ

In order to see that this truncation provides a solution for
the section constraints (2.7), it is sufficient to observe that
in the decomposition of the 3875 analogous to (4.1), the
space of highest grading is an 8þ5, which shows that

ðP3875ÞMN
mn ¼ 0: ð4:3Þ

Accordingly, for the compensating gauge field constrained
by (2.7) we set all but the associated eight components Bμm
to zero,

Bμ
m → 0; Bμ mn → 0; Bμ

mnk → 0;

Bμm
n → 0; Bμ mnk → 0; Bμ

mn → 0; ð4:4Þ
In order to recover the fields of D ¼ 11 supergravity, we
first express the scalar matrix MMN ¼ ðVVTÞMN in terms
of a coset-valued vielbein V ∈ E8ð8Þ=SOð16Þ parametrized
in triangular gauge associated to the grading of (4.1) as [33]

V ≡ exp ½ϕtð0Þ�V8 exp ½ckmntkmn
ðþ1Þ�

× exp ½ϵklmnpqrscklmnpqtðþ2Þrs�exp½φmtmðþ3Þ�: ð4:5Þ

Here, tð0Þ is the E8ð8Þ generator associated to the GLð1Þ
grading of (4.1), V8 denotes a general element of the
SLð8Þ ⊂ GLð8Þ subgroup, whereas the tðþnÞ refer to the
E8ð8Þ generators of positive grading in (4.1).5 The scalar
fields cmnk ¼ c½mnk� and cmnklpq ¼ c½mnklpq� have an
obvious origin in the internal components of the 11-
dimensional 3-form and 6-form. The scalar fields on the

5Explicit expressions for the matrix exponential (4.5) have
been worked out in [22].
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other hand represent the degree of freedom dual to the
Kaluza-Klein vector fields Aμ

m in the standard decom-
position of the 11-dimensional metric. Hence, formally
they carry the degrees of the freedom of the dual graviton
[23–26] which can be written in more suggestive form by
defining

cm;n1…n8 ≡ ϵn1…n8φm: ð4:6Þ

Similarly, the gauge field Aμ
M is split according to the

decomposition (4.1) into

fAμ
Mg⟶fAμ

m; Aμmn; Aμ kmnpq; Aμm
n;

Aμ
kmnpq; Aμ

mn; Aμm g: ð4:7Þ

Together with the surviving eight components from (4.4)
we count 256 vector fields which appear to largely exceed
the number of fields with possible 11-dimensional origin.
Rather, from 11 dimensions we expect only the Kaluza-
Klein vector fields Aμ

m together with gauge fields Aμmn and
Aμ kmnpq from the 3- and the 6-form, respectively.
Fortunately, many of the fields in (4.7) do not in fact enter
the Lagrangian (3.1). They are pure gauge as a consequence
of the invariance of the action under the vector shift
symmetry (2.22). Indeed, closer inspection of the covariant
derivatives (2.18) and the Chern-Simons couplings (3.8)
shows that out of (4.7) only the components fAμ

m; Aμmn;
Aμ kmnpq; Aμm

ng enter the Lagrangian. More precisely, the
covariant derivatives on the scalar fields evaluated in the
parametrization of (4.5) are of the schematic form

Dμckmn ¼ Dμckmn þ ∂ ½kAjμjmn�;

Dμcklmnpq ¼ Dμcklmnpq þ ∂ ½kAjμjlmnpq� þ ∂ ½kAjμjlmcnpq�;

Dμφm ¼ Dμφm þ…þ ∂nAμm
n þ Bμm; ð4:8Þ

where we have denoted by Dμ the derivative covariantized
with the Kaluza-Klein vector field Aμ

m with respect to
eight-dimensional internal diffeomorphisms. The unspeci-
fied terms in (4.8) refer to nonlinear couplings involving the
scalar fields ckmn and cklmnpq. Integrating out the gauge
field Bμm thus not only eliminates all the dual graviton
components φm but simultaneously eliminates all vector
fields Aμm

n from the Lagrangian. In this process, it is
important that the scalar potential (3.17) does not depend
on the scalar fields φm. Indeed, invariance of the
Lagrangian under the shift φm → φm þ cm is a direct
consequence of the invariance under generalized diffeo-
morphisms (2.5) with parameter Σm. This illustrates once
more the role played by the additional covariantly con-
strained gauge symmetries ΣM. Their presence and asso-
ciated gauge connection BμM allow us to establish a
covariant duality relation involving the degrees of free-
dom from the 11-dimensional metric and subsequently to

eliminate the dual graviton degrees of freedom φm from the
Lagrangian.
In turn, this procedure of integrating out Bμm induces a

Yang-Mills-type coupling for the vector fields Aμ
m in a

standard mechanism of three-dimensional supergravities
[34]. To see this, note that the first line of the field
equations (3.26) precisely relates the Yang-Mills field
strength Fμν

m to the scalar current as

Fμν
m ¼ −eεμνρjρm ¼ −eεμνρMmnDρφn þ…; ð4:9Þ

with Mmn ≡ ðV8V8
TÞmn .

The resulting Lagrangian then only depends on the fields

fgμν;V8; ckmn; cklmnpq; Aμ
m; Aμmn; Aμ kmnpqg ð4:10Þ

corresponding to the various components of the 11-
dimensional metric, 3-form and 6-form. Its field equations
are proper combinations of the 11-dimensional field equa-
tions and the duality equation relating the 3-form and the
6-form. As an example, consider the field equations (3.26).
With the first line corresponding to (4.9), we observe that
the ðmnÞ component of the second line gives rise to

fmn;N
K∂KE

ðAÞN
μν ¼ 0 ⇒ ∂ ½kðFjμνjmn� þ ejρmn�εμνρÞ ¼ 0;

ð4:11Þ

which can be integrated to the duality equation

Fμνmn þ eεμνρjρmn ¼ ∂ ½mBjμνjn�; ð4:12Þ

with an undetermined 2-form Bμνn. The latter can be
identified with the corresponding component of the 11-
dimensional 3-form. Indeed, further derivation ϵμνρ∂ρ of
(4.12) shows that it is compatible with the component

Fμνρm ¼ eεμνρϵmn1…n7F
n1…n7 þ…; ð4:13Þ

of the 11-dimensional duality equation (3-form ↔ 6-form)
relating the field strength of Bμνm on the lhs to the 7-form
field strength Fn1…n7 ¼ 7∂ ½n1cc2…c7� þ…, whose internal
derivative ∂n1F

n1…n7 appears as a source in the field
equation for ∂μjμmn. Equations (4.12) and (4.13) can
further be used to eliminate all components cklmnpq,
Aμkmnpq from the 11-dimensional 6-form from the equa-
tions, and the resulting equations of motion coincide with
those coming from D ¼ 11 supergravity with its standard
field content.
On the level of the action, we get further confirmation

from inspecting the scalar potential (3.17). After para-
metrization (4.5) of the 248-bein, evaluation of (4.2), and
truncation of the external metric gμν to a warped
Minkowski3 geometry, the potential reduces to the sche-
matic form
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V trunc ∼ RðgÞ þ F2
ð4Þ þ F2

ð7Þ ð4:14Þ

reproducing the contributions from the D ¼ 11 kinetic
terms and Einstein-Hilbert term in the internal directions in
terms of the fields from (4.10). This can be directly inferred
from the analysis of [22] which obtains for the first line of
(3.17) the expression (4.14) up to a term F2

dual grav resem-
bling a kinetic term for the dual graviton components (4.6).
The role of the third term in the full potential (3.17) (absent
in [22]) is precisely to cancel this unwanted contribution.
Indeed, the form of (3.18) shows that after imposing (4.2),
the extra term is of the form

jMNjNM → jmnjnm ¼ MmlMnkð∂mφnÞð∂kφlÞ
þ… ¼ F2

dual grav: ð4:15Þ

Moreover, since the full potential (3.17) by construction
does not depend on φm, this confirms the result (4.14).
In view of the duality equation (4.13), the last two terms

of the potential (4.14) both correspond to contributions
F2
klmn and F2

μνρm from the original D ¼ 11 3-form kinetic
term. This shows the necessity of the F2

ð7Þ term in (4.14),
carrying the contribution of the 2-forms Bμνm which are not
among the EFT fields in (4.10). The situation is different
for the graviton. The D ¼ 11 metric gives rise to the
external and internal metric and the Kaluza-Klein vector
fields, all of which are already encoded in the E8ð8Þ EFTand
show up in (4.10). Thus, there is no room for the inclusion
of a dual graviton for this would double the number of
metric degrees of freedom. Consequently, the match with
D ¼ 11 supergravity requires that the dual graviton term is
absent in (4.14), as observed here. We conclude that there is
no dual graviton problem. Summarizing, after rearranging
all fields and coordinates of the E8ð8Þ EFT, putting the
appropriate solution of the section constraint, the action
may eventually be matched to the one obtained by properly
parametrizing 11-dimensional supergravity in the standard
3þ 8 Kaluza-Klein split.
Let us finally mention that also IIB supergravity can be

embedded into the E8ð8Þ EFT (3.1). Just as for the E6ð6Þ and
E7ð7Þ EFT [1–3], there is another inequivalent solution to
the section conditions (2.7) that describes the embedding of
the full ten-dimensional IIB theory [12,13] into the E8ð8Þ
EFT,6 generalizing the situation of type II double field
theory [37,38]. For E8ð8Þ the embedding of the IIB theory
goes along similar lines as the D ¼ 11 embedding
described above, with the relevant decomposition E8ð8Þ →
GLð7Þ × SLð2Þ given by

248⟶ð7; 1Þþ4⊕ð70; 2Þþ3⊕ð350; 1Þþ2⊕ð21; 1Þþ1

⊕ðð48; 1Þ⊕ð1; 3Þ⊕ð1; 1ÞÞ0 ⊕ð210; 1Þ−1
⊕ð35; 1Þ−2⊕ð7; 2Þ−3⊕ð70; 1Þ−4: ð4:16Þ

The section constraint is then solved by having all fields
depend on only the coordinates ym in the ð7; 1Þþ4 and
setting to zero all components of BμM other than the Bμm in
the ð70; 1Þ−4.

V. Summary and Outlook

In this paper we have given the details of the E8ð8Þ
exceptional field theory. As discussed in detail in the main
text, the novel feature of this case is that the E8ð8Þ valued
generalized metric MMN encodes components of the dual
graviton but nevertheless allows for a consistent (in
particular gauge-invariant) dynamics thanks to the mecha-
nism of constrained compensator fields introduced in [20]
(that in turn is a duality-covariant extension of the proposal
in [39]). This mechanism requires the presence of cova-
riantly constrained gauge fields, which in the D ¼ 3 case
feature among the gauge vectors entering the covariant
derivatives. These fields are unconventional, but seem to be
indispensable for a gauge and duality invariant formulation.
They are a generic feature of the exceptional field theories,
corresponding in each case to a subset of the ðD − 2Þ-forms
with D denoting the number of external dimensions [2,3].
Studying the truncations of these theories to the internal

sector (i.e. neglecting all external coordinate dependence,
external metric, and p-form fields), it has been a puzzle for
a while how E8ð8Þ generalized diffeomorphisms might be
implemented as a consistent structure, given that their
transformations do not close into an algebra [16,17]. In the
full EFT the resolution is remarkably simple. Also in this
case there is a gauge-invariant action (3.1) and nonclosure
of generalized diffeomorphisms simply indicates an addi-
tional symmetry: the covariantly constrained ΣM gauge
transformations of (2.5). The associated gauge connection
BμM then takes care of the dynamics of the dual graviton
degrees of freedom, just as the analogous ðD − 2Þ-forms do
in higher dimensions.
We have restricted the analysis to the bosonic sector of

the theory, where generalized diffeomorphism invariance
has proved sufficient to uniquely determine the action. We
are confident that the extension to include fermions and the
construction of a supersymmetric action is straightforward
along the lines of the supersymmetric D ¼ 3 gauged
supergravity [21]. The fermions will transform as scalar
densities under generalized diffeomorphisms (2.5) and in
the spinor representations of the local “Lorentz group”
SOð1; 2Þ × SOð16Þ, as in [18,32]. For the E7ð7Þ EFT [3] the
full supersymmetric completion has recently been con-
structed in [40].
After completing the detailed construction of exceptional

field theory for EdðdÞ, d ¼ 6; 7; 8, the question arises

6An analogous solution of the SLð5Þ covariant section con-
dition, corresponding to some three-dimensional truncation of
type IIB, was discussed in the truncation of the theory to its
potential term [35]. For a more general discussion of section
constraints and type IIB solutions see [36].
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whether one can go even further, perhaps starting with
the affine Kac-Moody group E9ð9Þ. The pattern of com-
pensating gauge fields in this case would suggest a new
set of “covariantly constrained scalars” on top of the
infinite hierarchy of fields parametrizing the coset space
E9ð9Þ=KðE9ð9ÞÞ. We refrain from further speculations.
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APPENDIX : CLOSURE OF E8ð8Þ GENERALIZED
LIE DERIVATIVES

Before proving closure of the gauge transformations, it is
convenient to first derive the following lemma:

fRUVfUP
KfVQL∂ðP ⊗ ∂QÞ

≡ fRUVfUP½KfVQL�∂P ⊗ ∂Q

¼ −ð2δP½KfQR
L� þ ηRPfQKLÞ∂ðP ⊗ ∂QÞ: ðA1Þ

In order to verify this, we compute by repeated use of the
Jacobi identity

fRUVfUP½KfVQL� ¼ −fRUPfU ½KjVjfVQL�

− fRU½KfU jVjPfVQL�

¼ −
1

2
fRUPfUQ

VfVKL

− fRU½KfjVjUPfVL�Q: ðA2Þ

Inserting this form back into (A.1) we can apply in each
term the Lemma (2.13), which then yields the right-hand
side of (A.1). This completes the proof.
Next, we verify closure of the gauge transformations on a

vector of weight 0,

½δ1; δ2�VM ¼ ðδΛ12
þ δΣ12

ÞVM; ðA3Þ

according to the effective parameters (2.17). We compute
for the left-hand side, first including only the Λ trans-
formations,

½δ1; δ2�VM ¼ ΛK
2 ∂KðΛL

1∂LVM − fMNTfTPQ∂PΛ
Q
1 V

NÞ
− fMNTfTKL∂KΛL

2 ðΛP
1 ∂PVN

− fNPUfUR
S∂RΛS

1V
PÞ − ð1↔2Þ: ðA4Þ

Some terms cancel directly under the ð1↔2Þ antisymmet-
rization, and one finds

½δ1; δ2�VM ¼ ½Λ2;Λ1�L∂LVM − fMNTfTPQΛK
2 ∂K∂PΛ

Q
1 V

N

þ fMNTfTKLfNPUfUR
S∂KΛL

2∂RΛS
1V

P

− ð1↔2Þ: ðA5Þ

Here, we denoted by ½; � the conventional Lie bracket. It
turns out, however, that the extra terms in the E bracket
(2.17), as compared to the Lie bracket, vanish in the
transport term due to the section constraints, so that the
transport term already has the desired form. We find it
convenient to work for now with a different but equivalent
effective parameter,

ΛM
12 ¼ ΛN

2 ∂NΛM
1 − 7ðP3875ÞMK

NLΛ
N
2 ∂KΛL

1

−
1

8
ηMKηNLΛN

2 ∂KΛL
1 − ð1↔2Þ: ðA6Þ

Comparing then with the form of the gauge transformation
with respect to this Λ12 we read off for the remaining
terms

½δ1; δ2�VM ¼ ΛL
12∂LVM − fMNTfTPQ∂PΛ

Q
12V

N

þ fMNTfTPQ∂PΛL
2∂LΛ

Q
1 V

N

− 7fMNTfTPQPQK
RS∂PðΛR

2 ∂KΛS
1ÞVN

þ fMNTfTKLfNPUfUR
S∂KΛL

2∂RΛS
1V

P

− ð1↔2Þ; ðA7Þ

where here and in the following we omit the representa-
tion label on the 3875 projector P, as it can always be
distinguished from its index structure. The terms in the first
line are the ones desired for closure, while the remaining
terms are extra. We next have to show that these are zero or
else can be brought to the form of ΣM gauge
transformations.
We investigate terms with ∂Λ∂Λ and Λ∂∂Λ separately.

The latter originate from the term in the third line. Inserting
the projector (2.4) we compute

−7fMNTfTPQPQK
RS∂PðΛR

2 ∂KΛS
1ÞVN

¼ −
1

2
fMNTfTPQ½2δðQR δKÞS − fUR

ðQfUS
KÞ�ΛR

2∂P∂KΛS
1:

ðA8Þ

Writing this out yields four terms, two with ff and two
with ffff. Using the Lemma (A.1) we can then reduce the
ffff terms to ff terms. After some algebra, one finds that
all ff terms cancel, proving that the Λ∂∂Λ structures in
(A.7) actually drop out. Next, we turn to the ∂Λ∂Λ
structures. The strategy here is to implement the antisym-
metry in ð1↔2Þ by decomposing the terms into structures

of the form ∂ðPΛ
½R
2 ∂KÞΛ

S�
1 and ∂ ½PΛ

ðR
2 ∂K�Λ

SÞ
1 . In the former,

ffff terms can then be reduced to ff terms by means
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of (A.1). After some algebra, one then finds for the terms in
the second line of (A.7)

−7fMNTfTPQPQK
RS∂PΛR

2 ∂KΛS
1 − ð1↔2Þ

¼ −2fMNTfTPQ∂ ½PΛ
ðQ
2 ∂K�Λ

KÞ
1

− fMNTfSUQfUK
RfQPT∂ ½PΛ

ðR
2 ∂K�Λ

SÞ
1 : ðA9Þ

Combing with the first term in the second line of (A.7) one
obtains

fMNTfTPQ∂PΛL
2∂LΛ

Q
1 − 7fMNTfTPQPQK

RS∂PΛR
2 ∂KΛS

1

− ð1↔2Þ
¼ 2fMNTfTPQ∂ðPΛ

½K
2 ∂KÞΛ

Q�
1

− fMNTfSUQfUK
RfQPT∂ ½PΛ

ðR
2 ∂K�Λ

SÞ
1 : ðA10Þ

Next, we have to simplify the terms in the fourth line of
(A.7). We first note that the antisymmetrization in ð1↔2Þ
imposes an antisymmetrization of the T;U indices in
fTKLfUR

S. This structure can thus be written as

2fMN½TfTK jLfNPjU�fUR
S∂KΛL

2∂RΛS
1

¼ −fMNPfNUTfTKLfUR
S∂KΛL

2∂RΛS
1; ðA11Þ

where we used the Jacobi identity for the contraction of the
first and third structure constants. In this form the anti-
symmetry in ð1↔2Þ is manifest. Next, we can decompose
the index pair in ∂KΛ2∂RΛ1 into its symmetric and
antisymmetric part. Applying then for the symmetric part
the Lemma (A.1), one finds after some straightforward
algebra that these terms equal

ðA.11Þ ¼ fMNPfNTUfTKLfUR
S∂ ½KΛL

2∂R�ΛS
1

− fMNPfRNS∂ðKΛK
2 ∂RÞΛS

1

þ fMNPfRNL∂ðKΛL
2∂RÞΛK

1

− fMK
PfRLS∂ðKΛL

2∂RÞΛS
1: ðA12Þ

Combining now (A.10) and (A.12) in the gauge algebra
(A.7) one finds that the ffff terms, after relabeling of
indices, combine into

−fMNTfUK
RðfSUQfQPT − fSPQfQU

TÞ∂ ½PΛ
ðR
2 ∂K�Λ

SÞ
1 V

N:

ðA13Þ

The terms in parentheses can now be combined by the
Jacobi identity to give the structure fSTQfQU

P, after which
it follows with the Lemma (2.13) that this term vanishes.
The ff terms combine to give the following final result

½δ1; δ2�VM ¼ δΛ12
VM − fMK

PðfRLS∂ðKΛL
2∂RÞΛS

1ÞVP:

ðA14Þ

As required, the extra term can be interpreted as a ΣM gauge
transformation, so that we established in total

½δ1; δ2�VM ¼ δΛ12
VM þ δΣ12

VM;

Σ12M ¼ −fNPQ∂ðMΛP
2 ∂NÞΛ

Q
1 : ðA15Þ

Note that the ΣM gauge parameter is manifestly covariantly
constrained in that its free index is always carried by a
derivative. This completes the proof of closure. Finally, we
may redefine these gauge parameters by trivial parameters
of the form (2.12),

χK ¼ 1

4
fKPQΛP

2Λ
Q
1 : ðA16Þ

This brings the gauge algebra into the equivalent form
(2.17) that we used in the main text. We finally note that the
closure of Σ and Λ transformations as indicated in (2.17)
follows by a straightforward computation that uses the
Lemma (2.13) for the constrained parameters ΣM. This
concludes our proof of closure of the E8ð8Þ generalized Lie
derivatives.

[1] O. Hohm and H. Samtleben, Phys. Rev. Lett. 111, 231601
(2013).

[2] O. Hohm and H. Samtleben, Phys. Rev. D 89, 066016
(2014).

[3] O. Hohm and H. Samtleben, Phys. Rev. D 89, 066017
(2014).

[4] W. Siegel, Phys. Rev. D 48, 2826 (1993).
[5] C. Hull and B. Zwiebach, J. High Energy Phys. 09 (2009)

099.

[6] C. Hull and B. Zwiebach, J. High Energy Phys. 09 (2009)
090.

[7] O. Hohm, C. Hull, and B. Zwiebach, J. High Energy Phys.
07 (2010) 016.

[8] O. Hohm, C. Hull, and B. Zwiebach, J. High Energy Phys.
08 (2010) 008.

[9] O. Hohm and S. K. Kwak, J. Phys. A 44, 085404 (2011).
[10] O. Hohm, D. Lüst, and B. Zwiebach, Fortschr. Phys. 61, 926

(2013).

EXCEPTIONAL FIELD THEORY. III. E8ð8Þ PHYSICAL REVIEW D 90, 066002 (2014)

066002-15

http://dx.doi.org/10.1103/PhysRevLett.111.231601
http://dx.doi.org/10.1103/PhysRevLett.111.231601
http://dx.doi.org/10.1103/PhysRevD.89.066016
http://dx.doi.org/10.1103/PhysRevD.89.066016
http://dx.doi.org/10.1103/PhysRevD.89.066017
http://dx.doi.org/10.1103/PhysRevD.89.066017
http://dx.doi.org/10.1103/PhysRevD.48.2826
http://dx.doi.org/10.1088/1126-6708/2009/09/099
http://dx.doi.org/10.1088/1126-6708/2009/09/099
http://dx.doi.org/10.1088/1126-6708/2009/09/090
http://dx.doi.org/10.1088/1126-6708/2009/09/090
http://dx.doi.org/10.1007/JHEP07(2010)016
http://dx.doi.org/10.1007/JHEP07(2010)016
http://dx.doi.org/10.1007/JHEP08(2010)008
http://dx.doi.org/10.1007/JHEP08(2010)008
http://dx.doi.org/10.1088/1751-8113/44/8/085404
http://dx.doi.org/10.1002/prop.201300024
http://dx.doi.org/10.1002/prop.201300024


[11] E. Cremmer, B. Julia, and J. Scherk, Phys. Lett. B 76, 409
(1978).

[12] J. H. Schwarz and P. C. West, Phys. Lett. B 126, 301 (1983).
[13] P. S. Howe and P. C. West, Nucl. Phys. B238, 181 (1984).
[14] E. Cremmer and B. Julia, Nucl. Phys. B159, 141 (1979).
[15] P. C. West, Phys. Lett. B 575, 333 (2003).
[16] A. Coimbra, C. Strickland-Constable, and D. Waldram, J.

High Energy Phys. 02 (2014) 054.
[17] D. S. Berman, M. Cederwall, A. Kleinschmidt, and D. C.

Thompson, J. High Energy Phys. 01 (2013) 064.
[18] H. Nicolai, Phys. Lett. B 187, 316 (1987).
[19] K. Koepsell, H. Nicolai, and H. Samtleben, Classical

Quantum Gravity 17, 3689 (2000).
[20] O. Hohm and H. Samtleben, J. High Energy Phys. 09 (2013)

080.
[21] H. Nicolai and H. Samtleben, Phys. Rev. Lett. 86, 1686

(2001).
[22] H. Godazgar, M. Godazgar, and M. J. Perry, J. High Energy

Phys. 06 (2013) 044.
[23] T. Curtright, Phys. Lett. B 165, 304 (1985).
[24] C. Hull, Nucl. Phys. B583, 237 (2000).
[25] P. C. West, Classical Quantum Gravity 18, 4443 (2001).
[26] C. Hull, J. High Energy Phys. 09 (2001) 027.
[27] X. Bekaert, N. Boulanger, and M. Henneaux, Phys. Rev. D

67, 044010 (2003).

[28] X. Bekaert, N. Boulanger, and S. Cnockaert, J. Math. Phys.
(N.Y.) 46, 012303 (2005).

[29] K. Koepsell, H. Nicolai, and H. Samtleben, J. High Energy
Phys. 04 (1999) 023.

[30] B. de Wit, H. Nicolai, and H. Samtleben, J. High Energy
Phys. 02 (2008) 044.

[31] O. Hohm and H. Samtleben, Phys. Rev. D 88, 085005
(2013).

[32] N. Marcus and J. H. Schwarz, Nucl. Phys. B228, 145
(1983).

[33] E. Cremmer, B. Julia, H. Lu, and C. N. Pope, Nucl. Phys.
B523, 73 (1998).

[34] H. Nicolai and H. Samtleben, Nucl. Phys. B668, 167 (2003).
[35] C. D. Blair, E. Malek, and J.-H. Park, J. High Energy Phys.

01 (2014) 172.
[36] C. Strickland-Constable, arXiv:1310.4196.
[37] O. Hohm, S. K. Kwak, and B. Zwiebach, Phys. Rev. Lett.

107, 171603 (2011).
[38] O. Hohm, S. K. Kwak, and B. Zwiebach, J. High Energy

Phys. 09 (2011) 013.
[39] N. Boulanger and O. Hohm, Phys. Rev. D 78, 064027

(2008).
[40] H. Godazgar, M. Godazgar, O. Hohm, H. Nicolai, and

H. Samtleben, arXiv:1406.3235 [J. High Energy Phys.
(to be published)].

OLAF HOHM AND HENNING SAMTLEBEN PHYSICAL REVIEW D 90, 066002 (2014)

066002-16

http://dx.doi.org/10.1016/0370-2693(78)90894-8
http://dx.doi.org/10.1016/0370-2693(78)90894-8
http://dx.doi.org/10.1016/0370-2693(83)90168-5
http://dx.doi.org/10.1016/0550-3213(84)90472-3
http://dx.doi.org/10.1016/0550-3213(79)90331-6
http://dx.doi.org/10.1016/j.physletb.2003.09.059
http://dx.doi.org/10.1007/JHEP02(2014)054
http://dx.doi.org/10.1007/JHEP02(2014)054
http://dx.doi.org/10.1007/JHEP01(2013)064
http://dx.doi.org/10.1016/0370-2693(87)91102-6
http://dx.doi.org/10.1088/0264-9381/17/18/308
http://dx.doi.org/10.1088/0264-9381/17/18/308
http://dx.doi.org/10.1007/JHEP09(2013)080
http://dx.doi.org/10.1007/JHEP09(2013)080
http://dx.doi.org/10.1103/PhysRevLett.86.1686
http://dx.doi.org/10.1103/PhysRevLett.86.1686
http://dx.doi.org/10.1007/JHEP06(2013)044
http://dx.doi.org/10.1007/JHEP06(2013)044
http://dx.doi.org/10.1016/0370-2693(85)91235-3
http://dx.doi.org/10.1016/S0550-3213(00)00323-0
http://dx.doi.org/10.1088/0264-9381/18/21/305
http://dx.doi.org/10.1088/1126-6708/2001/09/027
http://dx.doi.org/10.1103/PhysRevD.67.044010
http://dx.doi.org/10.1103/PhysRevD.67.044010
http://dx.doi.org/10.1063/1.1823032
http://dx.doi.org/10.1063/1.1823032
http://dx.doi.org/10.1088/1126-6708/1999/04/023
http://dx.doi.org/10.1088/1126-6708/1999/04/023
http://dx.doi.org/10.1088/1126-6708/2008/02/044
http://dx.doi.org/10.1088/1126-6708/2008/02/044
http://dx.doi.org/10.1103/PhysRevD.88.085005
http://dx.doi.org/10.1103/PhysRevD.88.085005
http://dx.doi.org/10.1016/0550-3213(83)90402-9
http://dx.doi.org/10.1016/0550-3213(83)90402-9
http://dx.doi.org/10.1016/S0550-3213(98)00136-9
http://dx.doi.org/10.1016/S0550-3213(98)00136-9
http://dx.doi.org/10.1016/S0550-3213(03)00569-8
http://dx.doi.org/10.1007/JHEP01(2014)172
http://dx.doi.org/10.1007/JHEP01(2014)172
http://arXiv.org/abs/1310.4196
http://dx.doi.org/10.1103/PhysRevLett.107.171603
http://dx.doi.org/10.1103/PhysRevLett.107.171603
http://dx.doi.org/10.1007/JHEP09(2011)013
http://dx.doi.org/10.1007/JHEP09(2011)013
http://dx.doi.org/10.1103/PhysRevD.78.064027
http://dx.doi.org/10.1103/PhysRevD.78.064027
http://arXiv.org/abs/1406.3235
http://arXiv.org/abs/1406.3235

