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We evaluate the contribution to Neff of the extra sterile states in low-scale type I seesaw models (with
three extra sterile states). We explore the full parameter space and find that at least two of the heavy states
always reach thermalization in the early Universe, while the third one might not thermalize provided the
lightest neutrino mass is below Oð10−3 eVÞ. Constraints from cosmology therefore severely restrict the
spectra of heavy states in the range 1 eV–100 MeV. The implications for neutrinoless double beta decay are
also discussed.
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I. INTRODUCTION

The simplest extension of the standard model (SM) that
can account for the observed neutrino masses is a type I
seesaw model [1] with N ≥ 2 extra singlet Majorana
fermions. The Majorana masses, that we globally denote
as M, constitute a new scale of physics (the seesaw scale)
which is presently unknown. Since the light neutrino
masses are a combination of the Yukawa couplings, the
electroweak scale and the seesaw scale, the latter can be
arbitrary if the Yukawas are adjusted accordingly. As a
result, the seesaw scale is presently unconstrained to lie
anywhere above OðeVÞ up to Oð1015 GeVÞ [2]. The
determination of this scale is one of the most important
open questions in neutrino physics.
It is often assumed that the seesaw scale is very high,

above the electroweak scale. However, in the absence of
any other hint of new physics beyond the SM, the
possibility that the seesaw scale could be at the electroweak
scale or lower should be seriously considered. As far as
naturalness goes, the model with a low scale is technically
natural, since in the limit M → 0, a global lepton number
symmetry is recovered: neutrinos becoming Dirac particles
by the pairing of the Majorana fermions.
The spectra of N ¼ 3 type I seesaw models contain six

Majorana neutrinos: the three lightest neutrinos, mostly
active, and three heavier, mostly sterile. The coupling of
the latterwith the leptons,Uas, is strongly correlatedwith their
masses (the naive seesaw scaling being jUasj2 ∝ M−1). The
possibility that such neutrino sterile states could be respon-
sible for any of the anomalies found in various experiments
is of coursevery interesting, since it could open a newwindow
into establishing the new physics of neutrino masses.

Models with extra light sterile neutrinos with masses in
the range of OðeVÞ could provide an explanation to the
LSND/MiniBOONE [5,6] and reactor anomalies [7].
Sterile species in the OðkeVÞ range could still be valid
candidates for warm dark matter [8–11]. The recent
measurement of an x-ray signal [12,13] might be the first
experimental indication of such possibility. Species in the
OðGeVÞ range could account for the baryon asymmetry in
the Universe [14,15] (for a recent review see [16]).
There are important constraints on low-scale models

from direct searches and rare processes such as μ → eγ
and μe conversion. Recent results can be found in [17–19].
The constraints are strongly dependent on M for M≲
Oð100 GeVÞ.
It is well known that if light sterile neutrinos with

significant active-sterile mixing exist they can contribute
significantly to the energy density of the Universe.
Mechanisms to reduce this contribution have been
proposed, such as the presence of primordial lepton asym-
metries [20] or new interactions [21,22], which however
typically require new physics beyond that of the sterile
species. The energy density of the extra neutrino species, ϵs,
is usually quantified in terms of ΔNeff (when they are
relativistic) defined by

ΔNeff ≡ ϵs
ϵ0ν
; ð1Þ

where ϵ0ν is the energy density of one SM massless neutrino
with a thermal distribution [below e� annihilation it is ϵ0ν ≡
ð7π2=120Þð4=11Þ4=3T4

γ at the photon temperature Tγ]. One
fully thermal extra sterile state that decouples from the
thermal bath being relativistic contributesΔNeff ≃ 1when it
decouples.
Neff at big bang nucleosynthesis (BBN) strongly

influences the primordial helium production. A recent
analysis of BBN bounds [23] gives NBBN

eff ¼ 3.5� 0.2.
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Neff also affects the anisotropies of the cosmic microwave
background (CMB). Recent CMB measurements from
Planck give NCMB

eff ¼ 3.30� 0.27 [24], which includes
WMAP-9 polarization data [25] and high multipole mea-
surements from the South Pole Telescope [26] and the
Atacama Cosmology Telescope [27]. Recent global analy-
ses, including the BICEP2 results [28,29], seem to prefer
larger values of NCMB

eff [30–32].
The contribution of extra sterile neutrinos to Neff has

been extensively studied in phenomenological models,
where there is no correlation between masses and mixing
angles [33–35]. For recent analyses of eV scale neutrinos,
with and without lepton asymmetries, see [36–42]. In [43]
we explored systematically the contribution to Neff of the
minimal type I seesaw models with just two extra singlets,
N ¼ 2. We found that whenever the two heavier states are
below Oð100 MeVÞ, they contribute too much energy/
matter density to the Universe, while the possibility of
having one state ≲ eV and another heavier than 100 MeV
may not be excluded by cosmological and oscillation data
constraints, but requires further scrutiny.
The purpose of this paper is to perform the same study in

the next-to-minimal seesawmodel whereN ¼ 3. This is the
standard type I seesaw model with a low scale, and is also
often referred to as the neutrino Minimal Standard Model
(νMSM). This model has been extensively studied in the
literature, concentrating on regions of parameter space
where the lightest sterile state could be a warm dark matter
particle, and the two heavier states could be responsible for
the baryon asymmetry in the Universe [15]. What we add in
this paper is a systematic study of the full parameter space
to understand the constraints on the seesaw scale(s) from
the modifications to the standard cosmology induced by the
three heavy neutrino states. We will assume that primordial
lepton asymmetries are negligible. Although the model in
principle satisfies the Sakharov conditions to generate a
lepton asymmetry, previous works indicate that significant
lepton asymmetries can only be generated when at least
two of the sterile states are heavy enough, OðGeVÞ, and
extremely degenerate [44]. Here we will concentrate on
studying the bounds from cosmology when such an extreme
degeneracy of the sterile neutrino states is not present. We
show that, in spite of the large parameter space, the
thermalization of the sterile states in this model is essentially
controlled by one parameter: the lightest neutrino mass.
The paper is organized as follows. In Sec. II we review

the estimates of the thermalization rate of the sterile states
as derived in [43], which allow us to efficiently explore
the full parameter space of the model. In Sec. III we
derive analytical bounds for the thermalization rate and in
Sec. IV we correlate ΔNeff with the lightest neutrino mass.
In Sec. V we present numerical results from solving the
Boltzmann equations and finally in Sec. VI we analyze
the impact on neutrinoless double beta decay. In Sec. VII
we conclude.

II. THERMALIZATION OF STERILE NEUTRINOS
IN 3þ 3 SEESAW MODELS

The model is described by the most general renormaliz-
able Lagrangian including N ¼ 3 extra singlet Weyl
fermions, νiR:

L ¼ LSM −
X
α;i

L̄αYαi ~ΦνiR −
X3
i;j¼1

1

2
ν̄icRM

ij
Nν

j
R þ H:c:;

where Y is a 3 × 3 complex matrix and MN a diagonal real
matrix. The spectrum of this theory has six massive
Majorana neutrinos, and the mixing is described in terms
of six angles and six charge parity (CP) phases.
We assume that the eigenvalues of MN are significantly

larger than the atmospheric and solar neutrino mass
splittings, which implies a hierarchy MN ≫ Yv and there-
fore the seesaw approximation is good. A convenient
parametrization in this case is provided by that of
Casas-Ibarra [45], or its extension to all orders in the
seesaw expansion as described in [46] (for an alternative
see [47]). The mass matrix can be written as

Mν ¼ U�Diagðml;MhÞU†; ð2Þ

whereml¼Diagðm1;m2;m3Þ andMh¼DiagðM1;M2;M3Þ.
Denoting by a the active/light neutrinos and s the sterile/
heavy species, the unitary matrix can be written as

U ¼
�
Uaa Uas

Usa Uss

�
; ð3Þ

with

Uaa ¼ UPMNSH;

Uss ¼ H̄;

Usa ¼ iH̄M−1=2
h Rm1=2

l ;

Uas ¼ iUPMNSHm1=2
l R†M−1=2

h ; ð4Þ

where UPMNS is a 3 × 3 unitary matrix and R is a generic
3 × 3 orthogonal complex matrix, while H and H̄ are
defined by

H−2 ¼ I þm1=2
l R†M−1

h Rm1=2
l ;

H̄−2 ¼ I þM−1=2
h RmlR†M−1=2

h : ð5Þ

At leading order in the seesaw expansion, i.e. up to Oðml
Mh
Þ,

H≃ H̄≃ 1, and we recover the Casas-Ibarra parametriza-
tion. In this approximation UPMNS is the light neutrino
mixing matrix measured in oscillations.
Neutrino oscillation data fix two of the three eigenvalues

in ml and the three angles in UPMNS; however all the heavy
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masses in Mh, the lightest neutrino mass in ml, the three
complex angles in R and the three CP violating phases in
UPMNS are presently unconstrained [48].
In [49] a simple estimate for the thermalization of one

sterile neutrino in the early Universe, neglecting primordial
lepton asymmetries, was given as follows. Assuming that
the active neutrinos are in thermal equilibrium with a
collision rate given by Γνα, the collision rate for the sterile
neutrinos can be estimated to be

Γsj ≃
1

2

X
a

hPðνa → νsjÞi × Γνα ; ð6Þ

where hPðνα → νsjÞi is the time-averaged probability
να → νsj . This probability depends strongly on temperature
because the neutrino index of refraction in the early
Universe is modified by coherent scattering of neutrinos
with the particles in the plasma [50]. Thermalization will
be achieved if there is any temperature where this rate is
higher than the Hubble expansion rate, i.e. ΓsjðTÞ ≥ HðTÞ.
In a radiation-dominated universe,HðTÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π3g�ðTÞ

45

q
T2

MPlanck
,

with g�ðTÞ being the number of relativistic degrees of
freedom.
One can therefore define the function fsjðTÞ, which

measures the sterile production rate of the species sj in
units of the Hubble expansion rate,

fsjðTÞ≡
ΓsjðTÞ
HðTÞ : ð7Þ

It reaches a maximum at some temperature, Tmax [49]. If
fsjðTmaxÞ ≥ 1, the sterile state will reach a thermal abun-
dance at early times. We can estimate the contribution to
Neff as

Neff ≃ NSM
eff þ

X
j

ð1 − expð−αfsjðTj
maxÞÞÞ; ð8Þ

at decoupling if they are still relativistic, where α is anOð1Þ
numerical constant. Provided fsjðTj

maxÞ is sufficiently
larger than one, Neff saturates to the number of thermalized
species, up to exponentially small corrections.
In [43], this result was also derived from the Boltzmann

equations [51–54], in the assumption of no primordial
large lepton asymmetries. As shown in Appendix A, in
spite of the complex 6 × 6 mixing, the thermalization of
the sterile state j is roughly given by the sum of three
2 × 2 mixing contributions in agreement with the naive
expectation of Eq. (6),

fsjðTÞ ¼
X

α¼e;μ;τ

ΓναðTÞ
HðTÞ

�
M2

j

2pVαðTÞ−M2
j

�2

jðUasÞαjj2; ð9Þ

where p is the momentum, VαðTÞ is the potential induced
by coherent scattering in the plasma [50] and ΓναðTÞ is the

scattering rate of the active neutrinos. Both Vα and Γα

depend on the temperature since the number of scatters
increases with T [10,55,56]. While the former varies only
when the lepton states become populated, the latter depends
significantly on the quark degrees of freedom and there-
fore changes significantly at the QCD phase transition.
The quark contribution to Γνα is however rather uncertain;
we therefore neglect this contribution, since this is a
conservative assumption if we want to minimize thermal-
ization: any contribution that will increase Γνα would help
increase the thermalization rate.
The most complete calculation of Γνα has been presented

in [56], where a full two-loop computation of the imaginary
part of the neutrino self-energy was presented. The results
for the leptonic contribution to ΓναðTÞ can be accurately
parametrized in terms of CαðTÞ as

Γνα ≃ CαðTÞG2
FT

4p ð10Þ

that can be extracted from the numerical results of [56],
recently made publicly available in Ref. [57].
For temperatures above the different lepton thresholds,

the results can be approximated by
(τ) T ≳ 180 MeV: Ce;μ;τ ≃ 3.43 and Vα ¼ AT4p for
α ¼ e; μ; τ;
(μ) 20 MeV≲ T ≲ 180 MeV: Ce;μ ≃ 2.65, Cτ ≃ 1.26,
Ve ¼ Vμ ¼ AT4p and Vτ ¼ BT4p;
(e) T ≲ 20 MeV: Ce ≃ 1.72, Cμ;τ ≃ 0.95, Ve ¼ AT4p
and Vμ ¼ Vτ ¼ BT4p,
with

B≡ −2
ffiffiffi
2

p �
7ζð4Þ
π2

�
GF

M2
Z
;

A≡ B − 4
ffiffiffi
2

p �
7ζð4Þ
π2

�
GF

M2
W
:

ð11Þ

In Fig. 1 we show CαðTÞ=
ffiffiffiffiffiffiffiffiffiffiffi
g�ðTÞ

p
as a function of the

temperature. We include the T dependent normalization

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

Log 10 T MeV

C
T

g
T

FIG. 1 (color online). Leptonic contribution to CαðTÞ=
ffiffiffiffiffiffiffiffiffiffiffi
g�ðTÞ

p
taken from Refs. [56,57] for α ¼ e (top/blue), μ (middle/magenta),
τ (bottom/yellow).
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factor,
ffiffiffiffiffiffiffiffiffiffiffi
g�ðTÞ

p
, coming from HðTÞ. Note that the depend-

ence on the temperature of this factor is small.
Let Tmax be the value of the temperature at which fsjðTÞ

is maximum [58]. For p ¼ 3.15T, and neglecting the T
dependence of Cα=

ffiffiffiffiffi
g�

p
, Tmax is bounded by

Tτ
max ≡

�
M2

j

59:5jAj
�1=6

≤ Tmax ≤
�

M2
j

59:5jBj
�1=6

: ð12Þ

Thermalization will take place provided fsjðTmaxÞ ≥ 1. In
the next section we derive an analytical lower bound on this
quantity, which can be translated therefore into a sufficient
condition for thermalization.

III. ANALYTICAL BOUNDS

For a given set of mixing and mass parameters we have
the following general lower bound for fsjðTÞ:

fBðTÞ≡Min
�
CτðTÞffiffiffiffiffiffiffiffiffiffiffi
g�ðTÞ

p �
G2

FpT
4

ffiffiffiffiffiffiffiffiffiffiffi
g�ðTÞ

p
HðTÞ

�
M2

j

2pVe −M2
j

�2

×
X

α¼e;μ;τ

jðUasÞαjj2 ≤ fsjðTÞ: ð13Þ

This results from the fact that jVej ≥ jVαj and Cα ≥ Cτ for
all α ¼ e; μ; τ. The minimization of Cτ=

ffiffiffiffiffi
g�

p
as a function

of T gets rid of the T dependence of this factor.
The function fBðTÞ is maximized at Tτ

max, defined in
Eq. (12). It then follows that

fBðTτ
maxÞ ≤ fsjðTτ

maxÞ ≤ fsjðTmaxÞ: ð14Þ

In summary, taking the average momentum, p ¼ 3.15T,
fsjðTmaxÞ is bounded by

fsjðTmaxÞ ≥ fBðTτ
maxÞ ¼

P
αjðUasÞαjj2Mj

3.25 × 10−3 eV
: ð15Þ

Using Eq. (4) in the Casas-Ibarra limit, the dependence on
the parameters of the model in the above equation can be
simplified to the following combination:X
α

jðUasÞαjj2Mj ¼
X
α

ðUPMNSm
1=2
l RÞαjðR†m1=2

l U†
PMNSÞjα

¼ ðR†mlRÞjj ≡ hj: ð16Þ

Therefore the analytical lower bound does not depend
on the angles and CP phases of the Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matrix. It depends only on the
undetermined Casas-Ibarra parameters and the light neu-
trino masses. The lower bound can be further simplified
using

hj¼
X
α

jRαjj2mα≥ j
X
α

R2
αjmαj≥ j

X
α

R2
αjm1j¼m1; ð17Þ

where in the last step we have used the orthogonality of
the R matrix and assumed a normal hierarchy of the
light neutrinos (NH). The result for an inverted hierarchy
(IH) is the same substituting m1 → m3. Finally using
Eqs. (16) and (17) in Eq. (15) we obtain

fsjðTmaxÞ ≥
hj

3.25 × 10−3 eV
≥

m1

3.25 × 10−3 eV
≡ m1

mth
1

;

ð18Þ

which defines mth
1 .

IV. LIGHTEST NEUTRINO MASS VERSUS
THERMALIZATION

The thermalization of jth heavy sterile state will occur
provided fsjðTÞ ≥ 1 for some T. Therefore a sufficient
condition is that fsjðTmaxÞ ≥ 1 or using Eq. (18) m1 ≥ mth

1 .
From the analytical bound we therefore deduce that
thermalization of the three states will occur if

m1 ≥ 3.25 × 10−3 eV; ð19Þ

for any value of the unconstrained parameters in R and the
CP phases. We note that a more restrictive upper bound on
the lightest neutrino mass was derived in [11,56] under the
assumption that M1 was a warm dark matter candidate in
the keV range.
In Fig. 2 we show the contour plots of the minimum of

fs1ðTmaxÞ (varying the unconstrained parameters in R and
the CP phases in the full range), as a function of m1 and
M1. The three lines correspond to Min½fs1ðTmaxÞ� ¼
10−1; 1; 10. As expected the minimum is strongly corre-
lated with m1 and is roughly independent of M1. Values of
m1 below the contour line at 1 correspond to nontherm-
alization; therefore we read

m1 ≤ Oð10−3 eVÞ; ð20Þ
for M1 ∈ ½1 eV–100 MeV�. The numerical bound is
slightly stronger than the analytical bound given by

10

1

0.1

6 4 2 0 2
5

4

3

2

1

Log 10 Μ1 MeV

L
og

10
m

1
eV

FIG. 2. Contours of Min½fs1ðTmaxÞ� ¼ 0.1, 1, 10 on the plane
ðM1; m1Þ.
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Eq. (19). Had we considered any other of the heavy states
j ¼ 2; 3 the results would be the same [i.e. the same
minimum of fsjðTmaxÞ would be obtained for different
values of the unconstrained parameters].
A less stringent (sufficient) condition for thermalization

of the state j is

hj ≥ mth
1 ð21Þ

as it follows from Eq. (18). It turns out that this condition is
always satisfied for at least two of the three heavy
neutrinos, independently of m1 or the Casas-Ibarra param-
eters. In Fig. 3 we show the minimization of h2 in the full
parameter space within each bin of h1, shown in the x-axis,
for fixed values of m1. Although either h1 or h2 can always
be below the mth

1 line (shown as dashed line) if m1 ≤ mth
1 ,

the other one is always significantly above it. The same
pattern is observed with any pair of hj. This shows that at
most one of the sterile states might not thermalize, and to
have one not thermal requires that m1 ≤ mth

1 .
It is easy to see how hj can reach its lower bound, m1,

without contradicting present neutrino data. One can
always choose Rαj ¼ 0 for α ≠ j. For j ¼ 1, the orthogonal
matrix reduces to the form

R ¼
�
1 0

0 R2×2

�
; ð22Þ

where R2×2 is an orthogonal two-dimensional matrix that
depends on one complex angle. For j ¼ 2; 3 the matrix is
analogous with the appropriate permutation of the heavy
states. The model therefore reduces in this limit to a
3þ 2þ 1, where one sterile state is essentially decoupled.
When m1 ≤ mth

1 , the latter might thermalize or not depend-
ing on the unknown parameters, while the other two states
always thermalize, as in the minimal 3þ 2 model already
considered in Ref. [43].
In the next section we evaluate the implications for Neff

in both cases.

V. NEFF IN THE 3þ 3 MODEL

A. m1 ≥ mth
1

In this case, the three sterile states thermalize, each of

them contributing with ΔNðjÞ
eff ðTdjÞ ≈ 1 at their decoupling

temperature, Tdj (provided they are still relativistic). This
contribution gets diluted later on, due to the change of
g�ðTÞ between Tdj and the active neutrino decoupling,
TBBN, when BBN starts. The dilution factor is relevant only
for masses larger than Mj ≳ 1 keV [43].
If they are still relativistic at TW , we can therefore

estimate

ΔNBBN
eff ¼

X
j

�
g�ðTBBNÞ
g�ðTdjÞ

�
4=3

; ð23Þ

where the sum runs over the three heavier states.
For Mj ≥ Oð100Þ MeV, the contribution to the energy

density could be significantly suppressed with respect to
the estimate Eq. (23), because either they decay sufficiently
early before BBN and/or become nonrelativistic at Tdj and
therefore get Boltzmann suppressed. Additional constraints
will be at work in some regions of parameter space even for
those larger masses, but they are likely to depend on the
unknown mixing parameters, so we concentrate on the case
where at least one of the three heavy neutrinos has a mass
below this limit.
We consider in turn the following possibilities.
(i) For all j, Mj ≲ 100 MeV
After recent measurements, the BBN constraints men-

tioned in the introduction give ΔNBBN
eff ≤ 0.9 at 2σ. From

the results of [43] in the 3þ 2 model, we estimate that
Mj ≲ 10–100 keV would be excluded from BBN bounds
in this case. For larger masses, dilution is sufficiently strong
to avoid BBN bounds, but the contribution to the energy
density after BBN is anyway too large. When they become
nonrelativistic, their contribution to the energy density can
be estimated to be [59]

Ωsjh
2 ¼ 10−2MjðeVÞΔNðjÞBBN

eff ; ð24Þ

where ΔNðjÞBBN
eff is estimated from the ratio of number

densities of the jth state and one standard neutrino at BBN.
If they do not decay before recombination, Planck con-
straint on Ωmh2 would completely exclude such high
masses. On the other hand, if they decay, they transfer
this energy density to radiation. The case in which they
decay at BBN or before (only for masses above 10 MeVor
so) has been considered in detail in [60,61] and essentially
BBN constraints, combined with direct search constraints
[18,19,62], exclude the range 10–140 MeV. If they decay
after BBN, they transfer the energy density mostly to the
already decoupled light neutrinos, a contribution that can
be parametrized in terms of ΔNeff which is enhanced with

FIG. 3 (color online). Minimum of h2 in bins of h1 in the full
allowed parameter space with fixed m1 ¼ 10−½5−2� eV. The
dashed line corresponds to the analytical bound mth

1 ¼
3.25 × 10−3 eV.
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respect to that at BBN, Eq. (23), by a factor ∝ Mj

TðjÞ
dec

,

where TðjÞ
dec is the decay temperature of the jth species.

This temperature can be estimated by the relation

HðTðjÞ
decÞ ¼ τ−1sj , where

τ−1sj ≃G2
FM

5
j

192π3
X
α

jðUasÞαjj2 ð25Þ

(for Mj below any lepton or hadron threshold). We are not
aware of a self-consistent global cosmological analysis of
such a scenario. Assuming that CMB constraints on extra
radiation ΔNeff roughly apply to it, the large mass region,
still allowed by BBN due to dilution, is anyway excluded

by CMB measurements, because the ratio Mj=T
ðjÞ
dec is very

large. Recent analyses on dark radiation from decays can be
found in [63–65].

(i) M1;M2 ≲ 100 MeV ≪ M3

In this case, the results of the 3þ 2 model apply directly
and the conclusion is the same as before: BBN constraints
force the masses to be large to enhance dilution, but such
heavy states contribute too much energy density either in
the form of matter or extra radiation.

(i) M1 ≲ 100 MeV ≪ M2;M3

In this case, any value ofM1 could be barely compatible
with BBN constraints, since ΔNeff ≤ 1. CMB constraints
would however force the state to be very light, sub-eV,
which implies ΔNeff ≃ 1 and therefore some tension with
BBN. On the other hand, constraints from oscillations are
important in this range [4].
The allowed ranges of the Mj are qualitatively depicted

in Fig. 4.

B. m1 ≤ mth
1

If the lightest neutrino mass is below mth
1 , one of the

states might not thermalize [66], we will take it to be the
lightest sterile state although it could be any other. As
shown above, this can happen in a region of parameter
space with effective decoupling of the first state. A more

precise estimate of ΔNBBN
eff is given from solving the

Boltzmann equations reviewed in Appendix A. We con-
sider two cases:

(i) The unknown mixing parameters (i.e. the Casas-
Ibarra parameter of the matrix R and the CP phases)
are fixed by minimizing fs1ðTmaxÞ and fs2ðTmaxÞ as
a function of m1 andM1, and for fixed values ofM2

and M3.
(ii) The unknown parameters correspond to those that

satisfy fs1ðTmaxÞ ¼ 10Min½fs1ðTmaxÞ� (i.e. the light-
est sterile state does not thermalize, but the thermal-
ization rate is ten times larger than its minimum) and
minimize fs2ðTmaxÞ.

In Fig. 5 we show the contribution
P

j¼2;3ΔN
ðjÞBBN
eff for

the NH (IH) cases. It is approximately the same as that
found in the 3þ 2 model [67] and independent of m1

and M1. On the other hand, the contribution ΔNð1ÞBBN
eff

depends strongly on m1 and it is roughly ten times larger
in the second case than in the first, as expected from
Fig. 2. Assuming that the contribution of the nonthermal
state is negligible, the model is still strongly disfavored
if M2;M3 ≲ 100 MeV, as explained above. The case with
M2 ≲ 100 MeV ≪ M3 could be barely compatible with
BBN and CMB constraints ifM2 ≲ eV. The allowed ranges
of the Mj are qualitatively depicted in Fig. 6.
WhenM2;M3 are above 100 MeV, the only contribution

to ΔNeff would be that of the lighter state. In Fig. 7 we

show the contour levels for ΔNð1ÞBBN
eff as obtained from the

Boltzmann equations from the ratio of energy (number)
densities of the j ¼ 1 sterile state and one standard neutrino
at BBN [see Eqs. (A18) and (A19) in the appendix], versus
m1 andM1, assuming no lepton asymmetries. In the case of
degenerate heavier states significant lepton asymmetries
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FIG. 4 (color online). Allowed spectra of the heavy states Mi
for m1 ≥ mth

1 .

FIG. 5 (color online).
P

j¼2;3ΔN
ðjÞBBN
eff for m1 ≤ mth

1 , as a
function of M2 and M3. The thick lines correspond to present
BBN bounds.
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can be produced [68], which can modify significantly the
production of the lighter state [68–70]. We will explore
systematically that region of parameter space in a future
work, but here we consider only the nondegenerate case
where asymmetries are not expected to be of relevance.
In the figure we also included the line, enclosing the

shaded region, corresponding to Ωs1h
2 ¼ Ωmh2 ¼ 0.1199,

which is the result from the PLANCK collaboration in a
ΛCDM model [24]. In the shaded region the sterile state
contributes too much to the matter density and therefore is
excluded. Further constraints from Lyman-α and x rays can
be found in the recent review [16], and based on the Pauli

exclusion principle and Liouville’s theorem in [71]. The
almost vertical dashed line corresponds to decay roughly at
recombination, which means that in the region to the right
of this curve, the j ¼ 1 state decays before, and contributes

as extra radiation, roughly ΔNð1ÞBBN
eff × M1

Tð1Þ
dec

, which is much

larger than one in the whole plane and is therefore
excluded.
We note that for M1 in the keV range, where it could

be a warm dark matter candidate, the allowed region
requires m1 ≲Oð10−5 eVÞ, which is in good agreement
with the bound derived in [15].
We have also studied the case where it is the j ¼ 2 state

that does not reach thermalization, with M1 ¼ 0.5 eV,

M3 ¼ 1 GeV. The contribution of the j ¼ 2 state, ΔNð2Þ
eff

is essentially the same as that shown in Fig. 7. In this

case the contribution of the lighter state is ΔNð1ÞBBN
eff ≃ 1,

because dilution is very small for such light masses.
All the results we have shown are for a normal hierarchy

of the light neutrino spectrum, but the results for IH are
almost identical if we exchange m1 → m3.

VI. IMPACT ON NEUTRINOLESS
DOUBLE BETA DECAY

In the 3þ 3 seesaw models studied here the light and
heavy neutrinos are Majorana particles and, therefore, they
can contribute to lepton number violating processes such as
the neutrinoless double beta (ββ0ν) decay. The spectra of
Fig. 6, allowed if m1 ≤ mth

1 , will have important implica-
tions for this observable for two reasons: (1) the contribu-
tion of the light neutrinos to the amplitude of this process,
mββ, depends strongly on the lightest neutrino mass and
(2) sterile states with masses below 100 MeV could also
contribute significantly to this amplitude. The contribution
of states with masses well above 100 MeV would be
generically subleading [72,73].
If the three heavy states are well above 100 MeV, mββ is

the standard result for the three light Majorana neutrinos. It
is shown by the well-known colored bands on Fig. 8 as a
function of the lightest neutrino mass, for the two neutrino
hierarchies. If one of the states, for example j ¼ 1, is in the
range [1 eV, 100MeV], we have seen that it cannot have the
thermal abundance which requires an upper bound on
the lightest neutrino, m1 ≤ 10−3 eV, shown by the vertical
dashed grey line. In this case, the sterile state can give a
relevant contribution to the amplitude of the process and
mββ reads

mββ ¼ eiαm1c212c
2
13 þ eiβm2c213s

2
12 þm3s213 þ ðUasÞ2e4M1:

ð26Þ
The maximum value of the extra term (with the constraints
that the corresponding sterile state does not thermalize, i.e.
fs1ðTmaxÞ ≤ 1, and it does not contribute too much to the
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FIG. 6 (color online). Allowed spectra of the heavy states Mi
for m1 ≤ mth

1 . The unconstrained mass could be any i ¼ 1; 2; 3.

FIG. 7 (color online). Contour plots for ΔNð1ÞBBN
eff ¼

10−1; 10−2; 10−3 defined by the ratio of the energy density of
the j ¼ 1 sterile state and one standard neutrino as a function of
m1 and M1. The solid (dashed) lines correspond to the contours
of the ratio of sterile to active number (energy) densities. The
shaded region corresponds to Ωs1h

2 ≥ 0.1199 and the dashed
straight line is roughly the one corresponding to decay at
recombination. The heavier neutrino masses have been fixed
toM2;3 ¼ 1 GeV, 10 GeVand the unconstrained parameters have
been chosen to minimize f1ðTmaxÞ and f2ðTmaxÞ. The light
neutrino spectrum has been assumed to be normal (NH).
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energy density, Ωs1h
2 ≤ 0.12) is shown by the lines for

M1 ¼ 1 eV, 100 eVand 1 keV, as a function of the lightest
neutrino mass, mlight ¼ m1ðm3Þ for NH (IH).
Figure 8 shows that the quasidegenerate light neutrino

spectrum is ruled out for M1 ∈ ½1 eV–100 MeV� and
M2;3 ≫ 100 MeV. The region of the parameter space in
which a cancellation can occur in the active neutrino
contribution is also excluded. It is remarkable that the
thermalization bound on mlight is around two orders of
magnitude stronger than the present constraint on the
absolute neutrino mass scale from Planck [24]. On the
other hand, we can also conclude that the contribution
of the lightest sterile neutrino to the process is sub-
leading and well below the (optimistic) sensitivity of
the next-to-next generation of ββ0ν decay experiments,
10−2 eV. This is so, independently of the light neutrino
hierarchy.
Finally, there is a still plausible possibility of having a

significant contribution to the ββ0ν decay from a sub-eV
thermal sterile neutrino which can satisfy the cosmological
bounds. For example, if fs1ðTmaxÞ ≥ 1withM1 ≲ 1 eV and
M2;3 ≫ 100 MeV, the lightest sterile neutrino could give a
significant contribution to the process. However, for such a
lowM1 scale, the constraints from neutrino oscillations are
expected to be very relevant. Therefore, this case deserves a
more careful analysis which should also face the possibility
of explaining the neutrino anomalies. This would also
apply to the scenario where M1 ≤ 1 eV, 1 eV ≤ M2 ≤
100 MeV and M3 ≫ 100 MeV, if m1 ≤ mth

1 . The two
lighter states would contribute to ββ0ν. The contribu-
tion of M2 would be similar to that of M1 in Fig. 8,
while that of M1 would depend significantly on oscillation
constraints.

VII. CONCLUSIONS

We have studied the thermalization of the heavy sterile
neutrinos in the standard type I seesaw model with three
extra singlets and a low scale, eV ≤ Mj ≤ 100 MeV. The
production of the states in the early Universe occurs via
nonresonant mixing (in the absence of large primordial
asymmetries) and we have found that, independently of the
unknown mixing parameters in the model, full thermal-
ization is always reached for the three states if the lightest
neutrino mass is above Oð10−3 eVÞ. Since they decouple
early, while they are still relativistic, these states either
violate BBN constraints on ΔNeff and/or contribute too
much energy density to the Universe at later times, either in
the form of cold dark matter (if they decay late enough) or
in the form of dark radiation (if they decay earlier).
Majorana masses would all need to be heavier than
Oð100 MeVÞ to avoid cosmology constraints, or alterna-
tively one of them could remain very light sub-eV, resulting
in a milder tension with cosmology.
In contrast, if the lightest neutrino mass is below

Oð10−3 eVÞ, one and only one of the sterile states might
never thermalize, depending on the unknown parameters of
the model, and therefore its mass is unconstrained. The
other two states always thermalize and therefore their
masses should be above Oð100 MeVÞ to avoid cosmo-
logical constraints. The scenario often referred to as the
νMSM [15] falls in this category, where the nonthermalized
state in the keV region could be a candidate for warm dark
matter [8,11] and the heavier states could generate the
baryon asymmetry [14]. In fact, a more stringent upper
bound on m1 had been previously derived from the
requirement that M1 ∼ keV and could be a warm dark
matter candidate [15]. Alternatively, the tension with
cosmology could also be minimized in this case if one
of the two thermalized states is very light sub-eV and the
other remains heavy.
Although the possibility of having one of the species

in the sub-eV range could provide an interesting scenario
to maybe explain the neutrino oscillation anomalies,
the tension between cosmology and neutrino oscillation
experiments is likely to be significant.
Finally, we have also studied the impact of the cosmo-

logical bounds extracted in this work on the ββ0ν decay
phenomenology. We have found that if one of the sterile
neutrinos does not thermalize, the quasidegenerate light
neutrino spectrum would be ruled out. The region of the
parameter space in which a cancellation can take place in
the active neutrino contribution is also excluded in this
scenario. In addition, we have also shown that the con-
tributions of sterile states with M1 ∈ ½1 eV–100 MeV� are
subleading and well beyond the sensitivity of the next-to-
next generation of ββ0ν decay experiments. However, a
sub-eV thermal sterile state could give a contribution, in
this scenario, within reach of the next-to-next generation of
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FIG. 8 (color online). mββ as a function of the lightest neutrino
mass: contribution from the active neutrinos (red and blue
regions) and the maximum contribution of the lightest sterile
neutrino, for M1 ¼ 1 eV (solid), 100 eV (dashed), 1 keV
(dotted), for NH (blue) and IH (red) restricting Ωs1h

2 ≤ 0.12
and fs1ðTmaxÞ ≤ 1, for M2;3 ≫ 100 MeV, as a function of the
lightest neutrino mass. The shaded region is ruled out for M1 ∈
½1 eV–100 MeV� by the thermalization bound on the lightest
neutrino mass, m1 ≤ 10−3 eV.
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ββ0ν decay experiments, the constraints from neutrino
oscillations playing a very important role.
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APPENDIX:

In the density matrix formalism [54], the kinetic
equations have the usual form:

_ρ ¼ −i½H; ρ� − 1

2
fΓ; ρ − ρeqIAg; ðA1Þ

where ρ is the 6 × 6 density matrix, H is the Hamiltonian
describing the propagation of relativistic neutrinos in the
plasma, Γ is the collision term that we take from
Refs. [56,57] and ρeq is the active neutrino thermal density,
i.e. the Fermi-Dirac distribution ρeq ¼ 1

eE=Tþ1
, in the absence

of a chemical potential. IA is the projector on the active
sector. The trace of the density matrix corresponds to the
number density of neutrinos.
Rewriting Eq. (A1) in the form of active-sterile block

matrices we get the following set of equations:

_ρA ¼ −iðHAρA − ρAHA þHASρ
†
AS − ρASH

†
ASÞ

−
1

2
fΓA; ρA − ρeqIAg; ðA2Þ

_ρAS ¼ −iðHAρAS − ρAHAS þHASρS − ρASHSÞ −
1

2
ΓAρAS;

ðA3Þ

_ρS ¼ −iðH†
ASρAS − ρ†ASHAS þHSρS − ρSHSÞ: ðA4Þ

Assuming that ΓA ≫ Hubble rate, we can approximate

_ρA ¼ _ρAS ¼ 0: ðA5Þ

This is the so-called “static approximation” [33,69,70].
The first equation implies ρA ¼ ρeqIA, while the second

equality implies

ðρASÞai ¼ ð−ðHA − ~HiIAÞ þ iΓA=2Þ−1aa0 ðHASÞa0jððρSÞji
− ρeqδjiÞ; ðA6Þ

where we have made the approximation that ðHSÞij ¼
~Hiδij, which is very good in the seesaw limit. Similarly
we find

ðρ†ASÞia ¼ ððρSÞij − ρeqδijÞðH†
ASÞja0 ð−ðHA − ~HiIAÞ

− iΓA=2Þ−1a0a: ðA7Þ

Defining ~ρS ≡ ρS − ρeqIS, and after substituting ρAS and

ρ†AS in Eq. (A4), we get the following equation:

ð_ρSÞij ¼ −ið ~Hi − ~HjÞðρSÞij
− iðH†

ASÞa0ið−ðHA − ~HjIAÞ
þ iΓA=2Þ−1a0aðHASÞak ~ρkj
þ i~ρikðH†

ASÞa0kð−ðHA − ~HiIAÞ
− iΓA=2Þ−1a0aðHASÞaj: ðA8Þ

It is clear that the equilibrium distribution for the sterile
components is ~ρii ¼ 0 or ρii ¼ ρeqδii.
At this point it is necessary to solve the 3 × 3 system of

differential equations (A8), but we can further simplify the
problem if we assume that the dynamics of the different
sterile components decouple from each other, which is the
case provided their masses are sufficiently different. Since
HAS depends on temperature, if the sterile splittings are
significantly different from each other, we will generically
have that HAS will be very suppressed unless the temper-
ature-dependent effective mass is similar to one of the mass
splittings. Let us suppose that this is the case. At high T all
active-sterile mixings are very suppressed, until one split-
ting that associated to the sterile state s is reached; at this
point only ðHASÞas is non-negligible. Then only ðρSÞss
changes significantly and can be described by

_ρss ¼ −i
�
H†

AS

�
1

−ðHA − ~HsÞ þ iΓA=2

−
1

−ðHA − ~HsÞ − iΓA=2

�
HAS

�
ss

~ρss

¼ −
�
H†

AS

�
ΓA

ðHA − ~HsÞ2 þ Γ2
A=4

�
HAS

�
ss

~ρss; ðA9Þ

where in the last step we have assumed that HA;ΓA
commute, which again is a good approximation in the
seesaw limit. This equation justifies Eq. (6), since the
source term on the right of Eq. (A9) is the same as Γs in
Eq. (6) if we neglect the term ∼Γ2

A in the denominator. We
have checked that the result of solving the three coupled
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equations or the three independent ones gives very similar
results and the latter is obviously much faster.
Now we have to consider the evolution in an expanding

universe, where the variation of the scale factor aðtÞ
depends on the Hubble expansion rate, which, in a
radiation-dominated universe at temperature T, is given by

HðTÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGN

3

�
π2

30
g�ðTÞT4 þ ϵsðTÞ

�s
; ðA10Þ

where g� counts the relativistic degrees of freedom and we
have included the contribution to the energy density of the
sterile states, ϵs, which must be computed integrating the
trace of the density matrix, ρS. As in Ref. [33] we introduce
new variables:

x ¼ aðtÞ
aBBN

; y ¼ x
p

TBBN
; ðA11Þ

where aðtÞ is the cosmic scale factor, TBBN ≃ 1 MeV is the
temperature of active neutrino decoupling and aBBN the
scale factor at this point. On the other hand, entropy
conservation implies gS�ðTÞT3aðtÞ3 ¼ constant (here gS�
refers to the relativistic degrees of freedom in equilibrium;
it differs from g� in the Hubble expansion only after light
neutrino decoupling). This relation implies

x ¼ TBBN

T

�
gS�ðTBBNÞ
gS�ðTÞ

�
1=3

: ðA12Þ

We neglect the contribution of the sterile states to gS�,
because they decouple very early and therefore they give a
small contribution.
The time derivative acting on any phase space distribu-

tion can be written as

d
dt

fðt; pÞ ¼ ð∂t −Hp∂pÞfðt; pÞ ¼ Hx∂xfðx; yÞ: ðA13Þ

Applied to Eq. (A1) this leads to

Hx
∂
∂x ρðx; yÞjy ¼ −i½Ĥ; ρðx; yÞ�

−
1

2
fΓ; ρðx; yÞ − ρeqðx; yÞIAg; ðA14Þ

where

ρeqðx; yÞ ¼
1

exp ½yðgS�ðTðxÞÞ=gS�ðTBBNÞÞ1=3� þ 1
;

ðA15Þ

and for Eq. (A9) similarly

Hx
∂
∂x ρssðx; yÞjy
¼ −

�
H†

AS

�
ΓA

ðHA − ~HsÞ2 þ Γ2
A=4

�
HAS

�
ss

~ρssðx; yÞ:

ðA16Þ

The equations are evolved from an initial condition at
xi → 0, ρss ¼ 0, until active neutrino decoupling, xf ¼ 1
for fixed y. We define the effective number of additional
neutrino species by

ΔNeff ¼
ϵs
ϵ0ν
; ðA17Þ

where ϵ0ν is the energy density of one SM massless
neutrino. For each additional neutrino we compute the
contribution to ΔNeff from the solution of ρsjsjðxf; yÞ as

ΔNðjÞBBN
eff jenergy ¼

R
dyy2EðyÞρsjsjðxf; yÞR
dyy2pðyÞρeqðxf; yÞ

; ðA18Þ

where pðyÞ ¼ y
xf
TBBN and EðyÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðyÞ2 þM2

j

q
.

We can also define the ratio of number densities
instead, which is more appropriate when they are not
relativistic,

ΔNðjÞBBN
eff jnumber ¼

R
dyy2ρsjsjðxf; yÞR
dyy2ρeqðxf; yÞ

: ðA19Þ

The two correspond to the solid/dashed curves depicted
in Fig. 7.
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