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Entanglement is defined between subsystems of a quantum system, and at fixed time two regions of
space can be viewed as two subsystems of a relativistic quantum field. The entropy of entanglement
between such subsystems is ill-defined unless an ultraviolet cutoff is introduced, but it still diverges in the
continuum limit. This behavior is generic for arbitrary finite-energy states, hence a conceptual tension with
the finite entanglement entropy typical of nonrelativistic quantum systems. We introduce a novel approach
to explain the transition from infinite to finite entanglement, based on coarse graining the spatial resolution
of the detectors measuring the field state. We show that states with a finite number of particles become
localized, allowing an identification between a region of space and the nonrelativistic degrees of freedom of
the particles therein contained, and that the renormalized entropy of finite-energy states reduces to the
entanglement entropy of nonrelativistic quantum mechanics.
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I. INTRODUCTION

Entanglement is a central concept in quantum theory and
an important resource in quantum information theory.
Different entanglement measures have been introduced
to understand the structure of entanglement between
finite-dimensional systems. One such measure is entangle-
ment entropy, which can also be defined for pure states of
extended quantum systems. Since all measurements on
extended systems are performed within some finite region
of space, it is natural in the relativistic context to study
entanglement between localized subsystems, i.e. subsys-
tems associated with spacelike separated regions of space-
time. Although natural, this is also problematic, because
relativistic field theories typically have infinite entangle-
ment entropy between a region of space and its complement
at fixed time [1–5]. Indeed, the separation of the degrees of
freedom of a quantum field into a finite region of space A
and its complement Ā implies a specific mapping associat-
ing A and Ā with commuting subalgebras of the algebra of
observables, called a localization scheme [6–10]. Different
localization schemes correspond to different tensor product
structures (TPS) of the total Hilbert space. Since entangle-
ment is a property defined between subsystems, different
localization schemes yield different values for entangle-
ment between A and Ā [11,12]. A standard localization
scheme associates to space regions the field operators and
their conjugates therein defined. The vacuum state is
entangled with respect to the TPS associated with the
standard localization scheme, hence any two localized

subsystems are correlated by modes at their boundary.
Consequently, the entropy of entanglement between A
and Ā diverges due to the contribution of ultraviolet
(UV) modes.
This peculiar behavior of entanglement is deeply rooted in

the algebraic structure of relativistic quantum field theory
(QFT). Indeed, it is a direct consequence of the Reeh-
Schlieder theorem [13] that all finite-energy states maxi-
mally violate Bell-like inequalities [14–20]. An operational
content is given to this violation in [21,22]: whenever the
local algebras of observables of a bipartite system are not
type I von Neumann algebras, maximally entangled states
have infinite one-copy entanglement. For systems with type I
local algebras of observables, states with infinite entropy of
entanglement are trace-norm dense in state space [23].
It follows from these arguments that entanglement

measures for bipartite states with localized subsystems
typically diverge at all energy scales when these are
analyzed at a more fundamental level using QFT. Such
subsystems do not yet correspond to the ones defined in the
nonrelativistic regime, e.g. qubits or trapped ions in
quantum information protocols. The latter are described
by finite dimensional Hilbert spaces and they generally
produce finite results for entanglement measures. One
expects that in the low-energy limit the degrees of freedom
describing a region of space should simply correspond
to the degrees of freedom of the particles therein contained.
However, as a consequence of the Reeh-Schlieder theorem
one cannot define local number operators, therefore
finite-energy states cannot be localized [6,7], making
such a correspondence impossible. Hence a conceptual
tension between the QFT description of entanglement for*issam.ibnouhsein@cea.fr
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low-energy experiments and a description using nonrela-
tivistic quantum theory.
In this paper, we introduce a novel approach to reconcile

these two disagreeing notions of entanglement. Consider a
scenario in which all possible field measurements are
limited by some minimal spatial resolution ϵ, thus restrict-
ing the algebra of observables to coarse-grained fields. The
coarse-graining parameter ϵ has a clear operational mean-
ing: since in practical situations it is impossible to resolve
points in space with arbitrary precision, any realistic
measurement of a field necessarily consists of a sample
of a finite number of points, where each point corresponds
to a finite region of space. We show that in the limit
ϵm ≫ 1, m being the mass of a Klein-Gordon field, states
with a finite number of particles become localized,
allowing an identification between a region of space and
the nonrelativistic degrees of freedom of the particles
therein contained, and that the renormalized entropy of
finite-energy states reduces to the one calculated in non-
relativistic quantum mechanics. This provides the missing
controlled transition from the QFT picture of entanglement
to entanglement in nonrelativistic quantum theory.

II. ENTROPY OF ENTANGLEMENT IN QFT

Consider at fixed time a finite region of space A and its
complement Ā. Region A has two complementary descrip-
tions: classical general relativity identifies it with a sub-
manifold of Minkowski spacetime, but as a quantum
subsystem, A is described by a Hilbert space HðAÞ, which
is a factor in the tensor product decomposition H ¼
HðAÞ ⊗ HðĀÞ of the total Hilbert space of the field theory
under investigation. Suppose that the field is in a state ρ.
The results of measurements to be performed in region A
are described by the reduced density matrix obtained by
tracing out the degrees of freedom outside A: ρA ¼ TrĀðρÞ.
The von Neumann entropy associated with region A is then
defined as SA ¼ −TrðρA log ρAÞ. This quantity typically
requires some UV regulator in order to be well defined.
Thus, in [1], a UV cutoff μ is introduced at the boundary
between A and Ā, and in [2–4] a QFT is defined on a lattice
of spacing μ. References [1–4] show that for the vacuum
state, the entropy of entanglement associated with region A
can be written as:

SA
A

¼ C

�
λ

μ
; mμ

�
μ−2; ð1Þ

whereA is the area of the boundary between A and Ā,m the
mass of the field, λ an infrared cutoff and Cðx; yÞ some
slowly varying function. For finite-energy states, power-
law correction terms need to be added [24,25]. These
expressions diverge in the continuum limit for m > 0 and,
more generally, no cutoff-independent low-energy limit of
the entropy can be derived using these approaches.

A renormalization technique proposed in [26] leads to
states of negative entropy, which is not expected for a
physically meaningful concept of state entropy. Yet
another approach consists in introducing a physical model
of the measurement apparatus. One then derives an
effective low-energy model of the measurement apparatus
insensitive to vacuum entanglement of the underlying
QFT [27,28]. However, this approach is strongly depen-
dent on the choice of the model and does not provide a
general and clear transition from the QFT picture of
entanglement to entanglement in nonrelativistic quantum
theory.

III. COARSE-GRAINING PROCEDURE

For simplicity, we consider a neutral Klein-Gordon
field of mass m in one space dimension at fixed time
(we put ℏ ¼ c ¼ 1). The algebra of local observables for
the Klein-Gordon field is generated by the canonical field
operators:

Φ̂ðxÞ ¼
Z

dkffiffiffiffiffiffi
2π

p 1ffiffiffiffiffiffiffiffi
2ωk

p ðeikxâk þ e−ikxâ†kÞ;

Π̂ðxÞ ¼ −i
Z

dkffiffiffiffiffiffi
2π

p
ffiffiffiffiffiffi
ωk

2

r
ðeikxâk − e−ikxâ†kÞ; ð2Þ

where ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
and â†k creates a field excitation of

momentum k. The vacuum is defined by:

âkjΩi ¼ 0; ∀ k: ð3Þ

Assume that the resolution for distinguishing different
points in space is bounded by some minimal length ϵ. The
algebra of observables that are accessible under such
conditions is generated by the coarse-grained field oper-
ators (see Fig. 1):

Φ̂ϵðxÞ ¼
Z

dyGϵðx − yÞΦ̂ðyÞ;

Π̂ϵðxÞ ¼
Z

dyGϵðx − yÞΠ̂ðyÞ: ð4Þ

Function GϵðxÞ describes the detection profile:

GϵðxÞ ¼
1

ð2πϵ2Þ1=4 e
− x2

4ϵ2 : ð5Þ

This choice of profile is natural if we interpret coarse
graining as arising from a random error in the identification
of a point in space. More generally, for any profile with a
typical length ϵ0, consider intervals of length ϵ on which the
profile is approximately constant. One can then convolute
such a profile with a Gaussian of variance ϵ and consider
the limit ϵm → ∞ instead of ϵ0m → ∞.
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Define the operators:

q̂j;ϵ ¼ Φ̂ϵðjdÞ; p̂j;ϵ ¼ Π̂ϵðjdÞ; ð6Þ

where d is the distance between neighboring profiles. If
ϵ ≪ d, they verify canonical commutation relations:

½q̂j;ϵ; p̂k;ϵ� ∼ iδjk: ð7Þ

Imposing (7) is equivalent to saying that the operators
fq̂j;ϵ; p̂j;ϵgj generate commuting subalgebras. Two com-
muting subalgebras of observables A and B that generate
the whole algebra of observables induce a TPS on the
Hilbert space of states: H ¼ HðAÞ ⊗ HðBÞ such that
A → A ⊗ 1B, B → 1A ⊗ B [11,12]. The operators (6)
generate only a strict subalgebra of the entire algebra of
field observables, because under coarse graining some
possible observables are inaccessible. The whole algebra
can be recovered by completing the set of functions
fGϵðjd − yÞgj up to an orthonormal basis in L2ðRÞ which,
convoluted with the field operators (4), defines a linear
canonical transformation of modes. Thus, the algebra
generated by the coarse-grained observables defines a
decomposition of the total Hilbert space H ¼ Hcg ⊗ Hf,
whereHcg are the coarse-grained, hence accessible, andHf
the fine-grained inaccessible degrees of freedom. The
restriction to coarse-grained observables is therefore equiv-
alent to tracing out subsystem Hf, and operators
fq̂j;ϵ; p̂j;ϵgj define distinct subsystems on Hcg, each of
which is isomorphic to a one-dimensional harmonic oscil-
lator. Thus, we can define onHcg the coarse-grained ladder
operators:

âj;ϵ ¼
1ffiffiffi
2

p
� ffiffiffiffiffi

m0p
q̂j;ϵ þ

iffiffiffiffiffi
m0p p̂j;ϵ

�
;

â†j;ϵ ¼
1ffiffiffi
2

p
� ffiffiffiffiffi

m0p
q̂j;ϵ −

iffiffiffiffiffi
m0p p̂j;ϵ

�
; ð8Þ

which verify ½âj;ϵ; â†k;ϵ� ∼ δjk. Parameter m0 has the dimen-
sion of mass. For a massive Klein-Gordon field, it is natural
to take m0 ¼ m. Indeed, one can alternatively generate the
local observables algebra with the ladder operators:

âðxÞ ¼ 1ffiffiffi
2

p
� ffiffiffiffi

m
p

Φ̂ðxÞ þ iffiffiffiffi
m

p Π̂ðxÞ
�
;

â†ðxÞ ¼ 1ffiffiffi
2

p
� ffiffiffiffi

m
p

Φ̂ðxÞ − iffiffiffiffi
m

p Π̂ðxÞ
�
: ð9Þ

Their coarse-grained versions correspond to operators in
(8) with m0 ¼ m.

IV. THE NEWTON-WIGNER LOCALIZATION
SCHEME

We recall that the Newton-Wigner (NW) annihilation
and creation operators are respectively defined as the
Fourier transforms of the momentum annihilation and
creation operators [29]:

âNWðxÞ ¼
Z

dkffiffiffiffiffiffi
2π

p eikxâk;

â†NWðxÞ ¼
Z

dkffiffiffiffiffiffi
2π

p e−ikxâ†k: ð10Þ

The NWoperators define a localization scheme [6–10] and
are expressed in terms of the local fields (2) as follows:

âNWðxÞ ¼
1ffiffiffi
2

p
Z

dy½Rðx − yÞΦ̂ðyÞ þ iR−1ðx − yÞΠ̂ðyÞ�;

â†NWðxÞ ¼
1ffiffiffi
2

p
Z

dy½Rðx − yÞΦ̂ðyÞ − iR−1ðx − yÞΠ̂ðyÞ�;

ð11Þ

where we have introduced the functions:

RðxÞ ¼
Z

dk
2π

ffiffiffiffiffiffi
ωk

p
eikx; R−1ðxÞ ¼

Z
dk
2π

1ffiffiffiffiffiffi
ωk

p eikx:

ð12Þ

Operators fâNWðxÞgx annihilate the global vacuum, there-
fore the global vacuum is a product state of local vacua.
More generally, if local degrees of freedom are associated
with the NW operators instead of the standard local fields
(2), entropy of entanglement of the vacuum state is zero and
entropy of finite-energy states, such as thermal states,
becomes finite [30]. However, identifying local degrees
of freedom with NW operators at a fundamental level is

FIG. 1 (color online). The position in space at which a
measurement is made can be determined only with limited
accuracy, parametrized by ϵ. This source of error is implemented
by restricting the observable degrees of freedom to those
accessible via measurement of coarse-grained operators. Neigh-
boring profiles define different subsystems only if their separa-
tion d verifies d ≫ ϵ. Under this condition, entanglement
between neighboring profiles is a well-defined notion. We show
that for finite-energy states, this entanglement reduces to the one
calculated in nonrelativistic quantum theory.
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problematic: the Hamiltonian of the field, expressed in
terms of NWoperators, is nonlocal. We do not address here
the question of which localization scheme should be chosen
at a fundamental level [6,7]. Instead we show that, under
coarse graining, the entanglement properties of the NW
fields for finite-energy states effectively hold, irrespective
of the fundamental choice of local observables.

V. CONVERGENCE BETWEEN LOCALIZATION
SCHEMES

We now compare the algebra of coarse-grained observ-
ables generated by (8) with the algebra generated by the
following coarse-grained NW operators:

âNW;ϵðxÞ ¼
Z

dyGϵðx − yÞâNWðyÞ;

â†NW;ϵðxÞ ¼
Z

dyGϵðx − yÞâ†NWðyÞ: ð13Þ

Computations show that:

âNW;ϵðxÞ ¼
Z

dy½fþϵ ðx − yÞâðyÞ þ f−ϵ ðx − yÞâ†ðyÞ�; ð14Þ

where:

f�ϵ ðxÞ ¼
1

2

�
RϵðxÞffiffiffiffi

m
p � ffiffiffiffi

m
p

R−1
ϵ ðxÞ

�
;

RϵðxÞ ¼
Z

dyGϵðx − yÞRðyÞ;

R−1
ϵ ðxÞ ¼

Z
dyGϵðx − yÞR−1ðyÞ: ð15Þ

In the limit of poor space resolution, the coarse-grained
NW operators become indistinguishable from the coarse-
grained local ladder operators since:

f�ϵ ðxÞ ¼
ffiffiffiffi
m

p
2

Z
dkffiffiffiffiffiffi
2π

p eimkxG 1
2mϵ
ðkÞ

· ½ð1þ k2Þ1=4 � ð1þ k2Þ−1=4�; ð16Þ

and in the limit where the minimal resolvable distances are
much larger than the Compton wavelength, ϵm ≫ 1, the
Gaussian G 1

2mϵ
ðkÞ verifies G 1

2mϵ
ðkÞ > 0 for jkj ≪ 1 and

G 2
mϵ
ðkÞ ∼ 0 otherwise. Thus, in (16) we have to integrate

only over small values of k. We find:

f−ϵ ðxÞ ∼ 0;

fþϵ ðxÞ ∼
ffiffiffiffi
m

p Z
dkffiffiffiffiffiffi
2π

p eimkxG 1
2mϵ
ðkÞ ¼ GϵðxÞ: ð17Þ

This result, plugged back into (14), gives:

âNW;ϵðjdÞ ∼
Z

dyGϵðjd − yÞâðyÞ ¼ âj;ϵ for ϵm ≫ 1:

ð18Þ

In the limit ϵm ≫ 1, the coarse-grained NW operators still
annihilate the global vacuum, hence the latter is a product
state of effective local vacua. Equation (18) then shows that
the global vacuum is also a product state for the coarse-
grained field operators. This implies that, in the limit of
poor spatial resolution of detectors, an excitation localized
“around point j” is effectively described by applying the
creation operator â†j;ϵ to the global vacuum jΩi. Therefore,
any one-particle state jψi ¼ R

dkfðkÞâ†kjΩi can be effec-
tively described as a sum

P
j
~fðjdÞâ†j;ϵjΩi, where f is a

function verifying
R
dkjfðkÞj2 ¼ 1 and ~f its Fourier trans-

form. As a consequence, such a state (which cannot be
interpreted as localized in QFT unless it has infinite energy)
can now be properly interpreted as localized, allowing a
mapping between the description of a region of space in
QFT and an effective description that only includes the
nonrelativistic degrees of freedom therein contained.
Hence, the structure of entanglement of any state with a
finite number of excitations reduces to the entanglement
between localized particles, i.e. to the standard, nonrela-
tivistic, picture of entanglement. In particular, the entropy
of entanglement of such states is upper bounded by the
number of excitations times a factor describing how many
states are available to each excitation (see the Appendix).
Since finite-energy states correspond to states with a finite
number of excitations, this result provides a controlled
transition from the QFT picture of entanglement of finite-
energy states to the nonrelativistic quantum theory one.
As an example, consider two mesons or two atoms with

integer spin in a singlet state localized “around points i and
j.” In the QFT picture, entanglement between the region
“around point i” containing one meson with the rest of the
system is infinite. Under the constraint of a bounded spatial
resolution of detectors, the effective description of such a
system in QFT is:

1ffiffiffi
2

p ½â†i;ϵ;↑â†j;ϵ;↓ − â†i;ϵ;↓â
†
j;ϵ;↑�jΩi

¼ 1ffiffiffi
2

p ðj0i1 � � � j0ii−1j↑iij0iiþ1 � � � j0ij−1j↓ijj0ijþ1 � � �

þ j0i1 � � � j0ii−1j↓iij0iiþ1 � � � j0ij−1j↑ijj0ijþ1 � � �Þ;
ð19Þ

which is formally equivalent to the state:

1ffiffiffi
2

p ½j↑iij↓ij − j↓iij↑ij�: ð20Þ

The entropy of entanglement between the region “around i”
and the rest of the system is then Si ¼ logð2Þ, which is the
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expected value when modeling this system in nonrelativ-
istic quantum theory. Note that by symmetry Si ¼
Sj ¼ logð2Þ.

VI. CONCLUSIONS

We have shown that in the limit of poor spatial resolution
of the detectors, the entropy of entanglement of finite-
energy states of a massive Klein-Gordon field reduces to
the one calculated in nonrelativistic quantum theory. The
derivation was independent of any effective low-energy
model for the detectors. The results of this paper can be
generalized to all noncritical bosonic systems, i.e. systems
endowed with a finite length scale such as lattice models or
models with local interactions and an energy gap (a natural
length scale is then provided by the lattice spacing and the
correlation length respectively) [5,31,32]. For critical
systems, the correlation length diverges, hence different
arguments are needed. For fermionic systems, an ambiguity
in the definition of entanglement measures between sub-
systems arises due to the anticommutation of the creation
and annihilation operators [33,34]. One can reformulate the
problem of entanglement between localized subsystems in
a purely algebraic way [15,16,35–37], and a possible
extension of the coarse-graining procedure to the algebraic
framework is under investigation.
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APPENDIX: ENTANGLEMENT ENTROPY OF
LOCALIZED SYSTEMS

Consider at fixed time a finite region of space A and its
complement Ā. Suppose that the field is in a state with N
excitations. A is decomposed into M distinct regions
A1;…; AM, whose points are assumed to be nonresolvable
because of the limited spatial resolution of the detectors. An
upper bound on the entropy of entanglement between
subsystems A and Ā is given by the dimension of the
subspace of an M-mode system containing any number of
particles between 0 and N:

DM
N ¼

XN
n¼0

CM
n ¼ ðM þ NÞ!

M!N!
; ðA1Þ

where:

CM
n ¼

�
M þ n − 1

n

�
¼ ðM þ n − 1Þ!

n!ðM − 1Þ! ðA2Þ

is the dimension of the subspace with exactly n particles.
This provides an upper bound on the entropy of entangle-
ment between A and Ā for the N-particle state:

SA ≤ logDM
N : ðA3Þ

If M ≫ N ≥ 0, logDM
N ∼ N logM, expressing the fact that

the entropy of entanglement of such states is upper
bounded by the number of excitations times a factor
describing how many states are available to each excitation.
One can encode degrees of freedom other than position by
changing the value of M. For example, if two polarization
states are available to each excitation, one must double the
value of M.
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