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We present a novel nonperturbative approach for calculating the form factors of the quark-gluon vertex
in terms of an unknown three-point function, in the Landau gauge. The key ingredient of this method is the
exact all-order relation connecting the conventional quark-gluon vertex with the corresponding vertex of
the background field method, which is Abelian-like. When this latter relation is combined with the standard
gauge technique, supplemented by a crucial set of transverse Ward identities, it allows the approximate
determination of the nonperturbative behavior of all 12 form factors comprising the quark-gluon vertex, for
arbitrary values of the momenta. The actual implementation of this procedure is carried out in the Landau
gauge, in order to make contact with the results of lattice simulations performed in this particular gauge.
The most demanding technical aspect involves the approximate calculation of the components of the
aforementioned (fully dressed) three-point function, using lattice data as input for the gluon propagators
appearing in its diagrammatic expansion. The numerical evaluation of the relevant form factors in three
special kinematical configurations (soft-gluon and quark symmetric limit, zero quark momentum) is carried
out in detail, finding qualitative agreement with the available lattice data. Most notably, a concrete
mechanism is proposed for explaining the puzzling divergence of one of these form factors observed in
lattice simulations.
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I. INTRODUCTION

The fundamental vertex that controls the interaction
between quarks and gluons is considered as one of the
most important quantities in QCD [1,2], and a great deal
of effort has been devoted to the unraveling of its structure
and dynamics. In fact, its nonperturbative properties are
essential to a variety of subtle mechanisms of paramount
theoretical and phenomenological relevance. Indeed, the
quark-gluon vertex, which will be denoted by Γa

μðq; r; pÞ,
has a vital impact on the dynamics responsible for the
breaking of chiral symmetry and the subsequent generation
of constituent quark masses [3–7] and contributes crucially
to the formation of the bound states that compose the
physical spectrum of the theory [8–13].
Despite its physical importance, to date the nonperturba-

tive behavior of this special vertex is still only partially
known, mainly due to a variety of serious technical diffi-
culties.1 In particular, its rich tensorial structure [14,17]
leads to a considerable proliferation of form factors, which,
in addition, depend on three kinematic variables (e.g., the
modulo of two momenta, say q and r, and their relative
angle). As a result, only few (quenched) lattice simulations

(in the Landau gauge and on modest lattice sizes) have been
performed [18–23], and for a limited number of simple
kinematic configurations. The situation in the continuum is
also particularly cumbersome; indeed, the treatment of this
vertex in the context of the Schwinger–Dyson equations
(SDEs) requires a variety of approximations and truncations
[13,24–29], and even so, one must deal, at least in principle,
with an extended system of coupled integral equations
(one for each form factor).
There is an additional issue that complicates the extrac-

tion of pertinent nonperturbative information on the quark-
gluon vertex by means of traditional methods, which will
be of central importance in what follows. Specifically, in
the linear covariant (Rξ) gauges, Γa

μ satisfies a nonlinear
Slavnov–Taylor identity (STI), imposed by the Becchi-
Rouet-Stora-Tyutin (BRST) symmetry of the theory.
This STI is akin to the QED Ward identity (WI)
qμΓμðq;r;pÞ¼ S−1e ðrÞ−S−1e ðpÞ, which relates the photon-
electron vertex with the electron propagator Se, but it is
substantially more complicated because it involves, in
addition to the quark propagator S, contributions from
the ghost sector of the theory (most notably, the so-called
ghost-quark kernel). This fact limits considerably the
possibility of devising a “gauge technique” inspired ansatz
[30–33] for the longitudinal part of Γa

μðq; r; pÞ. Indeed,
whereas in an Abelian context the longitudinal part of the
vertex is expressed exclusively in terms of the Dirac

1In perturbation theory, a complete study has been carried out
at the one-loop level in arbitrary gauges, dimensions, and
kinematics [14], whereas at the two- and three-loop order, only
partial results for specific gauges and kinematics exist [15,16].
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components comprising S such that the WI is automatically
satisfied, in the case of the STI, the corresponding
longitudinal part receives contributions from additional
(poorly known) auxiliary functions and their partial
derivatives.
The applicability of the gauge technique, however,

presents an additional difficulty, which although intrinsic
to thismethod, acquires itsmore acute form in a non-Abelian
context. Indeed, as is well known, the gauge technique
leaves the “transverse” (automatically conserved) part of
any vertex (Abelian or non-Abelian) undetermined. The
amelioration of this shortcoming has received considerable
attention in the literature, especially for the case of the
photon-electron vertex, which constitutes the prototype for
any type of such study [17,34–37]. Particularly interesting
in this context is the discovery of the so-called transverse
Ward identities (TWIs) [38–42], which involve the curl
of the vertex, ∂μΓν��� − ∂νΓμ���, and can therefore be used,
at least in principle, to constrain the transverse parts. The
problem is that, unlike WIs, these TWIs are coupled
identities, mixing vector and axial terms, and contain non-
local terms, in the form of gauge-field-dependent line
integrals [42]. However, as was shown in Ref. [43], the
induced coupling between TWIs can in fact be disentangled,
and the corresponding identity for the vector vertex
explicitly solved. Thus, an Abelian photon-electron vertex
satisfying the corresponding WI and TWI could be con-
structed for the first time [43]. However, the extension of
these results to the non-Abelian sector remains an open
issue. Inwhat follows, for the sake of brevity, wewill refer to
the framework obtained when the standard gauge technique
(applied toAbelianWIs) is supplemented by the TWIs as the
“improved gauge technique” (IGT).
The main conclusion of the above considerations is that,

whereas the IGT constitutes a rather powerful approach
for Abelian theories, its usefulness for non-Abelian vertices
is rather limited. It would be clearly most interesting if
one could transfer some of the above techniques to a theory
like QCD, and in particular to the quark-gluon vertex. What
we propose in the present work is precisely this: express the
conventional quark-gluon vertex as a deviation from an
“Abelian-like” quark-gluon vertex, use the technology
derived from the IGT to fix this latter vertex, and then
compute (in an approximate way) the difference between
these two vertices.
The field theoretic framework that enables the realization

of the procedure outlined above is the PT-BFM scheme
[44–46], which is obtained through the combination of the
pinch technique (PT) [47–52] with the background field
method (BFM) [53]. Since within the BFM the gluon is
split into a quantum (Q) and a background (Â) part, two
kinds of vertices appear: vertices (Γ) that have Q external
lines only (which correspond to the vertices appearing in
the conventional formulation of the theory) and vertices (Γ̂)
that have Â (or mixed) external lines. Now, interestingly

enough, while the former satisfy the usual STIs, the latter
obey Abelian-like WIs. In addition, a special kind of
identities, known as “background quantum identities”
(BQIs) [54,55], relate the two types of vertices (Γ and Γ̂)
by means of auxiliary ghost Green’s functions. For the
specific cases of the quark-gluon vertices, the correspond-
ing BQI [46] reads schematically [for the detailed depend-
ence on the momenta, see Eq. (2.15)]

Γ̂μ ¼ ½gνμ þ Λν
μ�Γν þ S−1Kμ þ K̄μS−1;

where Λ and K are special two- and three-point functions,
respectively, the origin of which can be ultimately related
to the anti-BRST symmetry of the theory.2

In the present work, the above BQI will be exploited in
order to obtain nontrivial information on all 12 form factors
of the vertex Γμ. Specifically, the main conceptual steps of
the approach may be summarized as follows:

(i) Since the vertex Γ̂μ satisfies a QED-like WI, it
will be reconstructed using the IGT, following the
exact procedure and assumptions (minimal ansatz)
of Ref. [43].

(ii) The two form factors comprising Λν
μ are known to a

high degree of accuracy because they are related to
the dressing function of the ghost propagator by an
exact relation. Since the latter has been obtained in
large volume lattice simulations, as well as com-
puted through SDEs, this part of the calculation is
under control.

(iii) The form of the quark propagator S is obtained
from the solution of the corresponding quark gap
equation.

(iv) The functions Kμ and K̄μ constitute the least known
ingredient of this entire construction and must be
computed using their diagrammatic expansion,
within a feasible approximation scheme. In particu-
lar, we employ a version of the “one-loop dressed”
approximation, where the relevant Feynman graphs
are evaluated using as input fully dressed propaga-
tors (obtained from lattice simulations) and bare
vertices.

The general procedure outlined above, and developed
in the main body of the paper, is valid in the context of the
linear covariant (Rξ) gauges gauges, for any value of the
gauge-fixing parameter ξ. However, in what follows wewill
specialize to the particular case of ξ ¼ 0, namely the
Landau gauge. The main reason for this choice is the fact
that the lattice simulations of Refs. [18–23] are performed
in the Landau gauge; therefore, the comparison of our
results with the lattice is only possible in this particular
gauge. An additional advantage of this choice is the fact

2The anti-BRST symmetry transformations can be obtained
from the BRST ones by exchanging the role of the ghost and
antighost fields.
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that the main nonperturbative ingredient entering in our
diagrammatic calculations, namely the gluon propagator,
has been simulated very accurately in this gauge [56,57]
and will be used as an input (see Sec. V).
The paper is organized as follows. In Sec. II we set up the

theoretical framework and review all the relevant identities
(WI, STI, TWI, and BQI) satisfied by Γ and Γ̂. In Sec. III
we present the main result of our study. Specifically, the
detailed implementation of the procedure outlined above
[points (i)–(iv)] furnishes closed expressions for all 12 form
factors comprising Γ in a standard tensorial basis and
for arbitrary values of the physical momenta. Next, in
Sec. IV we specialize our results to the case of three simple
kinematic configurations and derive expressions for the
corresponding form factors. Two of these cases (the “soft-
gluon” and the “symmetric” limits) have already been
simulated on the lattice [18–20], while the third (denomi-
nated the “zero quark momentum”) constitutes a genuine
prediction of our method. In Sec. V we carry out the
numerical evaluation of the expressions derived in the
previous section and then compare with the aforementioned
lattice results. The coincidence with the lattice results is
rather good in most cases. In fact, because of the special
structure of the expressions employed, we are able to
suggest a possible mechanism that would make one of the
soft-gluon form factors diverge at the origin, as observed on
the lattice; this particular feature has been rather puzzling,
and quite resilient to a variety of approaches. Finally, in
Sec. VI we present our discussion and conclusions. The
article ends with two Appendixes, where certain technical
details are reported.

II. THEORETICAL FRAMEWORK

As already mentioned, within the PT-BFM framework,
one distinguishes between two quark-gluon vertices, dep-
ending on the nature of the incoming gluon. Specifically,
the vertex formed by a quantum gluon (Q) entering into
a ψψ̄ pair corresponds to the conventional vertex known
for the linear renormalizable (Rξ) gauges, to be denoted
by Γa

μ; the corresponding three-point function with a back-
ground gluon (Â) entering represents instead the PT-BFM
vertex and will be denoted by Γ̂a

μ. Choosing the flow of the
momenta such that p1 ¼ qþ p2, we then define (see Fig. 1)

iΓa
μðq; p2;−p1Þ ¼ igtaΓμðq; p2;−p1Þ;

iΓ̂a
μðq; p2;−p1Þ ¼ igtaΓ̂μðq; p2;−p1Þ; ð2:1Þ

where the Hermitian and traceless generators ta of the
fundamental SU(3) representation are given by ta ¼ λa=2,
with λa the Gell–Mann matrices. Notice that Γμ and Γ̂μ

coincide only at tree level, where one has Γð0Þ
μ ¼ Γ̂ð0Þ

μ ¼ γμ.

A. Slavnov–Taylor and (background) Ward identities

One of the most important differences between the
two vertices just introduced is that, as a consequence of
the background gauge invariance, Γ̂μ obeys a QED-like
WI, instead of the standard STI satisfied by Γμ [53].
Specifically, one finds

qμΓ̂μðq; p2;−p1Þ ¼ S−1ðp1Þ − S−1ðp2Þ; ð2:2Þ

where S−1ðpÞ is the inverse of the full quark propagator,
with

S−1ðpÞ ¼ Aðp2Þp − Bðp2Þ; ð2:3Þ

and Aðp2Þ and Bðp2Þ are the propagator’s Dirac vector and
scalar components, respectively.
On the other hand, for the conventional vertex, one has

qμΓμðq; p2;−p1Þ ¼ Fðq2Þ½S−1ðp1ÞHðq; p2;−p1Þ
− H̄ð−q; p1;−p2ÞS−1ðp2Þ�; ð2:4Þ

where Fðq2Þ denotes the ghost dressing function, which is
related to the full ghost propagator Dðq2Þ through

Dðq2Þ ¼ Fðq2Þ
q2

; ð2:5Þ

whereas the functions Ha ¼ −gtaH and H̄a ¼ gtaH̄
correspond to the so-called quark-ghost kernel and are
shown in Fig. 2. It should be stressed that H and H̄ are not
independent but are related by “conjugation”; specifically,
to obtain one from the other, we need to perform the
following operations: (i) exchange −p1 with p2, (ii) reverse

FIG. 1. The conventional and background quark-gluon vertex with the momenta routing used throughout the text.
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the sign of all external momenta, and (iii) take the
Hermitian conjugate of the resulting amplitude.
Notice that the quark-ghost kernel admits the general

decomposition [14]

Hðq; p2;−p1Þ ¼ X0Iþ X1p1 þ X2p2 þ X3 ~σμνp
μ
1p

ν
2;

ð2:6Þ

where Xi ¼ Xiðq2; p2
2; p

2
1Þ, and3 ~σμν ¼ 1

2
½γμ; γν�. The

decomposition of H̄ is then dictated by the aforementioned
conjugation operations, yielding

H̄ð−q; p1;−p2Þ ¼ X̄0Iþ X̄2p1 þ X̄1p2 þ X̄3 ~σμνp
μ
1p

ν
2;

ð2:7Þ

where now X̄i ¼ Xiðq2; p2
1; p

2
2Þ. At tree level, one clearly

has Xð0Þ
0 ¼ X̄ð0Þ

0 ¼ 1, with the remaining form factors
vanishing.

B. Transverse Ward identity

In addition to the usual WI (2.2) and STI (2.4) specifying
the divergence of the quark-gluon vertex ∂μΓμ, there exists
a set of less familiar identities called transverse Ward
identities [38–43] that gives information on the curl of the
vertex, ∂μΓν − ∂νΓμ.

Specifically, let us consider the simplified context of an
Abelian gauge theory in which a fermion is coupled to a
gauge boson through a vector vertex Γμ and an axial-vector
vertex ΓA

μ ; then the TWIs for these latter vertices read [43]

qμΓνðq; p2;−p1Þ − qνΓμðq; p2;−p1Þ
¼ i½S−1ðp2Þ ~σμν − ~σμνS−1ðp1Þ� þ 2imΓμνðq; p2;−p1Þ

þ tλϵλμνρΓ
ρ
Aðq; p2;−p1Þ þ AV

μνðq; p2;−p1Þ;
qμΓA

ν ðq; p2;−p1Þ − qνΓA
μ ðq; p2;−p1Þ

¼ i½S−1ðp2Þ ~σ5μν − ~σ5μνS−1ðp1Þ�
þ tλϵλμνρΓρðq; p2;−p1Þ þ VA

μνðq; p2;−p1Þ: ð2:8Þ

In the equations above, we have set t ¼ p1 þ p2 and
~σ5μν ¼ γ5 ~σμν; in addition, ϵλμνρ is the totally antisymmetric
Levi-Civita tensor, while Γμν, AV

μν, and VA
μν represent

nonlocal tensor vertices that appear in this type of identity.4

As Eq. (2.8) above shows, the TWIs couple the vector
and the axial-vector vertices; however, following the
procedure outlined in Ref. [43], one can disentangle the
two vertices, obtaining an identity that involves only one of
the two. To do so, let us define the tensorial projectors

Pμν
i ¼ 1

2
ϵαμνβθiαqβ; i¼ 1;2; θ1α ¼ tα; θ2α¼ γα: ð2:9Þ

Then, because of the antisymmetry of the Levi-Civita
tensor, it is easy to realize that both tensors annihilate
the lhs of the second equation in (2.8); for the vector vertex
that we are interested in, one then gets the two identities

½tμθiμqρ − ðq · tÞθiρ�Γρðq; p2;−p1Þ
¼ Pμν

i fi½S−1ðp2Þ ~σ5μν − ~σ5μνS−1ðp1Þ� þ VA
μνðq; p2;−p1Þg;

ð2:10Þ

which, when used in conjunction with the WI (2.2),
determine the complete set of form factors characterizing
the vertex Γ̂μ.

C. Background-quantum identity

All the identities described so far (WIs, STIs, and TWIs)
are the expression at the quantum level of the original
BRST symmetry of the SUðNÞ Yang–Mills action.
However, this action can be also rendered invariant under
a less-known symmetry that goes under the name of anti-
BRST [61–63]. Then, in Ref. [64] it was shown that the
requirement that a SUðNÞ Yang–Mills action (gauge fixed
in an Rξ gauge) is invariant under both the BRST as well
as the corresponding anti-BRST symmetry automatically
implies that the theory is quantized in the (Rξ) BFM

FIG. 2. The ghost kernels H and H̄ appearing in the STI
satisfied by the quark vertex Γμ. The composite operators ψcs and
ψ̄cs have the tree-level expressions −gta and gta, respectively.

3Note the difference between ~σμν and the usually defined
σμν ¼ i

2
½γμ; γν�.

4See, e.g., Refs. [58–60] for the perturbative one-loop calcu-
lations of some of these quantities.
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gauge [53]. As an expression of anti-BRST invariance, a
new set of identities appears, called background quantum
identities [54,55], which relate the conventional and PT-
BFM vertices.
To obtain the BQI for the quark-gluon vertex in the

Landau gauge, let us first introduce the auxiliary two-point
function

ΛμνðqÞ ¼ −ig2CA

Z
k
Δσ

μðkÞDðq − kÞHνσð−q; q − k; kÞ

≡ gμνGðq2Þ þ
qμqν
q2

Lðq2Þ; ð2:11Þ

where CA represents the Casimir eigenvalue of the
adjoint representation [CA ¼ N for SU(N)], d ¼ 4 − ϵ is
the space-time dimension, and we have introduced the
integral measure

R
k ¼ μϵ

R
ddk=ð2πÞd, with μ the ’t Hooft

mass. Finally, Hμν is the so-called ghost-gluon scattering
kernel, and ΔμνðqÞ is the gluon propagator, which in the
Landau gauge reads (see also the discussion at the end of
this section)

iΔμνðqÞ ¼ −iPμνðqÞΔðq2Þ;
PμνðqÞ ¼ gμν − qμqν=q2: ð2:12Þ

In addition, in this gauge the form factors Gðq2Þ and
Lðq2Þ are related to the ghost dressing function Fðq2Þ by
the all-order relation [65,66]

F−1ðq2Þ ¼ 1þGðq2Þ þ Lðq2Þ: ð2:13Þ

Since in four dimensions Lð0Þ ¼ 0 and Lðq2Þ ≪ Gðq2Þ
[66], Eq. (2.13) is usually replaced by the approximate
identity

F−1ðq2Þ ≈ 1þ Gðq2Þ: ð2:14Þ

Notice, however, that, given the subtle nature of the
problem at hand and in order not to distort possible
cancellations, we will refrain from using Eq. (2.14) in
the general derivation of the form factors of Γμ, employing
instead the exact Eq. (2.13).
The BQI of interest (valid in the Rξ gauge) is given by

Eq. (E.13) of Ref. [46] and reads

Γ̂μðq;p2;−p1Þ

¼
�
gνμð1þGðq2ÞÞþqμqν

q2
Lðq2Þ

�
Γνðq;p2;−p1Þ

−S−1ðp1ÞKμðq;p2;−p1Þ− K̄μð−q;p1;−p2ÞS−1ðp2Þ;
ð2:15Þ

where the special functions Kμ and K̄μ are given in Fig. 3;
notice that, as happens forH and H̄, K and K̄ are related by
conjugation. At this point one may appreciate what has
been already announced in the Introduction, namely that
the BQI is qualitatively different from the WI (2.2) or the

FIG. 3. The auxiliary functions Kμ and K̄μ appearing in the BQI relating the conventional quark vertex Γμ with the PT-BFM vertex Γ̂μ.
The composite operator involving Ac

σ c̄s (with external indices a; μ) has the tree-level expression gfascgμσ . For later convenience we also
show the one-loop dressed approximation of the two functions.
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STI (2.4) since it does not involve the divergence of
the vertices. Therefore, at least in principle, all form
factors of the quark-gluon vertex can be determined by
“solving” it.
Let us now contract Eq. (2.15) by qμ, using simulta-

neously Eqs. (2.2) and (2.4), as well as the identity (2.13);
it is relatively straightforward to establish that the self-
consistency of all aforementioned equations imposes an
additional relation between the functions H and K. In the
Landau gauge, one obtains then5

Hðq; p2;−p1Þ ¼ 1þ qμKμðq; p2;−p1Þ; ð2:16Þ
as well as the conjugated identity

H̄ð−q; p1;−p2Þ ¼ 1 − qμK̄μð−q; p1;−p2Þ: ð2:17Þ
Equations (2.16) and (2.17) ensure that when the BQI
(2.15) is contracted with the gluon momentum q it is
compatible with both the WI of the background vertex
and the STI of the conventional vertex. They are nothing
but a consequence of the so-called local antighost equation
associated to the anti-BRST symmetry [64].
Coming back to the BQI (2.15), we observe that the

term proportional to L triggers the STI (2.4); thus, using
the relations (2.16) and (2.17), one can write the BQI in its
final form in the Landau gauge as

Gðq2ÞΓμðq; p2;−p1Þ
¼ Γ̂μðq; p2;−p1Þ þ S−1ðp1ÞQμðq; p2;−p1Þ

þ Q̄μð−q; p1;−p2ÞS−1ðp2Þ; ð2:18Þ

where Gðq2Þ ¼ 1þ Gðq2Þ, and we have defined

Qμðq; p2;−p1Þ ¼ Kμðq; p2;−p1Þ
−
qμ
q2

Lðq2ÞFðq2Þ½1þ qρKρðq; p2;−p1Þ�

ð2:19Þ

and its conjugated expression

Q̄μð−q; p1;−p2Þ
¼ K̄μð−q; p1;−p2Þ

þ qμ
q2

Lðq2ÞFðq2Þ½1 − qρK̄ρð−q; p1;−p2Þ�: ð2:20Þ

The functional identities derived in this section are
summarized in Table I, together with the symmetries they
originate from.
We conclude with a technical issue related to the

gluon propagator appearing in Eq. (2.12). Specifically, in
the BFM framework, three distinct propagators may be
naturally defined: Δ̂ðqÞ, which connects two background
gluons (Â Â); ~ΔðqÞ, which mixes a quantum with a back-
ground gluon (ÂQ and QÂ); and the quantum propagator
ΔðqÞ, which connects two quantum gluons (QQ). These
three propagators are related to each other by a set of
simple BQIs, involving only the quantity ΛμνðqÞ [54,55].
There are two important points to remember about ΔðqÞ.
First, ΔðqÞ (being the quantum propagator) is the only
BFM propagator that can propagate inside quantum loops
[53]. Second, ΔðqÞ is identical to the conventional gluon
propagator of the covariant Rξ gauges (and, hence, the same
symbol, ΔðqÞ, is employed), provided of course that the
quantum gauge-fixing parameter ξQ (used in the BFM) is
identical to the gauge-fixing parameter ξ (used in Rξ), i.e.,
ξQ ¼ ξ [49,52]; in particular, in the case of the Landau
gauge, we have that ξQ ¼ ξ ¼ 0. This fact, in turn, will
permit us later on to use for ΔðqÞ the corresponding lattice
data obtained in the Rξ Landau gauge (see the numerical
analysis of Sec. V).

III. COMPLETE QUARK-GLUON VERTEX

The next step is to judiciously combine the identities
obtained in the previous section, in order to obtain a closed
form for the form factors of the quark-gluon vertex Γμ, in a
suitable tensorial basis. Specifically, the procedure to be
adopted is detailed in the following:

(i) We first solve the BQI (2.18) in order to determine
all the form factors characterizing the conven-
tional vertex (decomposed in a suitable tensorial
basis) as a function of the ones appearing in the
PT-BFM vertex Γ̂μ and the auxiliary functions Kμ

and K̄μ (obviously decomposed in the same basis).
As the BRST and anti-BRST symmetries of the
PT-BFM formulation guarantee that a solution of

TABLE I. Summary of the SU(N) Yang–Mills symmetries
and the associated identities satisfied by the conventional and
background quark-gluon vertices.

Symmetry
Associated
identities Identity type

Vertices
involved

(Background)
gauge

WIs ∂μΓ̂μ ¼ � � � Γ̂μ

(Background)
gauge

TWIs ∂μΓ̂ν − ∂νΓ̂μ ¼ � � � Γ̂μ

BRST STIs ∂μΓμ ¼ � � � Γμ

anti-BRST BQIs Γ̂μ ¼ ½gνμ þ Λν
μ�Γν þ � � � Γ̂μ;Γμ

5From now on we specialize our procedure to the Landau
gauge. Notice, however, that the results can be easily extended to
the case of an arbitrary Rξ gauge by using the aforementioned
BRST–anti-BRST invariant formulation of the theory [64]. In
particular, identities such as Eqs. (2.13), (2.16) and (2.17) can be
generalized to the ξ ≠ 0 case by using the local antighost equation
(see Eq. (4.6) of Ref. [64]).
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the BQI is automatically a solution of the STI, the
latter identity is not needed.

(ii) The second step consists of exploiting the
Abelian-like nature of Γ̂μ, for determining all
of its form factors by simultaneously solving
the WI (2.2) and TWI (2.10) it satisfies (IGT).
The solution obtained will be a function of the
propagator components, A and B, as well as the
nonlocal term VA.

(iii) At this point, one has a formal ansatz for Γμ

satisfying all the symmetries of the theory;
however, the closed form of some of its ingre-
dients is not known. To proceed further, we need
to make some suitable approximations for the
evaluation of K, K̄, and VA. In particular, we
will adopt the one-loop dressed approximation
for the evaluation of the auxiliary functions K,
K̄, whereas for Γ̂μ we will use the so-called
minimal ansatz of Ref. [43], in which the
nonlocal term VA is set directly to zero.

In what follows the above main points will be carried out
in detail.

A. Tensorial bases

The procedure outlined above requires the definition
of a tensorial basis, in order to project out the 12 different
components of the vertices and auxiliary functions.
Given the properties of the functions Kμ and K̄μ under
conjugation, it is natural to employ bases for which the
components possess simple transformation properties
under this operation.
It turns out that there are (at least) two suitable

candidates, which we briefly describe below.

1. Transverse/longitudinal basis

The transverseþ longitudinal (Tþ L) basis separates
the possible contributions to a vector quantity into (four)
longitudinal and (eight) transverse form factors. Thus, in
the Tþ L basis, all vector quantities are decomposed
according to [14,17]

fμðq; p2;−p1Þ ¼
X4
i¼1

fLi ðq2; p2
2; p

2
1ÞLμ

i ðq; p2;−p1Þ

þ
X8
i¼1

fTi ðq2; p2
2; p

2
1ÞTμ

i ðq; p2;−p1Þ;

ð3:1Þ

where the longitudinal basis vectors read (remember that
t ¼ p1 þ p2)

Lμ
1 ¼ γμ; Lμ

2 ¼ ttμ; Lμ
3 ¼ tμ; Lμ

4 ¼ ~σμνtν;

ð3:2Þ

while for the transverse basis vectors we have instead

Tμ
1 ¼ pμ

2ðp1 · qÞ − pμ
1ðp2 · qÞ; Tμ

2 ¼ Tμ
1t;

Tμ
3 ¼ q2γμ − qμq; Tμ

4 ¼ Tμ
1 ~σνλp

ν
1p

λ
2;

Tμ
5 ¼ ~σμνqν; Tμ

6 ¼ γμðq · tÞ − tμq;

Tμ
7 ¼ −

1

2
ðq · tÞLμ

4 − tμ ~σνλpν
1p

λ
2;

Tμ
8 ¼ γμ ~σνλpν

1p
λ
2 þ pμ

2p1 − pμ
1p2: ð3:3Þ

It is then relatively straightforward to prove that under
conjugation one has the properties

L̄μ
i ¼ Lμ

i ; i ¼ 1; 2; 3; L̄μ
4 ¼ −Lμ

4;

T̄μ
i ¼ Tμ

i ; i ¼ 1; 2; 3; 4; 5; 7; 8; T̄μ
6 ¼ −Tμ

6; ð3:4Þ

where Lμ
i ¼ Lμ

i ðq; p2;−p1Þ and L̄μ
i ¼ L̄μ

i ð−q; p1;−p2Þ
and similarly for the T tensors.

2. Naive conjugated basis

A second convenient possibility is the naive conjugated
(NC) basis, which is obtained by minimally modifying the
naive basis of Refs. [14,17] in order to avoid mixing of
different tensors under conjugation.
In this basis the decomposition of a generic vector fμ is

given by

fμðq; p2;−p1Þ ¼
X12
i¼1

fiðq2; p2
2; p

2
1ÞCμ

i ðq; p2;−p1Þ; ð3:5Þ

with

Cμ
1 ¼ γμ; Cμ

2 ¼ pμ
2; Cμ

3 ¼ pμ
1; Cμ

4 ¼ ~σμνpν
2;

Cμ
5 ¼ ~σμνpν

1; Cμ
6 ¼ pμ

2p2; Cμ
7 ¼ pμ

2p1; Cμ
8 ¼ pμ

1p2;

Cμ
9 ¼ pμ

1p1; Cμ
10 ¼ pμ

2p1p2; Cμ
11 ¼ pμ

1p1p2;

Cμ
12 ¼

1

2
ðγμp1p2 þ p1p2γ

μÞ: ð3:6Þ

Then, under conjugation one has the following properties:

C̄μ
1 ¼ Cμ

1; C̄μ
2 ¼ Cμ

3; C̄μ
3 ¼ Cμ

2; C̄μ
4 ¼ −Cμ

5;

C̄μ
5 ¼ −Cμ

4; C̄μ
6 ¼ Cμ

9;

C̄μ
7 ¼ Cμ

8; C̄μ
8 ¼ Cμ

7; C̄μ
9 ¼ Cμ

6; C̄μ
10 ¼ Cμ

11;

C̄μ
11 ¼ Cμ

10; C̄μ
12 ¼ Cμ

12; ð3:7Þ

where Cμ
i ¼ Cμ

i ðq; p2;−p1Þ and C̄μ
i ¼ C̄μ

i ð−q; p1;−p2Þ.
The relations between the form factors in the Tþ L and

NC bases are given in Appendix A.
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B. IGT implementation

In this subsection we implement the IGT; namely we present the general solution of the WI and the TWI, in the
Tþ L basis.

1. Ward identity

For the vertex Γ̂μ the “solution” of the WI (2.2) immediately yields for the longitudinal form factors [67] the expressions

Γ̂L
1 ¼ A1 þ A2

2
; Γ̂L

2 ¼ A1 − A2

2ðq · tÞ ; Γ̂L
3 ¼ −

B1 − B2

q · t
; Γ̂L

4 ¼ 0; ð3:8Þ

where we have defined Ai ¼ Aðp2
i Þ and Bi ¼ Bðp2

i Þ. It is then elementary to verify that the resulting “longitudinal” vertex
satisfies indeed the WI of (2.2).

2. Transverse Ward identity

Equation (2.10) can be used to determine the remaining (transverse) form factors of Γ̂μ. In the Tþ L basis, Eq. (2.10)
yields

ðq · tÞθμi Γ̂T
μ ¼ ½tρθiρqμ − ðq · tÞθμi �Γ̂L

μ − iPμν
i ½S−1ðp2Þ ~σ5μν − ~σ5μνS−1ðp1Þ� − Pμν

i VA
μν: ð3:9Þ

Next, introducing the parametrization

Pμν
i VA

μν ¼ VA
i1 þ VA

i2p1 þ VA
i3p2 þ VA

i4 ~σμνp
μ
1p

ν
2; ð3:10Þ

we obtain for the transverse form factors the general expressions

Γ̂T
1 ¼ −

1

2rðq · tÞV
A
11;

Γ̂T
2 ¼ −

1

8rðq · tÞ ½3ðV
A
12 þ VA

13Þ − 2VA
21�;

Γ̂T
3 ¼ A1 − A2

2ðq · tÞ þ 1

16rðq · tÞ f½3t
2 − 4ðt · p1Þ�VA

12 þ ½3t2 − 4ðt · p2Þ�VA
13 − 2t2VA

21g;

Γ̂T
4 ¼ 1

4rðq · tÞ2 f2V
A
11 − 3ðq · tÞVA

14 − 2ðt · p1ÞVA
22 − 2ðt · p2ÞVA

23g;

Γ̂T
5 ¼ −

B1 − B2

q · t
−

1

8rðq · tÞ fðq · tÞVA
11 þ 2rðVA

14 þ VA
22 − VA

23Þg;

Γ̂T
6 ¼ 1

16rðq · tÞ f½4ðq · p1Þ − 3ðq · tÞ�VA
12 þ ½4ðq · p2Þ − 3ðq · tÞ�VA

13 þ 2ðq · tÞVA
21g;

Γ̂T
7 ¼ 1

4rðq · tÞ2 fq
2VA

11 − 2rðVA
22 þ VA

23Þg;

Γ̂T
8 ¼ A1 − A2

q · t
−

1

4rðq · tÞ fðq · p1ÞVA
12 þ ðq · p2ÞVA

13 þ rVA
24g; ð3:11Þ

where we have set r ¼ rðp1; p2Þ ¼ p2
1p

2
2 − ðp1 · p2Þ2.

By setting all the VA
ij to zero, one obtains a minimal ansatz for the PT-BFM vertex that is compatible with both the WI and

the TWI; in this case one finds only three nonzero transverse components, namely [43]

Γ̂T
3 ¼ A1 − A2

2ðq · tÞ ; Γ̂T
5 ¼ −

B1 − B2

q · t
; Γ̂T

8 ¼ −
A1 − A2

q · t
: ð3:12Þ

C. General solution for arbitrary momenta

The closed form of the non-Abelian vertex Γμ, can be finally obtained by solving the BQI (2.18). Using the results (3.8)
we obtain for the longitudinal form factors (Tþ L basis)
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GqΓL
1 ¼ ½1 − Lðq2ÞFðq2Þ�

�
Γ̂L
1 þ A1

�
1

2
ðq · tÞKL

3 − ðp1 · tÞKL
4

�
− B1KL

1þA2

�
−
1

2
ðq · tÞK̄L

3 þ ðp2 · tÞK̄L
4

�
− B2K̄L

1

�
;

GqΓL
2 ¼ ½1 − Lðq2ÞFðq2Þ�

�
Γ̂L
2 þ A1

�
1

2
KL

3 þ p1 · q
q · t

KL
4

�
− B1KL

2þA2

�
1

2
K̄L

3 −
p2 · q
q · t

K̄L
4

�
− B2K̄L

2

�
;

GqΓL
3 ¼ ½1 − Lðq2ÞFðq2Þ�

�
Γ̂L
3 þ A1

�
p1 · q
q · t

KL
1 þ ðp1 · tÞKL

2

�
− B1KL

3þA2

�
p2 · q
q · t

K̄L
1 þ ðp2 · tÞK̄L

2

�
− B2K̄L

3

�
;

GqΓL
4 ¼ ½1 − Lðq2ÞFðq2Þ�

�
A1

2
½−KL

1 þ ðq · tÞKL
2 � − B1KL

4 þ A2

2
½K̄L

1 þ ðq · tÞK̄L
2 � − B2K̄L

4

�
; ð3:13Þ

while for the transverse form factors, we get

GqΓT
1 ¼ Γ̂T

1 þ A1

�
−

1

q · t
KL

1 þ ðp1 · tÞKT
2 þ KT

3 − KT
6

�
− B1KT

1 þ A2

�
1

q · t
K̄L

1 þ ðp2 · tÞK̄T
2 þ K̄T

3 þ K̄T
6

�
− B2K̄T

1

þ 2

q2
Lðq2ÞFðq2Þ

�
A1

�
p1 · q
q · t

KL
1 þ ðp1 · tÞKL

2

�
− B1KL

3 þ A2

�
p2 · q
q · t

K̄L
1 þ ðp2 · tÞK̄L

2

�
− B2K̄L

3 −
B1 − B2

q · t

�

GqΓT
2 ¼ Γ̂T

2 þ A1

�
−

1

q · t
KL

4 þ 1

2
KT

1 þ 1

2
ðp1 · qÞKT

4 −
1

2
KT

7

�
− B1KT

2 þ A2

�
−

1

q · t
K̄L

4 þ 1

2
K̄T

1 −
1

2
ðp2 · qÞK̄T

4 −
1

2
K̄T

7

�

− B2K̄T
2 þ 2

q2
Lðq2ÞFðq2Þ

�
A1

�
1

2
KL

3 þ p1 · q
q · t

KL
4

�
− B1KL

2 þ A2

�
1

2
K̄L

3 −
p2 · q
q · t

K̄L
4

�
− B2K̄L

2 þ A1 − A2

2ðq · tÞ
�
;

GqΓT
3 ¼ Γ̂T

3 þ A1

2

�
1

2
ðq · tÞKT

1 −
1

2
ðp1 · tÞðq · tÞKT

4 − KT
5

�
− B1KT

3 þ A2

2

�
−
1

2
ðq · tÞK̄T

1 þ 1

2
ðp2 · tÞðq · tÞK̄T

4 − K̄T
5

�
− B2K̄T

3

þ 1

q2
Lðq2ÞFðq2Þ

�
A1

�
1

2
ðq · tÞKL

3 − ðp1 · tÞKL
4

�
− B1KL

1

þ A2

�
−
1

2
ðq · tÞK̄L

3 þ ðp2 · tÞK̄L
4

�
− B2K̄L

1 þ 1

2
ðA1 þ A2Þ

�
;

GqΓT
4 ¼ Γ̂T

4 þ A1

�
KT

2 −
2

q · t
KT

3 þ 1

q · t
KT

8

�
− B1KT

4 þ A2

�
K̄T

2 þ 2

q · t
K̄T

3 −
1

q · t
K̄T

8

�
− B2K̄T

4

þ 4

q2ðq · tÞLðq
2ÞFðq2Þ

�
A1

2
½−KL

1 þ ðq · tÞKL
2 � − B1KL

4 þ A2

2
½K̄L

1 þ ðq · tÞK̄L
2 � − B2K̄L

4

�
;

GqΓT
5 ¼ Γ̂T

5 þ A1

2
½−KL

1 − q2KT
3 − ðq · tÞKT

6 − ðp1 · tÞKT
8 � − B1KT

5 þ A2

2
½−K̄L

1 − q2K̄T
3 − ðq · tÞK̄T

6 − ðp2 · tÞK̄T
8 � − B2K̄T

5 ;

GqΓT
6 ¼ Γ̂T

6 þ A1

2

�
−KL

3 −
q2

2
KT

1 þ q2

2
ðp1 · tÞKT

4 − KT
5 − ðp1 · tÞKT

7

�
− B1KT

6

þ A2

2

�
K̄L

3 þ q2

2
K̄T

1 −
q2

2
ðp2 · tÞK̄T

4 þ K̄T
5 þ ðp2 · tÞK̄T

7

�
− B2K̄T

6 ;

GqΓT
7 ¼ Γ̂T

7 þ A1

�
−KL

2 −
q2

q · t
KT

3 − KT
6 þ p1 · q

q · t
KT

8

�
− B1KT

7 þ A2

�
−K̄L

2 þ q2

q · t
K̄T

3 þ K̄T
6 þ p2 · q

q · t
K̄T

8

�
− B2K̄T

7

þ 2

q · t
Lðq2ÞFðq2Þ

�
A1

2
½−KL

1 þ ðq · tÞKL
2 � − B1KL

4 þ A2

2
½K̄L

1 þ ðq · tÞK̄L
2 � − B2K̄L

4

�
;

GqΓT
8 ¼ Γ̂T

8 þ A1

�
KL

4 − KT
5 þ 1

2
ðq · tÞKT

7

�
− B1KT

8 þ A2

�
−K̄L

4 − K̄T
5 −

1

2
ðq · tÞK̄T

7

�
− B2K̄T

8 : ð3:14Þ

In the formulas above,

Gq ¼ 1þGðq2Þ; KT;L
i ¼ KT;L

i ðq2; p2
2; p

2
1Þ; K̄T;L

i ¼ K̄T;L
i ðq2; p2

1; p
2
2Þ: ð3:15Þ
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As far as the longitudinal terms are concerned, it
should be noticed that the form of Eq. (3.13) is dictated
by the required compatibility between the STI and
the BQI. Indeed, using Eq. (2.13) we get the relation
1 − Lðq2ÞFðq2Þ ¼ GqFðq2Þ, so that the Gq simplifies and
one is left with the result we would have obtained starting
directly from the STI (2.4) after using Eqs. (2.16) and
(2.17) to trade the form factors appearing in the H and H̄
for the ones appearing in K and K̄. This is not the case for
the transverse form factors, where indeed no such pattern
is found.

IV. SOME SPECIAL KINEMATIC LIMITS

Here we specialize the general solution reported in the
previous section to the two kinematic configurations that
have been simulated on the lattice [18–20], corresponding
to the soft-gluon limit p1 → p2 (or q → 0) and the
symmetric limit p1 → −p2. A third interesting limit in
which the quark momenta p2 is set to zero will be also
discussed.

A. Soft-gluon limit

The solution of the BQI in this limit can be obtained by
letting p1 → p2 in the general solution presented in
Eqs. (3.13) and (3.14). Although several of the expressions
appearing there seem singular in this limit, it should be
noticed that this is not the case. The reason is that whenever
p1 → �p2, the form factors K̄L;T

i and KL;T
i also coincide

(up to a sign); indeed, the conjugation properties (3.4) gives
the relations

K̄L
i ðq2; p2

1; p
2
2Þ ¼ KL

i ðq2; p2
1; p

2
2Þ i ¼ 1; 2; 3;

K̄L
4 ðq2; p2

1; p
2
2Þ ¼ −KL

4 ðq2; p2
1; p

2
2Þ

K̄T
i ðq2; p2

1; p
2
2Þ ¼ KT

i ðq2; p2
1; p

2
2Þ i ¼ 1; 2; 3; 4; 5; 7; 8;

K̄T
6 ðq2; p2

1; p
2
2Þ ¼ −KL

6 ðq2; p2
1; p

2
2Þ: ð4:1Þ

As a result, all potentially divergent terms cancel out, and
one is left with a well-defined result. In particular, since the
limit p1 → p2 also implies that q → 0, all the transverse
tensor structures (3.3) vanish identically. The vertex is
therefore purely longitudinal, and after setting p1¼p2¼p,
one finds that the Lμ

i vectors reduce to

Lμ
1 ¼ γμ; Lμ

2 ¼ 4ppμ;

Lμ
3 ¼ 2pμ; Lμ

4 ¼ 2~σμνpν: ð4:2Þ

Redefining the basis vectors so that they are simply given
by fγμ; ppμ; pμ; ~σμνpνg with corresponding form factors
fΓ1;Γ2;Γ3;Γ4g and fK1; K2; K3; K4g, one obtains the
results

F−1
0 Γ1 ¼ Að1 − 2p2K4Þ − 2BK1;

F−1
0 Γ2 ¼ 2A0 þ 2AðK3 þ K4Þ − 2BK2;

F−1
0 Γ3 ¼ −2B0 þ 2AðK1 þ p2K2Þ − 2BK3;

Γ4 ¼ 0; ð4:3Þ

where F−1
0 ¼F−1ð0Þ, A¼Aðp2Þ, B¼Bðp2Þ, Ki¼Kiðp2Þ,

and a prime denotes derivative with respect to p2.
We conclude this subsection by noticing that in the

soft-gluon limit the identities (2.16) and (2.17) yield an
all-order constraint on the form of H and H̄. To see this,
let us observe that the Taylor expansion of a function
fðq; p2;−p1Þ when q → 0 and p1 ¼ p2 ¼ p reads

fðq; p2;−p1Þ ¼ fð0; p;−pÞ þ qμ
∂
∂qμ fðq; p2;−p1Þj

q¼0

þOðq2Þ; ð4:4Þ

where the (possible) Lorentz structure of the function f has
been suppressed. Specializing this result to the identities
(2.16), one obtains the (all-order) conditions

Hð0; p;−pÞ ¼ 1 ⇒ X1ð0; p2; p2Þ ¼ −X2ð0; p2; p2Þ;
X0ð0; p2; p2Þ ¼ 1; ð4:5Þ

where we have used the form factor decomposition of
Eq. (2.6). Clearly, an equivalent result holds for H̄ and its
corresponding form factors.

B. Symmetric limit

The symmetric limit, in which p1 → −p2, is subtler than
the previous case. The relations listed in Eq. (4.1) remain
valid also in this limit, thus leading to a finite result for the
expressions (3.13) and (3.14); nevertheless, one finds that
only one longitudinal basis tensor (3.2) and two transverse
tensors (3.3) survive in this limit, namely

Lμ
1 ¼ γμ; Tμ

3 ¼ 4ðp2γμ − pμpÞ; Tμ
5 ¼ −2~σμνpν:

ð4:6Þ

However, as in the previous case, there are in principle four
independent tensors in the basis; we are clearly missing pμ.
Thus, we arrive at the conclusion that in the Tþ L basis

the symmetric limit is singular, and one cannot get the
results by taking directly this limit in the general solution
(3.13) and (3.14). The way to proceed is instead the
following: (i) first, use the relations (A3) before taking
any limit to get the general solution in the naive conjugated
basis; (ii) next, take the symmetric limit of this solution,
given that this basis is well behaved in this limit, giving rise
to the four independent tensors needed; and (iii) go back to
the Tþ L basis using Eqs. (A1) and (A2).
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Following this procedure, and redefining the basis vectors
to be, as in the previous limit, fγμ; ppμ; pμ; ~σμνpνg, one
obtains the results

G2pΓ1 ¼ Γ̂1 þ 2p2AK4 − 2BK1;

G2pΓ2 ¼ Γ̂2 − 2AðK3 þ K4Þ − 2BK2

−
1

p2
L2pF2p½Að1 − 2p2K3Þ − 2BðK1 þ p2K2Þ�

G2pΓ3 ¼ Γ̂3;

G2pΓ4 ¼ Γ̂4 þ 2AK1 − 2BK4; ð4:7Þ
where A ¼ Aðp2Þ, B ¼ Bðp2Þ and
G2p ¼ 1þGð4p2Þ; F2p ¼ Fð4p2Þ; L2p ¼ Lð4p2Þ:

ð4:8Þ

Within this basis, the solution of the WI and TWI (3.8)
and (3.11) gives the relations

Γ̂1 þ p2Γ̂2 ¼ A; Γ̂3 ¼ 0; Γ̂4 ¼ 2B0; ð4:9Þ
and therefore one gets the final results

F−1
2pðΓ1 þ p2Γ2Þ ¼ Að1 − 2p2K3Þ − 2BðK1 þ p2K2Þ;

Γ3 ¼ 0;

G2pΓ4 ¼ 2B0 þ 2AK1 − 2BK4: ð4:10Þ
As the above results clearly show, in the naive con-

jugated basis, it is not possible to disentangle the form
factors Γ1 and Γ2. This, however, can be achieved by going
back to the Tþ L basis fγμ; pμ; p2γμ − ppμ; ~σμνpνg in
which the corresponding form factors fΓL

1 ;ΓL
3 ;ΓT

3 ;ΓT
5g can

be obtained from the previous ones through the relations

ΓL
1 ¼ Γ1 þ p2Γ2; ΓL

3 ¼ Γ3; ΓT
3 ¼ −Γ2; ΓT

5 ¼ Γ4;

ð4:11Þ

and similarly for fKL
1 ; K

L
3 ; K

T
3 ; K

T
5g; one then obtains6

F−1
2pΓL

1 ¼ A− 2p2AKL
3 − 2BKL

1 ;

ΓL
3 ¼ 0;

G2pΓT
3 ¼ 2A0 þ 2A

�
ð1−L2pF2pÞKL

3 þKT
5 þ

1

2p2
L2pF2p

�

− 2B

�
KT

3 þ
1

p2
L2pF2pKL

1

�
;

G2pΓT
5 ¼ 2B0 þ 2AðKL

1 þp2KT
3 Þ− 2BKT

5 : ð4:12Þ

However, on the lattice in the Landau gauge and for a
momentum configuration other than the soft gluon, what
has been measured is only the combination Pν

μΓν, that is

Pν
μðpÞΓν ¼ Pν

μðpÞγνðΓL
1 þ p2ΓT

3 Þ þ ~σμνpνΓT
5 ; ð4:13Þ

yielding

G2pðΓL
1 þ p2ΓT

3 Þ ¼ 2p2A0 þ Að1þ 2p2KT
5 Þ

− 2BðKL
1 þ p2KT

3 Þ;
G2pΓT

5 ¼ 2B0 þ 2AðKL
1 þ p2KT

3 Þ − 2BKT
5 :

ð4:14Þ

Evidently, the multiplication of ΓT
3 by p2 removes the

potentially IR divergent terms; thus, one expects the
corresponding form factor measured on the lattice to be
finite.

C. Zero quark momentum

We now set to zero the quark momentum p2, so that
q ¼ p1 ¼ p. This limit is well defined in any of the two
bases introduced earlier, and the corresponding form
factors can be obtained directly form our general solution
(3.13) and (3.14). However, the form factorsKL;T

i ðp2;0;p2Þ
and K̄L;T

i ðp2; p2; 0Þ do not coincide anymore and need
to be evaluated separately. Defining the basis tensors to
be fγμ; pμ; p2γμ − ppμ; ~σμνpνg with the corresponding
form factors fΓL

1 ;ΓL
3 ;ΓT

3 ;ΓT
5g, fKL

1 ; K
L
3 ; K

T
3 ; K

T
5g, and

fK̄L
1 ; K̄

L
3 ; K̄

T
3 ; K̄

T
5g, we obtain the results

F−1ΓL
1 ¼ Að1þp2KL

3 Þ−BKL
1 −B0K̄L

1 ;

F−1ΓL
3 ¼ −

1

p2
ðB−B0Þ þAKL

1 −BKL
3 −B0K̄L

3 ;

GΓT
3 ¼ −AðKL

3 þKT
5 Þ−BKT

3 −B0K̄T
3

þ 1

p2
LpFp½Að1þp2KL

3 Þ−BKL
1 −B0K̄L

1 �;

GΓT
5 ¼ −

1

p2
ðB−B0Þ−AðKL

1 þp2KT
3 Þ−BKT

5 −B0K̄T
5 ;

ð4:15Þ

with the usual definitions A ¼ Aðp2Þ, B ¼ Bðp2Þ, as well
as B0 ¼ Bð0Þ.
On the lattice one focuses on the projected vertex (4.13),

for which one has the two form factors

GðΓL
1 þ p2ΓT

3 Þ ¼ Að1 − p2KT
5 Þ − BðKL

1 þ p2KT
3 Þ

− B0ðK̄L
1 þ p2K̄T

3 Þ;

GΓT
5 ¼ −

1

p2
ðB − B0Þ − AðKL

1 þ p2KT
3 Þ

− BKT
5 − B0K̄T

5 : ð4:16Þ
6We notice that the terms proportional to KL

3 are precisely
those that one would miss by taking directly the symmetric limit
of the Tþ L solution (3.13) and (3.14).
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V. NUMERICAL RESULTS AND COMPARISON
WITH LATTICE DATA

In this section we carry out a numerical study of the form
factors of the quark-gluon vertex in the various kinematical
limits studied in the previous section.

A. One-loop dressed approximation for the
auxiliary functions

As a first step in our numerical study, we need to identify
a suitable approximation for the functions Kμ and K̄μ in
order to determine the corresponding form factors Ki and
K̄i, which ultimately characterize the quark-gluon vertex.
In what follows we will use the one-loop dressed approxi-
mation (see Fig. 3), in which the propagators are fully
dressed while vertices are retained at tree level (see Fig. 3
again). This yields the following expressions:

Kμðq; p2;−p1Þ

¼ i
2
g2CA

Z
k
Sðkþ p2ÞγνPμνðkÞΔðk2ÞDðk − qÞ;

K̄μð−q; p1;−p2Þ

¼ i
2
g2CA

Z
k
γνSðp1 − kÞPμνðkÞΔðk2ÞDðk − qÞ: ð5:1Þ

It turns out that the best and most expeditious strategy for
projecting out the various components of this function is to
use the naive conjugated basis, eventually passing to the
Tþ L basis using the formulas (A1) and (A2). For general
values of the pi momenta, the calculation is carried out in
Appendix B; here we will study the limiting cases singled
out in the previous section (notice that, in the case of the
soft-gluon and symmetric limit, one cannot obtain the
corresponding results as a direct limit of the general
results).

1. Soft-gluon and symmetric limit

In the limit p1 → �p2, one can concentrate on the
calculation of Kμ only, as in this case K and K̄ coincide.
Thus, we start by writing

KμðpÞ ¼
i
2
g2CA

Z
k
ðkþ pÞγνPμνðkÞRAðk; pÞ

þ i
2
g2CA

Z
k
γνPμνðkÞRBðk; pÞ; ð5:2Þ

where we have defined

Rfðk; pÞ ¼ fðkþ pÞΔðk2Þ
A2ðkþ pÞðkþ pÞ2 − B2ðkþ pÞDðk; pÞ;

ð5:3Þ

and

Dðk; pÞ ¼
�
DðkÞ; soft − gluon limit;

Dðkþ 2pÞ; quark symmetric limit:
ð5:4Þ

We next introduce the integrals

If0ðpÞ ¼
i
2
g2CA

Z
k
Rfðk; pÞ;

IfμðpÞ ¼ i
2
g2CA

Z
k
kμRfðk; pÞ ¼ If1ðp2Þpμ;

IfμνðpÞ ¼ i
2
g2CA

Z
k

kμkν
k2

Rfðk; pÞ ¼ Jf1ðp2Þgμν
þ Jf2ðp2Þpμpν; ð5:5Þ

with, correspondingly,

If1ðp2Þ ¼ pμ

p2
IfμðpÞ; Jf1ðp2Þ ¼ 1

3
PμνðpÞIfμνðpÞ;

Jf2ðp2Þ ¼ 1

3p2

�
4
pμpν

p2
− gμν

�
IfμνðpÞ: ð5:6Þ

Notice that not all these form factors are independent, since
one has the constraint

4Jf1ðp2Þ ¼ If0ðp2Þ − p2Jf2ðp2Þ: ð5:7Þ

Writing finally

KμðpÞ ¼ γμK1ðp2Þ þ ppμK2ðp2Þ þ pμK3ðp2Þ
þ ~σμνpνK4ðp2Þ; ð5:8Þ

we obtain the results

K1ðp2Þ ¼ IB0 ðp2Þ − JB1 ðp2Þ

¼ i
6
g2CA

Z
k

�
2þ ðk · pÞ2

k2p2

�
RBðk; pÞ;

K2ðp2Þ ¼ −JB2 ðp2Þ

¼ i
6p2

g2CA

Z
k

�
1 − 4

ðk · pÞ2
k2p2

�
RBðk; pÞ;

K3ðp2Þ ¼ 3JA1 ðp2Þ ¼ i
2
g2CA

Z
k

�
1 −

ðk · pÞ2
k2p2

�
RAðk; pÞ;

K4ðp2Þ ¼ −IA0 ðp2Þ − IA1 ðp2Þ þ JA1 ðp2Þ

¼ −
i
6
g2CA

Z
k

�
2þ 3

ðk · pÞ
p2

þ ðk · pÞ2
k2p2

�
RAðk; pÞ:

ð5:9Þ

Notice the 1=p2 factor multiplying the K2ðp2Þ function; we
will return to this important point shortly.
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2. Zero quark momentum

In this case one has to consider both K and K̄, as when
p2 ¼ 0 the two functions do not coincide. For Kμ, after
defining

Rfðk; pÞ ¼ fðk2ÞΔðk2ÞDðkþ pÞ
A2ðk2Þk2 − B2ðk2Þ ; ð5:10Þ

one finds that K3ðp2Þ ¼ 0, K1 andK2 are given in Eq. (5.9)
with RB obtained from Eq. (5.10) above, and finally

K4ðp2Þ ¼ IA1 ðp2Þ ¼ i
2
g2CA

Z
k

ðk · pÞ
p2

RAðk; pÞ: ð5:11Þ

For K̄μ one has instead

Rfðk; pÞ ¼ fðkþ pÞΔðk2ÞDðkþ pÞ
A2ðkþ pÞðkþ pÞ2 − B2ðkþ pÞ ; ð5:12Þ

and one gets for the K̄i the corresponding results of
Eq. (5.9) for Ki, in which Rf is replaced by the expression
above and K4 gets an extra minus sign.

B. Passing to the Euclidean space

To pass from Minkowskian to Euclidean space, let us
define

γ0 → γE4 ; γj → iγEj ; k0 → ikE4 ; kj → −kEj :

ð5:13Þ

Then, with the signature of the Minkowski metric being
ðþ;−;−;−Þ, one has the replacement rules

d4k → id4kE; k → ikE;

k · q → −kE · qE; k2 → −k2E: ð5:14Þ

On the one hand, these rules are enough to convert to their
Euclidean counterparts scalar expressions; specifically one
has

AEðp2
EÞ ¼ Að−p2Þ; BEðp2

EÞ ¼ Bð−p2Þ;
FEðp2

EÞ ¼ Fð−p2Þ; ΔEðp2
EÞ ¼ −Δð−p2Þ;

KE
1;3;4ðp2

EÞ ¼ K1;3;4ð−p2Þ; KE
2ðp2

EÞ ¼ −K2ð−p2Þ;
K̄E

1;3;4ðp2
EÞ ¼ K̄1;3;4ð−p2Þ; K̄E

2ðp2
EÞ ¼ −K̄2ð−p2Þ:

ð5:15Þ

However, they are not sufficient to specify how to proceed
in the case of a four-vector quantity like the quark-gluon
vertex; to accomplish the conversion, we follow the
prescription of Ref. [20]. Specifically, first we form a
Minkowski scalar by contracting Γμ with γμ, and then we
demand that the resulting expression be identical to the one

obtained if we had started directly from the Euclidean
expression, and had assumed that all the Euclidean form
factors are equal to the corresponding Minkowski ones
evaluated at negative momenta,

Γiðq2E; p2
2E; p

2
1EÞ ¼ Γið−q2;−p2

2;−p2
1Þ: ð5:16Þ

In the kinematic configurations of interest, which involves
only one momentum scale p, this prescription yields the
NC tensor basis fγEμ ; ipE

μ ;−pEpE
μ ; i ~σEμνpE

νg or the Tþ L
basis fγEμ ; ipE

μ ;−p2
Eγ

E
μ þ pEpE

μ ; i ~σEμνpE
νg.

Finally, integrals will be performed using the following
spherical coordinates:

x ¼ p2; y ¼ k2;

z ¼ ðkþ pÞ2 ¼ xþ yþ 2
ffiffiffiffiffi
xy

p
cos θ;Z

kE

¼ 1

ð2πÞ3
Z

π

0

dθsin2θ
Z

∞

0

dyy: ð5:17Þ

Equipped with these expressions, we can convert all
quantities appearing in the previous section into Euclidean
quantities and, once numerically evaluated, directly com-
pare them with the one obtained in the lattice study
of Ref. [20].

C. Numerical results

In this subsection we carry out the numerical evaluation
of the various relevant quantities introduced so far, and we
compare our results with the lattice data on the quark-gluon
vertex.

1. Ingredients

For the evaluation of the one-loop dressed scalar
functions Ki, we need the following ingredients: (i) the
gluon propagator Δ; (ii) the ghost dressing function F;

 0
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Fit

FIG. 4 (color online). The functional fit given in Eq. (5.18) to
the SU(3) gluon propagator. Lattice data are taken from [57] and
renormalized at μ ¼ 2.0 GeV.
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(iii) the value of the strong coupling, at the relevant
renormalization scale μ—specifically, since the lattice data
on the quark-gluon vertex have been renormalized at μ ¼
2.0 GeV [20], this particular scale will serve as our
reference, and all quantities will be renormalized, for
consistency, at this particular point—and (iv) the Dirac
vector and scalar components of the quark propagator, A
and B, respectively. In what follows we explain briefly how
the above ingredients are obtained:

(i) As in a variety of previous works (e.g.,
Refs. [6,68–70]), we use for the gluon propagator
Δ directly the SU(3) lattice data of Ref. [57]. As
has been explained in detail in the literature cited
above, an excellent, physically motivated fit of the
lattice data (renormalized at μ ¼ 4.3 GeV, the last
available point in the ultraviolet tail of the gluon
propagator) is given by

 0.5
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FIG. 5 (color online). Left: The Landau gauge ghost dressing function F obtained as a solution of the ghost gap equation for α ¼ 0.45
using as input the lattice gluon propagator. Right: The decomposition of the (inverse) ghost dressing function into its 1þ G (blue,
dashed-dotted) and L (orange, dashed) components. Lattice data are taken from Ref. [57].
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FIG. 6 (color online). The quark wave function (left) and mass (right), obtained from the solution of the quark gap equation for a
current mass m0 ¼ 115 MeV and αsðμÞ ¼ 0.45.
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FIG. 7 (color online). The auxiliary functions Ki evaluated in
the soft-gluon limit.
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Δ−1ðq2Þ¼M2ðq2Þ

þq2
�
1þ13CAg21

96π2
ln
�
q2þρ1M2ðq2Þ

μ2

��
;

ð5:18Þ

where

M2ðq2Þ ¼ m4
0

q2 þ ρ2m2
0

: ð5:19Þ

Notice that in the above expression the finiteness of
Δ−1ðq2Þ is assured by the presence of the function
M2ðq2Þ, which forces the value of Δ−1ð0Þ ¼
M2ð0Þ ¼ m2

0=ρ2. The best fit obtained with this
functional form corresponds to setting m0 ¼
520 MeV, g21 ¼ 5.68, ρ1 ¼ 8.55, and ρ2 ¼ 1.91.
Of course, since we want our results renormal-

ized at μ ¼ 2.0 GeV instead of μ ¼ 4.3 GeV, the
curve of Eq. (5.18) must be rescaled by a multi-
plicative factor. This factor can be obtained from
the standard relation

Δðq2; μ2Þ ¼ Δðq2; ν2Þ
μ2Δðμ2; ν2Þ ; ð5:20Þ

which allows one to convert a set of points
renormalized at ν to the corresponding set renor-
malized at μ. In our case ν ¼ 4.3 GeV and
μ ¼ 2.0 GeV, and Δðμ2; ν2Þ ≈ 0.384 GeV−2, so
that the multiplicative factor is ½μ2Δðμ2; ν2Þ�−1≈
0.652. The corresponding fit is shown in Fig. 4.

(ii),(iii) The ghost dressing function F is determined by
solving the corresponding ghost gap equation. For
the fully dressed ghost-gluon vertex entering in it,
we use the expressions obtained in Ref. [71].
Then, the strong coupling αðμ2Þ ¼ g2ðμ2Þ=4π
is simultaneously fixed by demanding that the

solution obtained for F matches the SU(3) lattice
results of Ref. [57]. The best match is achieved for
α ¼ 0.45 at μ ¼ 2.0 GeV, as shown in the left
panel of Fig. 5. From now on α will be kept fixed
at this particular value. The (inverse) ghost dress-
ing function can be further separated in its 1þ G
and L components that appear in Eq. (2.13). This
is done by solving the SDEs they satisfy [66], and
the corresponding results are shown in the right
panel of the same figure.

(iv) With the Δ and F we have just determined, one
can evaluate the vector and scalar components of
the quark propagator. This is achieved by solving
the quark gap equation described in Ref. [6] with a
Curtis–Pennington quark-gluon vertex [35] and a
bare quark mass fixed at 115 MeV, which is the
value employed in the lattice simulations of
Ref. [20]. The results obtained for the quark wave
function Z ¼ 1=A and mass M ¼ B=A are shown
in Fig. 6.
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FIG. 8 (color online). The soft-gluon form factors λ1 (left) and pλ3 (right). Lattice data in this and all the following plots are taken from
Ref. [20].
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FIG. 9 (color online). The form factor λ2 and the corresponding
lattice data.
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At this point we have all the ingredients and shall proceed
to determine the Ki and K̄i auxiliary functions, and
subsequently the vertex form factors for the various
kinematical limits introduced before.

2. Soft-gluon limit

In Fig. 7 we plot the functions Ki in the soft-gluon limit
Eq. (5.9), obtained using Δ, F, Z, andM determined in the
previous section.
It is then immediate to construct the Euclidean version of

the soft-gluon limit form factors (4.3). Specifically, in
Fig. 8 we plot the form factors

λ1ðpÞ ¼ ΓE
1 ðpEÞ; λ3ðpÞ ¼ −

1

2
ΓE
3 ðpEÞ ð5:21Þ

and compare them with the lattice data of Ref. [20],
obtaining a rather satisfactory agreement.
However, in the case of the form factor

λ2ðpÞ ¼
1

4
ΓE
2 ðpEÞ; ð5:22Þ

we observe a fundamental qualitative discrepancy with
respect to the lattice data; in particular, as Fig. 9 shows, we
obtain a finite form factor, while the lattice shows an IR
divergence as p2 → 0.
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FIG. 10 (color online). The auxiliary functions Ki evaluated in the soft-gluon limit with a fermion vertex cos2 θγμ. When comparing
with the results obtained for the tree-level vertex γμ (gray curves), one notices that K2 becomes IR divergent, whereas the remaining Ki
are suppressed. In the remaining panels, we show the soft-gluon form factors obtained when using the vertex γμð1þ b cos2 θÞ for the
representative value b ¼ −0.5; one obtains a divergent λ2, affecting only modestly λ1 and leaving λ3 practically invariant.
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FIG. 11 (color online). The auxiliary functions Ki evaluated in
the symmetric gluon limit when an extra angular dependence of
the type b cos2 θ is added to the tree-level vertex γν.
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This discrepancy seems common to all attempts to
evaluate the quark-gluon vertex form factors from a purely
SDE approach (see, for example, Refs. [24,25]). In what
follows we will offer a plausible explanation for its origin,
at least within our framework.
To begin with, recall that in the soft-gluon limit the

transverse parts of the vertex are not active; thus, the
expressions (4.3) are exact, and any divergence can only
manifest itself in the auxiliary functions Ki. Specifically,
Eq. (4.3) shows that in λ2 only the functions Ki with i ¼
2; 3; 4 appear. In general, however, K3 should not develop
an IR divergence, since this would render IR divergent also
λ3, and we know from the lattice that this form factor is
finite (see Fig. 8). On the other hand, both K2 and K4 could
in principle have an IR divergence, as long as they diverge
at most as 1=p2, given that they both appear in λ1 and λ3
multiplied by a factor p2.
To analyze what happens in the p → 0 limit of these two

functions, let us observe that in the soft-gluon limit the
function Rf of Eq. (5.3) can be written as

Rfðk; pÞ ¼ Δðk2ÞDðk2Þgðkþ pÞ;

gðkþ pÞ ¼ fðkþ pÞ
A2ðkþ pÞðkþ pÞ2 − B2ðkþ pÞ : ð5:23Þ

The function g can be next expanded around p ¼ 0
according to

gðkþ pÞ ¼ gðk2Þ þ 2ðk · pÞg0ðk2Þ þ p2g0ðk2Þ
þ 2ðk · pÞ2g00ðk2Þ þOðp3Þ; ð5:24Þ

where the primes denote derivatives with respect to k2. All
functions appearing in the above expansion of g are well
behaved in the IR, and we will assume the same about their
derivatives.
Onemay then establish that theK4 in Eq. (5.9) is regular as

p → 0; indeed, the only possible divergence may come from

the zeroth-order term in (5.24). This term, however, vanishes,
since it is proportional to the integral of ðk · pÞgðk2Þ=p2,
which is an odd function of the integration angle θ in the
interval ½0; π�. In the case ofK2, the presence of the prefactor
1=p2 implies that one has to consider both the zeroth- and
the first-order term in the expansion (5.24). Again, however,
they both vanish: the linear term in p for the same reason as
before (odd in θ), while the zeroth-order term is due to the
vanishing of the corresponding angular integral, namely7

Z
π

0

dθsin2θð1 − 4cos2θÞ ¼ 0: ð5:25Þ

As a result, the one-loop dressedK2 andK4 in the soft-gluon
limit both saturate to a constant in the IR, as Fig. 7 shows.
Evidently, the finiteness of the form factor K2 in the soft-

gluon limit originates from the conspiracy of two inde-
pendent facts:

(i) The first is the IR finiteness of the expanded
function g, which implies that the Oðp2Þ terms in
Eq. (5.24) will give rise to an IR convergent
integral. Instead, in the symmetric and zero quark
momentum limits, the function to be expanded
involves always the IR divergent ghost propagator,
and thereforeK2 will be IR divergent in both cases
(see Figs. 11 and 15).

(ii) Second is the vanishing of the angular integral
(5.25) (in four space-time dimensions).

Now, the presence of the integral (5.25) can be traced
back to the one-loop dressed approximation we have used
to evaluate the functions Ki, where the fermion vertex was
kept at tree level. In that sense, the obtained finiteness ofK2

is accidental, being really an artifact of our particular
implementation of the one-loop dressed approximation.

 0.5

 1

 1.5

 2

 2.5

 0  1  2  3  4  5  6

Lattice, β=6.0, V=163x48
BQI
0.8*BQI

 0.001

 0.01

 0.1

 1

 10

 0  1  2  3  4  5  6  7

Lattice, β=6.0, V=163x48
BQI
3*BQI

FIG. 12 (color online). The symmetric limit form factors λ01 and τ5 compared with the corresponding lattice data. The grey curves are
obtained through simple rescaling of the blue ones.

7Note that if the expressions in Eq. (5.9) are worked out in d
space-time dimensions one obtains the factor (1 − d cos2 θÞ; thus,
the result of Eq. (5.25) is particular to d ¼ 4.
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Actually, if one were to include some additional angular
dependence to this vertex (which will happen anyway when
quantum corrections are added), the cancellation (5.25)
would be unavoidably distorted, and one would end up with
an IR divergent K2 ∼ 1=p2.

This fact is shown in Fig. 10, where the tree-level vertex
γμ has been replaced by γμð1þ b cos2 θÞ. One observes that
K2 becomes indeed IR divergent as soon as b ≠ 0, while all
remaining Ki are only modestly affected by the presence of
b. The resulting form factors for the representative value
b ¼ −1=2 are shown in the same figure: λ2 develops a 1=p2

IR divergence, while λ1 and λ3 are marginally modified.

3. Symmetric limit

Let us now turn our attention to the symmetric limit.
According to our previous discussion, in this limit we
expect a divergent K2 and a finite K4, as indeed shown
in Fig. 11.
We next proceed to plot (Fig. 12) the form factors

λ01ðpÞ ¼ ΓLE
1 ðpEÞ − p2

EΓTE
3 ðpEÞ; τ5ðpÞ ¼

1

2
ΓTE
5 ðpEÞ;
ð5:26Þ

which are measured on the lattice in the symmetric limit. As
Eq. (4.14) shows, these form factors do not explicitly
involve the divergent term K2 and therefore are finite. For
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FIG. 13 (color online). The symmetric form factors ΓL
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FIG. 15 (color online). The auxiliary functions Ki (left) and K̄i (right) evaluated in the zero quark momentum configuration.
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both of them the overall shape of the lattice data is
accurately described; however, the strength of the two
components is inverted, since we get a higher λ01 and a
lower τ5. Quite interestingly, a simple rescaling of each
form factor (through multiplication by a numerical con-
stant) leads to a very good overlap with the lattice data, as
the gray curves demonstrate.

Our analysis is not limited to the projected form factors
(5.26), as we can study also all the three nonzero form
factors (4.12) in this limit, similarly to what we have done
in the soft-gluon limit. Specifically, on the basis of
Eq. (4.12), one expects that ΓL

1 and ΓT
5 are finite

(Fig. 13), as they involve only the combination p2K2

through the term KL
1 ; however, ΓT

3 has two divergent pieces
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FIG. 16 (color online). The form factors λ01 (left) and τ5 (right) in the quark zero momentum configuration.
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(Fig. 14), both proportional to the combination L2p=p2

reading8 [66]

1

p2
L2p ∼

1

p2

Z
k

�
1 − d

ðk · pÞ2
k2p2

�
ΔðkÞDðkþ 2pÞ ∼

p2→0

1

p
:

ð5:27Þ

4. Zero quark momentum

The case of the zero quark momentum constitutes a
“prediction,” given that there are no lattice data available
for this particular momentum configuration.
In this specific case, the degeneracy between the Ki and

K̄i functions is broken, and one has to study them
separately. In addition, one will have both K2 and K̄2

divergent in this case, even though the (projected) form
factors λ01 and τ5, introduced in Eq. (5.26), will still be
finite, as the only combination that enters in their definition
(4.16) is KL

1 ¼ K1 þ p2K2.

In Fig. 15 we plot the auxiliary functions Ki and K̄i,
while in Fig. 16 we plot the form factors defined in
Eq. (5.26), which, in principle, could be simulated on
the lattice. Finally, in Fig. 17, we present all form factors;
notice in particular the (negative) divergence expected for
the term ΓTE

3 .

D. Unquenching effects

An additional issue worth mentioning is related with the
fact that the lattice results that we have been using as initial
ingredients (gluon propagator and ghost dressing function)
are obtained from quenched simulations (no dynamical
quarks). To be sure, the procedure of using quenched results
to obtain dynamical properties of quarks may be considered,
strictly speaking, inconsistent. However, from the practical
point of view, it has been argued in earlier works [24,25] that
the effects of unquenching are relatively small (of the order
of 10%) and may be omitted as a first approximation.
To show that the above error estimate is valid also within

our approach, we repeat again the soft-gluon configuration
analysis, but now use the unquenched gluon and ghost lattice
propagators obtained in Ref. [72], and the correspondingly
modified values for the strong coupling constant α. More
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FIG. 18 (color online). The comparison of the results for Nf ¼ 0, Nf ¼ 2 and Nf ¼ 2þ 1þ 1 in the soft-gluon configuration.
We show the auxiliary functions Ki (upper left panel) and the form factors: λ1ðpÞ (upper right), p2λ2ðpÞ (bottom left), and pλ3ðpÞ
(bottom right).

8In the SDE for the function L, the ghost-gluon vertex has been
approximated by its tree-level value; however, the dressing of this
vertex is not expected to alter the above argument.
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specifically, we compute the form factors λ1ðpÞ, λ2ðpÞ, and
λ3ðpÞ for two different numbers of active flavors (i) Nf ¼ 2
(two degenerate light quarks) and (ii) Nf ¼ 2þ 1þ 1 (two
degenerate light quarks and two heavy ones), which were
considered in the lattice simulations of Ref. [72]. The
corresponding values of αðμÞ (at μ ¼ 2 GeV) are obtained
by repeating the same procedure outlined in the first
subsection of this section (items ii, iii); specifically we have
αðμÞ ¼ 0.45 for Nf ¼ 0, αðμÞ ¼ 0.59 for Nf ¼ 2, and
αðμÞ ¼ 0.66 for Nf ¼ 2þ 1þ 1.
Our results for the soft-gluon configuration, using the

unquenched propagators as input, are shown in Fig. 18. On
the upper left panel, we plot the functions Ki, whereas on
the right one, we show the λ1ðpÞ for the quenched case
(blue), Nf ¼ 2 (orange), and Nf ¼ 2þ 1þ 1 (red). Using
the same color code, we show, on the bottom panels
p2λ2ðpÞ (left) and pλ3ðpÞ (right), respectively. Evidently,
the effect of activating the quarks amounts to scaling up the
quenched result by less than 6% (in the deep IR region).
The same type of quantitative changes are observed for
p2λ2ðpÞ. Finally, in the case of pλ3ðpÞ, the biggest
difference between quenched and unquenched cases occurs
when p ∼ 1 GeV and is about 10%.

E. Comparison with previous works

For completeness, in this subsection we compare our
results with those obtained by two different approaches,
representative of the extensive literature on this subject.
Specifically, to carry out a concrete comparison, we will
concentrate on the contributions presented in Refs. [24,25].
In particular, in Fig. 19 we compare our results for the soft-
gluon form factors λ1ðpÞ, p2λ2ðpÞ, and pλ3ðpÞ with those
obtained using two different semiperturbative analyses
presented in Refs. [24] and [25].
In both aforementioned works, the form factors of the

quark-gluon vertex are obtained in the context of the one-
loop dressed approximation. In the case of Ref. [24], the two
relevant diagrams (in the soft-gluon limit) were calculated
within the “rainbow-ladder” approximation, using for the
product g2Δðq2Þ a phenomenological model frequently
employed in Bethe–Salpeter studies [8]. In addition, all
bare quark propagators are replaced by the solutions of the
quark SDE, obtained in the same rainbow approximation.
On the other hand, in Ref. [25] the relevant diagrams were
computed by replacing the internal tree-level quark and
gluon propagators by their dressed counterparts, calculated
in the ghost dominance picture [5]. There, the authors
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analyzed the vertex in the (i) soft-gluon limit and in the
(ii) totally asymmetric configuration.
It is interesting to observe that the three studies compared

here display the same qualitative behavior for p2λ2ðpÞ at
the one-loop dressed approximation: p2λ2ðpÞ tends to zero
in the deep IR region, while the lattice data are clearly
finite. The above observation reinforces the arguments
presented in Sec. V C 2, where the finiteness of the kernel
λ2ðpÞ was interpreted as an “artifact” of a special numerical
cancellation operating at the level of the one-loop dressed
approximation.

VI. DISCUSSION AND CONCLUSIONS

In this article we have presented a novel method for
determining the nonperturbative quark-gluon vertex, which
constitutes a crucial ingredient for a variety of theoretical
and phenomenological studies. Our method is particular to
the PT-BFM scheme and relies heavily on the BQI relating
Γμ and Γ̂μ. The TWIs are of paramount importance in this
approach because they provide nontrivial information on
the transverse part of Γ̂μ (and eventually of Γμ).
One important difference of this method compared to the

standard SDE approach is that it takes full advantage of the
rich amount of information originating from the fundamental
underlying symmetries, before actually computing (fully
dressed) Feynman diagrams. In particular, both the BRST
and anti-BRST symmetries are properly exploited, by appeal-
ing to a set of crucial identities (WIs, STIs, andBQIs), in order
to obtain nontrivial information for all form factors, already at
the first level of approximation. The actual calculation of
diagramsis then reduced to theauxiliary three-point functions,
which have a simpler structure compared to the standard SDE
expansion. Note in particular that, at the level of approxima-
tion atwhichwework, the three-gluonvertex, a known source
of technical complexity, does not enter at all. On the other
hand, a major downside of this method is that the minimal
ansatz employed at the level of the TWI may be hard to
improve upon, given the nonlocal nature of the omitted terms.
It is important to emphasize at this point that, even though

the minimal ansatz used for the vertex satisfies the correct
constraints imposed by the general symmetries of the theory,
its quantitative contribution to the final answer is not
necessarily dominant. In fact, our analysis reveals that the
contributions originating from the one-loop dressed dia-
grams used to calculateKμ are in general sizeable and tend to
drive the answer toward the direction of the lattice results.
Therefore, the calculation of these terms, within an approxi-
mation scheme as refined as possible, is of paramount
importance for the successful implementation of this par-
ticular approach.
Themain external ingredient used in the calculation of the

three-point function Kμ is the nonperturbative gluon propa-
gator Δðq2Þ, which has been taken from the lattice. On the
other hand, the ghost dressing function Fðq2Þ and the Dirac
components of the quark propagator [Aðp2Þ and Bðp2Þ] are

obtained from the solution of the corresponding SDEs. To be
sure, a completely self-contained analysis ought to include
the dynamical determination of Δðq2Þ from its own SDE;
however, this task is beyond our present powers, mainly due
to the poor knowledge of one of the ingredients of this SDE,
namely the fully dressed four-gluon vertex of the PT-BFM.
In general, the numerical results presented here appear to

be in qualitative agreement with those obtained from lattice
simulations, following the overall trend of the data, but they
do not succeed in achieving a particularly noteworthy level
of quantitative coincidence. In the case of the “soft-gluon
limit,” the form factors λ1ðpÞ and pλ3ðpÞ (shown in Fig. 8)
capture clearly the general pattern of the lattice results;
however, λ1ðpÞ deviates about 25% in the deep infrared,
while pλ3ðpÞ shows its largest discrepancy (a factor of about
1.5) in the region of momenta around 0.75 GeV. The case of
λ2ðpÞ, shown in Fig 9, merits particular attention. Speci-
fically, whereas the one-loop approximation gives a finite
answer at the origin (contrary to the lattice results), a possible
mechanism for overcoming this has been identified; a
divergent result may indeed be obtained (see Fig 10), at
the expense of introducing an additional parameter (b). Note,
however, that the value of b has not been fitted to maximize
the coincidence with the lattice results; b has been simply
introduced in order to demonstrate a concrete (and minimal)
realization of the proposed mechanism for getting a diver-
gent λ2ðpÞ. Turning to the case of the “symmetric limit,” one
observes (see Fig. 12) that our predictions follow rather
accurately the pattern of the lattice data, but a coincidence
may be achieved only after rescaling by a constant factor;
specifically, λ01ðpÞ must be scaled down by a factor of 0.8,
while τ5ðpÞ must be scaled up by a factor of 3.
Of course, it is clear that we are far from having performed

an exhaustive numerical study of the theoretical quark-gluon
vertex solutions found. Indeed, to do that one should solve
the system composed by Eqs. (3.13) and (3.14), allowing the
momenta p1 and p2 to be general and using an iterative
procedure of which the one-loop dressed approximation
used here represents the first step. After the iterative solution
becomes stable, one would then project to the various
momenta configurations (soft gluon, symmetric, zero quark
momentum) studied here and, at that point, possibly com-
pare to the lattice. As this procedure is expected to distort the
accidental angular cancellations taking place for the one-
loop dressed K2, one expects to find directly the 1=p2

divergence seen on the lattice in the soft-gluon limit. In
addition, as mentioned above, one should also be able to
assess the quality of the minimal ansatz of Ref. [43], which
was readily assumed for the transverse form factors of the
background quark-gluon vertex Γ̂. We hope to address some
of these points in the near future.
It would be certainly interesting to apply the results

obtained here, and in particular the general solution pre-
sented in Sec. III C, to phenomenologically relevant sit-
uations. In particular, the quark-gluon vertex is an essential
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ingredient of the Bethe–Salpeter kernel that appears in the
calculations of the hadronic spectrum by means of integral
equations [8,12,13]. Since, in this case, someof themomenta
entering into thevertexare integratedover, onewouldhave to
develop the tools that allow the computation of the form
factor Eqs. (3.13) and (3.14) for arbitrary momentum
configurations.Apreliminary step in this direction is already
reported in Appendix B; however, additional theoretical
work is required since, dependingon the external kinematics,
the integration momenta of the relevant Bethe–Salpeter
equations are known to pass from the Euclidean to the
Minkowski space; see, e.g., Refs. [3,73]. It would be worth-
while toexplore thepossibilities that thepresent approachmay
offer for accomplishing this challenging endeavor.
It must be clear from the detailed presentation and the

pertinent comments made throughout this article that the
proposed method incorporates ingredients gathered from a
diverse variety of techniques and formalisms. In particular,
while the fundamental symmetries provide the starting point
by furnishing a minimal ansatz, an important part of the
answer originates from the diagrammatic calculation of the
special three-point function, where lattice propagators are
used as input. In that sense, the practical feasibility of the
method and its potential usefulness in phenomenological
applications relies heavily on the judicious combination of

all these ingredients into a self-consistent picture. This
particular task, in turn, requires a coordinated effort from
different sectors of the physics community (such as SDEs
and lattice). Despite these apparent limitations, in our
opinion an important advantage of this method is that it
provides a definite prediction for all 12 form factors of the
quark-gluon vertex. Given the paramount phenomenological
importance of some of them [74], the effort invested in
overcoming the aforementioned difficulties might be par-
ticularly rewarding.
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APPENDIX A: RELATIONS BETWEEN THE NC
AND TþL BASES

The form factors of the Tþ L basis are related to those of
the naive conjugate basis through the relations [14]

fL1 ¼ f1 −
1

2
ðp2 · qÞðf6 − f7Þ −

1

2
ðp1 · qÞðf8 − f9Þ þ ðp1 · p2Þf12;

fL2 ¼ 1

2ðq · tÞ ½ðp2 · qÞðf6 þ f7Þ þ ðp1 · qÞðf8 þ f9Þ�;

fL3 ¼ 1

q · t
fðp2 · qÞ½f2 þ ðp1 · p2Þf10� þ ðp1 · qÞ½f3 þ ðp1 · p2Þf11�g;

fL4 ¼ 1

2
½f4 þ f5 þ ðp2 · qÞf10 þ ðp1 · qÞf11� ðA1Þ

and

fT1 ¼ 1

q · t
½f2 − f3 þ ðp1 · p2Þðf10 − f11Þ�;

fT2 ¼ 1

2ðq · tÞ ½f6 þ f7 − f8 − f9�;

fT3 ¼ −
1

4
½f6 − f7 − f8 þ f9�;

fT4 ¼ 1

q · t
½f10 − f11�;

fT5 ¼ −
1

2
½f4 − f5�;

fT6 ¼ 1

4
½f6 − f7 þ f8 − f9�;

fT7 ¼ −
1

q · t
½ðp2 · qÞf10 þ ðp1 · qÞf11�;

fT8 ¼ f12: ðA2Þ
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Conversely one has

f1 ¼ fL1 þ q2fT3 þ ðq · tÞfT6 − ðp1 · p2ÞfT8 ;
f2 ¼ fL3 þ ðp1 · qÞfT1 − ðp1 · p2Þðp1 · qÞfT4 þ ðp1 · p2ÞfT7 ;
f3 ¼ fL3 − ðp2 · qÞfT1 þ ðp1 · p2Þðp2 · qÞfT4 þ ðp1 · p2ÞfT7 ;

f4 ¼ fL4 − fT5 þ 1

2
ðq · tÞfT7 ;

f5 ¼ fL4 þ fT5 þ 1

2
ðq · tÞfT7 ;

f6 ¼ fL2 þ ðp1 · qÞfT2 − fT3 þ fT6 ;

f7 ¼ fL2 þ ðp1 · qÞfT2 þ fT3 − fT6 ;

f8 ¼ fL2 − ðp2 · qÞfT2 þ fT3 þ fT6 ;

f9 ¼ fL2 − ðp2 · qÞfT2 − fT3 − fT6 ;

f10 ¼ ðp1 · qÞfT4 − fT7 ;

f11 ¼ −ðp2 · qÞfT4 − fT7 ;

f12 ¼ fT8 : ðA3Þ

APPENDIX B: ONE-LOOP DRESSED INTEGRALS
FOR GENERAL MOMENTA

In the case of arbitrary momenta p1 and p2, we split
the one-loop dressed function Kμ, defined in Eq. (5.1),
according to

Kμðq; p2;−p1Þ ¼
i
2
g2CA

Z
k
ðkþ p2ÞγνPμ

νðkÞRAðk; p1; p2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Kμ

1
ðp1;p2Þ

þ i
2
g2CA

Z
k
γνPμ

νðkÞRBðk; p1; p2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Kμ

2
ðp1;p2Þ

;

ðB1Þ
where we have defined

Rfðk; p1; p2Þ

¼ fðkþ p2ÞΔðk2Þ
A2ðkþ p2Þðkþ p2Þ2 − B2ðkþ p2Þ

Dðk − qÞ; ðB2Þ

which reproduces Eqs. (5.3) and (5.10) in the correspond-
ing kinematic limits (f ¼ A, B as usual).
The objective is then to project out the above integrals

such that they become expressed in terms of the tensors
appearing in the naive conjugated basis. If we start with the
integral Kμ

1, since one has

ðkþ p2ÞγνPμ
νðkÞ ¼ p2γ

μ þ kγμ −
kμ

k2
½k · ðkþ p2Þ�

−
kμ

k2
~σρνp

ρ
2k

ν; ðB3Þ

one may reorganize this integral in the form

Kμ
1ðp1; p2Þ ¼

X4
i¼1

Kμ
i ðp1; p2Þ; ðB4Þ

with

Kμ
1ðp1; p2Þ ¼ p2γ

μ

Z
k
RAðk; p1; p2Þ;

Kμ
2ðp1; p2Þ ¼

Z
k
kγμRAðk; p1; p2Þ;

Kμ
3ðp1; p2Þ ¼ −

Z
k

kμ

k2
½k · ðkþ p2Þ�RAðk; p1; p2Þ;

Kμ
4ðp1; p2Þ ¼ − ~σρνp

ρ
2

Z
k

kμkν

k2
RAðk; p1; p2Þ: ðB5Þ

It is then straightforward to show that

Kμ
1 ¼ κA1 ðCμ

2 − Cμ
4Þ;

Kμ
2 ¼

1

r
f½p2

1κ
A
2 − ðp1 · p2ÞκA3 �ðCμ

2 − Cμ
4Þ

þ ½p2
2κ

A
3 − ðp1 · p2ÞκA2 �ðCμ

3 − Cμ
5Þg;

Kμ
3 ¼ −

1

r
f½p2

1ðκA2 þ κA5 Þ − ðp1 · p2ÞðκA3 þ κA4 Þ�Cμ
2

þ½p2
2ðκA3 þ κA4 Þ − ðp1 · p2ÞðκA2 þ κA5 Þ�Cμ

3g;

Kμ
4 ¼

MA

2r
Cμ
4 þ

1

r
½p2

2κ
A
1 − κA5 −

3p2
2

2r
MA�½Cμ

11 − ðp1 · p2ÞCμ
3�

þ 1

r
½ðp1 · p2ÞκA1 − κA4 −

3ðp1 · p2Þ
2r

MA�
× ½ðp1 · p2ÞCμ

2 − Cμ
10�; ðB6Þ

where we have set

κf1ðp1; p2Þ ¼
Z
k
Rfðk; p1; p2Þ;

κf2ðp1; p2Þ ¼
Z
k
ðk · p2ÞRfðk; p1; p2Þ;

κf3ðp1; p2Þ ¼
Z
k
ðk · p1ÞRfðk; p1; p2Þ;

κf4ðp1; p2Þ ¼
Z
k

ðk · p1Þðk · p2Þ
k2

Rfðk; p1; p2Þ;

κf5ðp1; p2Þ ¼
Z
k

ðk · p2Þ2
k2

Rfk; p1; p2Þ;

κf6ðp1; p2Þ ¼
Z
k

ðk · p1Þ2
k2

Rfðk; p1; p2Þ;

Mfðp1; p2Þ ¼ rκf1 þ 2ðp1 · p2Þκf4 − p2
1κ

f
5 − p2

2κ
f
6 : ðB7Þ

For the integral Kμ
2, we may instead write

Kμ
2ðp1; p2Þ ¼ Kμ

5ðp1; p2Þ þKμ
6ðp1; p2Þ; ðB8Þ
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with

Kμ
5ðp1; p2Þ ¼ γμ

Z
k
RBðk; p1; p2Þ;

Kμ
6ðp1; p2Þ ¼ −γν

Z
k

kμkν

k2
RBðk; p1; p2Þ: ðB9Þ

It is then immediate to show that

Kμ
5 ¼ κB1C

μ
1;

Kμ
6 ¼ −

MB

2r
Cμ
1 þ

1

r

�
ðp1 · p2ÞκB1 − κB4 −

3ðp1 · p2Þ
2r

MB

�
ðCμ

7 þ Cμ
8Þ

þ 1

r

�
3p2

1

2r
MB þ κB6 − p2

1κ
B
1

�
Cμ
6 þ

1

r

�
3p2

2

2r
MB þ κB5 − p2

2κ
B
1

�
Cμ
9: ðB10Þ

Using the results above, one can therefore recover all 12 form factors characterizing Kμ in the NC basis; the
corresponding expressions in the Tþ L basis can be obtained by using Eqs. (A1) and (A2).
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