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Constraining subleading soft gluon and graviton theorems
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We show that the form of the recently proposed subleading soft graviton and gluon theorems in any
dimension are severely constrained by elementary arguments based on Poincaré and gauge invariance as
well as a self-consistency condition arising from the distributional nature of scattering amplitudes.
Combined with the assumption of a local form as it would arise from a Ward identity the orbital part of
the subleading operators is completely fixed by the leading universal Weinberg soft pole behavior. The
polarization part of the differential subleading soft operators in turn is determined up to a single numerical
factor for each hard leg at every order in the soft momentum expansion. In four dimensions, factorization
of the Lorentz group allows us to fix the subleading operators completely.
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I. INTRODUCTION

Gluon and graviton scattering amplitudes display a
universal factorization behavior when a gluon (respectively
photon) [1] or a graviton [2] becomes soft, as was shown
more than 50 years ago. This leading soft pole behavior is
known as Weinberg’s soft theorem [2,3]. Recently an
interesting proposal was put forward by Cachazo and
Strominger [4] in which they conjectured the extension of
this theorem for gravitons to subleading and subsubleading
orders in the soft momentum expansion. The proposal was
shown to hold at tree level using the Britto-Cachazo-Feng-
Witten recursion relations [5]. Tree-level gluon amplitudes
exhibit a very similar subleading universal behavior as
pointed out in Ref. [6] using a proof identical to that of
gravitons. In fact such a subleading gluon relation was
argued to exist already in Refs. [1,7]; recent investigations
and discussions were performed in Ref. [8]. Similarly, the
subleading soft graviton behavior was reported already in
1968 [9]; see also the more recent discussion [10].

Collectively these (new) subleading soft theorems state
the existence of certain universal differential operators
in momenta and polarizations acting on a hard n-point
amplitude, which capture the subleading or even subsu-
bleading terms in the soft limit of the associated (n + 1)-
point amplitude with one leg taken soft. For the case of
gravity the subleading soft theorems have been conjectured
to be Ward identities of a new symmetry of the quantum
gravity S matrix [4,11,12], namely the extension of the
Bondi, van der Burg, Metzner and Sachs (BMS) symmetry
[13] to a Virasoro symmetry [14] acting on a sphere at
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past and future infinity. This connection was first estab-
lished in Ref. [12] for the leading soft Weinberg pole term
[3]. Recently a connection of the first subleading graviton
theorem to the super-rotation symmetry of extended BMS
symmetry [14] was reported [15]. Interesting steps toward
a better understanding of such a relation through dual
holographic [16] or ambitwistor [17] string models also
appeared recently.

Inspired by these results a series of papers appeared
[6,18-24]. Very interestingly the validity of the gluon and
graviton subleading theorems was shown to hold at any
dimension for tree-level amplitudes [18,23]. This is puz-
zling in the context of the conjectured relation between
gravity and extended BMS symmetry which is clearly
special to four dimensions. Similarly, it has been claimed in
Ref. [21] that the subleading soft theorem for gauge theory
is related to the conformal symmetry of tree-level gluon
amplitudes, which again contradicts the existence of the
subleading theorem in general dimensions.

An important question is whether the subleading soft
theorems receive radiative corrections. Loop-level modifi-
cations of the leading soft-gluon theorem are known to arise
due to infrared singularities [25]. Whereas the leading
Weinberg soft graviton is protected, the subleading operators
are shown to be corrected in Refs. [19,20]. This argument,
however, was challenged in the recent work [22], where the
authors argue for an order-of-limits problem: Taking the soft
limit prior to sending the dimensional regulator to zero
would not cause any corrections to the soft theorems.

In this paper we hope to shed some light on the above
questions from a different point of view. We will show that
rather elementary arguments can take one quite far. Beyond
the obvious Poincaré and gauge invariance we will assume
a certain local form of the soft operators (as it would follow
from a Ward identity). In conjunction with a self-consistency

© 2014 American Physical Society


http://dx.doi.org/10.1103/PhysRevD.90.065024
http://dx.doi.org/10.1103/PhysRevD.90.065024
http://dx.doi.org/10.1103/PhysRevD.90.065024
http://dx.doi.org/10.1103/PhysRevD.90.065024

BROEDEL et al.

condition of the theorems arising from the distributional
nature of scattering amplitudes, the form of the subleading
operators is strongly constrained. Our argument applies to all
dimensions and determines the orbital part of the subleading
operators uniquely from the form of the known leading pole
functions.

While our argument does not prove the existence of a
universal subleading soft gluon and graviton theorems, it
states that if a such a behavior exists, it is inevitably of the
form proposed recently. Therefore, the only input needed
from a potential new symmetry of the quantum gravity or
gauge theory S matrix is the mere existence of a Ward
identity pertaining to subleading orders in the soft limit.
The form of the orbital part of the theorems is then fixed—
at least at tree level.

This paper is organized as follows. In Sec. II we pro-
vide our general arguments and derive the central distribu-
tional constraint linking the subleading operator in the soft
theorems to the leading one. In Sec. III we apply the
established constraints to the subleading soft operators for
gluons and gravitons and show that they are capable of
fixing the orbital piece while strongly constraining the
polarization part. In Sec. IV we apply the same reasoning
to the subsubleading soft graviton operator yielding identical
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where E, and E,,, denote the gluon or graviton polarization
of the soft leg respectively and the arguments {p,} of
Sl (eq) have been suppressed for brevity. Note that we
are working with color ordered gauge theory amplitudes.2
The soft limit is singular, and the pole terms are universal.
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The operators S%z,[, Sg” and Sg ) are differential operators in

the kinematical data of the hard legs and take a local form.
Here with locality we want to refer to the fact that they are
sums over terms depending on a single hard leg and the soft
data only, i.e.,

MU ZSEZ) (E.€q:pa.0p,. Eq. O,). (4)

This situation is just as one would expect it to arise from a
Ward identity.

'We only consider amplitudes where the external particles are
of the same type.
See, e.g., Ref. [26] for a textbook treatment.
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results. In Sec. V we specialize to four dimensions and
employ the spinor-helicity formalism in order to find that the
same line of arguments now entirely determine the sublead-
ing soft operators. We end with a discussion in Sec. VI.

II. GENERAL ARGUMENTS

Let us briefly summarize the subleading soft theorems
and our central argument. We will consider amplitudes in
D-dimensional pure gauge and gravity theories denoted by
A, = 8P)(P)A,, where P = Y""_, p, is the total momen-
tum. The soft momentum of leg n + 1 is taken to be eg*,
which allows us to control the soft limit by sending e to
zero. The subleading soft theorems may be stated as'

An+l<plv cees pmeq) = S[[](pl’ (ERE] pn’€Q)An(pl7 (ARE] pn)
+ O(el), (1)

where we call Sl a soft operator. The integer parameter [
controls the expansion in powers of the soft momentum to
which the theorem holds.

This theorem has been known to hold at leading order
(I = 0) for more than 50 years. The corresponding soft
factors in gauge theory [1] and gravity [2] read

Yang-Mills theory (color ordered)
(2)

Gravity,

I
The graviton pole function S(C? ) does not receive radiative
corrections [3,27].

In Refs. [4,6,18,23] the theorem in Eq. (1) has been de-
monstrated to extend to / = 1 in D-dimensional gauge theory
and even [ = 2 in D-dimensional gravity at least at tree level,

Yang-Mills theory (I = 1) )

|

Naturally, the form of S is strongly restricted by
Poincaré and gauge invariance. While Poincaré invariance
implies linearity in the polarization tensors, gauge invari-
ance demands the vanishing of S/ A, order by order in e
upon replacing the polarizations by a gauge transformation.

There is, however, a further less obvious but elementary
constraint on S/ emerging from the distributional nature of
amplitudes. The left-hand and the right-hand sides of the
soft theorem Eq. (1) depend on Dirac delta functions which
differ in their arguments by the soft momentum eq. While
this is no issue at leading order (I = 0), it becomes relevant
for the subleading corrections. Therefore, for the sublead-
ing soft theorems to be consistent, we need to require that
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Sll(eq)s”(P) = 8°(P + eq)S" (eq), (5)

where the soft operator S!" (eq) acting on the reduced
amplitude A, could differ a priori from the soft operator
S(eq) acting on the full amplitude A,. Interestingly, the
results reported in the literature so far indicate that the
S"(eq) and S(eq) are equivalent.® We shall show that
this has to be the case.

Distinguishing different orders of ¢, the soft theorem
Eq. (1) implies [4] the relations

lim (eA,.1(¢)) = SOA,  (6a)

lim <A,,+1(€) — £S<°>An> =sWA, (6b)

e—0

1 1 1
lim <_ Ay (e) — L5004, —S“)An) _ S04, (6c)
€ €

e—=0\ €

Note that these equations simply organize the soft limit
expansion in e without touching the expansion in the
dimensional regularization parameter eg, relevant for
amplitudes at loop level. In writing these equations we
have not committed ourselves to a particular order of the
€4im — 0 and € — O limits.

To derive the implications of Eq. (6) for the soft
operators S(® and S, it is useful to Laurent expand both
the reduced amplitude A, ; as well as its associated delta
function,

1

-1 0 1
A (@) = AL + AL Feal £ 0@ (7)

8PP + eq) = 6L (P) + e(q-0)8P)(P) + O(e),  (8)

where we introduced the shorthand notation g - 9 = ¢* a—?,#.
Let us now substitute these expansions into Egs. (6a) and
(6b). After noting that

(519, 8P (P)] = 0. ©)

due to the form of $© in Eq. (2) being a mere function, one
finds for the reduced amplitude from (6b)

, 1
limA, () = Es$g4An +AY 1 06). (10)

For now, we will leave the form of the subleading
contribution AEL% undetermined. Equation (6a) then simply
implies

ALY — 504, (11)

3See in particular Refs. [19,22] for a discussion of different
prescriptions related to this issue.
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Equation (6b) leads to

1
SHA, = lim {AM - S<0)An] :
€ €

= lim {(5(D>(P) + e(q-9)5PP)(P))

e—0

| 1
x <_A;;1> + ASL) - —S(")A,,}, (12)
€ €

where we kept only terms not vanishing as € — 0. Now we
can remove the limit on the right-hand side, whereas in the

left-hand side we can commute S(!) past the delta function
to obtain

(S, 52)(P))A, + 5P)(P)SDA,
= 6P(P)AY), + 8O ((q - )5P(P))A,. (13)

At this point, several comments are in order. Most
importantly, § and & may be treated as independent
distributions if one takes partial integration identities into
account. Therefore, we will have to match their respective
coefficients in order for this equation to be satisfied. Next,
S must be a differential operator in the momenta p,;
Eq. (13) implies then that

50, 50)(P)] = 50 <q - 85<D><P>) L), (14)

Al = (81 = 2)A,. (15)
where y is an undetermined function. Repeating the
analysis for Eq. (6¢) (extracting the singular behavior
from the reduced amplitude, expanding in ¢ and matching
coefficients of the delta function and its derivatives)
leads to

5@, 60)(P)] = 3 SO((g - 9)26°)(P)

+ (q-08P)/(P)SM + 6P (P),  (16)

Al = (8@ — A, (17)

We see that the above equations constrain the subleading
soft terms by relating their form to the leading soft function
SO We will refer to those equations as distributional
constraints. Note also that the difference of the soft
operators S (eq) and 8" (eq) mentioned in (5) is captured
by—a priori—arbitrary functions y and y’.

It is clear that the distributional constraints can only
constrain the part of S¢) that contains the derivatives with
respect to the hard momenta. We call this piece the orbital
part of S¢) and write
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S(Z) = St(JlrL + S[(fo)lar + Sglll)nction (18)
with the orbital part
0 0
sU = ZS (E,q; pa)apZ] T (19)

and the polarization part S[()glar containing derivatives with

respect to the polarizations E,. Finally Sﬁllnction is a pure
function of the soft and hard momenta linear in the soft
polarization E. It is not constrained by the distributional
constraint as it commutes with the Dirac delta function.

As we are going to show below, distributional con-
straints, Poincaré, gauge invariance and the assumptlon of
locality of S completely determine the orbital part s¢ )b of
the soft operators in gauge theory and gravity in any
dimensions. We now give a simple argument how to
constrain also the remaining polarization part.

To treat gluon and graviton polarizations on an equal
footing let us agree upon rewriting the graviton polarization
of leg a as

E,, — E,E,

aw au with E,-E,=0=p,-E,. (20)

In four dimensions this is no restriction at all; in general
dimensions it is a formal agreement which we can always
undo at any stage due to the fact that an amplitude is
linear in the polarizations of all its legs. This replacement
unifies gauge and gravity theory in the sense that the same
operators act on the polarization degrees of freedom in both
theories. Using this prescription, the operator representing a
gauge transformations on leg a takes the form

Wa =DPa" 73~ (21)
and the Lorentz generators are represented as

0
_— H_Z
% Pl ap,w + E; OE. U<v (22)

. . . . . 4
in both theories in any dimension.

(0

polar

In this language the
polarization part S

9
Ew g,
polanzaﬂon E,.

Let us now consider gauge invariance of a fixed hard leg
a for the soft theorem Eq. (1):

depends on the differential operators

in order to preserve linearity of the amplitude in the

4Stn’ctly speaking this operator does not generate the correct
infinitesimal Lorentz transformation rule for the polarizations as
these do not transform as vectors; see, e.g., Refs. [2,28]. Next to
the vector transformation law there is an additional piece propor-
tional to a gauge transformation in the form of W,. As this
additional piece vanishes acting on amplitudes, the form of (22) is
effectively correct.

PHYSICAL REVIEW D 90, 065024 (2014)

0= WaAn-‘rl(pl? ceey pn7€Q)

= W, (S(eq) A, (pr. - Pa)) = [Wa. S (eq

The orbital part S(()r%) does not commute with W, due to
the presence of operators al Therefore, it needs to be
completed to a gauge invariant structure. Employing the

commutators

o o
H_— | — T
|:Waa Pa 6p,a:| Pa OE,, )
0 0
V7 _ “
{W E; 8E”] = g (24)

the unique linear differential operator in p, and E,
commuting with W, reads

0 0

A = ph = L R 25

P op., PR, %)

which we shall use as building block in constraining S
below.’ Let us now turn to the explicit analysis.

II1. SUBLEADING SOFT OPERATORS

In this section we will apply the general framework
outlined in the previous section to determine the sublead-
ing soft operators in both gauge theory and gravity. As
derived in Sec. II above, the subleading contribution
should be fixed upon requiring locality, the distributional
constraint and gauge invariance for the soft leg. The last
two requirements translate into

[s1, 6P (P)] = §© (g - 0)6P)(P) + 6P (P),  (26)
{S(l),qaaE} ‘A, =0. (27)

A. Gauge theory

In gauge theory the leading-order soft factor is given by
the universal Weinberg soft gluon function [3]

o piE p,-E

SO — _ P 28
™ pig paq (28)

Note that in fact we only need the weaker condition of
W,.S"(eq)] ~ W, in Eq. (23) as W, annihilates the amplitudes
A,. This is achieved by the operator E, which obeys
(W Eq 53] =
of the operator E,

a’ 6T
w,. However, as any amplitude is an eigenstate

f with eigenvalue one, including this
operator in an Ansatz for S/ is tantamount to writing a function.
We may therefore discard it in our analysis as functions of the

kinematical data cannot be constrained.
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with the polarization vector E, for the soft particle. We

begin with an Ansatz for Sg{]ﬁ,[ reflecting the reasoning

in Sec. 1I:

9] 9,
HLp v
s = E E,Q; ( ap — + E, 8EW,>' (29)

ap

Before imposing the constraints (26) and (27) we note
that dimensional analysis and soft scaling requires Q**”
to be of mass dimension —1 and to be scale invariant
with respect to the soft momentum ¢ respectively. In
conjunction with the assumption of locality and E - g =
E, - p,= p2 =0 we are left with the compact Ansatz

HY o HP v
c(a)’? q i Cga)’? q (30)

@-p* ? apa 4P
where the numbers cga) are to be determined. To do so
we first impose gauge invariance via (27) which leads to

H v p
szp _ c(la) Paq g

vap
0=\ + & 4 ) L

a "FPa

0 0
X (p‘; ap + EY 35 )An. (31)

ap ap

There is no way for this term to conspire to yield a Lorentz
charge. Hence, we conclude that c(la) + cga) + cga) = 0.
Turning to the distributional constraint (26) one now easily

establishes

(S 62 (P

= (Z&)E - 950 (P)
E
- (Zcé‘” —jj) q-05)(P)

! -E -E
i(pl _ Pn )q-aﬁ(D)(P)
P-4 Pn-94

+ x8P)(P), (32)

where we have inserted Eq. (28) for Sgg\),[. Solving for the

undetermined coefficients, we find

V=1 =1

cé“):o fora=2,...,n—1, (33)

along with the vanishing of y, which implies the identity

S =8 [cf. Eq. (5)]. As cg@ = c(l“) — cgu) the differences

of the remaining coefficients ¢(@) := c(la) - cga) remain uncon-

strained. In fact they only couple to the polarization degrees
of freedom, and the orbital part of S is completely
determined. In summary we have established that

PHYSICAL REVIEW D 90, 065024 (2014)

E 0 0
udv <p/,ja +E’26E —,u<—>y>
a=1,nsigned Pa- 94 Pay av

+Z <El’a—’2‘1) EE>

" 1 0
/)
Pa- 4 aEa

(34)

where the undetermined coefficients ¢(®) are related to
the previous ones via ¢(!) = ¢() +3 e = ¢ —% and
¢@ =cl@ for a=2,....n— 1. Note that the second
sum is manifestly gauge invariant with respect to the soft
and hard legs. Hence, the orbital part of the subleading soft
operator is entirely determined by our constraints and
coincides with the explicit tree-level computations in the
literature. The polarization piece is constrained up to a
single numerical factor for every hard leg.

Finally, let us briefly comment on the possible functional

contribution S%mmuon
S( 1)

YM function MUsSt be a sum of terms depending only on
the scalars g - p, and E - p,, while being linear in the latter.
This, together with correct dimensionality and the fact that

In our locality assumption

S%\),“-umtion must not scale with g immediately tells us

1
that Sg(l\)/l function 0.

B. Gravity

The analysis of the graviton soft operator is almost a
carbon copy of the gauge theory one. The leading universal
soft function for gravitons reads [3]
~E,,papi

(0)
S p—
¢ L q-p,

(35)

We again start with an Ansatz for Sg )

0 0
} : HUPO P
G B E Q ( pao‘ + E aEaG) ' (36)

Dimensional analysis requires 4"’ to be of mass dimen-
sion zero and to be scale invariant with respect to the soft
momentum ¢g. This together with the assumption of locality
and the relations E,,¢" = E, - p, = p2 = 0leads us to the
most general Ansatz

of the form

Qe _ 0 PP et @ " pa

qp
U (gpl? P 4 pa g pa

+ cf{l)n”(”n”)”, (37)

)

with four undetermined numerical coefficients for each
hard leg a. Imposing gauge invariance for the soft leg
amounts to the replacement E,, — A, q,) in (36). We then
obtain the condition
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1 @ , (@ , (a) A-p,
0:—5 2c7 + oy 63 )P ——
24 [( ! : ) 4 Pa

+( (>+C )quO' ( )+C ) o'A/):|

0 0
P EP
x <1’“ Ipes aEM)A
(a)

The first term in the above requires 2¢; " + cg@ + cgu) =0.
For the second and third terms we have to be somewhat
more careful. Here we have the possibility of these two terms
conspiring to build up the total Lorentz generator J° of (22)
which annihilates .A,. We thus require

Cga) + c‘(‘.a) __ céa) . Cé((l)

(38)

(39)

with a universal constant ¢ identical for all hard legs.
We now move on to pose our distributional constraint

(26) linking S% to 5. One finds

=C

aPaEu
50,50 (PY] = STl + o0y PaPeEi) | a50) py

a a

0
PrE;Y—5P)(P
+ cP'E, 3P (P)
=559 05°)(P) + x5 (P). (40)
One nicely sees that the first term on the rhs of the first line

forms the leading Weinberg soft function for the uniform
choice

c(1a> + cga) = 1. (41)
The following term vanishes in the distributional sense by
the tracelessness of E,,. And finally we again learn that the
function y = 0 implying again the identity of S!!/ = S in
the sense of Eq. (5). The established three equations for the

four unknowns may now be solved upon expressing every-

thing in terms of ¢{”:

(a) _ (a)

o =c¢y, cga) =1- cia), cga> =—1- cga). (42)

One also checks that cga) + cff” = 1 in line with the above
reasoning. Inserting this into the Ansatz (36) yields the

final result
|

(a) (a)

Qm//)o’yﬂ

(a)
4

(g Pa)
(@)

_ %  W)p ) i
pan'qq'q" +
(q-pa)? (

+

®In fact it is in accordance with the expression for Sg )

expression of Ref. [4].

C C
= = Puid’ I d 4" + Uil gt + —
(g Pa) (q- pa) (¢

c
742pa”]1y)uq‘7)qpq7'
q-Pa)
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g (paE)E 0
oE, P T°

1 _ pqa< , 0
S’ = D
G ; Pa 4 aparf
n E .
LN < Pa)(Eq q)_E-Ea)
a=1 q
)
X [p“ . 0 E 0 ],

q —_— .
Pa-4q aEa aEa

+ E,

(43)

where we have renamed c&“) = ¢@ and written the soft
polarization E,, — E,E, for compactness of notation.

We thus see that again the orbital part is completely
determined and coincides with the results established in
the literature for tree-level almplitudes.6 The polarization-
dependent parts are constrained to one numerical factor for
every hard leg, just as it was the case in gauge theory.

Finally, let us also comment on the possible functional
(1)

G function 11 gravity. Again, our assumptions of

locality constrains Sé zuncnon to be a sum of functions that

are linear in E - p, and arbitrary functions of ¢ - p,. This,

contribution S

together with the dimensionality of SS ) and the fact that

(1) . .
S function ~ €onst. as ¢ — 0 again rules out any nonvanish-

ing contribution.

IV. SUBSUBLEADING SOFT GRAVITON
OPERATOR

The discussion for the subsubleading soft operator for
graviton amplitudes is analogous to the subleading case.

(2)

The starting point is an Ansatz for S5 of the form

Sg) = Z E 'Q‘”WMMA(I pnAa yA» (44)

where we used A, ,; = pa,/)aipg+Eu.paiEg as in (25).
Again, Q, must obey some constraints; specifically, it
must have mass dimension zero, it must vanish linearly in
the limit ¢ — 0, it must be symmetric in the exchange
U < v, and it must be symmetric in the simultaneous
exchange p <> 7,0 <> 1. The most general Ansatz satisfy-
ing these constraints is

(a)
p ) np("n”)yq"q’l

(a)

C
e gr gt + i qP q°) + 7 ,Sp ) gt g7 + e gP ¢

< (45)

given in Ref. [20] and differs by an overall normalization factor in the
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Furthermore S(G2 ) must obey the distributional constraint

Eq. (16) and the gauge invariance constraint on the soft leg.
We recall these constraints here

58.50() =558 (- 0700
+ (4-0070) )5+ 250(P)
(46)

SPE - Ag]- A, =0. (47)

Imposing these constraints yields a total of five linear

equations for the seven unknowns cﬁ”) residing in the

Ansatz (45) at each leg.” A tedious but straightforward
computation shows that the solution is ¥’ = 0 and

=33

Elgqpqy']a po‘Ja yA

{q pa( q- ;z = E'E“>2<q'6(za>2
( o -Es)

p.aEa Ea~q_6+.8

(48)

where for convenience we expressed the soft graviton

polarization as E, =E,E, and J,,, = pa,paip” +
E,,s% — (p <> o) as before. In the notation of the
Ansatz Eq. (45) we have E(la) =— cia) + Céa) and Z’ga) =

¢(@) the undetermined parameter of Sg>. Note that the first
line of Eq. (48) accounts for the full known subsubleading
soft factor in gravity as can be calculated from explicit
amplitude expressions. The remaining terms are mixed
orbital-helicity operators or only helicity operators, which
are allowed by our constraints.

Again we see that the orbital part of the subsubleading
soft graviton operator Sg ) is entirely determined. The
polarization-dependent parts on the other hand are now

determined up to two numerical factors for every hard leg;

as already stated, the coefficient Ega) equals ¢, where

the latter are the undetermined coefficients appearing in the
final form of Sg>. We thus have one additional free

coefficient for each hard leg. It is also worth noticing that

"There is actually one additional equation that identifies the

(a)

coefficients ¢, * in the Ansatz with the undetermined coefficients

%Z‘W appearing in the final form of S(C:), Eq. (43).
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the additional, polarization-dependent terms are manifestly
gauge invariant.

V. FOUR DIMENSIONS AND SPINOR
HELICITY FORMALISM

Let us now consider the four-dimensional case, where
we can use the spinor-helicity formalism® and obtain
additional constraints from little-group scalings. Those
constraints are particularly easy to access in four dimen-
sions, because the Lorentz group factorizes into two
parts acting on holomorphic and antiholomorphic spinors
respectively.

A. Gauge theory

Taking a positive-helicity soft gluon for concreteness,
its polarization vector can be expressed in terms of a
holomorphic reference spinor y, as

aj' a
Bl =telad, (49)

The Ansatz for S%\),[ in spinor-helicity variables reads

=S| 0 O] (so
% ox,

a

1
Sy

a=1
To yield the correct mass dimension for S%{ the coef-
ficients Q,, Q, must be of mass dimension — % In addition
Q, carries helicity § and Q, helicity — 1 on leg a. Moreover,

terms where the open index & comes from :1,1 do not

contribute to Sgg,[ as those terms vanish after contracting

with the polarization tensor Eq. (49). Combining these
constraints, the most general Ansatz reads

diﬂ _ €1 )@ l/;zl'l , 51
(ag)lag) o
@ . @ ;e

o A Py L S Vs | S MV )

(aq)laq] (aq)laq]™ ™"~ (aq)™*

(52)

Gauge invariance on the soft leg implies that the operator
(1)

obtained by the substitution £, — g in Sy}, annihilates the
amplitude. The resulting operator is

(1) N Y B

SvulE, = ql = — Aa—7+C) Ay —==|. 53
BUlE, — g Z{ R D
In principle we can allow the above operator to be
any operator annihilating the rn-point tree-level gluon

8See, e.g., Ref. [26] for a textbook treatment.
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amplitude. Since tree-level gluon amplitudes in four

dimensions are invariant under conformal transformations,
we could in principle allow ¢! = 2\*) = ¢ for some fixed
constant ¢ for all hard legs a, so that the above operator is
the dilation operator ® [29].9

The distributional constraint Eq. (14) then reads

e W) jagi o | gy 1 i) O
Ziz gy e @7+ )<aq>“iapaa

L (nl) ( @ 0
L 297
(nq)(q1) """ 7 0p*
(0)

where we have inserted the spinor-helicity form of Sy, on
the rhs. Since the first term in the lhs cannot conspire to
build a Lorentz generator, we see that upon using
Schouten’s identity the solution to this equation is'’

5*(P)

5 <P>) 5P,

0 _(a) I _(a) { 1 fora= l,n
= s C C =
4 : 3 0  otherwise.

(54)

This leads to the known form for the four-dimensional
subleading soft factor for gluon amplitudes,

%9 &9
(1) q q
Svgpg = ———r — ————, 55
™ 1 o (gn) o (55)

B. Gravity

For what concerns graviton amplitudes, we consider a
positive-helicity soft graviton; the polarization vector is
expressed in terms of two reference spinors 4, and 4, as

+) 1 ~ o~
EY) = (uadyp + Ayadap)sids jr (56)
with = Taq)(yg) et T habeo i

(1),

We now consider the usual local first-order Ansatz for S
0 _ N~ o) oy O saappy O
= Y| g S ] o)

Again Q, and Q, must obey some constraints. The mass
dimensions are [Q,] = [Q,] = 1, the helicity of the soft leg
should be zero for both Q, and Q,, and the helicities for leg

9Strictly speaking, what appears here is D — 2; however, the
constant piece could be in principle restored by adding a constant

term >, Eq aiq ?aq]t SYM We will, however, see that, although

allowed by gauge invariance, these terms are ruled out by the
dlstributional constr? nt.

""Notice that in Sy only the combination 0(2 9 4 cg “) appears
once Q,, is contracted with the polarization E(*), and therefore we
can consider this sum as a single coefficient.
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a are % (— %) for Q, (Q,). Moreover, the open indices , ﬁ
and both Q,

symmetric in the pairs (a, ) and (&, ) These constraints
imply that the possible forms of Q, and Q, are

cannot come from 4,, and Q, must be

» @

QU = L Jaia L, (58)
(ag)[aq]

O A ooy S S T
(ag)laq] (ag)laq] !
3P plap), (59)

(aq)
An infinitesimal gauge transformation amounts to the shift
Ay = Ay + 1y Ay = Ay + n’/iq, (60)

for some (infinitesimal) #,7'. Gauge invariance then
implies that

W=e?=0, -&=c Vva (61)
(1)

for some universal constant c. S

m-c”M; ax a X 5 9
SG - ;<aq><xq><yq>(< )<qy>+( y><q >)/i 8,17

(62)

then reads''

We can now impose the distributional constraint again,
Eq. (14). This reads (after using Schouten’s identity)

(W 5(P) ) [Z p b laal

q>
k 5avr ey o qagr i
- Wiqiq(/{ WA+ 252 )a 1&a,aia,a]
250 9 mu
(7 52) 3 2 g vg) (ag 7P

(63)
where we wrote explicitly the form of Sg) )in spinor-helicity
variables. Notice that the second term in the first line is zero
in the distributional sense. We may therefore conclude that
the solution is

1
x=0, c= -5 (64)

This fixes the form of SY in Eq. (62) to be

llAgajn, only the combination 5(3“) — 5§a>

appears in Sg> once
the contraction with E(*) is performed.
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n

Sg) _ %Z [aq] ((ax) + <a)’>>/~1y 0 (65)

 (aq) \{gx) ~ (qv)) " 0%

In fact, we have also checked that the subsubleading soft
factor Sg ) in four dimensions is completely fixed by gauge

invariance and the distributional constraint.

VI. DISCUSSION

In this note we analyzed constraints arising for the novel
subleading soft gluon and graviton theorems in general
dimensions. Next to the obvious demands of Poincaré and
gauge invariance we pointed out a slightly less obvious
distributional constraint arising from the unbalanced argu-
ments of the total momentum conserving Dirac delta
functions on both sides of the soft theorems. The distri-
butional constraint requires the subleading soft operators to
be differential operators of degree 1 (subleading) or 2
(subsubleading) in the hard momenta and relates them to
the leading Weinberg soft pole function.

In the D-dimensional case we started from an Ansatz
compatible with dimensional analysis and soft momentum
scaling. We demonstrated that the entity of those con-
straints determines the subleading soft gluon and graviton
differential operators as well as the subsubleading soft
graviton differential operator up to a single numerical
constant for every leg. The undetermined constant is related
to derivatives with respect to polarizations. Arbitrary
functions commuting with the delta distributions could
be added to these operators and are generally uncon-
strained. However, taking scalings and mass dimension
constraints into account assuming locality, there is nothing
which can be written down at tree level.

Specializing to the four-dimensional case and employing
the spinor-helicity formalism, the same line of arguments
was shown to entirely fix the subleading differential
operators. This can be traced back to the factorization of
the Lorentz group in four dimensions. Upon fixing a
unitary gauge, however, there might be similar arguments
from little-group scalings in other dimensions.

The operators so determined match the forms established
in the literature at tree level. Given that our arguments are
very general the question arises whether they apply to loop
amplitudes as well; certainly, Poincaré invariance, gauge
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invariance as well as the distributional constraint Eq. (5)
continue to hold.

However, in the loop scenario we have to consider at
least four novel circumstances, which are not reflected in
our Ansitze for the subleading soft operators in Egs. (30),
(37) and (45). First, the loop corrections may contribute
to the unconstrained functional parts of SV and $, as is
in fact the case in the one-loop corrections reported in
Refs. [19,20]. Interestingly, the operator 5(62) may also
receive first-order differential corrections which should be
related to the functional corrections to Sg) by the distri-
butional constraint Eq. (16). Second, we construct our
Ansitze employing dimensional analysis to constrain the
possible terms. The dimensionality of the couplings,
however, allows for dimensionless quantities such as

log(;—’[i) or q_Z;, which so far have not been accounted
for in our Ansétze. These terms arise in the IR-divergent
one-loop corrections to the soft operators reported in
Ref. [19]. In fact, this also introduces contributions of
the form (loge) in the soft momentum expansion. Third,
the loop corrections may not respect our central assump-
tion of locality. Fourth, for gauge theory the leading soft
factor Sgg\),[ receives loop corrections, which feed into the
subleading constraint equations.

After incorporating the issues pointed out in the last
paragraph, the distributional constraint might be of use in
the future in order to constrain possible loop corrections to
soft theorems. While our work constrains the possible
forms of the subleading soft gluon and graviton operators,
it would be desirable to have a deeper understanding
toward the origin of the soft theorems.

ACKNOWLEDGMENTS

We thank G. Bossard, T. McLoughlin, B. Schwab and
especially C. Vergu for important discussions. J. P. thanks
the Pauli Center for Theoretical Studies Ziirich and the
Institute for Theoretical Physics at the ETH Ziirich for
hospitality and support in the framework of a visiting
professorship. The work of M. dL. and M. R. is partially
supported by Grant No. 200021-137616 from the Swiss
National Science Foundation.

[1] F. Low, Phys. Rev. 110, 974 (1958).

[2] S. Weinberg, Phys. Rev. 135, B1049 (1964).

[3] S. Weinberg, Phys. Rev. 140, B516 (1965).

[4] F. Cachazo and A. Strominger, arXiv:1404.4091.

[5] R. Britto, F. Cachazo, B. Feng, and E. Witten, Phys. Rev.
Lett. 94, 181602 (2005) [arXiv:hep-th/0501052].

[6] E. Casali, J. High Energy Phys.
[arXiv:1404.5551].

[7] T. Burnett and N. M. Kroll, Phys. Rev. Lett. 20, 86 (1968);
V. Del Duca, Nucl. Phys. B345, 369 (1990).

[8] E. Laenen, L. Magnea, G. Stavenga, and C.D. White,
J. High Energy Phys. 01 (2011) 141 [arXiv:1010.1860];

08 (2014) 077

065024-9


http://dx.doi.org/10.1103/PhysRev.110.974
http://dx.doi.org/10.1103/PhysRev.135.B1049
http://dx.doi.org/10.1103/PhysRev.140.B516
http://arXiv.org/abs/1404.4091
http://dx.doi.org/10.1103/PhysRevLett.94.181602
http://dx.doi.org/10.1103/PhysRevLett.94.181602
http://arXiv.org/abs/hep-th/0501052
http://dx.doi.org/10.1007/JHEP08(2014)077
http://dx.doi.org/10.1007/JHEP08(2014)077
http://dx.doi.org/10.1103/PhysRevLett.20.86
http://dx.doi.org/10.1016/0550-3213(90)90392-Q
http://arXiv.org/abs/1010.1860

BROEDEL et al.

E. Laenen, G. Stavenga, and C.D. White, J. High Energy
Phys. 03 (2009) 054 [arXiv:0811.2067].
[9] D.J. Gross and R. Jackiw, Phys. Rev. 166, 1287 (1968).

[10] C.D. White, J. High Energy Phys. 05 (2011) 060 [arXiv:
1103.2981].

[11] A. Strominger, arXiv:1312.2229.

[12] T. He, V. Lysov, P. Mitra, and A. Strominger, arXiv:
1401.7026.

[13] H. Bondi, M. van der Burg, and A. Metzner, Proc. R. Soc. A
269, 21 (1962); R. Sachs, Proc. R. Soc. A 270, 103 (1962).

[14] G. Barnich and C. Troessaert, J. High Energy Phys. 05
(2010) 062 [arXiv:1001.1541].

[15] D. Kapec, V. Lysov, S. Pasterski, and A. Strominger, J. High
Energy Phys. 08 (2014) 058 [arXiv:1406.3312].

[16] T. Adamo, E. Casali, and D. Skinner, arXiv:1405.5122.

[17] Y. Geyer, A. E. Lipstein, and L. Mason, arXiv:1406.1462.

[18] B. U. W. Schwab and A. Volovich, arXiv:1404.7749.

[19] Z. Bern, S. Davies, and J. Nohle, arXiv:1405.1015.

PHYSICAL REVIEW D 90, 065024 (2014)

[20] S. He, Y.-t. Huang, and C. Wen, arXiv:1405.1410.

[21] A.J. Larkoski, arXiv:1405.2346.

[22] F. Cachazo and E. Y. Yuan, arXiv:1405.3413.

[23] N. Afkhami-Jeddi, arXiv:1405.3533.

[24] B.U.W. Schwab, J. High Energy Phys. 08 (2014) 062
[arXiv:1406.4172]; M. Bianchi, S. He, Y.-t. Huang, and
C. Wen, arXiv:1406.5155.

[25] Z. Bern, V. Del Duca, and C. R. Schmidt, Phys. Lett. B 445,
168 (1998) [arXiv:hep-ph/9810409].

[26] J.M. Henn and J.C. Plefka, Lect. Notes Phys. 883, 1
(2014); H. Elvang and Y. -t. Huang, arXiv:1308.1697.

[27] Z. Bern, L.J. Dixon, M. Perelstein, and J. Rozowsky,
Nucl. Phys. B546, 423 (1999) [arXiv:hep-th/9811140].

[28] S. Weinberg, The Quantum Theory of Fields: Foundations
(Cambridge University Press, Cambridge, England, 1995),
Vol. 1.

[29] E. Witten, Commun. Math. Phys. 252, 189 (2004) [arXiv:
hep-th/0312171].

065024-10


http://dx.doi.org/10.1088/1126-6708/2009/03/054
http://dx.doi.org/10.1088/1126-6708/2009/03/054
http://dx.doi.org/10.1103/PhysRev.166.1287
http://arXiv.org/abs/1103.2981
http://dx.doi.org/10.1007/JHEP05(2011)060
http://arXiv.org/abs/1312.2229
http://arXiv.org/abs/1401.7026
http://arXiv.org/abs/1401.7026
http://dx.doi.org/10.1098/rspa.1962.0161
http://dx.doi.org/10.1098/rspa.1962.0161
http://dx.doi.org/10.1098/rspa.1962.0206
http://dx.doi.org/10.1007/JHEP05(2010)062
http://dx.doi.org/10.1007/JHEP05(2010)062
http://dx.doi.org/10.1007/JHEP08(2014)058
http://dx.doi.org/10.1007/JHEP08(2014)058
http://arXiv.org/abs/1405.5122
http://arXiv.org/abs/1406.1462
http://arXiv.org/abs/1404.7749
http://arXiv.org/abs/1405.1015
http://arXiv.org/abs/1405.1410
http://arXiv.org/abs/1405.2346
http://arXiv.org/abs/1405.3413
http://arXiv.org/abs/1405.3533
http://dx.doi.org/10.1007/JHEP08(2014)062
http://dx.doi.org/10.1007/JHEP08(2014)062
http://dx.doi.org/10.1007/JHEP08(2014)062
http://dx.doi.org/10.1016/S0370-2693(98)01495-6
http://dx.doi.org/10.1016/S0370-2693(98)01495-6
http://arXiv.org/abs/hep-ph/9810409
http://dx.doi.org/10.1007/978-3-642-54022-6
http://dx.doi.org/10.1007/978-3-642-54022-6
http://arXiv.org/abs/1308.1697
http://dx.doi.org/10.1016/S0550-3213(99)00029-2
http://arXiv.org/abs/hep-th/9811140
http://dx.doi.org/10.1007/s00220-004-1187-3
http://arXiv.org/abs/hep-th/0312171
http://arXiv.org/abs/hep-th/0312171

