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We show that the form of the recently proposed subleading soft graviton and gluon theorems in any
dimension are severely constrained by elementary arguments based on Poincaré and gauge invariance as
well as a self-consistency condition arising from the distributional nature of scattering amplitudes.
Combined with the assumption of a local form as it would arise from a Ward identity the orbital part of
the subleading operators is completely fixed by the leading universal Weinberg soft pole behavior. The
polarization part of the differential subleading soft operators in turn is determined up to a single numerical
factor for each hard leg at every order in the soft momentum expansion. In four dimensions, factorization
of the Lorentz group allows us to fix the subleading operators completely.
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I. INTRODUCTION

Gluon and graviton scattering amplitudes display a
universal factorization behavior when a gluon (respectively
photon) [1] or a graviton [2] becomes soft, as was shown
more than 50 years ago. This leading soft pole behavior is
known as Weinberg’s soft theorem [2,3]. Recently an
interesting proposal was put forward by Cachazo and
Strominger [4] in which they conjectured the extension of
this theorem for gravitons to subleading and subsubleading
orders in the soft momentum expansion. The proposal was
shown to hold at tree level using the Britto-Cachazo-Feng-
Witten recursion relations [5]. Tree-level gluon amplitudes
exhibit a very similar subleading universal behavior as
pointed out in Ref. [6] using a proof identical to that of
gravitons. In fact such a subleading gluon relation was
argued to exist already in Refs. [1,7]; recent investigations
and discussions were performed in Ref. [8]. Similarly, the
subleading soft graviton behavior was reported already in
1968 [9]; see also the more recent discussion [10].
Collectively these (new) subleading soft theorems state

the existence of certain universal differential operators
in momenta and polarizations acting on a hard n-point
amplitude, which capture the subleading or even subsu-
bleading terms in the soft limit of the associated (n þ 1)-
point amplitude with one leg taken soft. For the case of
gravity the subleading soft theorems have been conjectured
to be Ward identities of a new symmetry of the quantum
gravity S matrix [4,11,12], namely the extension of the
Bondi, van der Burg, Metzner and Sachs (BMS) symmetry
[13] to a Virasoro symmetry [14] acting on a sphere at

past and future infinity. This connection was first estab-
lished in Ref. [12] for the leading soft Weinberg pole term
[3]. Recently a connection of the first subleading graviton
theorem to the super-rotation symmetry of extended BMS
symmetry [14] was reported [15]. Interesting steps toward
a better understanding of such a relation through dual
holographic [16] or ambitwistor [17] string models also
appeared recently.
Inspired by these results a series of papers appeared

[6,18–24]. Very interestingly the validity of the gluon and
graviton subleading theorems was shown to hold at any
dimension for tree-level amplitudes [18,23]. This is puz-
zling in the context of the conjectured relation between
gravity and extended BMS symmetry which is clearly
special to four dimensions. Similarly, it has been claimed in
Ref. [21] that the subleading soft theorem for gauge theory
is related to the conformal symmetry of tree-level gluon
amplitudes, which again contradicts the existence of the
subleading theorem in general dimensions.
An important question is whether the subleading soft

theorems receive radiative corrections. Loop-level modifi-
cations of the leading soft-gluon theorem are known to arise
due to infrared singularities [25]. Whereas the leading
Weinberg soft graviton is protected, the subleading operators
are shown to be corrected in Refs. [19,20]. This argument,
however, was challenged in the recent work [22], where the
authors argue for an order-of-limits problem: Taking the soft
limit prior to sending the dimensional regulator to zero
would not cause any corrections to the soft theorems.
In this paper we hope to shed some light on the above

questions from a different point of view. We will show that
rather elementary arguments can take one quite far. Beyond
the obvious Poincaré and gauge invariance we will assume
a certain local form of the soft operators (as it would follow
from aWard identity). In conjunction with a self-consistency
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condition of the theorems arising from the distributional
nature of scattering amplitudes, the form of the subleading
operators is strongly constrained. Our argument applies to all
dimensions and determines the orbital part of the subleading
operators uniquely from the form of the known leading pole
functions.
While our argument does not prove the existence of a

universal subleading soft gluon and graviton theorems, it
states that if a such a behavior exists, it is inevitably of the
form proposed recently. Therefore, the only input needed
from a potential new symmetry of the quantum gravity or
gauge theory S matrix is the mere existence of a Ward
identity pertaining to subleading orders in the soft limit.
The form of the orbital part of the theorems is then fixed—
at least at tree level.
This paper is organized as follows. In Sec. II we pro-

vide our general arguments and derive the central distribu-
tional constraint linking the subleading operator in the soft
theorems to the leading one. In Sec. III we apply the
established constraints to the subleading soft operators for
gluons and gravitons and show that they are capable of
fixing the orbital piece while strongly constraining the
polarization part. In Sec. IV we apply the same reasoning
to the subsubleading soft graviton operator yielding identical

results. In Sec. V we specialize to four dimensions and
employ the spinor-helicity formalism in order to find that the
same line of arguments now entirely determine the sublead-
ing soft operators. We end with a discussion in Sec. VI.

II. GENERAL ARGUMENTS

Let us briefly summarize the subleading soft theorems
and our central argument. We will consider amplitudes in
D-dimensional pure gauge and gravity theories denoted by
An ¼ δðDÞðPÞAn, where P ¼ P

n
a¼1 pa is the total momen-

tum. The soft momentum of leg n þ 1 is taken to be ϵqμ,
which allows us to control the soft limit by sending ϵ to
zero. The subleading soft theorems may be stated as1

Anþ1ðp1;…; pn; ϵqÞ ¼ S½l�ðp1;…; pn; ϵqÞAnðp1;…; pnÞ
þ OðϵlÞ; ð1Þ

where we call S½l� a soft operator. The integer parameter l
controls the expansion in powers of the soft momentum to
which the theorem holds.
This theorem has been known to hold at leading order

(l ¼ 0) for more than 50 years. The corresponding soft
factors in gauge theory [1] and gravity [2] read

S½0�ðϵqÞ ¼
8<
:

1
ϵ S

ð0Þ
YM ¼ 1

ϵ

�
E·p1

p1·q
− E·pn

pn·q

�
Yang-Mills theory ðcolor orderedÞ

1
ϵ S

ð0Þ
G ¼ 1

ϵ

P
n
a¼1

Eμνp
μ
apν

a

pa·q
Gravity;

ð2Þ

where Eμ and Eμν denote the gluon or graviton polarization
of the soft leg respectively and the arguments fpag of
S½l�ðϵqÞ have been suppressed for brevity. Note that we
are working with color ordered gauge theory amplitudes.2

The soft limit is singular, and the pole terms are universal.

The graviton pole function Sð0ÞG does not receive radiative
corrections [3,27].
In Refs. [4,6,18,23] the theorem in Eq. (1) has been de-

monstrated to extend to l ¼ 1 inD-dimensional gauge theory
and even l ¼ 2 inD-dimensional gravity at least at tree level,

S½l�ðϵqÞ ¼
(

1
ϵ S

ð0Þ
YM þ Sð1ÞYM Yang-Mills theory ðl ¼ 1Þ

1
ϵ S

ð0Þ
G þ Sð1ÞG þ ϵSð2ÞG Gravity ðl ¼ 2Þ:

ð3Þ

The operators Sð1ÞYM, S
ð1Þ
G and Sð2ÞG are differential operators in

the kinematical data of the hard legs and take a local form.
Here with locality we want to refer to the fact that they are
sums over terms depending on a single hard leg and the soft
data only, i.e.,

SðlÞ ¼
X
a

SðlÞa ðE; ϵq;pa; ∂pa
; Ea; ∂Ea

Þ: ð4Þ

This situation is just as one would expect it to arise from a
Ward identity.

Naturally, the form of S½l� is strongly restricted by
Poincaré and gauge invariance. While Poincaré invariance
implies linearity in the polarization tensors, gauge invari-
ance demands the vanishing of S½l�An order by order in ϵ
upon replacing the polarizations by a gauge transformation.
There is, however, a further less obvious but elementary

constraint on S½l� emerging from the distributional nature of
amplitudes. The left-hand and the right-hand sides of the
soft theorem Eq. (1) depend on Dirac delta functions which
differ in their arguments by the soft momentum ϵq. While
this is no issue at leading order (l ¼ 0), it becomes relevant
for the subleading corrections. Therefore, for the sublead-
ing soft theorems to be consistent, we need to require that2See, e.g., Ref. [26] for a textbook treatment.

1We only consider amplitudes where the external particles are
of the same type.
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S½l�ðϵqÞδDðPÞ ¼ δDðP þ ϵqÞ ~S½l�ðϵqÞ; ð5Þ

where the soft operator ~S½l�ðϵqÞ acting on the reduced
amplitude An could differ a priori from the soft operator
S½l�ðϵqÞ acting on the full amplitude An. Interestingly, the
results reported in the literature so far indicate that the
~S½l�ðϵqÞ and S½l�ðϵqÞ are equivalent.3 We shall show that
this has to be the case.
Distinguishing different orders of ϵ, the soft theorem

Eq. (1) implies [4] the relations

lim
ϵ→0

ðϵAnþ1ðϵÞÞ ¼ Sð0ÞAn ð6aÞ

lim
ϵ→0

�
Anþ1ðϵÞ − 1

ϵ
Sð0ÞAn

�
¼ Sð1ÞAn ð6bÞ

lim
ϵ→0

�
1

ϵ
Anþ1ðϵÞ − 1

ϵ2
Sð0ÞAn − 1

ϵ
Sð1ÞAn

�
¼ Sð2ÞAn: ð6cÞ

Note that these equations simply organize the soft limit
expansion in ϵ without touching the expansion in the
dimensional regularization parameter ϵdim relevant for
amplitudes at loop level. In writing these equations we
have not committed ourselves to a particular order of the
ϵdim → 0 and ϵ → 0 limits.
To derive the implications of Eq. (6) for the soft

operators Sð0Þ and Sð1Þ, it is useful to Laurent expand both
the reduced amplitude Anþ1 as well as its associated delta
function,

Anþ1ðϵÞ ¼
1

ϵ
Að−1Þ
nþ1 þ Að0Þ

nþ1 þ ϵAð1Þ
nþ1 þ Oðϵ2Þ ð7Þ

δðDÞðP þ ϵqÞ ¼ δðDÞðPÞ þ ϵðq · ∂ÞδðDÞðPÞ þ OðϵÞ; ð8Þ

where we introduced the shorthand notation q · ∂ ¼ qμ ∂
∂Pμ.

Let us now substitute these expansions into Eqs. (6a) and
(6b). After noting that

½Sð0Þ; δðDÞðPÞ� ¼ 0; ð9Þ
due to the form of Sð0Þ in Eq. (2) being a mere function, one
finds for the reduced amplitude from (6b)

lim
ϵ→0

Anþ1ðϵÞ ¼
1

ϵ
Sð0ÞYMAn þ Að0Þ

nþ1 þ OðϵÞ: ð10Þ

For now, we will leave the form of the subleading
contribution Að0Þ

nþ1 undetermined. Equation (6a) then simply
implies

Að−1Þ
nþ1 ¼ Sð0ÞAn: ð11Þ

Equation (6b) leads to

Sð1ÞAn ¼ lim
ϵ→0

�
Anþ1 − 1

ϵ
Sð0ÞAn

�
;

¼ lim
ϵ→0

�
ðδðDÞðPÞ þ ϵðq · ∂ÞδðDÞðPÞÞ

×

�
1

ϵ
Að−1Þ
nþ1 þ Að0Þ

nþ1

�
− 1

ϵ
Sð0ÞAn

�
; ð12Þ

where we kept only terms not vanishing as ϵ → 0. Now we
can remove the limit on the right-hand side, whereas in the
left-hand side we can commute Sð1Þ past the delta function
to obtain

½Sð1Þ; δðDÞðPÞ�An þ δðDÞðPÞSð1ÞAn

¼ δðDÞðPÞAð0Þ
nþ1 þ Sð0Þððq · ∂ÞδðDÞðPÞÞAn: ð13Þ

At this point, several comments are in order. Most
importantly, δ and δ0 may be treated as independent
distributions if one takes partial integration identities into
account. Therefore, we will have to match their respective
coefficients in order for this equation to be satisfied. Next,
Sð1Þ must be a differential operator in the momenta pa;
Eq. (13) implies then that

½Sð1Þ; δðDÞðPÞ� ¼ Sð0Þ
�
q · ∂δðDÞðPÞ

�
þ χδðDÞðPÞ; ð14Þ

Að0Þ
nþ1 ¼ ðSð1Þ − χÞAn; ð15Þ

where χ is an undetermined function. Repeating the
analysis for Eq. (6c) (extracting the singular behavior
from the reduced amplitude, expanding in ϵ and matching
coefficients of the delta function and its derivatives)
leads to

½Sð2Þ; δðDÞðPÞ� ¼ 1

2
Sð0Þððq · ∂Þ2δðDÞðPÞÞ

þ ðq · ∂δðDÞðPÞÞSð1Þ þ χ0δðDÞðPÞ; ð16Þ

Að1Þ
nþ1 ¼ ðSð2Þ − χ0ÞAn: ð17Þ

We see that the above equations constrain the subleading
soft terms by relating their form to the leading soft function
Sð0Þ. We will refer to those equations as distributional
constraints. Note also that the difference of the soft
operators S½l�ðϵqÞ and ~S½l�ðϵqÞ mentioned in (5) is captured
by—a priori—arbitrary functions χ and χ0.
It is clear that the distributional constraints can only

constrain the part of SðlÞ that contains the derivatives with
respect to the hard momenta. We call this piece the orbital
part of SðlÞ and write

3See in particular Refs. [19,22] for a discussion of different
prescriptions related to this issue.
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SðlÞ ¼ SðlÞorb þ SðlÞpolar þ SðlÞfunction ð18Þ

with the orbital part

SðlÞorb ¼
X
a

SðlÞμ1…μl
a ðE; q;paÞ

∂
∂pμ1

a
…

∂
∂pμl

a
ð19Þ

and the polarization part SðlÞpolar containing derivatives with
respect to the polarizations Ea. Finally SðlÞfunction is a pure
function of the soft and hard momenta linear in the soft
polarization E. It is not constrained by the distributional
constraint as it commutes with the Dirac delta function.
As we are going to show below, distributional con-

straints, Poincaré, gauge invariance and the assumption of
locality of SðlÞ completely determine the orbital part SðlÞorb of
the soft operators in gauge theory and gravity in any
dimensions. We now give a simple argument how to
constrain also the remaining polarization part.
To treat gluon and graviton polarizations on an equal

footing let us agree upon rewriting the graviton polarization
of leg a as

Eaμν → EaμEaν with Ea · Ea ¼ 0 ¼ pa · Ea: ð20Þ

In four dimensions this is no restriction at all; in general
dimensions it is a formal agreement which we can always
undo at any stage due to the fact that an amplitude is
linear in the polarizations of all its legs. This replacement
unifies gauge and gravity theory in the sense that the same
operators act on the polarization degrees of freedom in both
theories. Using this prescription, the operator representing a
gauge transformations on leg a takes the form

Wa ≔ pa ·
∂

∂Ea
; ð21Þ

and the Lorentz generators are represented as

Jμν ¼
X
a

pμ
a

∂
∂paν

þ Eμ
a

∂
∂Eaν

− μ ↔ ν ð22Þ

in both theories in any dimension.4 In this language the

polarization part SðlÞpolar depends on the differential operators
Eaμ

∂
∂Eaν

in order to preserve linearity of the amplitude in the
polarization Ea.
Let us now consider gauge invariance of a fixed hard leg

a for the soft theorem Eq. (1):

0 ¼ WaAnþ1ðp1;…; pn; ϵqÞ
¼ WaðS½l�ðϵqÞAnðp1;…; pnÞÞ ¼ ½Wa;S½l�ðϵqÞ�An ¼ 0:

ð23Þ
The orbital part SðlÞorb does not commute with Wa due to
the presence of operators ∂

∂pa
. Therefore, it needs to be

completed to a gauge invariant structure. Employing the
commutators

�
Wa; p

μ
a

∂
∂pν

a

�
¼ − pμ

a
∂

∂Eaν
;

�
Wa;E

μ
a

∂
∂Eν

a

�
¼ þpμ

a
∂

∂Eaν
; ð24Þ

the unique linear differential operator in pa and Ea
commuting with Wa reads

Λμν
a ≔ pμ

a
∂

∂paν
þ Eμ

a
∂

∂Eaν
; ð25Þ

which we shall use as building block in constraining S½l�
below.5 Let us now turn to the explicit analysis.

III. SUBLEADING SOFT OPERATORS

In this section we will apply the general framework
outlined in the previous section to determine the sublead-
ing soft operators in both gauge theory and gravity. As
derived in Sec. II above, the subleading contribution
should be fixed upon requiring locality, the distributional
constraint and gauge invariance for the soft leg. The last
two requirements translate into

½Sð1Þ; δðDÞðPÞ� ¼ Sð0Þðq · ∂ÞδðDÞðPÞ þ χδðDÞðPÞ; ð26Þ
�
Sð1Þ; q ·

∂
∂E

�
·An ¼ 0: ð27Þ

A. Gauge theory

In gauge theory the leading-order soft factor is given by
the universal Weinberg soft gluon function [3]

Sð0ÞYM ¼ p1 · E
p1 · q

− pn · E
pn · q

ð28Þ

4Strictly speaking this operator does not generate the correct
infinitesimal Lorentz transformation rule for the polarizations as
these do not transform as vectors; see, e.g., Refs. [2,28]. Next to
the vector transformation law there is an additional piece propor-
tional to a gauge transformation in the form of Wa. As this
additional piece vanishes acting on amplitudes, the form of (22) is
effectively correct.

5Note that in fact we only need the weaker condition of
½Wa;S½l�ðϵqÞ� ∼Wa in Eq. (23) as Wa annihilates the amplitudes
An. This is achieved by the operator Ea · ∂

∂Ea
which obeys

½Wa; Ea ·
∂

∂Ea
� ¼ Wa. However, as any amplitude is an eigenstate

of the operator Ea ·
∂

∂Ea
with eigenvalue one, including this

operator in an Ansatz for S½l� is tantamount to writing a function.
We may therefore discard it in our analysis as functions of the
kinematical data cannot be constrained.
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with the polarization vector Eμ for the soft particle. We

begin with an Ansatz for Sð1ÞYM reflecting the reasoning
in Sec. II:

Sð1ÞYM ¼
X
a

EμΩ
μνρ
a

�
pν
a

∂
∂paρ

þ Eν
a

∂
∂Eaρ

�
: ð29Þ

Before imposing the constraints (26) and (27) we note
that dimensional analysis and soft scaling requires Ωμνρ

to be of mass dimension −1 and to be scale invariant
with respect to the soft momentum q respectively. In
conjunction with the assumption of locality and E · q ¼
Ea · pa ¼ p2

a ¼ 0 we are left with the compact Ansatz

Ωμνρ
a ¼ cðaÞ1

pμ
aqνqρ

ðq · paÞ2
þ cðaÞ2

ημνqρ

q · pa
þ cðaÞ3

ημρqν

q · pa
ð30Þ

where the numbers cðaÞi are to be determined. To do so
we first impose gauge invariance via (27) which leads to

0 ¼
X
a

ðcðaÞ1 þ cðaÞ2 þ cðaÞ3 Þ qνqρ

q · pa

×

�
pν
a

∂
∂paρ

þ Eν
a

∂
∂Eaρ

�
An: ð31Þ

There is no way for this term to conspire to yield a Lorentz

charge. Hence, we conclude that cðaÞ1 þ cðaÞ2 þ cðaÞ3 ¼ 0.
Turning to the distributional constraint (26) one now easily
establishes

½Sð1ÞYM; δ
ðDÞðPÞ� ¼

�X
a

cðaÞ3

�
E · ∂δðDÞðPÞ

−
�X

a

cðaÞ3

E · pa

q · pa

�
q · ∂δðDÞðPÞ

¼!
�
p1 · E
p1 · q

− pn · E
pn · q

�
q · ∂δðDÞðPÞ

þ χδðDÞðPÞ; ð32Þ

where we have inserted Eq. (28) for Sð0ÞYM. Solving for the
undetermined coefficients, we find

cð1Þ3 ¼− 1; cðnÞ3 ¼ 1;

cðaÞ3 ¼ 0 for a ¼ 2;…; n − 1; ð33Þ

along with the vanishing of χ, which implies the identity

S½1� ¼ ~S½1� [cf. Eq. (5)]. As cðaÞ3 ¼−cðaÞ1 −cðaÞ2 the differences

of the remaining coefficients cðaÞ− ≔cðaÞ1 −cðaÞ2 remain uncon-
strained. In fact they only couple to the polarization degrees
of freedom, and the orbital part of Sð1Þ is completely
determined. In summary we have established that

Sð1ÞYM ¼
X

a¼1;n;signed

Eμqν
pa · q

�
pμ
a

∂
∂paν

þ Eμ
a

∂
∂Eaν

− μ ↔ ν

�

þ
X
a

~cðaÞ
�ðE · paÞðEa · qÞ

pa · q
− E · Ea

�

×
1

pa · q
q ·

∂
∂Ea

; ð34Þ

where the undetermined coefficients ~cðaÞ are related to
the previous ones via ~cð1Þ ¼ cð1Þ− þ 1

2
, ~cðnÞ ¼ cðnÞ− − 1

2
and

~cðaÞ ¼ cðaÞ− for a ¼ 2;…; n − 1. Note that the second
sum is manifestly gauge invariant with respect to the soft
and hard legs. Hence, the orbital part of the subleading soft
operator is entirely determined by our constraints and
coincides with the explicit tree-level computations in the
literature. The polarization piece is constrained up to a
single numerical factor for every hard leg.
Finally, let us briefly comment on the possible functional

contribution Sð1ÞYMfunction. In our locality assumption

Sð1ÞYMfunction must be a sum of terms depending only on
the scalars q · pa and E · pa, while being linear in the latter.
This, together with correct dimensionality and the fact that

Sð1ÞYMfunction must not scale with q immediately tells us

that Sð1ÞYMfunction ¼ 0.

B. Gravity

The analysis of the graviton soft operator is almost a
carbon copy of the gauge theory one. The leading universal
soft function for gravitons reads [3]

Sð0ÞG ¼
Xn
a¼1

Eμνp
μ
apν

a

q · pa
: ð35Þ

We again start with an Ansatz for Sð1ÞG of the form

Sð1ÞG ¼
X
a

EμνΩ
μνρσ
a

�
pρ
a

∂
∂paσ

þ Eρ
a

∂
∂Eaσ

�
: ð36Þ

Dimensional analysis requires Ωμνρσ
a to be of mass dimen-

sion zero and to be scale invariant with respect to the soft
momentum q. This together with the assumption of locality
and the relations Eμνqν ¼ Ea · pa ¼ p2

a ¼ 0 leads us to the
most general Ansatz

Ωμνρσ
a ¼ cðaÞ1

pμ
apν

aqρqσ

ðq · paÞ2
þ cðaÞ2

ηρðμpνÞ
a qσ

q · pa
þ cðaÞ3

ησðμpνÞ
a qρ

q · pa

þ cðaÞ4 ηρðμηνÞσ; ð37Þ

with four undetermined numerical coefficients for each
hard leg a. Imposing gauge invariance for the soft leg
amounts to the replacement Eμν → ΛðμqνÞ in (36). We then
obtain the condition
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0 ¼ 1

2

X
a

�
ð2cðaÞ1 þ cðaÞ2 þ cðaÞ3 Þqρqσ Λ · pa

q · pa

þ ðcðaÞ3 þ cðaÞ4 ÞqρΛσ þ ðcðaÞ2 þ cðaÞ4 ÞqσΛρ

�

×

�
pρ
a

∂
∂paσ

þ Eρ
a

∂
∂Eaσ

�
An: ð38Þ

The first term in the above requires 2cðaÞ1 þ cðaÞ2 þ cðaÞ3 ¼ 0.
For the second and third terms we have to be somewhat
more careful. Herewe have the possibility of these two terms
conspiring to build up the total Lorentz generator Jρσ of (22)
which annihilates An. We thus require

cðaÞ3 þ cðaÞ4 ¼− cðaÞ2 − cðaÞ4 ¼ c ð39Þ
with a universal constant c identical for all hard legs.
We now move on to pose our distributional constraint

(26) linking Sð1ÞG to Sð0ÞG . One finds

½Sð1ÞG ; δðDÞðPÞ� ¼
X
a

ðcðaÞ1 þ cðaÞ2 Þ ðp
μ
apν

aEμνÞ
q · pa

q · ∂δðDÞðPÞ

þ cPμEμ
ν ∂
∂Pν δ

ðDÞðPÞ

¼! Sð0ÞG q · ∂δðDÞðPÞ þ χδðDÞðPÞ: ð40Þ
One nicely sees that the first term on the rhs of the first line
forms the leading Weinberg soft function for the uniform
choice

cðaÞ1 þ cðaÞ2 ¼ 1: ð41Þ
The following term vanishes in the distributional sense by
the tracelessness of Eμν. And finally we again learn that the

function χ ¼ 0 implying again the identity of S½1� ¼ ~S½1� in
the sense of Eq. (5). The established three equations for the
four unknowns may now be solved upon expressing every-

thing in terms of cðaÞ4 :

cðaÞ1 ¼ cðaÞ4 ; cðaÞ2 ¼ 1 − cðaÞ4 ; cðaÞ3 ¼− 1 − cðaÞ4 : ð42Þ

One also checks that cðaÞ3 þ cðaÞ4 ¼ 1 in line with the above
reasoning. Inserting this into the Ansatz (36) yields the
final result

Sð1ÞG ¼
Xn
a¼1

ðpa · EÞEρqσ
pa · q

�
pρ
a

∂
∂paσ

þ Eρ
a

∂
∂Eaσ

− ρ ↔ σ

�

þ
Xn
a¼1

~cðaÞ
�ðE · paÞðEa · qÞ

pa · q
− E · Ea

�

×

�
pa · E
pa · q

q ·
∂

∂Ea
− E ·

∂
∂Ea

�
; ð43Þ

where we have renamed cðaÞ4 ¼ ~cðaÞ and written the soft
polarization Eμν → EμEν for compactness of notation.
We thus see that again the orbital part is completely

determined and coincides with the results established in
the literature for tree-level amplitudes.6 The polarization-
dependent parts are constrained to one numerical factor for
every hard leg, just as it was the case in gauge theory.
Finally, let us also comment on the possible functional

contribution Sð1ÞG function in gravity. Again, our assumptions of

locality constrains Sð1ÞG function to be a sum of functions that
are linear in E · pa and arbitrary functions of q · pa. This,

together with the dimensionality of Sð1ÞG and the fact that

Sð1ÞG function ∼ const. as q → 0 again rules out any nonvanish-
ing contribution.

IV. SUBSUBLEADING SOFT GRAVITON
OPERATOR

The discussion for the subsubleading soft operator for
graviton amplitudes is analogous to the subleading case.

The starting point is an Ansatz for Sð2ÞG of the form

Sð2ÞG ¼
Xn
a¼1

EμνΩ
μνρσγλ
a Λa;ρσΛa;γλ; ð44Þ

where we used Λa;ρσ ≔ pa;ρ
∂

∂pσ
a
þ Ea;ρ

∂
∂Eσ

a
as in (25).

Again, Ωa must obey some constraints; specifically, it
must have mass dimension zero, it must vanish linearly in
the limit q → 0, it must be symmetric in the exchange
μ ↔ ν, and it must be symmetric in the simultaneous
exchange ρ ↔ γ; σ ↔ λ. The most general Ansatz satisfy-
ing these constraints is

Ωμνρσγλ
a ¼ cðaÞ1

ðq · paÞ3
pμ
apν

aqρqσqγqλ þ
cðaÞ2

ðq · paÞ
ησðμηνÞλqρqγ þ cðaÞ3

ðq · paÞ
ηρðμηνÞγqσqλ

þ cðaÞ4

ðq · paÞ
½ηρðμηνÞσqγqλ þ ηγðμηνÞλqρqσ� þ cðaÞ5

ðq · paÞ
½ηρðμηνÞλqγqσ þ ηγðμηνÞσqρqλ�

þ cðaÞ6

ðq · paÞ2
pðμ
a ηνÞðρqγÞqλqσ þ cðaÞ7

ðq · paÞ2
pðμ
a ηνÞðλqσÞqρqγ: ð45Þ

6In fact it is in accordance with the expression for Sð1ÞG given in Ref. [20] and differs by an overall normalization factor in the
expression of Ref. [4].
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Furthermore Sð2ÞG must obey the distributional constraint
Eq. (16) and the gauge invariance constraint on the soft leg.
We recall these constraints here

½Sð2ÞG ; δðDÞðPÞ� ¼ 1

2
Sð0ÞG

�
ðq · ∂Þ2δðDÞðPÞ

�

þ
�
q · ∂δðDÞðPÞ

�
Sð1ÞG þ χ0δðDÞðPÞ;

ð46Þ

Sð2ÞG ½E → Λq� ·An ¼ 0: ð47Þ

Imposing these constraints yields a total of five linear

equations for the seven unknowns cðaÞj residing in the
Ansatz (45) at each leg.7 A tedious but straightforward
computation shows that the solution is χ0 ¼ 0 and

Sð2ÞG ¼ 1

2

Xn
a¼1

1

q ·pa
EλσqρqγJa;ρσJa;γλ

þ
Xn
a¼1

�
~cðaÞ1

q ·pa

�ðpa ·EÞðq ·EaÞ
q ·pa

−E ·Ea

�
2
�
q ·

∂
∂Ea

�
2

þ ~cðaÞ2

�ðpa ·EÞðq ·EaÞ
q ·pa

−E ·Ea

�

×

�
E ·pa

q ·pa
q ·

∂
∂Ea

−E ·
∂

∂Ea

��
Ea ·q
q ·pa

q ·
∂

∂Ea
þq ·

∂
∂pa

�	
;

ð48Þ
where for convenience we expressed the soft graviton
polarization as Eμν ¼ EμEν and Ja;ρσ ≔ pa;ρ

∂
∂pσ

a
þ

Ea;ρ
∂

∂Eσ
a
− ðρ ↔ σÞ as before. In the notation of the

Ansatz Eq. (45) we have ~cðaÞ1 ¼− cðaÞ4 þ cðaÞ6 and ~cðaÞ2 ¼
~cðaÞ the undetermined parameter of Sð1ÞG . Note that the first
line of Eq. (48) accounts for the full known subsubleading
soft factor in gravity as can be calculated from explicit
amplitude expressions. The remaining terms are mixed
orbital-helicity operators or only helicity operators, which
are allowed by our constraints.
Again we see that the orbital part of the subsubleading

soft graviton operator Sð2ÞG is entirely determined. The
polarization-dependent parts on the other hand are now
determined up to two numerical factors for every hard leg;

as already stated, the coefficient ~cðaÞ2 equals ~cðaÞ, where
the latter are the undetermined coefficients appearing in the

final form of Sð1ÞG . We thus have one additional free
coefficient for each hard leg. It is also worth noticing that

the additional, polarization-dependent terms are manifestly
gauge invariant.

V. FOUR DIMENSIONS AND SPINOR
HELICITY FORMALISM

Let us now consider the four-dimensional case, where
we can use the spinor-helicity formalism8 and obtain
additional constraints from little-group scalings. Those
constraints are particularly easy to access in four dimen-
sions, because the Lorentz group factorizes into two
parts acting on holomorphic and antiholomorphic spinors
respectively.

A. Gauge theory

Taking a positive-helicity soft gluon for concreteness,
its polarization vector can be expressed in terms of a
holomorphic reference spinor μα as

EðþÞ
α _α ¼ μα ~λq; _α

hμλqi
: ð49Þ

The Ansatz for Sð1ÞYM in spinor-helicity variables reads

Sð1ÞYM ¼
Xn
a¼1

EðþÞ
α _α

�
Ωα _αβ

a
∂
∂λβa þ Ω̄α _α _β

a
∂
∂ ~λ_βa

�
: ð50Þ

To yield the correct mass dimension for Sð1ÞYM, the coef-
ficients Ωa; Ω̄a must be of mass dimension − 1

2
. In addition

Ωa carries helicity 1
2
and Ω̄a helicity− 1

2
on leg a. Moreover,

terms where the open index _α comes from ~λq do not

contribute to Sð1ÞYM, as those terms vanish after contracting
with the polarization tensor Eq. (49). Combining these
constraints, the most general Ansatz reads

Ωα _αβ
a ¼ cðaÞ1

haqi½aq� λ
α
aλ

β
a ~λ

_α
a; ð51Þ

Ω̄α _α _β
a ¼ c̄ðaÞ1

haqi½aq� λ
α
a
~λ _αa ~λ

_β
a þ

c̄ðaÞ2

haqi½aq� λ
α
q
~λ _αa ~λ

_β
q þ

c̄ðaÞ3

haqi λ
α
qϵ

_α _β:

ð52Þ
Gauge invariance on the soft leg implies that the operator

obtained by the substitution Eq → q in Sð1ÞYM annihilates the
amplitude. The resulting operator is

Sð1ÞYM½Eq → q� ¼ − Xn
a¼1

�
cðaÞ1 λβa

∂
∂λβa þ c̄ðaÞ1

~λ _αa
∂
∂ ~λ _αa

�
: ð53Þ

In principle we can allow the above operator to be
any operator annihilating the n-point tree-level gluon7There is actually one additional equation that identifies the

coefficients cðaÞ4 in the Ansatz with the undetermined coefficients
1
2
~cðaÞ appearing in the final form of Sð1ÞG , Eq. (43). 8See, e.g., Ref. [26] for a textbook treatment.
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amplitude. Since tree-level gluon amplitudes in four
dimensions are invariant under conformal transformations,

we could in principle allow cðaÞ1 ¼ c̄ðaÞ1 ¼ c for some fixed
constant c for all hard legs a, so that the above operator is
the dilation operator D [29].9

The distributional constraint Eq. (14) then reads

Xn
a¼1

�
2c

hμai
haqihμqiλ

α
a
~λ _αa þðc̄ðaÞ2 þ c̄ðaÞ3 Þ 1

haqiλ
α
a
~λ _αq

� ∂
∂Pα _α

δ4ðPÞ

¼! hn1i
hnqihq1i

�
λαq ~λ

_α
q

∂
∂Pα _α

δ4ðPÞ
�
þ χδ4ðPÞ;

where we have inserted the spinor-helicity form of Sð0ÞYM on
the rhs. Since the first term in the lhs cannot conspire to
build a Lorentz generator, we see that upon using
Schouten’s identity the solution to this equation is10

k ¼ 0; χ ¼ 0; c̄ðaÞ2 þ c̄ðaÞ3 ¼
�

1 for a ¼ 1; n

0 otherwise:

ð54Þ

This leads to the known form for the four-dimensional
subleading soft factor for gluon amplitudes,

Sð1ÞYM ¼
~λ _αq

hq1i
∂
∂ ~λ _α1

− ~λ _αq
hqni

∂
∂ ~λ _αn

: ð55Þ

B. Gravity

For what concerns graviton amplitudes, we consider a
positive-helicity soft graviton; the polarization vector is
expressed in terms of two reference spinors λx and λy as

EðþÞ
α _αβ _β

≔
1

hxqihyqi ðλx;αλy;β þ λy;αλx;βÞ~λs; _α ~λs;_β: ð56Þ

We now consider the usual local first-order Ansatz for Sð1ÞG :

Sð1ÞG ¼
Xn
a¼1

EðþÞ
α _αβ _β

�
Ωα _αβ _βγ

a
∂
∂λγa þ Ω̄α _αβ _β _γ

a
∂
∂ ~λ_γa

�
: ð57Þ

Again Ωa and Ω̄a must obey some constraints. The mass
dimensions are ½Ωa� ¼ ½Ω̄a� ¼ 1

2
, the helicity of the soft leg

should be zero for bothΩa and Ω̄a, and the helicities for leg

a are 1
2
(− 1

2
) for Ωa (Ω̄a). Moreover, the open indices _α; _β

cannot come from ~λq, and both Ωa and Ω̄a must be

symmetric in the pairs ðα; βÞ and ð _α; _βÞ These constraints
imply that the possible forms of Ωa and Ω̄a are

Ωα _αβ _βγ
a ¼ cðaÞ1

haqi½aq�
~λ _αa ~λ

_β
aλ

α
aλ

β
aλ

γ
a; ð58Þ

Ω̄α _αβ _β _γ
a ¼ c̄ðaÞ1

haqi½aq�
~λ _αa ~λ

_β
aλ

α
aλ

β
a ~λ

_γ
a þ

c̄ðaÞ2

haqi½aq�
~λ _αa ~λ

_β
aλ

ðα
a λ

βÞ
q ~λ_γq

þ c̄ðaÞ3

haqi ϵ
_γð _α ~λ

_βÞ
a λ

ðα
a λ

βÞ
q : ð59Þ

An infinitesimal gauge transformation amounts to the shift

λx → λx þ ηλq; λy → λy þ η0λq; ð60Þ
for some (infinitesimal) η; η0. Gauge invariance then
implies that

cðaÞ1 ¼ c̄ðaÞ1 ¼ 0; c̄ðaÞ3 − c̄ðaÞ2 ¼ c; ∀ a ð61Þ

for some universal constant c. Sð1ÞG then reads11

Sð1ÞG ¼ c
Xn
a¼1

½qa�
haqi

1

hxqihyqi ðhaxihqyi þ hayihqxiÞ~λ_γq
∂
∂ ~λ_γa

:

ð62Þ

We can now impose the distributional constraint again,
Eq. (14). This reads (after using Schouten’s identity)

� ∂
∂Pγ _γ

δ4ðPÞ
��Xn

a¼1

2k
hxaihyai
hxqihyqi

½qa�
haqi λ

γ
q ~λ

_γ
q

− k
hxqihyqi

~λ _αq ~λ
_γ
qðλαxλγy þ λαyλ

γ
xÞ
Xn
a¼1

λa;α ~λa; _α

�

¼!
�
λγq ~λ

_γ
q

∂
∂Pγ _γ

δ4ðPÞ
�Xn

a¼1

hxaihyai
hxqihyqi

½aq�
haqi þ χδ4ðPÞ;

ð63Þ

where we wrote explicitly the form of Sð0ÞG in spinor-helicity
variables. Notice that the second term in the first line is zero
in the distributional sense. We may therefore conclude that
the solution is

χ ¼ 0; c ¼ − 1

2
: ð64Þ

This fixes the form of Sð1ÞG in Eq. (62) to be

9Strictly speaking, what appears here is D − 2; however, the
constant piece could be in principle restored by adding a constant

term
P

aEα _α
λαa ~λ

_α
a

haqi½aq� to Sð1ÞYM. We will, however, see that, although
allowed by gauge invariance, these terms are ruled out by the
distributional constraint.

10Notice that in Sð1ÞYM only the combination c̄ðaÞ2 þ c̄ðaÞ3 appears
once Ω̄a is contracted with the polarization EðþÞ, and therefore we
can consider this sum as a single coefficient.

11Again, only the combination c̄ðaÞ3 − c̄ðaÞ2 appears in Sð1ÞG once
the contraction with EðþÞ is performed.
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Sð1ÞG ¼ 1

2

Xn
a¼1

½aq�
haqi

�haxi
hqxi þ

hayi
hqyi

�
~λ_γq

∂
∂ ~λ_γa

: ð65Þ

In fact, we have also checked that the subsubleading soft

factor Sð2ÞG in four dimensions is completely fixed by gauge
invariance and the distributional constraint.

VI. DISCUSSION

In this note we analyzed constraints arising for the novel
subleading soft gluon and graviton theorems in general
dimensions. Next to the obvious demands of Poincaré and
gauge invariance we pointed out a slightly less obvious
distributional constraint arising from the unbalanced argu-
ments of the total momentum conserving Dirac delta
functions on both sides of the soft theorems. The distri-
butional constraint requires the subleading soft operators to
be differential operators of degree 1 (subleading) or 2
(subsubleading) in the hard momenta and relates them to
the leading Weinberg soft pole function.
In the D-dimensional case we started from an Ansatz

compatible with dimensional analysis and soft momentum
scaling. We demonstrated that the entity of those con-
straints determines the subleading soft gluon and graviton
differential operators as well as the subsubleading soft
graviton differential operator up to a single numerical
constant for every leg. The undetermined constant is related
to derivatives with respect to polarizations. Arbitrary
functions commuting with the delta distributions could
be added to these operators and are generally uncon-
strained. However, taking scalings and mass dimension
constraints into account assuming locality, there is nothing
which can be written down at tree level.
Specializing to the four-dimensional case and employing

the spinor-helicity formalism, the same line of arguments
was shown to entirely fix the subleading differential
operators. This can be traced back to the factorization of
the Lorentz group in four dimensions. Upon fixing a
unitary gauge, however, there might be similar arguments
from little-group scalings in other dimensions.
The operators so determined match the forms established

in the literature at tree level. Given that our arguments are
very general the question arises whether they apply to loop
amplitudes as well; certainly, Poincaré invariance, gauge

invariance as well as the distributional constraint Eq. (5)
continue to hold.
However, in the loop scenario we have to consider at

least four novel circumstances, which are not reflected in
our Ansätze for the subleading soft operators in Eqs. (30),
(37) and (45). First, the loop corrections may contribute
to the unconstrained functional parts of Sð1Þ and Sð2Þ, as is
in fact the case in the one-loop corrections reported in

Refs. [19,20]. Interestingly, the operator Sð2ÞG may also
receive first-order differential corrections which should be

related to the functional corrections to Sð1ÞG by the distri-
butional constraint Eq. (16). Second, we construct our
Ansätze employing dimensional analysis to constrain the
possible terms. The dimensionality of the couplings,
however, allows for dimensionless quantities such as

logð−μ2q·pa
Þ or q·pa

−μ2 , which so far have not been accounted

for in our Ansätze. These terms arise in the IR-divergent
one-loop corrections to the soft operators reported in
Ref. [19]. In fact, this also introduces contributions of
the form ðlog ϵÞ in the soft momentum expansion. Third,
the loop corrections may not respect our central assump-
tion of locality. Fourth, for gauge theory the leading soft

factor Sð0ÞYM receives loop corrections, which feed into the
subleading constraint equations.
After incorporating the issues pointed out in the last

paragraph, the distributional constraint might be of use in
the future in order to constrain possible loop corrections to
soft theorems. While our work constrains the possible
forms of the subleading soft gluon and graviton operators,
it would be desirable to have a deeper understanding
toward the origin of the soft theorems.

ACKNOWLEDGMENTS

We thank G. Bossard, T. McLoughlin, B. Schwab and
especially C. Vergu for important discussions. J. P. thanks
the Pauli Center for Theoretical Studies Zürich and the
Institute for Theoretical Physics at the ETH Zürich for
hospitality and support in the framework of a visiting
professorship. The work of M. dL. and M. R. is partially
supported by Grant No. 200021-137616 from the Swiss
National Science Foundation.

[1] F. Low, Phys. Rev. 110, 974 (1958).
[2] S. Weinberg, Phys. Rev. 135, B1049 (1964).
[3] S. Weinberg, Phys. Rev. 140, B516 (1965).
[4] F. Cachazo and A. Strominger, arXiv:1404.4091.
[5] R. Britto, F. Cachazo, B. Feng, and E. Witten, Phys. Rev.

Lett. 94, 181602 (2005) [arXiv:hep-th/0501052].

[6] E. Casali, J. High Energy Phys. 08 (2014) 077
[arXiv:1404.5551].

[7] T. Burnett and N. M. Kroll, Phys. Rev. Lett. 20, 86 (1968);
V. Del Duca, Nucl. Phys. B345, 369 (1990).

[8] E. Laenen, L. Magnea, G. Stavenga, and C. D. White,
J. High Energy Phys. 01 (2011) 141 [arXiv:1010.1860];

CONSTRAINING SUBLEADING SOFT GLUON AND … PHYSICAL REVIEW D 90, 065024 (2014)

065024-9

http://dx.doi.org/10.1103/PhysRev.110.974
http://dx.doi.org/10.1103/PhysRev.135.B1049
http://dx.doi.org/10.1103/PhysRev.140.B516
http://arXiv.org/abs/1404.4091
http://dx.doi.org/10.1103/PhysRevLett.94.181602
http://dx.doi.org/10.1103/PhysRevLett.94.181602
http://arXiv.org/abs/hep-th/0501052
http://dx.doi.org/10.1007/JHEP08(2014)077
http://dx.doi.org/10.1007/JHEP08(2014)077
http://dx.doi.org/10.1103/PhysRevLett.20.86
http://dx.doi.org/10.1016/0550-3213(90)90392-Q
http://arXiv.org/abs/1010.1860


E. Laenen, G. Stavenga, and C. D. White, J. High Energy
Phys. 03 (2009) 054 [arXiv:0811.2067].

[9] D. J. Gross and R. Jackiw, Phys. Rev. 166, 1287 (1968).
[10] C. D. White, J. High Energy Phys. 05 (2011) 060 [arXiv:

1103.2981].
[11] A. Strominger, arXiv:1312.2229.
[12] T. He, V. Lysov, P. Mitra, and A. Strominger, arXiv:

1401.7026.
[13] H. Bondi, M. van der Burg, and A. Metzner, Proc. R. Soc. A

269, 21 (1962); R. Sachs, Proc. R. Soc. A 270, 103 (1962).
[14] G. Barnich and C. Troessaert, J. High Energy Phys. 05

(2010) 062 [arXiv:1001.1541].
[15] D. Kapec, V. Lysov, S. Pasterski, and A. Strominger, J. High

Energy Phys. 08 (2014) 058 [arXiv:1406.3312].
[16] T. Adamo, E. Casali, and D. Skinner, arXiv:1405.5122.
[17] Y. Geyer, A. E. Lipstein, and L. Mason, arXiv:1406.1462.
[18] B. U.W. Schwab and A. Volovich, arXiv:1404.7749.
[19] Z. Bern, S. Davies, and J. Nohle, arXiv:1405.1015.

[20] S. He, Y.-t. Huang, and C. Wen, arXiv:1405.1410.
[21] A. J. Larkoski, arXiv:1405.2346.
[22] F. Cachazo and E. Y. Yuan, arXiv:1405.3413.
[23] N. Afkhami-Jeddi, arXiv:1405.3533.
[24] B. U.W. Schwab, J. High Energy Phys. 08 (2014) 062

[arXiv:1406.4172]; M. Bianchi, S. He, Y.-t. Huang, and
C. Wen, arXiv:1406.5155.

[25] Z. Bern, V. Del Duca, and C. R. Schmidt, Phys. Lett. B 445,
168 (1998) [arXiv:hep-ph/9810409].

[26] J. M. Henn and J. C. Plefka, Lect. Notes Phys. 883, 1
(2014); H. Elvang and Y. -t. Huang, arXiv:1308.1697.

[27] Z. Bern, L. J. Dixon, M. Perelstein, and J. Rozowsky,
Nucl. Phys. B546, 423 (1999) [arXiv:hep-th/9811140].

[28] S. Weinberg, The Quantum Theory of Fields: Foundations
(Cambridge University Press, Cambridge, England, 1995),
Vol. 1.

[29] E. Witten, Commun. Math. Phys. 252, 189 (2004) [arXiv:
hep-th/0312171].

BROEDEL et al. PHYSICAL REVIEW D 90, 065024 (2014)

065024-10

http://dx.doi.org/10.1088/1126-6708/2009/03/054
http://dx.doi.org/10.1088/1126-6708/2009/03/054
http://dx.doi.org/10.1103/PhysRev.166.1287
http://arXiv.org/abs/1103.2981
http://dx.doi.org/10.1007/JHEP05(2011)060
http://arXiv.org/abs/1312.2229
http://arXiv.org/abs/1401.7026
http://arXiv.org/abs/1401.7026
http://dx.doi.org/10.1098/rspa.1962.0161
http://dx.doi.org/10.1098/rspa.1962.0161
http://dx.doi.org/10.1098/rspa.1962.0206
http://dx.doi.org/10.1007/JHEP05(2010)062
http://dx.doi.org/10.1007/JHEP05(2010)062
http://dx.doi.org/10.1007/JHEP08(2014)058
http://dx.doi.org/10.1007/JHEP08(2014)058
http://arXiv.org/abs/1405.5122
http://arXiv.org/abs/1406.1462
http://arXiv.org/abs/1404.7749
http://arXiv.org/abs/1405.1015
http://arXiv.org/abs/1405.1410
http://arXiv.org/abs/1405.2346
http://arXiv.org/abs/1405.3413
http://arXiv.org/abs/1405.3533
http://dx.doi.org/10.1007/JHEP08(2014)062
http://dx.doi.org/10.1007/JHEP08(2014)062
http://dx.doi.org/10.1007/JHEP08(2014)062
http://dx.doi.org/10.1016/S0370-2693(98)01495-6
http://dx.doi.org/10.1016/S0370-2693(98)01495-6
http://arXiv.org/abs/hep-ph/9810409
http://dx.doi.org/10.1007/978-3-642-54022-6
http://dx.doi.org/10.1007/978-3-642-54022-6
http://arXiv.org/abs/1308.1697
http://dx.doi.org/10.1016/S0550-3213(99)00029-2
http://arXiv.org/abs/hep-th/9811140
http://dx.doi.org/10.1007/s00220-004-1187-3
http://arXiv.org/abs/hep-th/0312171
http://arXiv.org/abs/hep-th/0312171

