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We investigate the possibility of an ultraviolet (UV) zero in the n-loop beta function of a λð~ϕ2Þ2 field
theory with an N-component scalar field, ~ϕ, in four spacetime dimensions, up to the level of n ¼ 5 loops.
Although the two-loop beta function has a UV zero, we find that the n-loop beta function for n ¼ 3, 4, 5
either does not have a UV zero or does not have one at a value of λ in approximate agreement with the
two-loop calculation. Similar results are obtained after application of scheme transformations to the beta
function and via calculation of Padé approximants. We thus conclude that in the range of λ where the
perturbative calculation of the n-loop beta function is reliable, the theory does not exhibit robust evidence
of a UV zero up to the level of n ¼ 5 loops.
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I. INTRODUCTION

A subject of fundamental interest in quantum field
theory is the dependence of the interaction coupling on
the Euclidean momentum scale, μ, where it is measured.
This dependence is described by the beta function of the
theory [1]. Here we investigate this for a theory with a real,

N-component, scalar field, ~ϕ ¼ ðϕ1;…;ϕNÞT with a self-

interaction of the form λð~ϕ2Þ2, in d ¼ 4 spacetime dimen-
sions (at zero temperature), focusing on the question of
whether the beta function exhibits robust evidence of an
ultraviolet zero. We study this up to the highest loop order
for which the beta function has been calculated, namely
five loops. This theory is defined by the path integral

Z ¼
Z Y

x

½d~ϕðxÞ�eiS; ð1:1Þ

where S ¼ R
d4xL, with the Lagrangian [2]

L ¼ 1

2
ð∂μ

~ϕÞ · ð∂μ ~ϕÞ −m2

2
~ϕ2 −

λ

4!
ð~ϕ2Þ2: ð1:2Þ

This theory will be denoted λð~ϕ2Þ24 ¼ λj~ϕj44 for short, where
the subscript means d ¼ 4. The Lagrangian L is invariant

under global OðNÞ transformations of the field ~ϕ. Quantum
loop corrections lead to a scale dependence in the physical,
renormalized coupling, λðμÞ.
The variation of λðμÞ as a function of μ is described by

the beta function

βλ ¼
dλ
dt

; ð1:3Þ

where dt ¼ d ln μ. (The argument μ will often be sup-
pressed in the notation.) As is well known, the lowest-order
(one-loop) term in this beta function has a positive
coefficient, so that as μ → 0, the coupling λðμÞ → 0, i.e.,

the theory is infrared-free. This perturbative result has been
confirmed by nonperturbative approaches [3] and is some-
times referred to as the “triviality” property of the theory.
One then interprets the theory as an effective one, appli-
cable over some range of momenta μ (see, e.g., [4,5]). Since
the one-loop term in βλ is positive, it follows that as μ
increases from 0, the coupling λðμÞ also increases. If one
were naively to consider only the lowest-order term in the
beta function and integrate the differential equation (1.3),
then this would lead to a pole in λðμÞ at a finite value of μ.
Of course, one would not actually be justified in drawing
such an inference, since as μ increased, λðμÞ would become
too large for the perturbative calculation to be valid before
the position of the pole would be reached. However, this
motivates one to consider higher-loop terms in the beta
function.
An important question is whether βλ has a UV zero,

which could thus constitute an ultraviolet fixed point
(UVFP) of the renormalization group (RG), so that as μ
increases from the infrared (IR) limit μ ¼ 0 to the UV limit
μ → ∞, λðμÞwould increase, but approach a finite value. In
this paper we shall investigate this question using higher-
loop calculations of the beta function up to five-loop order.
The two-loop term in βλ is negative, so that, at the two-loop
level, βλ does, in fact, exhibit a UV zero. If the existence of
this zero were to be confirmed at higher-loop order, then it
would mean that the growth of λðμÞ would be cut off for
large μ. Although the λj~ϕj44 theory has been studied for
many years, we are not aware of a paper in the literature that
has addressed and answered the question of whether the
higher-loop beta function also exhibits robust evidence for
a UV zero. A prerequisite for a UV zero of βλ to be well
established, at least within the context of a perturbative
calculation, is that for a given value of N, when one
calculates the value of the zero to n-loop order and to
(nþ 1)-loop order, there should not be a large fractional
shift in the result. We shall investigate this question both for
a range of finite values of N and in the large-N limit. Early
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discussions of the large-N limit of the OðNÞ λj~ϕj44 theory
include [6]; see also [5]. To state our conclusion at the
outset, we find evidence against a UV zero in this theory.
This finding is consistent with the view of this theory as an
effective field theory, to be applied only over a restricted
range of momentum scales μ. What it contributes to this
consensus is a quantitative analysis of the perturbatively
calculated n-loop beta function up to the rather high order
of five loops.
For our study of the ultraviolet properties of the beta

function for large momentum scale μ, we take the quartic
coupling λ in L to be positive for the stability of the theory.
Corrections to the scalar potential have been discussed,

e.g., in [7]. We take the coefficient,m2, of the term ð1=2Þ~ϕ2

in L to be fixed and recall that its value does not enter in the
beta function βλ that we analyze. If one were to consider
this scalar theory as being embedded in a larger theory with
higher physical mass scales, then one would have to deal
with the hierarchy problem, namely the sensitivity, via loop
corrections, of m2 to these higher mass scales. To focus on
the question of a UV zero of the beta function, which is of
interest in its own right, we thus consider this theory in
isolation.
The question of the existence of a UV zero in the beta

function of the OðNÞ λj~ϕj44 is somewhat similar to the
question of the existence of a UV zero in the beta function
of a U(1) gauge theory in d ¼ 4 dimensions with a set of
Nf fermions of a given charge. Both of these theories are
IR-free. In [8] we recently investigated the question for the
U(1) gauge theory up to the five-loop level for general Nf

and in the limit of large Nf and concluded that it does not
exhibit a UV zero [8] (see also [9]).
An example of a theory with a beta function that has a

UV zero is the nonlinear σ model (NLσM) in d ¼ 2þ ϵ
spacetime dimensions, where one finds, from an exact
solution of this model in the limit N → ∞ (involving a sum
of an infinite number of Feynman diagrams that dominate
in this limit) the result (for small ϵ) [10]

βλ ¼ ϵλ

�
1 −

λ

λc

�
; ð1:4Þ

where λ is an effective dimensionless coupling in the model
and

λc ¼
2πϵ

N
: ð1:5Þ

In addition to being an IR-free theory with a UVFP, this was
also an early example of a theory which, by perturbative
power-counting for ϵ > 0, is nonrenormalizable, but never-
theless yields calculable, well-defined predictions via the use
of a nonperturbative method, namely the large-N limit. This
possibility has been termed “asymptotic safety” [4,11].
This paper is organized as follows. In Sec. II we analyze

the behavior of the n-loop coefficients of the beta function

of the λj~ϕj44 theory. In Sec. III we investigate the question of
the presence or absence of a UV zero of the beta function
up to five-loop order. Section IV contains a discussion of
the large-N limit. In Sec. V we study the effect of applying
scheme transformations to the beta function in the analysis
of a possible UV zero. Section VI contains a corresponding
study using Padé approximants. In Sec. VII we compare
our findings with those for some related theories. Our
conclusions are summarized in Sec. VIII. Some relevant
formulas for discriminants are given in the Appendix.
Although we restrict our study here to the beta function

of the OðNÞ λj~ϕj4 theory in d ¼ 4 dimensions, we note
parenthetically that this field theory has been used exten-
sively to study critical phenomena in d ¼ 4 − ϵ0 dimensions,
with particular application to d ¼ 3, and there has also been

interest in the λð~ϕ2Þ3 theory in d ¼ 3 dimensions for the
study of tricritical points.

II. BETA FUNCTION AND PROPERTIES OF
COEFFICIENTS UP TO FIVE LOOPS

A. General

The beta function βλ of Eq. (1.3) has the series expansion

βλ ¼ λ
X∞
l¼1

blal; ð2:1Þ

where

a≡ λ

16π2
: ð2:2Þ

An equivalent beta function is βa ¼ da=dt, with the series
expansion

βa ¼ a
X∞
l¼1

blal: ð2:3Þ

The n-loop βλ and βa functions, denoted βλ;nl and βa;nl, are
given by Eqs. (2.1) and (2.3) with the upper limit of the
loop summation index l ¼ n instead of l ¼ ∞. As is well
known, the series expansion for βa is not a Taylor series
with finite radius of convergence, but instead only an
asymptotic expansion. It will be convenient to define the
scaled coefficients

b̄l ≡ bl
ð4πÞl ð2:4Þ

for tables to be presented later. In our analysis of how the
inclusion of higher loops changes the value of the beta
function for a given a ¼ aðμÞ and N, it is useful to define
the ratio

Ra;n ≡ βa;nl
βa;1l

¼ 1þ
Xn
l¼2

�
bl
b1

�
al−1: ð2:5Þ
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B. b1 and b2
The one-loop and two-loop coefficients in the beta

function, b1 and b2, are independent of the scheme used
for regularization and renormalization, while the coeffi-
cients at loop order three and higher, bl for l ≥ 3, are
scheme-dependent. The first two coefficients are [12]

b1 ¼
1

3
ðN þ 8Þ ð2:6Þ

and

b2 ¼ −
1

3
ð3N þ 14Þ: ð2:7Þ

As noted above, since b1 > 0, it follows that for small a,
where the calculation of βa is most reliable, βa > 0, so that
as μ → 0, aðμÞ → 0, i.e., the theory is IR-free. Going in
the opposite direction, to large μ in the ultraviolet, aðμÞ
increases. A basic question is whether this growth is cut off
by a UV zero of the beta function, so that as μ → ∞, aðμÞ
approaches a fixed finite constant, aUV ¼ λUV=ð16π2Þ or
whether, in contrast, βa has no (reliably calculable) UV
zero, so that aðμÞ continues to increase with increasing μ
until it exceeds the regime where the function βa describing
its evolution can be reliably calculated. As is evident from
Eq. (2.7), b2 is negative, so the two-loop beta function does
have an UV zero. However, one must study whether this
is stable when higher-loop terms are included in the beta

function. In order to carry out this analysis, we first
characterize the behavior of the higher-loop coefficients
to the highest order for which they have been calculated,
namely n ¼ 5.

C. b3
The convenient and widely used MS scheme employs

dimensional regularization [13] with modified minimal
subtraction [14]. In the MS scheme, the three-loop coef-
ficient is [12,15]

b3 ¼
11

72
N2 þ

�
461

108
þ 20ζð3Þ

9

�
N þ 370

27
þ 88ζð3Þ

9
: ð2:8Þ

(See also [16] for a review and [17] for the N ¼ 1 special
case of b3 in this scheme.) Numerically,

b3 ¼ 0.15278N2 þ 6.93976N þ 24.4571: ð2:9Þ

Here and below, numerical quantities are listed to the
indicated floating-point accuracies. For all physical N, this
coefficient is positive and is a monotonically increasing
function of N. For later reference, we list values of this and
the other coefficients of the beta function, expressed in
terms of the conveniently rescaled quantities b̄l defined in
Eq. (2.4), in Table I.

TABLE I. Values of the b̄n ¼ bn=ð4πÞn, where bn are the n-loop beta function coefficients in Eqs. (2.1) and (2.3),
for 1 ≤ n ≤ 5, as functions of N for 1 ≤ N ≤ 20 and selected larger values of N. The notation ren means r × 10n.

N b̄1 b̄2 b̄3 b̄4 b̄5

1 0.2387 −0.03588 0.01640 −0.01089 0.09090
2 0.2653 −0.04222 0.02013 −0.01406 0.01227
3 0.2918 −0.04855 0.02401 −0.01755 0.01595
4 0.3183 −0.05488 0.02805 −0.02137 0.02016
5 0.3448 −0.06121 0.03224 −0.02553 0.02492
6 0.3714 −0.06755 0.03658 −0.03001 0.03024
7 0.3979 −0.07388 0.04108 −0.03482 0.03616
8 0.4244 −0.08021 0.04573 −0.03996 0.04269
9 0.4509 −0.08655 0.05054 −0.04542 0.04984
10 0.4775 −0.09288 0.05550 −0.05121 0.05765
100 2.8648 −0.6628 1.1324 −1.87505 5.4152
200 5.5174 −1.2961 3.7918 −6.7359 26.0096
300 8.1700 −1.9293 7.9910 −14.2812 54.2973
400 10.8225 −2.5626 13.7300 −24.2014 63.0752
500 13.4751 −3.1958 21.0087 −36.1873 5.4300
600 16.1277 −3.8291 29.8273 −49.9293 −1.85262e2
700 18.7803 −4.4624 40.1856 −65.1180 −5.95335e2
800 21.4329 −5.0956 52.0837 −81.4440 −1.33083e3
1.0e3 26.7380 −6.3621 80.4992 −1.16270e2 −4.30084e3
2.0e3 53.2639 −12.6947 3.149645e2 −2.53435e2 −1.01045e5
3.0e3 79.7897 −19.0273 7.03408e2 −1.02078e2 −5.63816e5
4.0e3 1.063155e2 −25.3598 1.24583e3 6.472275e2 −1.86330e6
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D. b4
The four-loop coefficient in β, calculated in the MS scheme, is [15]

b4 ¼
5

3888
N3 þ

�
−
395

243
−
14ζð3Þ

9
þ 10ζð4Þ

27
−
80ζð5Þ
81

�
N2 þ

�
−
10057

486
−
1528ζð3Þ

81
þ 124ζð4Þ

27
−
2200ζð5Þ

81

�
N

−
24581

486
−
4664ζð3Þ

81
þ 352ζð4Þ

27
−
2480ζð5Þ

27
: ð2:10Þ

Numerically,

b4 ¼ ð1.2860 × 10−3ÞN3 − 4.11865N2 − 66.5621N

− 200.92637: ð2:11Þ

In contrast to the lower-order coefficients bl with
l ¼ 1, 2, 3, b4 is neither a monotonic function of N nor
of fixed sign. At N ¼ 1, b4 ¼ −271.606 (equivalently,
b̄4 ¼ −0.010892), and asN increases, b4 decreases through
negative values. This coefficient reaches a minimum value
(i.e., −b4 reaches a maximum value) at the large number
[18] N ¼ 2143.16 and then increases, passing through zero

and becoming positive as N increases through the value
N ¼ Nb4z, where

Nb4z ¼ 3218.755: ð2:12Þ

This is the relevant one among the three roots of the cubic
equation b4 ¼ 0 (the other two roots occur at negative, and
hence unphysical, values of N). Values of b̄4 are given in
Table I.

E. b5
In the MS scheme the five-loop coefficient is [15]

b5 ¼
�

13

62208
−
ζð3Þ
432

�
N4 þ

�
6289

31104
þ 26ζð3Þ

81
−
2ζð3Þ2
27

−
7ζð4Þ
24

þ 305ζð5Þ
243

−
25ζð6Þ
81

�
N3

þ
�
50531

3888
þ 8455ζð3Þ

486
−
59ζð3Þ2

81
−
347ζð4Þ

54
þ 7466ζð5Þ

243
−
1775ζð6Þ

243
þ 686ζð7Þ

27

�
N2

þ
�
103849

972
þ 69035ζð3Þ

486
þ 446ζð3Þ2

81
−
2383ζð4Þ

54
þ 66986ζð5Þ

243
−
7825ζð6Þ

81
þ 343ζð7Þ

�
N

þ 17158

81
þ 27382ζð3Þ

81
þ 1088ζð3Þ2

27
−
880ζð4Þ

9
þ 55028ζð5Þ

81
−
6200ζð6Þ

27
þ 25774ζð7Þ

27
: ð2:13Þ

Numerically,

b5 ¼ −ð2.57356 × 10−3ÞN4 þ 1.152827N3 þ 72.23315N2 þ 771.20866N þ 2003.97619: ð2:14Þ

As N increases from 1, this coefficient is initially positive
and is an increasing function of N, but it reaches a
maximum at N ¼ 374.02 and then decreases as N passes
this value. As N increases through the value N ¼ Nb5z,
where

Nb5z ¼ 504.74; ð2:15Þ

b5 decreases through zero to negative values, and remains
negative for larger N (see Table I). Here Nb5z is the relevant
root of the quartic equation b5 ¼ 0 (the other three roots
occur at negative, and hence unphysical, values of N).
These sign changes in b4 and b5 (as calculated in the MS
scheme) at large N affect the behavior of the higher-loop β
function, as will be evident from our analysis below.

A comment is in order here concerning the generic size
of higher-loop coefficients. The expansion (2.3) is a
specific example of a series expansion of a generic quantity
O in this theory, which can be written as

O ¼
X
n

cO;nan; ð2:16Þ

where n denotes the loop order. From asymptotic estimates,
it has been concluded that for n ≫ 1, the coefficient jcO;nj
grows asymptotically dominantly as a factorial, ∼n! (with
additional factors including annb, where a and b are
constants) [5,19]. Since higher-order terms are scheme-
dependent, it is understood that this is the generic behavior.
This forms a basis for the proof that perturbative power
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series expansions in this theory are not Taylor series
expansions with finite radii of convergence, but instead
are only asymptotic expansions. In the present theory, it is
noteworthy that, as is evident from our analysis above
and from Table I, there are values of N for which the
coefficients b4 and b5, as calculated in the MS scheme,
have zeros. For a value of N where bn vanishes (while bn−1
does not vanish), it will obviously not be the case that
jbn=bn−1j exhibits the generic large-order growth as a
function of n. Of course, since the loop orders n ¼ 4
and n ¼ 5 are not≫ 1, these zeros are not inconsistent with
the dominant n! growth in magnitude for n ≫ 1.

F. n-loop beta function and associated ratio Rn

In Fig. 1 we plot the respective n-loop beta functions
βa;nl for n ¼ 2, 2, 3, 4, 5 loops and N ¼ 1. This plot
shows the ranges in a over which the calculations of the
beta function to various loop orders agree with each other.
Another useful way of showing this is to plot the ratio Ra;n
of βa;nl divided by βa;1l, as defined in Eq. (2.5), and we
do this in Figs. 2–4 for the cases N ¼ 1, N ¼ 10, and
N ¼ 100, respectively. Clearly,

Rnþ1

Rn
¼ βa;ðnþ1Þl

βa;nl
; ð2:17Þ

so that the ratio of ratios in Eq. (2.17) measures the extent
to which the n-loop and (nþ 1)-loop beta functions agree
in value for a given a and N.
In the case N ¼ 1, as is evident from Figs. 1 and 2, βa;2l

and βa;3l (equivalently, the curves for R2 and R3) are close
to each other in the interval 0 ≤ a≲ 0.04, but as a increases
beyond 0.04, βa;3l deviates progressively upward relative
to βa;2l. At higher-loop order, βa;3l and βa;4l (equivalently,
the curves for R3 and R4) are close to each other in
essentially the same interval 0 ≤ a ≲ 0.04, and for larger a,

βa;4l deviates below βa;3l (and eventually also below βa;2l).
Even going as high as five-loop order does not significantly
increase the interval in a in which the beta functions
calculated to the highest two successive loop orders,
namely βa;4l and βa;5l in this case, agree with each other.
Numerically, the values of βa;4l and βa;5l (equivalently, the
curves for R4 and R5) are close to each other only for a up
to about 0.05. For larger a, βa;5l deviates progressively
upward relative to βa;4l. An important conclusion from this
analysis and from Figs. 1–4 is that the zero in the two-loop
beta function (for each of the values of N) occurs at too
large a value of a for the perturbative calculation to be
reliable. We have also established the same result for other
values of N.
This behavior contrasts with the situation concerning

an IR zero of the beta function of an asymptotically free
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FIG. 2 (color online). Plot of the ratio R≡ Ra;n of βa;nl divided
by βa;1l, as a function of a for N ¼ 1 and (i) n ¼ 2 (red),
(ii) n ¼ 3 (green), (iii) n ¼ 4 (blue), and n ¼ 5 (black). At
a ¼ 0.18, going from bottom to top, the curves are for n ¼ 4,
n ¼ 2, n ¼ 3, and n ¼ 5.
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FIG. 3 (color online). Plot of the ratio R≡ Ra;n of βa;nl divided
by βa;1l, as a function of a for N ¼ 10 and (i) n ¼ 2 (red),
(ii) n ¼ 3 (green), (iii) n ¼ 4 (blue), and n ¼ 5 (black). At
a ¼ 0.14, going from bottom to top, the curves are for n ¼ 4,
n ¼ 2, n ¼ 3, and n ¼ 5.
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FIG. 1 (color online). Plot of the n-loop β function βa;nl as
functions of a for N ¼ 1 and (i) n ¼ 2 (red), (ii) n ¼ 3 (green),
(iii) n ¼ 4 (blue), and n ¼ 5 (black). At a ¼ 0.18, going from
bottom to top, the curves are for n ¼ 4, n ¼ 2, n ¼ 3, and n ¼ 5.
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non-Abelian gauge theory when calculated to progressively
higher loop orders, up to loop order n ¼ 4 [20–24]. For
example, consider an SUðNcÞ gauge theory with Nf
fermions in the fundamental representation. As one can
see from Fig. 1 in Ref. [23] for an SU(2) gauge theory with
Nf ¼ 8 fermions and from Fig. 2 in [23] for an SU(3)
gauge theory with Nf ¼ 12 fermions, the range of squared
gauge couplings α ¼ g2=ð4πÞ over which the three-loop
and four-loop beta functions for α agree with each other is
significantly larger and extends to stronger coupling than
the range of α for which the two-loop and three-loop beta
functions are in close agreement.

III. ZEROS OF THE BETA FUNCTION

A. βa;2l
In this section we discuss the zeros of the n-loop β

function, βa;nl. Clearly, βa;nl has a double zero at the
origin. In addition to the zero at a ¼ 0, as is well known,
the two-loop beta function, βa;2l, has a UV zero at
a ¼ aUV;2l, where

aUV;2l ¼ −
b1
b2

¼ N þ 8

3N þ 14
: ð3:1Þ

This UV zero of βa;2l is a monotonically decreasing
function of N for physical N, which decreases from the
value

aUV;2l ¼ 9

17
at N ¼ 1 ð3:2Þ

and approaches the limit

lim
N→∞

aUV;2l ¼ 1

3
: ð3:3Þ

As is evident from Eq. (3.1), the corresponding value of
λUV;2l is quite large. However, since a given loop integral
generically produces terms a ¼ λ=ð16π2Þ, one must exam-
ine explicit higher-loop results to judge whether this two-
loop zero is a robust, reliable prediction of perturbation
theory or whether, on the contrary, it occurs at too large a
value of λ to be a reliable prediction. We address this
question here.

B. General methods for analysis of
zeros of βa;nl for n ≥ 3

We proceed to calculate zeros of the n-loop beta function
βa;nl for n ≥ 3. In general, the condition that the n-loop
beta function βa;nl has a zero away from the origin a ¼ 0 is
the polynomial equation of degree n − 1 in a:

Xn
l¼1

bnal−1 ¼ 0: ð3:4Þ

Although only one of the roots of Eq. (3.4) will be relevant
for our analysis, it will be useful to characterize the full set
of roots, as in [23]. To do this, one may make use of
information from the discriminant of Eq. (3.4), denoted
Δn−1ðb1; b2;…; bnÞ. Some relevant formulas on discrim-
inants are given in the Appendix.

C. βa;3l
The condition that the three-loop beta function, βa;3l,

vanishes at a nonzero value of a, in addition to the IR zero
at a ¼ 0, is the special case of Eq. (3.4) with n ¼ 3, viz.,
the quadratic equation b1 þ b2aþ b3a2 ¼ 0. We find that
for b3 calculated in the MS scheme, this equation has no
physical solutions. Formally, the solutions of this quadratic
equation are

a ¼ 1

2b3

�
−b2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2ðb1; b2; b3Þ

p �
: ð3:5Þ

However, these expressions are complex, as is evident from
the fact that the discriminant is negative (for all physical
values of N):

Δ2ðb1; b2; b3Þ ¼ −
1

81

�
33

2
N3 þ 512N2 þ 4412N þ 10076

�
−
16

27
ð5N2 þ 62N þ 176Þζð3Þ

¼ −ð0.2037N3 þ 9.8826N2 þ 98.6336N þ 249.7651Þ: ð3:6Þ
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FIG. 4 (color online). Plot of the ratio R≡ Ra;n of βa;nl divided
by βa;1l, as a function of a for N ¼ 100 and (i) n ¼ 2 (red),
(ii) n ¼ 3 (green), (iii) n ¼ 4 (blue), and n ¼ 5 (black). At
a ¼ 0.06, going from bottom to top, the curves are for n ¼ 4,
n ¼ 2, n ¼ 3, and n ¼ 5.
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Thus, with b3 calculated in the MS scheme, βa;3l does not
have any physical UV zero.

D. βa;4l
The condition that βa;4l ¼ 0 for a ≠ 0 is the n ¼ 4

special case of Eq. (3.4), namely, the cubic equation

b1 þ b2aþ b3a2 þ b4a3 ¼ 0: ð3:7Þ

The nature of the roots of Eq. (3.7) is determined by the
sign of the discriminant,

Δ3 ≡Δ3ðb1; b2; b3; b4Þ ¼ b22b
2
3 − 27b21b

2
4 − 4ðb1b33 þ b4b32Þ

þ 18b1b2b3b4: ð3:8Þ

The following properties of Δ3 will be useful here [25]:
(i) if Δ3 > 0, then all of the roots of Eq. (3.7) are real; (ii) if
Δ3 < 0, then Eq. (3.7) has one real root and a complex-
conjugate pair of roots; (iii) if Δ3 ¼ 0, then at least two of
the roots of Eq. (3.7) coincide. We find that, with b3 and b4
calculated in the MS scheme, Δ3ðb1; b2; b3; b4Þ (which is a
polynomial of degree 8 in N) is negative for all physical N.
Hence, the solutions to Eq. (3.7) consist of one real root
and a complex-conjugate pair of roots. We display values of
the real root aUV;4l for various values of N in Table II. We
find that as N increases from 1 to N ≃ 770, the real root
decreases from 0.233 to approximately 0.0714, but then
increases again and diverges as N↗Nb4z ¼ 3218.755,
where b4 vanishes. For N ≥ Nb4z, βa;4l has no physical
UV zero. [The positive real root that diverged as N ↗Nb4z
now occurs at negative real values for this range of N, and
the other two roots of Eq. (3.7) continue to be a complex-
conjugate pair.]

E. βa;5l
The condition for a zero of βa;5l with a ≠ 0 is the special

case of Eq. (3.4) with n ¼ 5, namely, the quartic equation

b1 þ b2aþ b3a2 þ b4a3 þ b5a4 ¼ 0: ð3:9Þ

The discriminant, Δ4 ≡ Δ4ðb1; b2; b3; b4; b5Þ, of this equa-
tion is given by Eqs. (9) and (3) in Appendix. We have
calculated this and found that it is positive for all physicalN
except for the interval

493.096 < N < 504.740: ð3:10Þ

We denote the lower end of this interval as
NΔ4z ¼ 493.096. For the interval of N from 1 to NΔ4z,
Eq. (3.9) has no physical solutions. As N (analytically
continued from the positive integers to the reals) increases
through the value NΔ4z, a double real root of Eq. (3.9)
appears at a ¼ 0.1264 and then bifurcates into two real
roots. The smaller of these is the physical aUV;5l and

decreases below 0.1264 as N increases beyond NΔ4z, while
the larger root increases above a ¼ 0.1264 as N increases
above NΔ4z. As N (again, considered as a real variable)
approaches the value N ¼ 504.740 from below, the larger
real root diverges, leaving only the lower one. This
continues to decrease as N increases further. We list values
of aUV;5l for various N in Table II.

F. Comparison of calculations to different loop orders

A necessary condition for a perturbative calculation of
the beta function βa to be reliable is that the fractional
change

���� βa;nþ1 − βa;n
βa;n

���� ð3:11Þ

should generally decrease as the loop order n increases, at
least away from a zero of βa;n. Another necessary condition
for the reliability of a result on a zero of the n-loop beta
function, βa;n, is that when one calculates the beta function
to the next higher-loop order, viz., βa;nþ1, the zero should
still be present and its value should not shift very much. For
the specific case at hand, where we are investigating a
possible UV zero of βa, this condition is that the fractional
shift

TABLE II. Values of the UV zero aUV;nl of the n-loop beta
function, βa;nl, for n ¼ 2;…; 5, as a function of N, with bn, n ¼
3; 4; 5 calculated in the MS scheme. The dash notation—means
that βa0;nl has no physical UV zero. The special values of N are
NΔ4z ¼ 493.096 from Eq. (3.10), Nb5z ¼ 504.740 from
Eq. (2.15), and Nb4z ¼ 3218.755 from Eq. (2.12).

N aUV;2l aUV;3l aUV;4l aUV;5l

1 0.5294 − 0.2333 −
2 0.5000 − 0.2217 −
3 0.4783 − 0.2123 −
4 0.4615 − 0.2044 −
5 0.4483 − 0.1978 −
6 0.4375 − 0.1920 −
7 0.4286 − 0.1869 −
8 0.42105 − 0.1823 −
9 0.4146 − 0.1783 −
10 0.4091 − 0.1746 −
100 0.3439 − 0.1012 −
NΔ4z 0.3356 − 0.07353 0.12636
500 0.3355 − 0.07341 0.08045
Nb5z 0.3355 − 0.073325 0.073325
1000 0.3344 − 0.07241 0.02276
2000 0.3339 − 0.1054 0.01231
3000 0.3337 − 0.5475 0.008850
Nb4z 0.3337 − − 0.008366
4000 0.3336 − − 0.007042
104 0.3334 − − 0.003460
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jaUV;nþ1 − aUV;nj
aUV;n

ð3:12Þ

should be small. Our calculations above show that neither
of these two necessary conditions is satisfied for this theory.
As was evident from our plots of the n-loop beta functions
and the ratios Rn of the n-loop beta function divided by
the one-loop beta function given above, the fractional
change (3.11) is not small for the values of a that are
relevant for the analysis of a possible UV zero, even for the
highest loop order n that we have investigated. Recall from
Eqs. (3.1)–(3.3) that the values of aUV;2l range from 9=17
to 1=3 as N increases from 1 to ∞. Furthermore, although
the two-loop beta function βa;2l exhibits a UV zero, this is
absent in the three-loop beta function βa;3l and although the
four-loop and five-loop beta functions have UV zeros for
certain ranges of N, they occur at rather different values
than for βa;2l. For example, for N ¼ 1, aUV;4l ¼ 0.233,
which is substantially smaller than aUV;2l ¼ 0.529, and
neither the three-loop nor five-loop beta function has a UV
zero. A similar situation holds for N ¼ 100. For N ¼ 1000,
aUV;4l ¼ 0.0724, which again is considerably smaller
than aUV;2l ¼ 0.334, and βa;3l has no UV zero, while
aUV;5l ¼ 0.0228, which is a substantially different value
than both the two-loop and four-loop UV zeros. Similar
comments apply for other values of N. Our higher-loop
analysis therefore leads us to conclude that the (perturba-
tively calculated) beta function of this theory does not
exhibit a robust, reliably calculable UV zero to the highest
loop order, namely five loops, to which it has been
computed.

IV. LARGE-N LIMIT

Further insight into the question of a UV zero of the beta
function of this theory can be obtained from an analysis of
the limit

N → ∞; with xðμÞ≡ NaðμÞ a finite function of μ:

ð4:1Þ

We denote this as the LN limit and will use the symbol
limLN to refer to it. For the purpose of this analysis, we
define a rescaled beta function that is finite in the LN limit.
For large N, the two scheme-independent coefficients have
the asymptotic behavior b1 ∼ N=3 and b2 ∼ −N, while
bl ∼ const × Nl−1 for l ≥ 3 for the higher-loop coeffi-
cients that have been calculated in the MS scheme. From
Eq. (2.6) one can write

b1 ¼ b1;1N þ b1;0 where b1;1 ¼
1

3
; b1;0 ¼

8

3
: ð4:2Þ

We thus extract the leading-N factors and define

b
̬

l ¼ lim
LN

bl
Nl−1 for l ≥ 2; ð4:3Þ

so that these b
̬

l are finite in the large-N limit. The explicit

values of the b
̬

l follow from the expressions given above

for the bl; thus, b
̬

2 ¼ −1, b
̬

3 ¼ 11=72, etc. Since the LN
limit is defined so that xðμÞ is a finite function of μ, the
appropriate beta function that is finite in this limit is

βx ¼
dx
dt

¼ lim
LN

Nβa

¼ x2
�
b1;1 þ

1

N

X∞
l¼2

b
̬

lxl−1
	
: ð4:4Þ

The n-loop beta function in the LN limit, denoted βx;nl,
is defined via Eq. (4.4) with the upper limit on the sum
being l ¼ n rather than l ¼ ∞. From Eq. (4.4), it is
evident that in the LN limit, for any given loop order n,
βx;nl has no UV zero xUV;nl, since

lim
LN

1

N

Xn
l¼2

�
b
̬

l

b1;1

�
xl−1 ¼ 0: ð4:5Þ

Hence, in the N → ∞ limit, as μ increases, xðμÞ increases,
eventually exceeding the range of values where the per-
turbative n-loop expansion of βx;nl is reliable. This result in
the LN limit agrees with our specific calculations for large
finite values of N as shown in Table II.

V. EFFECT OF SCHEME TRANSFORMATIONS

In view of the fact that the bl with l ≥ 3 are scheme-
dependent, one is motivated to study the effect of a scheme

transformation on the beta function of this λj~ϕj44 theory. It
should be recalled that scheme dependence is also present,
e.g., in higher-loop perturbative calculations in quantum
chromodynamics (QCD) and does not prevent one from
using such calculations successfully in comparisons with
data [26]. If one were interested in a zero of the beta
function at zero coupling, as with the UV fixed point of an
asymptotically free gauge theory like QCD [27] or the IR

fixed point of the λj~ϕj44 theory, then one would expect that it
should be possible to transform away the terms in the beta
function at loop order l ≥ 3, and an explicit construction
that does this was presented in [28]. However, it was also
pointed out in [28] that it is considerably more difficult to
construct an acceptable scheme transformation that
removes some set of coefficients at loop order 3 or higher
at a zero of the beta function away from the origin in
coupling constant space than it is at the origin.
Reference [28] gave a set of conditions that such a scheme
transformation must satisfy to be physically acceptable.
Here we recall the basic formalism; we refer the reader to
[28–30] for further details (see also [31]).
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A scheme transformation can be expressed as a mapping
between λ and λ0, or equivalently, a and a0, which we write
as a ¼ a0fða0Þ. We will refer to fða0Þ as the scheme
transformation function. Since scheme transformations
cannot change the theory in the limit where the coupling
goes to zero, one requires that fð0Þ ¼ 1. We expand fða0Þ
as a power series of the form

fða0Þ ¼ 1þ
Xsmax

s¼1

ksða0Þs; ð5:1Þ

where the ks are constants, and, a priori, smax may be finite
or infinite. After the scheme transformation is applied, the
beta function in the new scheme has the form (2.3) with a
replaced by a0 and bl replaced by b0l. Expressions for the
b0l in terms of the bl and ks were given in [28].
Reference [30] presented a generalized one-parameter
family of scheme transformation denoted SR;m;k1 with m ≥
2 and smax ¼ m that can render b0l ¼ 0 for 3 ≤ l ≤ mþ 1
inclusive and can be applied at a zero of the beta function
away from the origin.
A natural approach is to investigate the effect of applying

scheme transformations in the one-parameter family SR;2;k1
to the beta function in the MS scheme in order to render
b30 ¼ 0 in the transformed scheme. This family of scheme
transformations depends on a parameter k1 and has

k2 ¼
b3
b1

þ b2
b1

k1 þ k21 ð5:2Þ

(with ks ¼ 0 for s ≥ 3). If this scheme transformation were
to be applicable, then in the transformed scheme the beta
function would have the form, for n ¼ 3,

βa0;3l ¼ ða0Þ2½b1 þ b2a0� ð5:3Þ

and, for n ≥ 4,

βa0;nl ¼ ða0Þ2
�
b1 þ b2a0 þ

Xn
l¼4

b0lða0Þl−1
	

for n ≥ 4:

ð5:4Þ

One of the necessary conditions for the acceptability of
the scheme transformation is that fða0Þ must be positive
and not too different from unity, since otherwise the
transformation or its inverse would map a reasonably
small value of the coupling, for which perturbative methods
could be reliable, to an excessively large value, beyond
the region where these methods could be reliably applied.
In particular, this condition must be satisfied at (and
in the neighborhood of) the scheme-independent value
a ¼ aUV;2l ¼ a0UV;2l. We thus consider the evaluation of
fða0Þ at this point. We have

fða0UV;2lÞ ¼ 1þ b1b3
b22

þ b21
b22

k21; ð5:5Þ

where b3 is calculated in the MS scheme. In addition to the
first term, both the second and third terms on the right-hand
side of Eq. (5.5) are positive in the MS scheme, since b3 is
positive. Given that the coefficient of k21 is positive, it
follows that fða0UV;2lÞ is minimized by taking k1 ¼ 0. We
thus choose k1 ¼ 0, so that SR;2;k1 reduces to the SR;2
transformation [28–30]. Even with this choice, we find that
as N increases, fða0UV;2lÞ quickly becomes excessively
large, preventing one from using this scheme transforma-
tion over a very large interval of values of N. A second
condition is that the Jacobian da=da0 should not approach
or equal zero, since otherwise the scheme transformation is
singular. As with fða0Þ, we require this condition to be
satisfied at (and in the neighborhood of) a ¼ aUV;2l ¼
a0UV;2l. At this point,

J ¼ 1þ 3b1b3
b22

þ b1
b2

k1 þ
3b21
b22

k21: ð5:6Þ

Since the term 3b1b3=b22 is positive, the choice that we have
made, namely k1 ¼ 0, also guarantees that J stays positive.
By construction, after application of the SR;2;k1 scheme

transformation, the three-loop beta function βa0;3l, has a
UV zero, in contrast to the situation in the original MS
scheme, where it does not. This is evident from the n ¼ 3
special case of Eq. (5.4). Since b03 ¼ 0, this UV zero occurs
at the same value of a0 as the two-loop value, i.e.,

a0UV;3l ¼ a0UV;2l ¼ aUV;2l ¼ −
b1
b2

: ð5:7Þ

However, in order for one to take this as a significant
indication that there is, in fact, a UV zero in the beta
function, it must continue to be present when calculated to
higher order (at least for the range of N where this SR;2
scheme transformation can be applied) and at higher orders,
the fractional change in the value should decrease to be
reasonably small values.
To investigate whether these conditions are satisfied, we

have calculated the four-loop and five-loop beta functions
in the SR;2-transformed scheme, βa0;4l and βa0;5l and have
investigated their zeros. For this calculation we use the
expressions for b04 and b05 from [28–30]. A UV zero of
the four-loop beta function in the transformed scheme,
βa0;4l, is given by the relevant root of the cubic equation
b1 þ b2a0 þ b04ða0Þ3 ¼ 0, namely the positive root nearest
to the origin. Similarly, a UV zero of βa0;5l, would be
given by the relevant root of the quartic equation
b1 þ b2a0 þ b04ða0Þ3 þ b05ða0Þ4 ¼ 0, namely a positive root
nearest to the origin. We show the results in Table III
for the range of N where fða0UV;2lÞ is not excessively
large, namely 1 ≤ N ≲ 10. For illustration, we also show
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calculations for the value N ¼ 100, although fða0Þ is
arguably too large for the scheme transformation to be
applicable at this value of N. As is evident from Table III,
although βa0;4l has a UV zero, it occurs at a considerably
smaller value of a0 than the two-loop value, a0UV;2l.
Furthermore, we find that at five-loop order the beta
function in the transformed scheme, βa0;5l, does not have
a (physical) UV zero. (It has two pairs of complex-
conjugate roots). Therefore, over the interval of N where
the SR;2 scheme transformation can be applied without
excessively large fða0Þ, the necessary conditions stated
above for these results to be consistent with a robust UV
zero of the beta function are not satisfied; i.e., although
βa0;4l has a UV zero, it occurs at a considerably smaller
value of a0 than a0UV;2l and, furthermore, βa0;5l does not
have a UV zero. By continuity, our results also apply for an
(infinite) set of other SR;2;k1 scheme transformations whose
functions fða0Þ are close to the function fða0Þ for SR;2,
namely the set with small jk1j.
Our results from the analysis of the beta function up to

five-loop order after application of the SR;2;k1 scheme
transformations thus agree with our results from the
analysis in the original MS scheme; in both studies, we
do not find evidence that the beta function of this theory has
a UV zero, at least insofar as we can use perturbative
methods reliably to investigate it. Indeed, this was already
clear from Figs. 1–4. These showed that although the two-
loop beta function has a UV zero, this occurs at a value
aUV;2l (dependent on N) that is well beyond the range
where the perturbative calculation is reliable, since the
respective higher-loop beta functions βa;nl with n ¼ 3; 4; 5
loops differ considerably from βa;2l for a≃ aUV;2l. The
absence of a reliably calculable UV zero of βa;nl means
that, to the highest loop order, namely n ¼ 5 loops, to
which the beta function has been calculated, λðμÞ increases
with increasing μ, eventually exceeding the range where

perturbative methods of analysis can be used. We also recall
the well-known fact that the series for the beta function is
only an asymptotic expansion. Some recent discussions of
possibilities for the nonperturbative behavior of λj~ϕj44
theory include [5,32].
A scheme transformation constitutes one type of resum-

mation of a perturbation series. A different method of
analysis is provided by Padé approximants [33]. We
calculate and analyze these next.

VI. ANALYSIS WITH PADÉ APPROXIMANTS

Given a series for an abstract function fðzÞ ¼ P
m
s¼0 csz

s,
the ½p; q� Padé approximant is the rational function

½p; q� ¼
Pp

j¼0NjzjPq
k¼0 Dkzk

ð6:1Þ

with polynomials in the numerator and denominator
of degree p and q, respectively, where pþ q ¼ m [33].
Without loss of generality, one may take D0 ¼ 1, so that
N0 ¼ c0. The coefficients Nj with j ¼ 1;…; p and Dk
with k ¼ 1;…; q are determined by the m coefficients
c1;…; cm. Thus, a ½p; q� Padé approximant to fðzÞ is a
closed-form rational approximation whose Taylor series
expansion in z matches the power series for fðzÞ to the
highest order to which it is calculated.
It is natural to inquire how the zeros of various Padé

approximants to βa;nl compare with those of βa;nl, as we
did, e.g., in [21] for the IR zero of the beta function of a
non-Abelian gauge theory. For this purpose, it is convenient
to extract the overall factor of a2 in βa;nl and thus compute
the Padé approximants to the function βa;nl=a2 ¼
b1 þ

P
n
l¼2 bla

l−1. At a given loop order n, we can
calculate the ½p; q� Padé approximants with pþ q ¼
n − 1. The ½n − 1; 0� Padé approximant to βa;nl=a2 is the
function itself, and the ½0; n − 1� approximant has no zeros
so we do not consider these. The use of Padé approximants
to scattering amplitudes has a long history in particle
physics and, as usual, the fact that the Padé approximant
has a Taylor series expansion with a finite radius of
convergence is not to be taken as implying that the actual
function being approximated (in this case, βnl=a2) has such
a Taylor series expansion in powers of the coupling; indeed,
it is known that the series expansion (2.3) is only an
asymptotic expansion [19,34]. Clearly, there are several
necessary conditions for a zero of a ½p; q� Padé approx-
imant to βnl=a2 to be taken to be physically meaningful.
Two of these conditions are (i) that this zero must occur on
the positive real axis in the complex a plane at a value that
is not too different from aUV;2l; (ii) the location of the zero
must be closer to the origin a ¼ 0 than any of the q poles.
Moreover, no implication is made that these approximants
accurately describe the large-a behavior of the beta
function (which would be βn;l ∝ a2þp−q).

TABLE III. Values of the transformation function fða0UV;2lÞ
and resultant UV zeros a0UV;nl of the n-loop beta function, βa0;nl,
for n ¼ 2;…; 5, as a function of N, resulting from the application
of the SR;2 scheme transformation to the MS scheme. The dash
notation—means that βa;nl has no physical UV zero.

N fða0UV;2lÞ a0UV;2l, n ¼ 2; 3 a0UV;4l a0UV;5l
1 4.0410 0.5294 0.1917 −
2 3.9961 0.5000 0.1822 −
3 3.9726 0.4783 0.1746 −
4 3.9642 0.4615 0.1683 −
5 3.9668 0.4483 0.1630 −
6 3.9776 0.4375 0.1584 −
7 3.9947 0.4286 0.1544 −
8 4.0167 0.42105 0.1509 −
9 4.0427 0.4146 0.1477 −
10 4.0719 0.4091 0.1448 −
100 8.3846 0.3439 0.08354 −
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We have carried out this analysis with Padé approxim-
ants and have found that it confirms the conclusions that
we reached from our study of the n-loop beta function
βa;nl itself. For example, let us consider the case N ¼ 1.
As with other values of N, the three-loop beta function,
βa;3l, has no UV zero. (Aside from the double zero at
a ¼ 0, it has a complex-conjugate pair of zeros at
a ¼ 0.08705� 0.29084i.) Similarly, the relevant Padé
approximant to βa;3l=a2, namely [1, 1], has only an
unphysical zero at a ¼ −0.2594 (as well as a pole at an
unphysical point even closer to the origin, namely
a ¼ −0.19745). At the four-loop level, βa;4l has a UV
zero at a ¼ 0.2333, but this is not reproduced by either
of the relevant Padé approximants to βa;4l=a2; the [1, 2]
approximant has an unphysical zero at a ¼ −0.1294 (and
unphysical poles at a ¼ −0.1138 and a ¼ −1.2005), while
the [2, 1] approximant has an unphysical zero at a ¼
−0.1400 and a UV zero at a ¼ 1.4543, much larger than
the UV zero of βa;4l (as well as a pole nearer to the origin,
at the unphysical value a ¼ −0.1198).
At the five-loop level, βa;5l has no physical UV zero.

(In addition to the double zero at a ¼ 0, it has zeros at the
two complex-conjugate pairs a ¼ −0.09440� 0.14585i
and a ¼ 0.1421� 0.1213i.) Of the three relevant Padé
approximants to βa;5l=a2, the [1, 3] approximant has a zero
at a ¼ −0.0949 (and poles at a ¼ −0.0899, a ¼ −0.4644,
and a ¼ 1.1714); [2, 2] has zeros at a ¼ −0.0874 and a ¼
−0.5298 (and poles at a ¼ −0.0840 and a ¼ −0.3013),
and [3, 1] has zeros at a ¼ −0.10245 and a ¼ 0.2439�
0.6002i (and a pole at a ¼ −0.09535). Evidently, all of the
zeros of these Padé approximants are unphysical.
We find similar results for other values of N. Thus, from

our calculation and analysis of Padé approximants to the
n-loop beta function, we add to our evidence against a

stable, reliably calculable UV zero in the λj~ϕj44 theory. Other
resummation methods such as a Borel transform could
also be applied, but the findings from these two methods,
namely scheme transformations and Padé approximants
already provide strong evidence against a robust UV zero in
the beta function for this theory up to the five-loop order.

VII. DISCUSSION

In this section we compare our present results with those
on zeros of the beta function for some other theories. We
begin with the nonlinear σ model in d ¼ 2þ ϵ dimensions

[10]. Both the λj~ϕj44 theory and the nonlinear σ model in
d ¼ 2þ ϵ are IR-free, but in the NLσM one can choose a
parameter, namely ϵ, to approach zero so as to make the
UV fixed point occur at an arbitrarily weak coupling. In this
NLσM let us define appropriately rescaled quantities ~λ≡
λN and β~λ ¼ d~λ=dt, so that Eq. (1.4) with Eq. (1.5) reads

β~λ ¼ ϵ~λ

�
1 −

~λ
~λc

�
; ð7:1Þ

where ~λc ¼ 2πϵ. As noted before, this result was obtained
by summing an infinite set of Feynman diagrams that
dominate in the large-N limit. By letting ϵ → 0þ, one can
make the UVFP occur at an arbitrarily small value of ~λc.
A different but related comparison can be made with the

calculation of the IR zero of the beta function for the gauge
coupling, βα ¼ dα=dt [where α ¼ g2=ð4πÞ], that is present
in an asymptotically free vectorial non-Abelian gauge
theory in d ¼ 4 dimensions with gauge group G and an
appropriately large fermion content. Thus, consider such a
theory with Nf copies of massless fermions transforming
according to a representation R of G and denote Nf;b1z as
the upper bound on Nf for asymptotic freedom and Nf;b2z

as the value of Nf such that for Nf > Nf;b2z, the one-loop
and two-loop terms in βα have opposite sign. Since
Nf;b2z < Nf;b1z, it follows that there is an interval in Nf,
namely Nf;b2z < Nf < Nf;b1z for which the two-loop βα
function has an IR zero. Importantly, all of the n-loop beta
functions for n ¼ 2; 3; 4 loop orders consistently exhibit an
IR zero, and the fractional shift in this IR zero is reduced
when one compares the beta functions at n ¼ 3 and n ¼ 4
loop order, as contrasted with the shift between the beta
functions at n ¼ 2 and n ¼ 3 loop order. This is evident
from Figs. 1 and 2 of Ref. [23]. Furthermore, with
appropriate choices of G, R, and Nf, one can make this
IR zero occur at a small value of α [35]. In particular,
consider an asymptotically free vectorial gauge theory with
G ¼ SUðNcÞ, R equal to the fundamental representation,
Nc → ∞, Nf → ∞, with r ¼ Nf=Nc fixed, and ξðμÞ≡
αðμÞ2Nc a finite function of μ. Then for r in the interval
34=13 < r < 11=2, the rescaled beta function βξ ¼ dξ=dt
has an IR zero at the two-loop level at

ξUV;2l ¼ 4πð11 − 2rÞ
13r − 34

: ð7:2Þ

The value of ξUV;2l can be made arbitrarily small by letting

r approach 11=2 from below. The situation in the λj~ϕj44
theory is fundamentally different from that in this non-
Abelian gauge theory because there is no parameter that
can be tuned to make the two-loop value of aUV;2l ≪ 1 or,
in the large-N limit, the value of xUV;2l ≪ 1. This is similar
to the situation in the U(1) gauge theory in d ¼ 4 with Nf

copies of a charged fermion, where we found evidence
against a UVFP in [8] (see also [9]).
In the present work we have focused on a simple OðNÞ

scalar field theory involving a single coupling, using
calculations to the rather high order of five loops. This
is complementary to studies of more complicated theories
with more than one coupling, involving RG calculations to
lower than five-loop order. In passing, we add a few
comments on these theories. The RG behaviors of theories
with scalar and fermion fields have been studied for
many years, both perturbatively and nonperturbatively
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(for references to the literature, see, e.g., [36]). For small
values of the quartic scalar coupling λ and the Yukawa
coupling y, both βλ ¼ dλ=dt and βy ¼ dy=dt are positive,
so that near the origin ðλ; yÞ ¼ ð0; 0Þ, as μ decreases, the
RG flow is toward the origin, i.e. a free theory. One may
investigate such theories for possible fixed points of the
renormalization group away from the origin. For suffi-
ciently large couplings, one must use nonperturbative
methods, such as lattice simulations [37]. Studies have
also been performed of models with gauge, fermion, and
scalar fields, and hence three or more couplings [38,39].
In some cases, UV-stable fixed points have been reported
(e.g., [39] and references therein), motivating continued
interest in the phenomenon of asymptotic safety. For the
actual Standard Model, an intriguing feature is that because
of the the large top-quark Yukawa coupling, instead of
increasing for large μ in the ultraviolet, the quartic Higgs
coupling actually decreases and eventually vanishes [40],
although this is sensitive to ultraviolet completions of the
Standard Model.

VIII. CONCLUSIONS

In this paper we have investigated whether there is a
reliably calculable ultraviolet zero of the beta function in

the OðNÞ λj~ϕj44 field theory. This question is of interest
since the two-loop beta function does have a UV zero. We
have examined whether two necessary conditions are met,
namely that the existence of this UV zero persists to higher-
loop order and that higher-order n-loop calculations yield
reasonably stable values of aUV;nl ¼ λUV;nl=ð16π2Þ. We
have carried out this study using calculations of the n-loop
beta functions βa;nl for three-, four-, and five-loop order in
the MS scheme. We have shown that in this scheme,
(i) βλ;3l has no UV zero; (ii) βλ;4l has a UV zero only for a
limited range of N, and has no UV zero for sufficiently
large N; (iii) βλ;5l has no UV zero for N from 1 to almost
500, and although it does have a UV zero for larger values
of N, this zero occurs at quite a different value of a than
two-loop UV zero. Thus, we find that neither of the two
necessary conditions for a robust, reliably calculable UV
zero of the beta function is satisfied for any N. This
inference is confirmed by our study of the effect of
applying scheme transformations to the beta function
and from calculations of Padé approximants. Evidently,
the zero in βa;2l occurs at too large a value for the two-loop
perturbative calculation to be accurate. We thus conclude
that in the range of quartic coupling λ, or equivalently, a,
where the perturbative calculation of βλ;nl is reliable, the

OðNÞ λj~ϕj44 theory does not exhibit robust evidence of a
UV zero up to the level of n ¼ 5 loops for any N. This
conclusion is in accord with the current view of the OðNÞ
λj~ϕj4 theory in d ¼ 4 dimensions as an effective field
theory, to be applied only over a restricted range of
momentum scales μ.
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APPENDIX: DISCRIMINANTS

Our study of the zeros of the n-loop beta function of
the λj~ϕj44 theory requires an analysis of the zeros of the
polynomial equation (3.4), of degree n − 1 in the variable a
given by Eq. (2.2). At the loop order l ≥ 3, this analysis
is considerably expedited by the use of the corresponding
discriminant.
Consider the polynomial of degree m in an abstract

variable z,

PmðzÞ ¼
Xm
s¼0

cszs ðA1Þ

and denote the set of m roots of the equation PmðzÞ ¼ 0 as
fz1;…; zmg. The discriminant of this equation is defined
as [25]

Δm ≡
�
cm−1
m

Y
i<j

ðzi − zjÞ
	
2

: ðA2Þ

Since Δm is a symmetric polynomial in the roots of the
equation PmðzÞ ¼ 0 (being proportional to the square of the
Vandermonde polynomial of these roots), the symmetric
function theorem implies that it can be expressed as a
polynomial in the coefficients of PmðzÞ [41]. We will
sometimes indicate this dependence explicitly, writing
Δmðc0;…; cmÞ. The discriminant Δm is a homogeneous
polynomial of degree mðm − 1Þ in the roots fzig. For the
application to the analysis of the roots of Eq. (3.4), the
correspondence is z ¼ a and

cs ¼ bsþ1; s ¼ 0;…; m: ðA3Þ
To analyze the zeros of βa;nl away from the origin, given
by the roots of Eq. (3.4), of degree m ¼ n − 1, we will thus
use the discriminant Δn−1ðb1; b2;…; bnÞ. Because of the
homogeneity properties of this discriminant,

Δn−1ðb̄1; b̄2;…; b̄nÞ ¼ ð4πÞ−ðnþ1Þðn−2ÞΔn−1ðb1; b2;…; bnÞ:
ðA4Þ

The discriminant Δm is most conveniently calculated in
terms of the Sylvester matrix of PðzÞ and dPðzÞ=dz,
equivalent to the resultant matrix, denoted SP;P0 , of dimen-
sion ð2m − 1Þ × ð2m − 1Þ [25]:

Δm ¼ ð−1Þmðm−1Þ=2c−1m detðSP;P0 Þ: ðA5Þ

For our analysis, we use Δm for m ¼ 2; 3; 4. The m ¼ 2
discriminant, Δ2, is elementary: Δ2 ¼ c21 − 4c0c2. For
m ¼ 3,
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SP3;P3
0 ¼

0
BBBBBB@

c3 c2 c1 c0 0

0 c3 c2 c1 c0
33 2c2 c1 0 0

0 3c3 2c2 c1 0

0 0 3c2 2c2 c1

1
CCCCCCA

ðA6Þ

so that

Δ3ðc0; c1; c2; c3Þ ¼ c21c
2
2 − 27c20c

2
3 − 4ðc0c32 þ c3c31Þ

þ 18c0c1c2c3: ðA7Þ

For m ¼ 4,

SP4;P4
0 ¼

0
BBBBBBBBBBB@

c4 c3 c2 c1 c0 0 0

0 c4 c3 c2 c1 c0 0

0 0 c4 c3 c2 c1 c0
4c4 3c3 2c2 c1 0 0 0

0 4c4 3c3 2c2 c1 0 0

0 0 4c4 3c3 2c2 c1 0

0 0 0 4c4 3c3 2c2 c1

1
CCCCCCCCCCCA

ðA8Þ

so that

Δ4ðc0; c1; c2; c3; c4Þ ¼ c21c
2
2c

2
3 − 128c20c

2
2c

2
4 − 4c31c

3
3 þ 256c30c

3
4 − 27ðc20c43 þ c41c

2
4Þ − 4ðc0c32c23 þ c21c

3
2c4Þ

þ 18ðc0c1c2c33 þ c31c2c3c4Þ − 6c0c21c
2
3c4 þ 144ðc0c21c2c24 þ c20c2c

2
3c4Þ þ 16c0c42c4

− 192c20c1c3c
2
4 − 80c0c1c22c3c4: ðA9Þ
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