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Chiral magnetic and vortical effects in higher dimensions at weak coupling
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Chiral magnetic effect and chiral vortical effect are parity odd transport phenomena originating from
chiral anomaly, and have generalizations to all even dimensional space-time higher than four dimensions.
We attempt to compute the associated P-odd retarded response functions in the weak coupling limit of
chiral fermion theory in all even dimensions, using the diagrammatic technique of real-time perturbation
theory. We also clarify the necessary Kubo formula relating the computed P-odd retarded correlation
functions and the associated anomalous transport coefficients. We speculate on the 8-fold classification of

topological phases.
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I. INTRODUCTION

The physics of chiral anomaly in four space-time dimen-
sions has been explored extensively, which leads to many
interesting dynamical phenomena, while at the same time,
many of them are topologically protected against possible
modifications due to interactions. Hydrodynamic transport
phenomena arising from chiral anomaly in the finite temper-
ature/density regime have received a recent surge of interest,
partly due to their importance in heavy-ion collisions and
condensed matter systems of Weyl semimetals. At leading
order in derivative expansion, there exist chiral magnetic
effect (CME) [1-5] and chiral vortical effect (CVE) [6,7].
The CME is the phenomenon of induced current along the
direction of the applied magnetic field,

J =0,B, (1.1)
with a chiral magnetic conductivity o,. For the system of a
single Weyl fermion in four dimensions with a chemical
potential u, we have

(1.2)

For the CVE, the fluid vorticity @ = (1/2) VXD playsarole
of magnetic field instead,

(1.3)

with the chiral vortical conductivity for a single Weyl spinor

J =oyw,

PACS numbers: 11.10.Kk, 11.30.Rd, 11.10.Wx, 12.38.Bx

In addition to the above anomaly induced charge current,
there also appears anomaly induced energy flow, or momen-
tum density, 7% = P [8-10]. For a single Weyl fermion,
we have

= 1 1 - 1 1 o
P = <@ﬂ2+ﬁT2>B+ <Qﬂ3 +8/4T2)a). (15)

Interestingly, these anomaly induced transport coefficients
can be fixed by a purely hydrodynamic consideration of the
second law of thermodynamics [11], that is, the nondecrease
of entropy in time, except the pieces in the above containing
T? which have been argued to be related to the mixed current-
gravitational anomaly [12]. However, there also exist differ-
ent claims on the origin of such 72 corrections, for example,
Refs. [13—15]. The values we show in the above are from the
free fermion computations [12,16,17], and there are some
demonstrations of their universality in strong coupling
holography [18], in a perturbative weak coupling Yukawa
theory [19], and in effective action approach [20-25].

The CME and CVE have generalizations in even space-
time dimensions higher than four [8,26]. Instead of
magnetic field or vorticity, we have a set of several P-
odd vectors: in 2n dimensions there are n possible such
vectors as

1
B/(ls,l) = ;eﬂyﬂlyllnﬂnilbnil My(aﬂl u”l) T (aﬂ,\-uv\-)

(1.6)

Hs+1Vs41 Hn—1Vn-1°

where s runs from 0 to (n — 1) with s +¢ = (n— 1), and

1 , o, the generalized CME/CVE is
=— et 1.4
Oy 471_2 </’l + 3 > ( )
n—1 n—1
— O —
- =3Bl T = Bl (17)
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with a set of 2n transport coefficients &, and /1(“).]
In Refs. [8,26], these coefficients, up to polynomials of
temperature like 72 in four dimensions, have been ana-
Iytically determined in the hydrodynamic framework
by requiring the principle of time-reversal invariance or
nongeneration of entropy by these transport terms.
Reference [17] takes a further microscopic view on this
principle in the free fermion limit based on the notion of
topologically protected chiral zero modes to derive full
expressions for £, and A, including temperature
corrections.

The purpose of this work is to provide an explicit
diagrammatic computation of &, and 4, in free chiral
fermion theory, with the clarification on the relevant Kubo
formula connecting the P-odd retarded correlation func-
tions of current and energy-momentum operators to the
transport coefficients & ;) and A(,. The first P-odd
retarded response functions appear at (n — 1)th order of
the external gauge and metric perturbations. We will also
clarify the subtleties regarding the frame choice, which
might be a useful addition to the existing literature.

Our computation leads to two integral identities, (4.21)
and (4.28), which we could not prove, but have been
checked explicitly for some low n values. With these two
mathematical identities accepted, we are able to sum up all
the diagrams with many different topologies analytically
in real-time perturbation theory for the first nontrivial
P-odd contributions at zero frequency-momentum limit.
The resulting values of &, and A, from these P-odd
retarded correlation functions after using the developed
Kubo formula agree remarkably with the hydrodynamic
predictions. Since the summation of many different dia-
grams is quite nontrivial and intricate, involving several
combinatoric identities, this agreement seems to be a
convincing evidence for our two conjectured mathematical
identities.

II. BASICS OF CHIRAL SPINORS
IN d + 1 = 2n DIMENSIONS

This section serves as a summary of the relevant facts
about the chiral spinors in the general even dimensions
d+1=2n that we are going to use in the following
sections (d denotes the number of space dimensions). It will
also fix our notations and conventions.

We start from a massless Dirac spinor in d + 1 =2n
which consists of a pair of chiral spinors with different
chirality. We will eventually pick only one chiral spinor out
of this Dirac spinor. The Dirac action reads as

L =yy"(0, —ieA,)y, (2.1)

'Tn the Landau frame, one has to redefine the fluid velocity
such that A, y = 0, which in turn shifts the value of £, ;. See our
discussion near the end of Sec. V on this frame choice issue.
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where our metric convention is n = diag(—,+,---,+)
(mostly positive convention), and

v =—iy'yP. (2.2)
The Dirac matrices satisfy the usual relation
{r.ry =2n", (2.3)

so that y° is anti-Hermitian in our convention. The Dirac
matrices are 2" x 2" matrices. Upon quantization, the spinor
operators satisfy the equal-time commutation relation
e (3).wp ()} = 89 (3 = )30p. (2.4)
where a, f run over 2"-components of the spinor index.

To perform a projection to one chiral component of 2"~!
dimensions, we define y° as

75 = in—l},()yl‘“yZn—l, (25)
which anticommutes with all y#’s and satisfies
@r=1L @) =r. (2.6)
so that we can define chiral projection operators
1+p
P.=— . (2.7)

which project the Dirac spinor into two different chiral
spinors of the dimension 2"~! for each: w =y, +w_. In
the chiral basis where this decomposition is diagonal,

that is,
= (¥ 2.8
=), 28)
we define 2! x 2"~! matrices ¢’ by
=rmp = (2
P (=r'y")P =<—‘—>
1 + 0 1o
P_(—y"y*)P —<0~'—0> (2.9)
"ol ) |

and the Dirac action in terms of its chiral components
. becomes

L =iyl (0, —ieA,)y, + iy c" (9, —ieA,)w_.
(2.10)

so that one can nicely separate the two chiral components in
the action. In the following, we take only y, chiral spinor
and omit + subscripts in our notation. Then, our action for
the chiral spinor reads simply as
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L=iy'e"(0,—ieA,)y (2.11)

Note that 6° = 1,.-1,,.1, and 6* are Hermitian. The ¢’ for
spatial indices i = 1, ...,2n — 1 satisfy the anticommuta-
tion relations

{c',6/} =28, (2.12)
which can be derived from the anticommutation relations of
the y matrices (2.3). This will be helpful in the subsequent

discussion on the quantization of the chiral spinor. For later
convenience, let us define one more object &, by

P (=r*")P, = <i;%> :

P_(—r"°)P_ = <0~‘—0> (2.13)
- y y - 0 (_7& 9 .
which satisfy (omitting + subscript again)
06" + 6’6" = =2, ' =0"=1, 6 = —o'.
(2.14)
A usefulness of 6 is from the equation
(p-o)(p-5) =—-p* (2.15)

where (p - 6) = p,o" for any Lorentz vector p, so that the
inverse of (p - o) is given by
1 (p-05)

R (2.16)

Let us quantize our chiral spinor field. The equal time
commutation relation from the action (2.11) is

st )(

{Wj(3).wa(3)} = (2.17)

- 5; )6(1/ ’
where the Greek letters run over spinor indices, and the
operator equation of motion in the free theory is

o"0p = 0. (2.18)
The classical spinors satisfying the same equation of
motion in the momentum space p* = (w, p) divide into
two categories depending on the sign of the energy

P’ =ow=%[p|: 3
(i) Positive particle states (0 = +|p|)

Q!

L2120 (2.19)

w(p)=u(p). s

—

where s denotes 22 degenerate spin states.
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(i) Negative antiparticle states (w = —|p|)
8' Z’ S S( A n—
——v°(p) = —v*(p), s=1,...,2"2
Pl
(2.20)

Because (- p) is Hermitian with (- p)* = |p|?
[see (2.12)], and Tr(c) =0 [from the definition
(2.9)], the classical spinors u*(p), v*(p) which are
eigenvectors of (5 - p) span the whole 2"~ dimen-
sional chiral spinor space. It is also convenient to
introduce projection operators to the positive and
negative energy states by [not to be confused with
chiral projection operators (2.7)]

| 3-13>
P,=- Ay 221
- 2< H (2:21)

-

We choose to normalize the spinors u*(p), v*(p)
such that

Zu (1 p) - 2‘p|(lp+)aﬁ’
Zv (P)vi(p

With these, the quantized chiral spinor operator is
realized as

- dp
EN / l\p\ﬂrlpx s P
0= | G /a5 25 ?)

(=P)). (2.23)

(2.22)
- 2|ﬁ| (7)—)(1/1’

+b{T€l\p|t—lp-x,Us
p

with annihilation operators of particles and antipar-
ticles, (as, b%), respectively, which satisfy the usual
anticommutation relations
{ay. a3y = 2m)8 (5 — p)5"
(2.24)
{bs, 057} = 2m)951) (p - p')6.

It is straightforward to check (2.17) using (2.22).
The Hamiltonian is computed as

H=—i / 5yt (3)(3 - D) (3)
/dpd2|p| Sas 4+ bybs),  (2.25)

up to normal ordering as expected.

We will be interested in the expectation values of
operators and correlation functions at a finite temperature
T and a chemical potential x. The thermal ensemble is
defined as usual
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Tr(e M=V ©)

= Te(e PN (2.26)
where
3 as — stys
N = / 27)1 a b;7 b,a)- (2.27)
With (2.24), (2.25), and (2.27), one can show that
(atlat) = 6% a8 (p - )~ (2.28)
' ePUPl-1) 1’ ’
. 1
STps'y — sss ds(d) (7 — 7/ -

which, in conjunction with (2.23), allow us to compute any
kind of two point correlation functions of y and y.

III. DIAGRAMMATIC COMPUTATION
OF REAL-TIME RETARDED FUNCTIONS

What we are interested in is the current induced by the
external U(1) gauge field coupled to the number current
J# = y'oty. The action including the interaction with the
external gauge field is

L =iy'e"d,p + e(yio'y)A,, (3.1)
and we are going to do a perturbation expansion in eA,.
Since we are going to compute the thermal expectation value
of an operator, J*, in the presence of A,, one naturally
introduces the Schwinger-Keldysh contour in the complex
time plane as shown in Fig. 1 in the path-integral formalism.
We will discuss the translation of this path integral formalism
to our operator formalism in the previous section. In simple
terms, the upper line (the real-time line labeled as 1)
represents the unitary time evolution of the ket state

1) =U(t.t)lte).  Ult.ty) =Pe . (3.2)
whereas the lower line labeled as 2 describes the time

evolution of the bra state, the conjugate state of the ket state,

Z, 1 t
b . ) Ly
,,l 2
idfznti ied
i
t,—if3

FIG. 1 (color online). The Schwinger-Keldysh contour appro-
priate for computing real-time retarded response functions at
finite temperature.
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(1| = (|U" (1. 1) = (10| U (10, 1), (3.3)

so that the resulting path integral with an operator, say
J#, inserted at a time ¢ naturally calculates the expectation
value

JH (1) = (tlJ*]1) = (10|U(10. ).J* U (1. 1) [19).  (3.4)
Note that the evolution matrix U(t, t) for the bra state is a
time-reversed one, and this is why the action for the contour
line 2 in the Schwinger-Keldysh path integral is the negative
of the ordinary action (3.1):

L, = —illfgff”aﬂll/z - 6(11/20”1//2)14,4’ (3.5)
where we put a subscript 2 in the dynamical fields for
clarity. Note also that the path integral on the time interval
greater than 7 (the part of the contour on the right of the
operator J* inserted) cancels between the lines 1 and 2, if
our boundary condition at the final time 7, is such that
w1 () = wo(ty), since the two evolution operators U(t, t)
and U(t, t;) generated by the lines 1 and 2, respectively, are
precisely inverse to each other. This automatically guar-
antees the causal response of the current expectation value
J#(t) to the perturbation A, since the A, (¢) for #/ > ¢ which
appears on the right-hand side of the contour from the J#
insertion at ¢ would never affect the resulting path integral
for J#(t). In other words, J# () computed in the Schwinger-
Keldysh path integral in a perturbation expansion in eA,
gives us a series of retarded causal n-point real-time
response functions of the currents by construction. In the
notation that will be introduced soon, they are G,, ,
correlation functions of the current. We stress that this is
crucially based on the continuous boundary condition at the
final time 7;. The far left part of the contour in Fig. 1 is
responsible for the thermal ensemble by circling around the
imaginary time of a period # = T~ as usual. The causality
discussed above and the naturalness of having the two
contours 1 and 2 for bra and ket states for any expectation
values of operators do not depend on what ensemble we
consider, and are more generic. In this sense, introducing
the Schwinger-Keldysh contour with a continuous boun-
dary condition at the final time 7, is an inevitable step in
computing retarded response functions.

The free theory Schwinger-Keldysh path integral is
entirely Gaussian, so that the Wick theorem holds true
for free theory correlation functions, which allows one to
apply the Feynman diagram techniques in any perturbation
theory from the free limit in computing retarded response
functions in thermal equilibrium: this is the essence of the
formalism which may look highly nontrivial in the lan-
guage of operator formalism since we are dealing with
thermal ensemble expectation values.

The path integral measure from the two contour lines
1 and 2 is
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s I b . .
exp {1/ (L1 + 52)] = exp [/ (—w10" 0,1 + lel/ﬂl-gﬂl//lA,u + W;Uﬂaullfz —ieyy0"yrA,) |
to )

where we skip the Euclidean path integral arising from the
far left part of the contour generating the thermal ensemble.
We can assume that the gauge field vanishes at a suffi-
ciently past time #, — —oo, so that this Euclidean path
integral part does not contain any external gauge field A,:
the thermal ensemble is the one in the free theory that we
discuss in the previous section. The current expectation
value of our interest is simply the path integral
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(3.6)

|

where (---)gx is the path integral with the Schwinger-
Keldysh contour [not to be confused with the operator
expectation value in (2.26)]. Note that it does not matter in
the above whether we put y/{ oty or 1//; o"yr,, since the part
of the contour with ¢ >t cancels by itself. To do a
perturbation theory in eA, it is convenient to work in
the “ra” combinations defined by

1

vr=sWtva).  wa=yi-un, (3.8)
JH(t) = <1//I‘7”l//1(f)>s1< = (yr0"y(1))sk (3.7) " in terms of which the action in (3.6) becomes
|
t t
exp [i / e+ ﬁz)] = exp [ / " (~wlot ., —wichdu, + ie(whot, + wia”wa)Aﬂ)} : (3.9)
to Iy
and the current we insert for the expectation value can be Go(x,y) = (w,( X)I/IZ (y))sk
chosen as 2
= P ip(x=y) G 311
GG (B
1 . .
H— — (y! ot o
T =z ety tunety) Garlt,3) = (a0 i
. 1 ¥ d2n
=o'y, + < who'y,. (3.10) - aprte 3.12
4 (271’)2” 4 ar(p)7 ( )
_ T

One can find that the second piece does not contribute Grr(x.3) = {wr (O (v))sk
anything in the expectation value, so can be ignored. The _ d*'p ip-(x=y) 313
usefulness of the above “ra”-basis is due to the boundary ) @r)> ¢ VG (p).  (3.13)

condition at #;: y,(t;) = 0. From the structure of the free
theory action in the ra-basis, this ensures that any free
theory correlation function with an “a”-type operators
appearing at the latest time always vanishes: this holds
true for two point functions trivially, and the Wick theorem
generalizes it to arbitrary correlation functions. This prop-
erty is nothing but what ensures the causal response as
discussed before in a different language, since the external
perturbation such as A, couples precisely to an “a”-type
operator. On the other hand, the physical expectation value
is computed by the “r’-type operator as shown in (3.10).
This means that the causal n-point response functions are
the correlation functions of the type G,, , where the
physical observable corresponds to the first “r” and the
operators coupling to the external perturbations belong to
the other “a”-types.

It is straightforward to write down the Feynman rules for
the perturbation theory from the action (3.9) in the ra-basis.
The basic building block two-point functions are defined as
follows,

where both sides should be understood as 2"~ x 27!
matrices of spinor indices we omit here, and x,y are
d + 1 = 2n dimensional space-time coordinates. Note that
G,, 1s absent. To compute above two point functions
explicitly, we translate them into the operator formalism so
that we can use the results in the previous section.
Considering operator time ordering carefully, one can
indeed show that

Gra(x,y) = 0(x = yO) ({w (x), w (y)}). (3.14)
Gar(x,y) = =00° =) {w(x),w'(»)}),  (3.15)
Gultoy) =3 (W)W G (310

where (---) is the operator thermal ensemble average
introduced in (2.26). For example, the equation for G,,
1s derived as follows,
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2G,(x.y) = (w1 (] ())sk + W2 ()| (0))sk — W1 (x)ws (3))sk — W2 (Wi (y))sk
=Ty () + w@w () + W Gy (x) — (Tyx)w ()
=20(x" = YO ({w(x). v (y)}). (3.17)

where 7 and 7 are time ordering and anti-time ordering respectively. We see that the G, is the retarded two point function
and G, is the advanced one. The G,, encodes thermal fluctuations. Using the quantum expansion (2.23) and the explicit
thermal expectation values (2.28) and (2.29), it is straightforward to compute the above two point functions after some

amount of algebra to obtain

. . 0 - - . -
i i p'l+o-p —i(p-0)
Gru (p) = bd . 7) + - . =1 . - = . - ’
PO —pl+ie t T pO+|p| +ie (p° +ie)* —1pl>  (p°+ie)* —|pI
i i —i(p - 0)
Gu(p) = > + = = - =
“ P’ =Ipl- P’ +1p| —ie (p® —ie)* = |pl?
T - —
Golp) == 5606 = 1) = (6" + D) (5= -0 ) @ ), (3.18)
|
where the projection operators P are defined as before in / d"k (3.21)
(2.21), (2z)"” '
P, = 1 (1 + g) , (3.19)  From the form of the action (3.9), each external gauge field
2 P with momentum p, A,(p), gives a vertex insertion (ie)o*,
either “ra” or “ar” type. What we are going to compute is the
and expectation value of the current (in momentum space)
1
n(p) = (3.20)

1 4+ PP°-1)°

is the thermal distribution with chemical potential u. Note
that G,, and G, do not depend on temperature in the free
theory, since {y(x),y"(y)} is proportional to the identity
operator for any (x, y).

In the Feynman diagrams in momentum space, each
fermion line is drawn with an arrow whose direction is
from ' to y. For simplicity, we choose the same arrow to
also mean the momentum direction carried by the fermion
line. In writing down the expression corresponding to a
diagram, one writes the terms from right to left when
following the arrow direction. Each fermion loop accom-
panies an extra (—1) sign after the spinor trace. Each loop
integral measure is

Grr (k )

;A

Jp) "

G, (p+k)

|
T =y, + o'y, (3.22)

where one can easily convince oneself that there is no
possible diagram involving the second term, so we can
consider only the first term. As an example, let us consider
the causal response of J# which are linear in the external
gauge potential (and hence we should consider diagrams
with two currents inserted). As shown in Fig. 2, there are two
diagrams possible. The first diagram involves G,, and G,,,
whereas the second diagram contains G, and G,.. We
choose our loop momentum such that the momentum
appearing in the G,, line is always k. Then, the resulting
expression for J#(p) is

G, (k-p)

Jpy T LAWD

r

G, (k)

FIG. 2. The diagrams responsible for the retarded response of the current J# to one external gauge potential.
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2n
15 (p) = (=1)ieA(p) | ozt Gp+ DG, (1

+0”Grr(k)0yGar(k - p)] (323)

We now discuss the general structure of the diagrams
with (m — 1) number of external gauge potentials (m > 1).
There are m number of possible diagrams, which is
organized as follows. Each diagram is a 1-loop diagram
with m number of currents inserted, and one of them is
J¥(p). We call the external momentum of the ith attached
gauge field, A, , labeled from J* along the arrow direction,
pi» i=1,...(m—=1), so that there are (m—1) vertex
insertions ieA, (p;)o*, i = 1,...(m — 1). There is an over-
all o function dictating the momentum conservation,
(27)>'6%" (p — py — ...ppu_1), as usual. Among the m
number of fermion lines, one can choose one line to be
G,, with the loop momentum k. Then to have a non-
vanishing diagram, all the fermion lines along the arrow
direction between J# and the chosen line should be G,,,
and all the fermion lines from the chosen line to the J#
insertion must be G,,: the diagram is uniquely determined
|
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pm—l f LAY °

\
\
\
\
\
\D;
Y+l

FIG. 3. One of the diagrams responsible for the retarded
response of the current J¥ to (m — 1) number of external gauge
potentials. There are m number of such diagrams with different
positions of G,, propagator.

by the position of the G,, line in the loop. There are
precisely m number of ways to have different diagrams.
Figure 3 shows the diagram where the G,, line is located
between (i—1)th and ith gauge potential insertions,
i=1,...,m (Oth and mth insertion are by definition
J#(p) itself). This diagram gives

n 2n
0tiert [ B [ a2 = py == p ) (1) A ()

(271-)2" ’

d*k
/(zz,,tf[f’”Gm(k +pit At puor)ott

7)

S Gl/i_lGar(k - pi—l) o 'GylGar(k_ pPr— 'pi—1>]’

and we have to sum over i = 1,...,m to find the final
J! )( p) in (m — 1)th order of the gauge potential. When

(m—1
i =1 (m), the G,, (G,,) are absent in the above formula.

IV. CHIRAL MAGNETIC EFFECT
IN d = 2n DIMENSIONS

As discussed in the introduction, the CME in 2n
dimensions appears in the (n — 1)th order of the external
gauge field, so that we have to compute m = n number of
diagrams whose contributions are given by (3.24) with
m =nandi=1,...,n In general, the result is highly non-
analytic near the zero momenta p; — 0 region, so that the
result in the zero momentum limit will in general depend on
how one approaches the zero momentum. Guided by
|

' Gra (k + pi)ginrr(k)

(3.24)

previous observations in literature, we expect that the
correct CMW coefficient is obtained when we first let
the frequencies be zero, p? — 0, before taking the zero
spatial momentum limit, p; = 0. In this section, we
therefore compute (3.24) after taking p? — 0 limit, and
show that one indeed recovers the right magnitude of the
CME in 2n dimensions in this limit. The computation of
(3.24) simplifies greatly in this zero frequency limit,
p? — 0, which allows us some degree of analytic compu-
tations. In this limit, one can also map the problem to the
purely Euclidean computation, but we will skip persueing
this possibility.

We aim to compute the loop integral in (3.24)
with m = n,

d*k
/(2—2ntr[6”Gm<k +pit-t pn—l)ayn_l "'Gra(k + pi)o-inrr(k)abi_l Gar(k - pi—l)"'avl Gar<k —P1— -"pi—l)]’

)

(4.1)
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and sum the result over i = 1, ..., m. The numerator of the integrand is

(=i)"tulo"((k+ pi+ - pust) - 8)0* 1 ((k + pi) - 5)0” (k- 5)0" 1 ((k = piy) - 6)...0" (k= p1 =+ = pic1) - B)].
(4.2)

We are interested in only the P-odd part of the contribution which involves the e-tensor, and we need to use the following
statement that the P-odd part of the trace

trjo*16%16/26%2 .. .o"nG"n], (4.3)
is given by
(2i)rteranr--tatn, (4.4)
where by definition, €°'2"(2"=1) = 4 1. To show this, start from the definitions (2.9) and (2.13) to have

trfe"1 51612605 ] = [P (O y°) . (PO oy )]
= (=D)"u[P_ytry . ytry]
(=1)"

= ul(L =)yl (4.5)
The P-odd part is obtained from the y° matrix, and using the fact that y°> = i"~!y%! . y?"~1 one has
1 5 | AP An—1
_5(_1)%[}, PP pyi] = z(Z)n -ttty 1 = (27)1=1 ¥t (4.6)
Using this, the P-odd part of the numerator (4.2) becomes after some algebra
Zn_lku(pl );4[ e (pn—l );4,,,1 ettt (47)

which is the same for all i = 1, ..., m.
What is difficult is the rest part including the denominator of the integrand. It is written as

(=2 o = & = o + &) (5 -0 )

K]
o 1
(K +ie)* = |k + pi+ -+ Pt [P]. (KO + i€)* = [k + pil]
1
x K —ie k=2 .12 K—ie = k=D = —D. 21 (4.8)
[(K? = i€e)* = [k = pia[*]...[(K” — i€)” = [k = py pil’]

2, given by the delta functions, the above becomes

where we have put all p? = 0. Using the on-shellness, (k°)2 = |k

(=2 ) w0 = = a2+ 1) (5 -0

||
y 1
[=2k - (Pi+ -+ Ppet) = |Di + -+ + Pucit]?® + ik€]...[=2k - p; — | pi|* + k€]
1
% (4.9)

2k - piy = |Dict [* — ik%€]...[2k - (Py + -+ + Picy) = [P1 + -+ + Pica | — iKkO€]
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There are total (n — 1) terms in the denominator, and we would like to combine them using the Feynman parametrization

1
(A, £ i€)...(A,_, % ie)

61— 1= = x,01)
(XA + -+ XAy T ie)"

1
:(n—2)!/ dxy...dx, (4.10)
0

It is worth emphasizing that the Feynman formula is valid only with the crucial presence of ie in each term with the overall
same sign: if some of ie term appears with a different sign compared to others, the formula is not valid. Looking at (4.9), we
see that the first (n — i) terms have +ik’e while the rest (i — 1) terms have —ik%¢. To make ie terms having the same sign,
we consider minus of each of the first (n — i) terms to have

1 (= Yo ) @+ o) (5. 00)
1
2Kk (B4 + Puct) + |Pi 4 - + Duct 2 — iK%€]...[2k - p; + | pi? — iK%]
o 1
2k Pt = |Pict [ = iKO]...[2k - (Py -+ Bia) = [B1 4o pima = k%]

X

(4.11)

which now has the overall same sign for ie’s in each term, so that one can safely use the Feynman formula. The result is

(=1 (=) @00 = i) = o000 + ) (5= -0

k|
x (n —2)! /1 dxy.dx, S0 _x"‘l_z , (4.12)
0 [k-Q;+ A; — ik]"
where
Qi =2t (Bi + -+ + Puct) + -+ F XiDi + XiaPict + -+ 11 (Pr -+ + Pict))s
Ay =X, [pit o+ Pua P+ P = x| PP = =l B (4.13)
As examples, for n = 3 we have
Q1 = 2(x2(p1 + p2) + x11). Ay = xo|py + Pof* +x1|pi%,
0y = 2(x,3 + X1 ). Ay = x| pal? = x1 [P,
Q3 = 2(x255 + (D1 + P2)). Ay = =x;|pol” = x1 [Py + Pl (4.14)
and for n = 4 we have
01 = 2(x3(P1 + P2 + P3) +x2(P1 + P2) + x151).
Ay = x3|py + o+ B3>+ x| pr + Dol +x1|Pil,
0> = 2(x3(Ps + p3) + X2P2 + X1 1)
Ay = x3]py + Pal® + x2|pal? = xi[pi P,
03 = 2(x3p3 + X255 + x1(P1 + P2))s
Az = x3|p3)* = x| pal? — x4 [Py + PP,
Q4 = 2(x3p3 +x2(Ps + p3) + X1 (P1 + P2+ P3)).
Ay = =x3|p3|* = x2| P2 + P3l* = x1 [Py + P2 + 3% (4.15)

Combining (4.7) and (4.12), our loop integral (4.1) becomes

065021-9
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R 1127 (1= 2101y (et Ot [ de&(l_i )

[ 0 = i)+ 500+ D) (5 -

where we have put v = 0 since one can easily check that
this is the only nonvanishing possibility for v due to anti-
symmetric nature of the e-tensor. At the end of the
computation, we have to sum over i = 1,...,n.

We can now do the loop integration over k as

follows: since Q; is a fixed vector for k integration whose
measure is isotropic, one can conveniently choose

~2n—1

the direction of Q; as & in the (2n — 1) dimensional

vector space of k. We call the angle between Q,» and k be 0,
so that
|

1 i
(ko)) = —, (4.16)
[k Q, + A; — ik%]
|
0, - k = |0:||k| cos 6. (4.17)
Then the metric in the & space is written as
ds? = d|k|? + |k2d6> + |k|?sin>0dQ2, . (4.18)

where dQ3,_, is the metric on the unit S>> sphere. Note
that our integrand in the above depends only on @, so that
one can integrate over the $?"~* trivially. Therefore, the
measure of the k integration becomes

"k 1 - - z
/ 72:72\/01(52"-3) / dK° / d|k||k[>=2 / do sin2"39
)"~ (2x) 0

22n 1 n+l
Then, the loop integral (4.16) reduces to

="

x /dkO/d|%||%|2n—2(

() (P (Pamr), €% ly”l/ dej (

/ K / Ak / do sin*30. (4.19)
n—1
x]>
=1
1
Rl + 8060 + &) (— - n+<k°>)
s 2n-3
sin70 (4.20)

x(—l)i/"de —
0 [[k]|Q;] cos O + A; —

ik%]""

Since A; is O(|p|?) and \é,| is O(|p|), we perform a derivative expansion for small p; limit by expanding the above

integrand in powers of A, /| é,| and try to obtain the first nonzero result after summing overi =1, ...,

m. We will argue that

the first nonzero result arises in the (n — 1)th order of the expansion in A;/ |éi|, based on the following conjecture,

n

(Conjecture) / H dx 5(1 - i > Z

10!

1) (éi>s:0, s=0,1,...,(n=2). (4.21)

[en

We could not find a proof of this, but we have checked it for n = 2 (four dimensions) and n = 3 (six dimensions) explicitly,

and the case is quite convincing. This conjecture guarantees that the first (n — 2)th expansions in A;/ |él\ of (4.20) after

summing over i = 1, ...,

(=1)

x/dko/dm(a

1
x(—l)’/ldcose

(1 = cos*9)"=2
(cos @ — ikVe)*—2

(2)’1 — 3)' HUP VY- P 1 V) ! T _ <
(2" (1= i =2)1 PV e (Pri, 1€ " A jl:[ldxj(S(l Z’?i)

R+ 506+ i) (- ) ()

O([p[").

n vanish, and the nonvanishing result first appears in the (n — 1)th order as

=

10,2
(4.22)
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where we used the expansion

1 o (n=3)r 1
AT 1(n— 1)!(n - 2)! A2

e (4.23)

The cos € integration can be done as follows. First expand the numerator to obtain

1 1 —x n-2 1
/1 ()E—zko o) Z( 1! 2C1/ dx(x—zko )22
n—2 _ n=2 1\l
~eY S - caer S S e (424)
=0 =0

where in the last equality we change the summation variable / — (n — 2) — [. We now use the identity

2 (2(1_311) n€i = gm(f'f; (4.25)
=0
To prove this, start from
/ldx(l - = ; (—l)lmcz/ldx ¥ = z"’: b mCls (4.26)
0 =y 0 — (214 1)

and the left-hand side can be computed using the beta function to get the identity proved. Using this identity, the cos@
integration finally gives

1 (1 _ x2)n—2 22n—4[(n _ 2)y]2
dx ———5—=(2)(-1)' ———7—. 4.27
/_1 e A T, (4.27)
We now conjecture the following result for the Feynman parameter integration in (4.22) after summing over i = 1, ..., n,
. 1 n=l n—1 n ' A’?_l 1
(Conjecture) : A jl:[ldx/é(l - jzzlxj) ;(—1) (|Q|2”‘2> = T =2 (4.28)

We have checked this formula up to n = 5 (ten dimensions), which is quite nontrivial and convincing. Note that the result
does not depend on p;’s. Finally, the k° and || integration in (4.22) gives a simple result

[ aw [ o = &+ o0 + ) (5 - n. 1))

o S - 1 N
= [ (5= R+ 5= (=) ) == (4.29)
0
Collecting (4.27), (4.28), and (4.29), the loop integral (4.22) finally becomes
(=1)"u e
G 11 (PP (P (430)

and this is our final result for the loop integration of (4.1).
Inserting our result into (3.24) (with m = n), we have in momentum space

_ (_;,\n—1 H aanpl dznp" 1 2n e —
J'u(p) - ( le) (2”);1(” _ 1)' (2”)2;1 / (2 ) (2”) 6(}7 P1— pn—l)
X eﬂomvlmﬂn_lyn_l <pl)/41 (pn 1);4,, 1ty (pl) l/n 1 (pn l) (431)

which becomes in real space,
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- H
JH = (=1)"e" 1
D e S = 1)1
ety B F, L (4.32)

where we have introduced the velocity vector of the static
fluid »* = (1,0), and F,, =0J,A,—0,A, is the field
strength. Comparing this with the hydrodynamic prediction
in Refs. [8,26], one finds a good agreement, which is an
explicit diagrammatic confirmation of the CME in 2n
dimensions.

V. KUBO FORMULA AND CHIRAL VORTICAL
EFFECT IN 2rn DIMENSIONS

The computation in the previous sections can be extended
to the response functions to the 0i components of the metric
perturbations, 8g;, instead of gauge field perturbations. At
the linear order in &gy; in the action, this involves the
Oi-components of the energy-momentum tensors

70 = —iz/ﬂ(aoail// +6'),0=9-d.  (5.1)
These operators couple to the Oi-components of external
metric perturbation dg, in the action so as to introduce the
following additional factor in the Schwinger-Keldysh path
integral

1 o i
exp [z/{o (T = T(5,)890i |- (5.2)
The vertex in the Feynman diagrams is generated by
) 1 . % 2
iL; = iT%6gy = Zl/ﬂ (6°0'y + 6’0 )01, (5.3)

and let us call this “Type I” vertex. Comparing with the
current J' = yio'y which couples to A;, the structure is
similar with the replacements

A = dg. o > _i(aoai +6id0), (5.4)
in the vertices, so that one can follow similar steps in the
previous sections to compute P-odd correlation functions of
these energy-momentum vertices.

The full fermion action in a general metric background is
however nonlinear in the metric, so there are other terms in
the action which are nonlinear in the g; perturbations, and
some of them are in fact relevant for our P-odd response
functions to the metric perturbations. Following the dis-
cussions in Ref. [27], there are terms containing one o
matrix (the lowest term of which is our Type I vertex above)
and there are others containing three ¢ matrices coming
from spin connection terms, and this class of terms are at
least quadratic in &g,,. By the same reasoning as in
Ref. [27] one can show that for P-odd correlation functions
whose ¢ tensor emerges from the right number of ¢ and &

PHYSICAL REVIEW D 90, 065021 (2014)

matrices (that is 2n) in the numerator, we only need to
consider the precisely two types of vertices: the leading
Type I vertex with one ¢ matrix and the leading quadratic
vertex containing three ¢ matrices,

1 o
il = 16 (w'6l6" 7 lyr) (690:0,890,)- (5.5)
where [iuj] = (1/6)(iuj & permutations) is the antisym-
metrization. We will call this the “Type II” vertex.

Let us consider the diagrams for the expectation value of
the current J#(p) in response to the s (s =1, ..., (n — 1))
number of §gy;’s and 7 = (n — 1) — s number of A;’s. We
generally have diagrams with n; number of Type I vertices,
n, Type II vertices, and t = (n — 1) —s number of the
usual ieJ'A; = ie(y'o'w)A; vertices, with a condition
ny +2n, = 5. We will compute all these diagrams, and
as a first step let us consider the simplest case of n, = 0,
that is, the diagrams with only Type I and current vertices
without Type II. They correspond to replacing s number of
current vertices in the previous diagrams with the Type I
vertices, and there are ,_,,C; = (n=1)!/s!(n—1-1s)!
ways of doing it for each n diagrams in the previous
section. One can easily find that the anticipated P-odd
structure of the result in terms of e-tensor and the external
momenta p,’s

danl dan .
~ "L gV S(p = py = —
/(2”)2n /(27[)% (27)*"8(p = pi Pn-1)
X 5901/1 (pl) . '69014\ (ps)Ale (prrl)' . 'Ay,z,] (pn—l)

X (P (Put)y, it

(5.6)

does not care how these s number of Type I vertices are
distributed in the given diagram, so the factor (n_l)Cs =
(n=1)!/s!(n—1—=s5)! can simply be multiplied to
the result from a single choice of the positions of the
Type I vertices. Let us then consider the n diagrams as in
the previous section where the first s vertices along
the arrow directions are replaced by Type I vertices with
890w, (P1), -+-+ 690, (Ps). The denominator is identical, and
for the P-odd part of the numerator, we have a replacement
of the first s number of ¢'’s from the vertex insertions with

o' = =2 (0% +5i0P). (5.7)
Each replaced vertex has two pieces: the first one with ¢°
and the second with ¢'. In computing the ¢ matrix trace to
get a P-odd e tensor structure, it is clear that one cannot
have the first piece appearing twice since that would bring
6" twice in (4.3). Therefore the first piece can be chosen at
most once. We therefore divide the diagrams into two
cases: the Case A where the first piece with ¢ never
appears, and the Case B where the first piece with ¢°
appears precisely once.

065021-12



CHIRAL MAGNETIC AND VORTICAL EFFECTS IN ...
Case A:
Let us first compute the contributions where the first
piece is never chosen and all vertex replacement is simply

i >
o - ——o'00.
4

(5.8)

The matrix structure is precisely the same, and in momen-
«—

tum space the presence of the extra 9°—i/49° factor gives
1/4 times the sum of the frequencies of the incoming and
outgoing momenta. Since we are considering the limit

= 0, the incoming and outgoing frequencies for each
vertex is simply k° of the loop momentum k¥, so that the

—

factor —i/49° simply gives rise to an additional factor
1/4 x (2k°) = (1/2)k° in the loop integration, compared
to the loop integration in the previous section. Since there

|
! /dko/d|k| ko
2ss' n—l

PHYSICAL REVIEW D 90, 065021 (2014)

are s number of them, and including the combinatoric
factor ,_,C; = (n—=1)!/s!(n—1—5)! mentioned in the
above, the total contribution is (1/2)(k°)*(n —1)!/s!(n —
1 —s)! times of the expression in the previous section
before performing the loop integration. Since the only
modification in the loop integral is the additional (k°)*, one
can simply borrow the result from the previous section
where the previous integral in (4.29)

Jaw [ o - R+ o0 + 7 (5 - 0.0

= [7 (5= n R+ =R ) = -
(5.9)

is now modified by

R+ 8 + R (1 - n+<k°>)

;% I d|k||k|f(——n+<|k|>+< (5=t ) )

g [T e (5= ) - 1 (5= 0 ) )

e R (500 = 1) = R = 1R ).

where we have used the identity

3= e ==(5- (5.01)

(7D ).

Since in the vacuum we have n. ( |l_€|) = 0, the first constant
piece in the integrand is the vacuum contribution which is
divergent polynomially for odd s. In a properly regularized
theory, for example by a Pauli-Villars regularization which
preserves Lorentz symmetry, the regularized finite vacuum
result must be Lorentz invariant. However, one can easily
see that there is no possible Lorentz symmetric expression
that reduces to our expression for our choices for the
polarizations, and this means that the regularized vacuum
result must vanish identically, so that we do not need to
introduce renormalized couplings and the renormalized
vacuum result is unambiguously zero. Therefore we can
ignore the first piece, so that the final result is a replacement
of —u in (5.9) or in (4.30) by

1 (=1 fe o
e [ AR o, R

— (=1)*n_(|kl)).

_M_)

(5.12)

(5.10)

|
Case B:
We next consider the case where only one replaced
vertex among s replaced vertices has the ¢° piece

o - —iaoai, (5.13)

while the rest (s — 1) vertices has the second piece as
before

. A 1 .
o — —ia’@o = Ekoal. (5.14)

There are s number of choices and one can easily find that
they all give the same final result, so let us consider the case
where the first vertex along the arrow direction has

—(i/4)6°0" while the next (s—1) vertices have
(1/2)k%'. The computation of this case is more subtle,
but it does contribute to the expected P-odd result.

Including the combinatoric factor, the numerator
becomes
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N ne1 (n—1)! 1 p v
(_l) (S—l) (n_l_s)2(k0) <k_21_p2_”'_pi—l>
xtrlo"((k+ p;i+ -+ po-r) - 6)0" - ((k+ p;) - 6)0" (k- 5)
X (k= i) 8) 0 (k= pa = = pyy) -k = py =+ = pyy) ) (5.15)

where the meaning of indices vy, ..., v,_
the perturbations of

| is that we have

Al/”_] (pn—l ) ’
(5.16)

5901/1(171)1 ""5gOuS(ps)’AuH1 (ps+l)’ cre

which is obtained by replacing the first s gauge fields with
the metric perturbations in the expression for the J#(p) in
(3.24) with m = n or in Fig. 3. Performing the trace and
extracting the P-odd part gives after some algebra,

(=1)2-! = 1%"(; 1)1' . > (ko)s—l

(k—2]—l72—"'—l7i—1>

X ky(pl)”l "(pn—l)/4”71€M0”1D”2U2.“”n71y”71 s

which is similar to the previous form (4.7) with a
few differences. Since 0-index appears in the e tensor,
all other indices must be spatial. Especially, we have either
a single k, vector or a double vector k, k' structure
that have to be integrated in the loop integral over k*.
After the same manipulation for the denominator using
the Feynman parametrization, the loop integration
over the (2n — 1) dimensional spatial vector k will be
proportional to

(5.17)

|
for the double vector structure by rotational symmetry of
the integration measure. Since Q; is a linear combination of
p;’s, the single vector structure and the first piece of the
double vector structure do not contribute to the final result
due to the antisymmetric nature of the € tensor in (5.17).
Therefore, only the second piece in the double vector
structure proportional to &,' contributes, and for this
purpose we can simply replace

R T
g Y o@2n-2) 7

|k|?sin20
2n=2) (5.20)
where k | is the component of k which is perpendicular to
0, and @ is the angle we introduce in the previous section
between k and Q,. The number (21 — 2) in the denominator
is the number of dimensions of &k, that we are averaging
over. With all these, our numerator finally becomes almost
identical to the previous result (4.7) (with k, = k, = —k°),
except the additional factor

(n—1)! 1 (K°)*=2|k|2sin20
(s—D)(n—1-5)12° (2n-2)
B (n—1)! 1 (k°)sin?0 (5.21)

T (s=D(n—1=8)12° 2n=2)"

(k°)? due to the delta function
structure 5(k° + |k|) in the rest of the integrand. As in

where we used |k|?> =

1k k, ~ (D)) (5.18) the Case A we have an extra (k°)* factor, and the presence
(2m)>n=1 k-0, + A, — ik%]"™" Vv ' ?4{ 25;1)1 0 now modifies the previous angular integration
for the single vector structure, and ( 22 - P
1 1 —x°)"~ 27 (n=2)!
2% e,k L /_1 B e = e PP TR
/ 17 = 5 —~C(0), ()" +GC,6,",
(27)"" " k- 0; + A, — ik%] (5.22)
(519) {0 a new one
|
1 (1 xZ)n 1 n—1 Cl n—1 (7I>Cl
dx el = (=2) (1)) (-1)
/_1 (x — ik%) =2 = ZZ: 2n—2[—3) (=2)(=1) 12:(;( )(21—1)
22053 — 1)1(n — 2)!
= (=2)(-1 (2n=3)] : (5.23)
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where in the last line we used a combinatoric identity ,,C;

~,_v_nCi :n!(r—l)!
;( ) (I+r) (n+r)’

(5.24)

which can be proved by integrating [j dx x"'(1—x)"
using the beta function. Comparing (5.22) and (5.23), we
see that one has an extra factor of 2(n — 1) from the sin” 6
term in the angular integration. Inserting this to (5.21), we
conclude that the Case B diagrams give the contribution
which is the same to the previous section result (4.30) with
a modification

%(S - 1()7(;1>i .y / " dIRI[RE(n, (1)

— (=1)*n_([k]))-

Note that the Case B result is precisely s times of the
Case A result, so that their sum, which is the final result of
the loop integration for the s number of dg,; insertions, is
(4.30) times

_ﬂ_)_

(5.25)

1 (n=1)

2sl(n—1-s)! (s +1),

(5.26)

with a replacement

. / ® dRR (s () = (=) (R, (527)
0

Jﬂ

dan d2np 3
— (_\n—1 1 n—1
(s,r)(p)|nz=0 = (i) /(27[)2;1 / (2”)271
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We will shortly relate the chiral vortical effect with s
number of vorticity insertions to the P-odd response of the
current to the s number of Jg, perturbations we just
computed, after carefully deriving relevant Kubo formula
for anomalous transport coefficients in 2n dimensions. The
appearance of the above integration (5.27) in the chiral
vortical effect of free chiral fermions was previously
predicted in Ref. [17] using the entropy method of hydro-
dynamics, and our diagrammatic computation confirms it.
The result of the integration can be found in Ref. [17], and
it is given in terms of the Bernoulli polynomial as

/0 " dJRIR (ny (1) = (=1)n_ (7))

1 27\ s+! 1 Bu 1
- B IR IRt & | e
(s+1)<ﬁ> ”1<2+2m'> (s+1)” *

(5.28)

where --- involves polynomials of temperature 7 and u
which seem to be related to (mixed) gravitational anomalies
[12]. The above formula applies equally well to the s = 0
case in the previous section.

In summary, the P-odd response of the current J#(p) to
the s-number of Sgp; and (n—1—s) number of A;
perturbations coming from the diagrams without any
Type 1II vertices (n, = 0) is given by

(27)*"8(p = p1 =+ = Put)

X e Hum1hnt (g Vs (Pn=1)y, 0900, (P1) 0900, (P, )As,. (Pss1)--Ay,  (Pn-1)

11 1 i\t (1 pu
- il RO (il t=n—1.
X(zn)"zss!(n—l—s)!(ﬁ> S+1<2+2m')’ shr=m

In real space, this is equivalent to

(=" 1

Jﬂ

where we introduce the static velocity vector u, = —d,,
and F,, = 0,A, — 0,A, is the field strength.

We now compute the general case of having nonzero n,
number of Type II vertices. The computation is more or less
similar to what we have presented before, except a few
minor algebraic differences we will explain in detail. First,
there is an overall combinatoric factor of choosing the
positions of Type I and II vertices,

(s) =0 = 21 2z) sl(n—1—s)!
X ML HnmEnmi uv(aﬂl (SgOul ) cee (auj 5gOL/S)F

(5.29)
(%) S+1Bs+1 <%+2ﬁ_51>
wserver Fu v, (5.30)
|
(n—1-s+n; +n)!  (n—1-ny)! (5.31)

mmln—1-=5)  mlnl(n—1-s)!"
where we have used n; + 2n, = s. Since the diagrams with
different positions all give the same P-odd result due to €
tensor structure, let us choose n; Type I vertices to appear
first, then n, Type II, and finally (n—1—s) current
vertices, along the arrow direction starting from the current
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insertion J*(p) as in Fig. 4. The Feynman rule for the Type
I vertex in momentum space is simple: for 8gy;(p;) and
840;(p2) attached to the vertex, one has a vertex insertion

(5.32)

_ 1L6 (p1),0054 5.
Since we will have an antisymmetrization for (i, 4, j) in the
final P-odd result by the € tensor contraction after perform-
ing o matrix trace, it is perfectly fine to remove the
antisymmetrization in the above vertex for our computation
of P-odd part for simplicity, so that we will use the simpler
version in the following,

—%(pl)ﬂajéf‘ai - —1—166j(p1 .5)o. (5.33)
Comparing this structure with the usual two separate
adjacent current insertions with A;(p;) and A;(p,), now
with additional propagator of momentum p between them,

—i(p~5’) i

ie)o) — 77
ie)’c o',
(ie) —p? +ipe

(5.34)

we see that the numerator structure is almost identical. An
inspection of the momentum flow in the diagram such as in
Fig. 4 easily shows that the P-odd part of the numerator is in
fact identical to the case with current insertions instead,
except additional numeric factor of —1/16 for each Type II.
What is nontrivial is that the number of denominators from
the propagators is now reduced from n to n — n, = n.

/ dk = ! /dko/d|l;||l;|2’1‘2/ld0059(1 — cos?g)"?
(2”)2n - 22n—1”n+1(n _ 2)y . ’

is the same, but the integrand is now

i=0
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n, Type I |

J(p)

L]
(n—1-s) currents |

FIG. 4. Diagrams for J* with n; Type I, n, Type II, and
(n — 1 —s) current vertices. We have n; + 2n, = s, and have to
sum over all possible n, ranging from 0 to [s/2].

Regarding the Type I vertices, the previous classification

in terms of the number of —(i/4)6%d' vertices applies here
as well, so we have either Case A or Case B. Let us first

consider Case A where all Type I vertices are —(i/4)c'd".
The above discussion leads to that the numerator trace gives
the result which is

kO n 1\

E— X ——

2 16
times of the pure current insertion case (4.7). What is more
involved is the angular integration of the denominator since

the number of propagators in the denominator integral is
reduced by n,. The integral measure

(5.35)

(5.36)

S (= ) 0 = ) a0+ i) (50 )
51 =50

| il
X(I’l—2>!/ dxj = - —
0 G55 [IK]|Qi| cos O + A, — ikO%]

j=1

: (5.37)

with appropriate (Ql Ai) and n = n — n,, which is essentially the same integrand (4.12) for n, = 0 case before, but with
the replacement n — 7. Since our previous conjectures (4.21) and (4.28) are for any n for any momenta p;, they still can be
applied to our case with the replacement n — 7. The loop integral then becomes after some algebra (including ko (k)" =
—(K%)m*1 from the numerator),

/ e / AR (50 = 7)) + 5K + y%m(%—n+<k0)>(k0)n,+zm

(1 — cos?g)"—2
(cos @ — ik'e)> 2"

2n —3)! 1
(27 ) dcos@

x 22n+271—4ﬂ,n(n _ 2)!(171 _ 1)!(’71 _ 2)! X /_1 (5.38)
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where we used ]%F”Z = (k)2 from the delta function piece. The angular integral can be done as before using the identity
(5.24),

1 1 — x2)n2 21 = 2)(n— it — 1)!
/—ldx()g—ik()e))%_z_( DA 4 (2n)—(3)!(2n)—(2ﬁ—1)!) ’ (5:39)

so that the integral finally becomes

) = 1) [ [ k)0 = k) + w0 + |k|))<1—n+(k0)> (5.40)

227 (7 — 1)} 2n2 —-1)!

where we used n; + 2n, = s and n — i = n,. We see that the resulting (k°, |£|) integral is what we have seen before in
(5.27), leading to the same parametric dependence on (7', ). Combining the remaining factors (1/2)"1(—1/16)" from the
numerator, and including the combinatoric factor (5.31), the final result after some algebra is the same with the pure current
insertion case (4.30) with the replacement

= 3 e e [ R, (R = (1)) (5.41)

[
This is a generalization of (5.12) to a nonzero n,, and
one can check that it indeed reduces to (5.12) correctly in
n, = 0 limit.
The Case B where one of the Type I vertices has

—(i/4)6°9', and the angular integration gets an additional
factor

sin?0 (1 —cos?0)

—(i/4)6%d' is also computed similarly as before. The net 2n-2)  (2n-=-2) "’ (5.42)
result is that one has an additional combinatoric factor n;
from the possible choices of the Type I vertex which has  so that the angular integration is now modified to
|
1 _ y2\n—-1 _1\n—192n-2 _ ~ _
1 / Jx (1 .x ) _ :( 1)"-12 En !(n 2)~!(n n)!' (5.43)
(2n=2) )1 (x —ik%)>"2 (2n-2)2n—=3)!(2n -2+ 1)!

Comparing with the previous angular integration (5.39), thisis 1/(2n —2in + 1) = 1/(2n, + 1) times of (5.39). Combining
the additional combinatoric factor n,, this finally concludes that the Case B contribution is 7, /(2n, + 1) times of the Case
A, so that the sum of Case A and B, which is the final result, is (n; +2n, + 1)/(2n, + 1) = (s + 1)/(2n, + 1) times of the
Case A result.

In summary, the final result for 7, number of Type II vertices insertion is the same with the pure current insertion case
(4.30) with the replacement

(s+1) (n=1)! 1 S . ) .
h e s g [ ARG ) = (=1 (R))

I (n—=1)! 1 @ s+1 Bu

e v M e )] (5.44)

What we have to do lastly is to sum up all contributions with all possible n, ranging from 0 to [s/2]. Magically this is doable
compactly, using the combinatoric identity

[7] 1 1 [E] s
Copri1 = . 5.45
Zo(zn2+ 1)!(s — 2n,)! (s—i—l)!r;)”l T ) (5.45)

With all these, the final response current in real space with s number of §g; perturbations and ¢t = n — 1 — s number of
gauge fields is
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(s.1) = on—l=s (2”)n (S

Following the notation in Ref. [26], we define

AB!

1
(‘\'7[) = Z €/41/}41D1 < Hp—1Vn—1 ul/<aﬂ| 590111 )' ..

27l s+1 ﬁ”
+D)!(n—1-5)! (7) Byt (2 +%>

Vi Vy . Py 1Vp—
X €/'4 H1V1--Hp—1Vn luu(aﬂlégoyl)”'

where we reserve the notation B’(‘S ) for the true chiral vortical current

0
By =1

Then our results can be written as

1
e VU VLo Py Ve
= _ MUYy - 1 Vp lul/(aﬂlulll)

Jn— Z (=1)" n

T 2 (s

Z é:AF ABM

s+t=n—1

with the transport coefficients fAF the meaning of whose
superscript AF (anomaly frame) will become clear when
we discuss the Kubo formula shortly.

Up to now, we have computed the P-odd response of the
current J#(p) to the external 8gy; and A; perturbations. It is
straightforward to compute the P-odd response of the
energy-momentum 7% to the same perturbations. One
caveat is that due to the presence of nonlinear terms of
metric perturbations in the action, the energy-momentum
itself is also modified from its flat space one,

TY = (=i/4)(6°0" + 6'0"), by additional terms involving
0¢o; explicitly. Since only Type I and Type II terms in the
action are relevant in P-odd response functions, we only
need to compute the correction coming from Type II term to
|

T0i )‘A _ (—l)n n 1

(8,1

On the other hand, the insertion of the first piece (Case B)
can be treated by precisely the same way as before.
Considering n; Type I, n, Type II, (n—1—s) current
vertices, we have the same combinatoric factor

(n—1=mny)!

nlnpl(n—1-=ys)!"

(5.52)

and additional numeric factors

27i\ $12 Pu ;
25 (2m) s (n—1—5)! (s +2) ﬂ> B”z(z 2 )AB( 0

(8,”&590’/5)Fﬂx+ll’s+l o .Fﬂn—ll/n—l : (5'46)
(aﬂ.ségoy.t)Fﬂ.r+ll’.x+] o .Fﬂn—]l’n—l ’ (5'47)
<a u ) Hsp1Vsi1® Hn-1Vp-1° (5'48)
27\ st ﬁ/l
1)!(n—1—s)!(7> B”l(z 2 )AB( )
(5.49)

the energy-momentum tensor for our P-odd response
function. This is given by

T = 6 (y'6li5*0/ly)(0,890;) + 0, (wiclia"o/lydgy;)).
(5.50)

Let us first consider the contribution from the flat space
energy-momentum, 7%, by simply replacing the current

vertex o' with the T, that is, (—i/4)(c%0" + ¢'d°). If we
insert the second piece (Case A), there is no change in the
matrix trace and we simply get an additional factor of k°/2
compared to the above computation for JI;s. i SO that this

gives a contribution

: CaseA (5.51)

1\ mi+! 1\ m
= -— 5.53
&) (%) 55
and the angular integration is modified by the additional

factor

sin’6
—_—. 5.54
2(n—1) (5:54)
The total number of |%| in the integration similar to (5.44) is
now s + 1 instead of s. The summation over n, is done
precisely by the same way as in (5.45). The result is
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o | = (=1)" n
(0B =5 (2) (s +2)1(n— 1 —5)!

which is 1/(s + 1) times of the Case A result.

We next compute the contribution coming from the 7%
vertex (Case C). Note that since T9i contains one gp,,
already, we should have (s — 1) number of additional §gy;
insertions in the diagrams, so that n; +2n, = (s — 1)
and the number of propagators (denominators) is
n—n,—1=n-1. See Fig. 5 for the diagrams of the
Case C. Working out the Feynman rule in the momentum
space, the TY! insertion with §gq, .(p1) attached corresponds
to

i
_Eo'[lo'ﬂabl](pl + pmt),,égoy] (pl), (556)

where py is the total momentum flowing out from the 7%,
which is simply

P =P1+ P2+ 4 Pyt (5.57)
in our diagrams. Since ¢ trace will totally antisymmetrize
(iuv,) indices anyway, one can safely remove antisymmet-
rization in the above vertex. Looking at the final o trace,
only the term proportional to p; survives the total anti-
symmetrization (since p,, ..., p,_; are necessarily con-
tracted with ¢ tensor already from other parts of
propagators), so that the vertex takes a final form

1

—ggi(pl . 6)0U].

(5.58)

Comparing this with the previous pure current response
function which will have the corresponding numerator piece

(ie)o'i(p, - 6)o" = —ec'(p, - 6)0™, (5.59)

n, Typel}

,,,,,

680v, (p)

LIPS\

L]
(n—1-s) currents |

FIG. 5. Diagrams for 7% contribution to the total 7% response
function. We have a constraint n; + 2n, = (s — 1), and have to
sum over all n, ranging from 0 to [(s — 1)/2].
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2ri\ 512 1 pu
®>&4fﬁ)

we see that the effect of 7% insertion for the numerator is an
additional simple factor 1/8 compared to the pure current
result (4.7). The only other effects remaining are the
modification of the relation n; 4+ 2n, = (s — 1) and the
number of denominators n—n, —1 =n—1. Since all
previous computations such as (5.39) and (5.43) are derived
forany (n;, n,, i), it is straightforward to repeat the previous
algebra to compute these diagrams, In the first case where all
n; Type I vertices are (—i/4)(6'9°), we have combinatoric
and numeric factors

AB!

(M): Case B

(5.55)

(n=1-=s4+n +n)! 1

kO n 1\ 7
— X | = X | —— N
(2) (%)

n!nyl(n—1-ys)! 8
(5.60)

and the angular integration involved is (since the number of
denominators is now n — 1 instead of n)

1
/ dx
-1

—(-1)

(1 —x?)2
P 224 (n = 2)1(n = 3)!(n —n)!
(2r-5)!2n—2a+1)!

(5.61)

which is (5.39) with 7 — n — 1. In the other case where one
Type I vertex is (—i/4)(c°d") while the rest (n; — 1) are

(=i/4)(c'd"), there is an additional combinatoric factor n,
while the angular integration has an extra factor
sin® @/ (2n — 2), so that it becomes

1 1 (1 _x2)n—1
d
2n—12 /_1 *

(x — ikle)?m4"
which is 1/(2n — 2+ 3) = 1/(2n, + 3) times of (5.61),
so that this second case is n;/(2n, + 3) times of the first
case. Summing these two cases, after straightforward alge-
bra, produces the result with n, number of Type II vertices as

(5.62)

(=) 2(ny +1)
C2"27)" (n—1=9)!(s = 1 =2n,)!(2n, + 3)!

27i\ $12 1 pu
@>&4ﬁw)

which has to be summed over n, ranging from 0 to
[(s — 1)/2]. Amusingly, this summation can be performed
by the combinatoric identity

oi
T(;.t) ‘C,’Q

AB!

o (5.63)
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Z) (ny +1) _ s 2571 (5.64)
— (s —1=2ny)!(2n, +3)! (s+2)!" '
so that the final result of the Case C is
. —1)" n s 2mi\s+2 ﬁpt
TV = ( — B AB! .: CaseC 5.65
(s,z)|C 2n—s(2”)n (n — 1= S)! (S + 2)! < ﬁ > 542 <2 +5= i (s.1) " ase ( )
Summing over all cases A, B, and C lastly gives the final result for the energy-momentum response
, (—1)” n 1 2mi\ 512 ﬂ/,l ,
TV = B AB! .. 5.66
(:0) = pn=1=s (27 sl (n — 1 — 5)! (s + 2) ﬂ s+2\2 + 27i (s:1) ( )
In summary, the total 7% response is
= Y AW ABL (5.67)
s+t=n—1
with the transport coefficients
-1)" n 1 2xi\ st2 1 pu
/IAF _ L B 5.68
(1) pn=l=s (o) sl (n — 1 — s)! (s + 2) ( p > s (2 toni (5.68)

This completes our diagrammatic computations.

We now discuss the Kubo formula for anomalous trans-
port coefficients, generalizing Ref. [28] in 2n = 4 dimen-
sions to arbitrary dimensions. The basic idea is the
following: what we have computed above is the P-odd
response of the current and 7% in the presence of the external
gauge field and metric dg,; perturbations. By computing the
same response in the framework of hydrodynamics with
unknown P-odd anomalous transport coefficients and com-
paring with what we have computed, one can determine the
P-odd anomalous transport coefficients. Strictly speaking,
the free fermion theory we are considering does not have a
hydrodynamic regime, so that this procedure should not be
applicable in principle. What has been assumed and also
showed in specific cases is that the zero frequency limit of
the free theory computation, or equivalently the Euclidean
correlation functions, is not renormalized in the presence of
the interactions [5,19],” so that one may get the correct result
even from the free theory computation of the same quan-
tities. Our discussion is based on this expectation extended to
|

T = put + o—<E/‘ — TV, <;>> +-

" = (e + p)u'u” + pg"* — 2no** +

|
2n dimensions. There are also evidences for this in the
effective action approach [21-24].

However, we should point out that we cannot exclude a
possibility of nonperturbative dynamics, such as new
condensates, affecting the nonrenormalizability of the
anomalous transport coefficients, which are not captured
by perturbative nonrenormalization theorems [31-33].
This seems to be especially relevant to the temperature
dependent terms in the anomalous transport coefficients
[13-15,31,33].

There is an ambiguity in defining the hydrodynamics,
which corresponds to the choice of the fluid vector u¥. We
discuss Kubo formula in two such “frame” choices:
“Anomaly frame” and Landau frame.

A. Anomaly frame:

The anomaly frame, which was introduced in Ref. [8], is
the frame where the anomalous transport effects appearing
in the current and energy-momentum constitutive relations
take the simplest form,

Y L

s+t=n—1

-+ Z iAF u”B” —|—u”B’<’
s+t=n—1

gt (5.69)

See Refs. [19,29,30] for the exceptions when the external gauge fields become dynamical.
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where B/ 9 is defined in (5.48) above, and - - - means any
lower or hlgher order terms which are P-even. The n is the
shear V150051ty, and

1 2
otV = EH” I1 b (V,,uﬂ + V/}Ma - 7(271 — 1) (V},Lﬂ)) s

" = ¢ + utu”. (5.70)
It is important to emphasize that there are no other P-odd
transport effects other than what is shown above appearing
in (n — 1)th order in derivatives, which is a major advan-
tage of working in the anomaly frame (8].*

Let us introduce the spatial gauge field A; and the metric
0go; perturbations in the static limit and solve the hydro-
dynamic equations’

V,Jt =0, Vv, " =0, (5.71)
with the above constitutive relations. This means that we
solve for the perturbations of hydrodynamic degrees of
freedom, (u#, p, p), induced by the external perturbations
(A;, 8go;)- Since the hydrodynamics of a given frame choice
is a self-contained dynamical system of equations, one
expects to find a unique answer with reasonable boundary
conditions at infinity. We would like to obtain a linearized
and leading derivative contribution to (éu*, 5p, 8p) from
nonanomalous hydrodynamic response, while we would
like to trace the first leading effect from anomaly which
appears at (n — 1)th order. Since 58’(‘5! ) 1s already (n—1)th
order in terms of éu* and A, it is sufficient to use the
leading expressions for du* in computing §B ) for our
purpose. However, we may still need to keep (n—1)th
order corrections to (éu*, 5p,dp) coming from anomaly to
obtain the correct (n — 1)th order corrections to the
response of J' and T% from anomaly. This point will in
fact be important in the Landau frame choice dis-
cussed later.

First, from u*ug,, = —1, we have 6u® = 0. It is easy to
derive &', = 0, so that V,J* = 0 gives 9;6J' = 0. On the
other hand,

i i H AF spi
8J1 = pdu —0T8,»5<?> kY e SBL

s+1=n—1

(5.72)

where all quantities without 6 mean those in the unper-
turbed equilibrium state, and

*We ignore the bulk viscosity term —(TI**V ,u® since it does
not affect our following discussion.

This frame is also characterized by the absence of anomaly
generated entropy flow. We thank Misha Stephanov for pointing
this to us.

*We ignore the anomaly term in V,J# = 0 since we don’t have
electric fields.
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. 1 .
582&[) = ;e’””'”l"'”"*"’"*l u,(0,,6u,,)...(0, du, )
Fﬂﬁ»lyﬁ»l “'F/‘n—ll’n—l' (5'73)
It is easy to see that 9, 68’ ) = = 0 due to e-tensor, so we get
from 9,6J" = 0,
pO;u’ — 5T8[8i5<%> —0, (5.74)

up to leading nontrivial order in derivatives, and impor-
tantly the leading anomaly induced effect appearing at
(n—1)th order is absent in this equation. Next, from
8T, = —0,8gp;, the variation of V,T#" = 0 gives

8,’6T0i — pai590[ = 0, (575)

while the variation of 7% is

0i _ AF i
ST = (e + p)du’ + pdgp; + -+ + +Z lﬂ SB( pTo
S+1=n

(5.76)

so that we get from V,7#0 =0,
d;ou’ =0, (5.77)
and again the leading anomaly contribution is absent in this

equation. Finally, the variation of the equation V, 7% = 0
can be shown to become

0,6TV =0, (5.78)
whereas
6TV = (6p)6 — 2ndo'i
= - LSy’ Syl — St k
(6p)6 n<8 oul 4 0'6u (an= 1)5 (Orbu )),
(5.79)
which leads to
. (2n=3)
Sp — syl 22
d;6p 77<8,8 o/ + (n— 1)8 (0;6u’)
= 0;6p —n0d;0'6u/ =0, (5.80)

where we used (5.77). Taking 9; to the above and using
(5.77) again gives

0;0/6p = 0. (5.81)
The ellipticity of Laplace equation gives then dp =0,

which subsequently implies 6u’ = 0 and p = 0 at leading
order. These results will in general be modified if we
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include higher order P-even corrections, but what should be
emphasized is the absence of leading anomaly contribution
at (n — 1)th order in the above results of (Su*,éSp,dp).
Inserting these results to (5.72) and (5.76), and using the
identity

Su; = 8go; + ou’, (5.82)

so that we have

= AB!

OB/ (5.0)°

o (5.83)

where AB! ;) is defined previously in (5.47), one finally
concludes that the leading P-odd response of the current J

and T% at (n — 1)th order is given by

i _ A i

JP—odd - +IZ:_1§(‘VITI)AB(S,I)’

T0i Z JAF AR (5:34)
P—odd e (s.1) (s.0)"

Comparing this with our diagrammatic computation (5.49)
and (5.67), we see that what we called ((SAF AAF ) in (5.49)
and (5.67) indeed coincide with the anomalous transport
coefficients in the anomaly frame appearing in the con-
stitutive relations (5.69).

B. Landau frame:

The discussion in the Landau frame is slightly more
complicated. As shown in Ref. [26], the leading (n — 1)th
order effect from anomaly appears only in the current
constitutive relation

7
P g@ )

4 ZéLFBﬂ o

s+t=n—1

(5.85)

whereas the energy-momentum may get contributions
starting at one order higher, that is, at nth order in
derivative,

T = (c+ )i + pg”

n LF Tyuatyvf
A en(V,B V4B
€+tpr o (s:1) (VaBisp + VpB(s.)a)

i 2;70"”/ +

+ (5.86)
where we showed only one possible nth order contributions
since they turn out to be relevant, giving rise to a (n — 1)th
order correction to §u’ coming from anomaly. The previous
discussion up to (5.77) is the same, leading to 9;6u’ = 0.
For 0,;6T" = 0, we now instead have
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oTY = (6p)dY — Lou’ i Sut — 59 (0,.6uk
(6p) r](@ w + 0'6u n=1) (Orbu ))
n LF (fisp/ i s
ter o D Ay (08B, + 08B, ). (5.87)

s+t=n—1

which gives the equation

’6p —no;0'6u + —— JLE 0,0'6B] . =0,
p—n €e+p H,Z:n:_] (s.1) (5.1)

(5.88)

where we used 9;6u’ = 0 and 8,-53’('&1) = 0. Taking 9; to
the above then gives 9,0'6p =0, so that §p = 0, and

we have

—9,0' > AT 0.06B] =0, (5.89)
s+t n—1
which finally gives
. 1 .
out =04+ ALE SBE 5.90
€+ps+;—l (5.0)77 (5,1) ( )
where - - - means all possible P-even contributions beyond

leading order, but the main point is that we have identified
the leading (n—1)th order effect from anomaly to
(6u',8p,5p) unambiguously. Inserting these to (5.85)
and (5.86) produces the leading effects from anomaly at
(n — 1)th order as

; _ F , P LF i
T = >, < Y p/l(s,t)>AB(s,z)’

s+t=n—1

TPl odd = Z ﬂLF ABz

s+t=n—1

(5.91)

Comparing this with our diagrammatic computation (5.49)
and (5.67), we conclude that

(s.0) = S(s,0) €+p/1(”),

LF _ ¢AF P JAF JLE _ JAF

(5.92)

Note that the transport coefficients /Il(fl) in the Landau
frame appear as nth order transport coefficients naively.

VI. DISCUSSION

Comparing our results with the predictions from hydro-
dynamics in Refs. [8,26], we find that our results for éAF

and AAF

remarkably agree with the hydrodynamics results
Our results for the Landau frame transport coefficients 5(& 9

take the form,
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LF __ £AF P AF

60 = S0 T g p

B 28 271\ s+ 1 ﬂ’u

_C"(s+1)!(n—1—s)!< ﬁ) BS*‘(fzm)
p (s+1) 2mi\s+2 1 Pu

e (5) melan)) @

where

(=1)"n

Cp =5
"2 (2g)

(6.2)

is a constant that depends only on the dimension 2n. Using
B, (x) = x™ + -, and looking at the terms which contain
only y, neglecting terms involving powers of temperature
T = B!, we have

2S
LF =C
(s:1) s+ D)(n=1-15)!
(s+1) .

(’qurl_ P
e+p(s+2)

> + powers of T',
(6.3)

which agrees with the Eq. (3.157) of Ref. [26] with the
identification x = C,,/(n — 1)!. The correct s dependence
should be noted. Given that we have summed over many
diagrams with different topologies, the agreement seems
quite nontrivial, and provides an explicit diagrammatic
confirmation of the hydrodynamic predictions.

The properties of spinor algebra are periodic in dimen-
sions with a period of 8 dimensions. Correspondingly, the
Hamiltonian describing the quantized one particle state
naturally realizes the 8 fold Dyson-Altland-Zirnbauer
classification of Hamiltonians in the topological phases
(see Ref. [34] for a review). It is natural to expect that
certain bulk properties of such systems inherit the similar 8
fold periodicity: see Ref. [35] for an example. Since we are
considering a finite temperature plasma of such particles,
we are led to ask a question whether there are characteristic
“hydrodynamics transport properties” that mirror the
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underlying classification. A few simple things can be easily
observed. In the momentum flow induced by vorticities
only, that is,

TOi ~ /I(n_l’())e()ii]j] cebpet e (ail Mj] ) .. (8,»"_1 ujn_] ),

(6.4)
the transport coefficient A(,_;¢) is proportional to
B,.1(1/2 4+ pu/(2xi)). Using the property B,,(1 —x) =
(=1)"B,,(x), this does not vanish in the neutral system
(u =0) only if n =2k + 1, equivalently in 2n = 4k + 2
dimensions. This seems to be related to that pure gravita-
tional anomaly exists only in such dimensions. Similarly,
the current induced by vorticities only [whose
transport  coefficient is &(,_1)] is proportional to
B, (1/2 + pu/(2xi)), which does not vanish in a neutral
system only if n = 2k, or in 2n = 4k dimensions. In 2n =
8k + 2 dimensions, one can reduce a Weyl spinor further to
be Majorana which violates charge conjugation (C) max-
imally, and one cannot introduce U(1) charge in the system.
What would be a characteristic hydrodynamic property of
this system that is distinctive compared to 2n = 8k + 6?
One promising direction might be to classify the transport
coefficients in terms of discrete C, P, T symmetries [26].

One may repeat our computations including the damping
rate in the propagators. In four dimensions, it has been
shown that the damping rate representing a relaxation
dynamics due to a finite interaction does not change the
CME current [36], and we would naturally expect the same
in higher dimensions as well. It would be useful to check
this explicitly.

Another microscopic framework at weak coupling is the
kinetic theory. It would be interesting to check our results in
the recently developed chiral kinetic theory [37-39],
suitably generalized to higher dimensions as in
Refs. [40,41]. We leave this as a future problem.
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