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Chiral magnetic effect and chiral vortical effect are parity odd transport phenomena originating from
chiral anomaly, and have generalizations to all even dimensional space-time higher than four dimensions.
We attempt to compute the associated P-odd retarded response functions in the weak coupling limit of
chiral fermion theory in all even dimensions, using the diagrammatic technique of real-time perturbation
theory. We also clarify the necessary Kubo formula relating the computed P-odd retarded correlation
functions and the associated anomalous transport coefficients. We speculate on the 8-fold classification of
topological phases.
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I. INTRODUCTION

The physics of chiral anomaly in four space-time dimen-
sions has been explored extensively, which leads to many
interesting dynamical phenomena, while at the same time,
many of them are topologically protected against possible
modifications due to interactions. Hydrodynamic transport
phenomena arising from chiral anomaly in the finite temper-
ature/density regime have received a recent surge of interest,
partly due to their importance in heavy-ion collisions and
condensed matter systems of Weyl semimetals. At leading
order in derivative expansion, there exist chiral magnetic
effect (CME) [1–5] and chiral vortical effect (CVE) [6,7].
The CME is the phenomenon of induced current along the
direction of the applied magnetic field,

~J ¼ σχ ~B; ð1:1Þ

with a chiral magnetic conductivity σχ. For the system of a
single Weyl fermion in four dimensions with a chemical
potential μ, we have

σχ ¼
μ

4π2
: ð1:2Þ

For theCVE, the fluid vorticity ~ω ¼ ð1=2Þ ~∇ × ~v plays a role
of magnetic field instead,

~J ¼ σV ~ω; ð1:3Þ

with the chiral vortical conductivity for a singleWeyl spinor

σV ¼ 1

4π2

�
μ2 þ π2

3
T2

�
: ð1:4Þ

In addition to the above anomaly induced charge current,
there also appears anomaly induced energy flow, or momen-
tum density, T0i ≡ ~P [8–10]. For a single Weyl fermion,
we have

~P ¼
�

1

8π2
μ2 þ 1

24
T2

�
~Bþ

�
1

6π2
μ3 þ 1

6
μT2

�
~ω: ð1:5Þ

Interestingly, these anomaly induced transport coefficients
can be fixed by a purely hydrodynamic consideration of the
second law of thermodynamics [11], that is, the nondecrease
of entropy in time, except the pieces in the above containing
T2whichhavebeen argued to be related to themixed current-
gravitational anomaly [12]. However, there also exist differ-
ent claims on the origin of such T2 corrections, for example,
Refs. [13–15]. The values we show in the above are from the
free fermion computations [12,16,17], and there are some
demonstrations of their universality in strong coupling
holography [18], in a perturbative weak coupling Yukawa
theory [19], and in effective action approach [20–25].
The CME and CVE have generalizations in even space-

time dimensions higher than four [8,26]. Instead of
magnetic field or vorticity, we have a set of several P-
odd vectors: in 2n dimensions there are n possible such
vectors as

Bμ
ðs;tÞ ≡

1

n
ϵμνμ1ν1…μn−1νn−1uνð∂μ1uν1Þ � � � ð∂μsuνsÞ

Fμsþ1νsþ1
� � �Fμn−1νn−1 ; ð1:6Þ

where s runs from 0 to ðn − 1Þ with sþ t ¼ ðn − 1Þ, and
the generalized CME/CVE is

Jμ ¼
Xn−1
s¼0

ξðs;tÞB
μ
ðs;tÞ; T0μ ¼

Xn−1
s¼0

λðs;tÞB
μ
ðs;tÞ; ð1:7Þ
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with a set of 2n transport coefficients ξðs;tÞ and λðs;tÞ.
1

In Refs. [8,26], these coefficients, up to polynomials of
temperature like T2 in four dimensions, have been ana-
lytically determined in the hydrodynamic framework
by requiring the principle of time-reversal invariance or
nongeneration of entropy by these transport terms.
Reference [17] takes a further microscopic view on this
principle in the free fermion limit based on the notion of
topologically protected chiral zero modes to derive full
expressions for ξðs;tÞ and λðs;tÞ including temperature
corrections.
The purpose of this work is to provide an explicit

diagrammatic computation of ξðs;tÞ and λðs;tÞ in free chiral
fermion theory, with the clarification on the relevant Kubo
formula connecting the P-odd retarded correlation func-
tions of current and energy-momentum operators to the
transport coefficients ξðs;tÞ and λðs;tÞ. The first P-odd
retarded response functions appear at ðn − 1Þth order of
the external gauge and metric perturbations. We will also
clarify the subtleties regarding the frame choice, which
might be a useful addition to the existing literature.
Our computation leads to two integral identities, (4.21)

and (4.28), which we could not prove, but have been
checked explicitly for some low n values. With these two
mathematical identities accepted, we are able to sum up all
the diagrams with many different topologies analytically
in real-time perturbation theory for the first nontrivial
P-odd contributions at zero frequency-momentum limit.
The resulting values of ξðs;tÞ and λðs;tÞ from these P-odd
retarded correlation functions after using the developed
Kubo formula agree remarkably with the hydrodynamic
predictions. Since the summation of many different dia-
grams is quite nontrivial and intricate, involving several
combinatoric identities, this agreement seems to be a
convincing evidence for our two conjectured mathematical
identities.

II. BASICS OF CHIRAL SPINORS
IN d þ 1 ¼ 2n DIMENSIONS

This section serves as a summary of the relevant facts
about the chiral spinors in the general even dimensions
dþ 1 ¼ 2n that we are going to use in the following
sections (d denotes the number of space dimensions). It will
also fix our notations and conventions.
We start from a massless Dirac spinor in dþ 1 ¼ 2n

which consists of a pair of chiral spinors with different
chirality. We will eventually pick only one chiral spinor out
of this Dirac spinor. The Dirac action reads as

L ¼ ψ̄γμð∂μ − ieAμÞψ ; ð2:1Þ

where our metric convention is η ¼ diagð−;þ; � � � ;þÞ
(mostly positive convention), and

ψ̄ ≡ −iψ†γ0: ð2:2Þ
The Dirac matrices satisfy the usual relation

fγμ; γνg ¼ 2ημν; ð2:3Þ

so that γ0 is anti-Hermitian in our convention. The Dirac
matrices are 2n × 2n matrices. Upon quantization, the spinor
operators satisfy the equal-time commutation relation

fψ†
αð~xÞ;ψβð~yÞg ¼ δðdÞð~x − ~yÞδαβ; ð2:4Þ

where α; β run over 2n-components of the spinor index.
To perform a projection to one chiral component of 2n−1

dimensions, we define γ5 as

γ5 ≡ in−1γ0γ1…γ2n−1; ð2:5Þ

which anticommutes with all γμ’s and satisfies

ðγ5Þ2 ¼ 1; ðγ5Þ† ¼ γ5; ð2:6Þ
so that we can define chiral projection operators

P� ¼ 1� γ5

2
; ð2:7Þ

which project the Dirac spinor into two different chiral
spinors of the dimension 2n−1 for each: ψ ¼ ψþ þ ψ−. In
the chiral basis where this decomposition is diagonal,
that is,

ψ ¼
�
ψþ
ψ−

�
; ð2:8Þ

we define 2n−1 × 2n−1 matrices σμ� by

Pþð−γ0γμÞPþ ¼
� σμþ 0

0 0

�
;

P−ð−γ0γμÞP− ¼
�
0 0

0 σμ−

�
; ð2:9Þ

and the Dirac action in terms of its chiral components
ψ� becomes

L ¼ iψ†
þσ

μ
þð∂μ − ieAμÞψþ þ iψ†

−σ
μ
−ð∂μ − ieAμÞψ−;

ð2:10Þ
so that one can nicely separate the two chiral components in
the action. In the following, we take only ψþ chiral spinor
and omit þ subscripts in our notation. Then, our action for
the chiral spinor reads simply as

1In the Landau frame, one has to redefine the fluid velocity
such that λðs;tÞ ¼ 0, which in turn shifts the value of ξðs;tÞ. See our
discussion near the end of Sec. V on this frame choice issue.
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L ¼ iψ†σμð∂μ − ieAμÞψ : ð2:11Þ

Note that σ0 ¼ 12n−1×2n−1 , and σμ are Hermitian. The σi for
spatial indices i ¼ 1;…; 2n − 1 satisfy the anticommuta-
tion relations

fσi; σjg ¼ 2δij; ð2:12Þ

which can be derived from the anticommutation relations of
the γ matrices (2.3). This will be helpful in the subsequent
discussion on the quantization of the chiral spinor. For later
convenience, let us define one more object σ̄μ� by

Pþð−γμγ0ÞPþ ¼
� σ̄μþ 0

0 0

�
;

P−ð−γμγ0ÞP− ¼
�
0 0

0 σ̄μ−

�
; ð2:13Þ

which satisfy (omitting þ subscript again)

σμσ̄ν þ σνσ̄μ ¼ −2ημν; σ̄0 ¼ σ0 ¼ 1; σ̄i ¼ −σi:
ð2:14Þ

A usefulness of σ̄μ is from the equation

ðp · σÞðp · σ̄Þ ¼ −p2; ð2:15Þ

where ðp · σÞ ¼ pμσ
μ for any Lorentz vector p, so that the

inverse of ðp · σÞ is given by

1

ðp · σÞ ¼ −
ðp · σ̄Þ
p2

: ð2:16Þ

Let us quantize our chiral spinor field. The equal time
commutation relation from the action (2.11) is

fψ†
βð~xÞ;ψαð~yÞg ¼ δðdÞð~x − ~yÞδαβ; ð2:17Þ

where the Greek letters run over spinor indices, and the
operator equation of motion in the free theory is

σμ∂μψ ¼ 0: ð2:18Þ

The classical spinors satisfying the same equation of
motion in the momentum space pμ ¼ ðω; ~pÞ divide into
two categories depending on the sign of the energy
p0 ¼ ω ¼ �j~pj:
(i) Positive particle states (ω ¼ þj~pj)

~σ · ~p
j~pj usð~pÞ ¼ usð~pÞ; s ¼ 1;…; 2n−2; ð2:19Þ

where s denotes 2n−2 degenerate spin states.

(ii) Negative antiparticle states (ω ¼ −j~pj)

~σ · ~p
j~pj vsð~pÞ ¼ −vsð~pÞ; s ¼ 1;…; 2n−2:

ð2:20Þ

Because ð~σ · ~pÞ is Hermitian with ð~σ · ~pÞ2 ¼ j~pj2
[see (2.12)], and Trð~σÞ ¼ 0 [from the definition
(2.9)], the classical spinors usð~pÞ; vsð~pÞ which are
eigenvectors of ð~σ · ~pÞ span the whole 2n−1 dimen-
sional chiral spinor space. It is also convenient to
introduce projection operators to the positive and
negative energy states by [not to be confused with
chiral projection operators (2.7)]

P� ¼ 1

2

�
1� ~σ · ~p

j~pj
�
: ð2:21Þ

We choose to normalize the spinors usð~pÞ; vsð~pÞ
such that

X
s

us†β ð~pÞusαð~pÞ ¼ 2j~pjðPþÞαβ;
X
s

vs†β ð~pÞvsαð~pÞ ¼ 2j~pjðP−Þαβ:
ð2:22Þ

With these, the quantized chiral spinor operator is
realized as

ψð~x; tÞ ¼
Z

dd~p

ð2πÞd
ffiffiffiffiffiffiffiffiffi
2j~pj

p X
s

ðas~pe−ij~pjtþi~p·~xusð~pÞ

þbs†~p e
ij~pjt−i~p·~xvsð−~pÞÞ; ð2:23Þ

with annihilation operators of particles and antipar-
ticles, ðas~p; bs~pÞ, respectively, which satisfy the usual
anticommutation relations

fas~p; as
0†
~p0 g ¼ ð2πÞdδðdÞð~p − ~p0Þδss0 ;

fbs~p; bs
0†
~p0 g ¼ ð2πÞdδðdÞð~p − ~p0Þδss0 :

ð2:24Þ

It is straightforward to check (2.17) using (2.22).
The Hamiltonian is computed as

H ¼ −i
Z

dd~xψ†ð~xÞð~σ · ~∂Þψð~xÞ

¼
Z

dd ~p
ð2πÞd

X
s

j~pjðas†~p as~p þ bs†~p b
s
~pÞ; ð2:25Þ

up to normal ordering as expected.
We will be interested in the expectation values of

operators and correlation functions at a finite temperature
T and a chemical potential μ. The thermal ensemble is
defined as usual
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hOi≡ Trðe−βðH−μN ÞOÞ
Trðe−βðH−μN ÞÞ ; ð2:26Þ

where

N ¼
Z

dd ~p
ð2πÞd

X
s

ðas†~p as~p − bs†~p b
s
~pÞ: ð2:27Þ

With (2.24), (2.25), and (2.27), one can show that

has†~p as
0
~p0 i ¼ δss

0 ð2πÞdδðdÞð~p − ~p0Þ 1

eβðj~pj−μÞ þ 1
; ð2:28Þ

hbs†~p bs
0
~p0 i ¼ δss

0 ð2πÞdδðdÞð~p − ~p0Þ 1

eβðj~pjþμÞ þ 1
; ð2:29Þ

which, in conjunction with (2.23), allow us to compute any
kind of two point correlation functions of ψ and ψ†.

III. DIAGRAMMATIC COMPUTATION
OF REAL-TIME RETARDED FUNCTIONS

What we are interested in is the current induced by the
external Uð1Þ gauge field coupled to the number current
Jμ ¼ ψ†σμψ . The action including the interaction with the
external gauge field is

L ¼ iψ†σμ∂μψ þ eðψ†σμψÞAμ; ð3:1Þ
and we are going to do a perturbation expansion in eAμ.
Sincewe are going to compute the thermal expectationvalue
of an operator, Jμ, in the presence of Aμ, one naturally
introduces the Schwinger-Keldysh contour in the complex
time plane as shown in Fig. 1 in the path-integral formalism.
Wewill discuss the translation of this path integral formalism
to our operator formalism in the previous section. In simple
terms, the upper line (the real-time line labeled as 1)
represents the unitary time evolution of the ket state

jti ¼ Uðt; t0Þjt0i; Uðt; t0Þ ¼ Pe
−i
R

t

t0
Hðt0Þdt0

; ð3:2Þ

whereas the lower line labeled as 2 describes the time
evolution of the bra state, the conjugate state of the ket state,

htj ¼ ht0jU†ðt; t0Þ ¼ ht0jUðt0; tÞ; ð3:3Þ
so that the resulting path integral with an operator, say
Jμ, inserted at a time t naturally calculates the expectation
value

JμðtÞ ¼ htjJμjti ¼ ht0jUðt0; tÞJμUðt; t0Þjt0i: ð3:4Þ
Note that the evolution matrix Uðt0; tÞ for the bra state is a
time-reversed one, and this is why the action for the contour
line 2 in the Schwinger-Keldysh path integral is the negative
of the ordinary action (3.1):

L2 ¼ −iψ†
2σ

μ∂μψ2 − eðψ†
2σ

μψ2ÞAμ; ð3:5Þ

where we put a subscript 2 in the dynamical fields for
clarity. Note also that the path integral on the time interval
greater than t (the part of the contour on the right of the
operator Jμ inserted) cancels between the lines 1 and 2, if
our boundary condition at the final time tf is such that
ψ1ðtfÞ ¼ ψ2ðtfÞ, since the two evolution operatorsUðtf; tÞ
andUðt; tfÞ generated by the lines 1 and 2, respectively, are
precisely inverse to each other. This automatically guar-
antees the causal response of the current expectation value
JμðtÞ to the perturbationAμ, since theAμðt0Þ for t0 > twhich
appears on the right-hand side of the contour from the Jμ

insertion at t would never affect the resulting path integral
for JμðtÞ. In other words, JμðtÞ computed in the Schwinger-
Keldysh path integral in a perturbation expansion in eAμ

gives us a series of retarded causal n-point real-time
response functions of the currents by construction. In the
notation that will be introduced soon, they are Gra…a
correlation functions of the current. We stress that this is
crucially based on the continuous boundary condition at the
final time tf. The far left part of the contour in Fig. 1 is
responsible for the thermal ensemble by circling around the
imaginary time of a period β ¼ T−1 as usual. The causality
discussed above and the naturalness of having the two
contours 1 and 2 for bra and ket states for any expectation
values of operators do not depend on what ensemble we
consider, and are more generic. In this sense, introducing
the Schwinger-Keldysh contour with a continuous boun-
dary condition at the final time tf is an inevitable step in
computing retarded response functions.
The free theory Schwinger-Keldysh path integral is

entirely Gaussian, so that the Wick theorem holds true
for free theory correlation functions, which allows one to
apply the Feynman diagram techniques in any perturbation
theory from the free limit in computing retarded response
functions in thermal equilibrium: this is the essence of the
formalism which may look highly nontrivial in the lan-
guage of operator formalism since we are dealing with
thermal ensemble expectation values.
The path integral measure from the two contour lines

1 and 2 is

FIG. 1 (color online). The Schwinger-Keldysh contour appro-
priate for computing real-time retarded response functions at
finite temperature.
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exp

�
i
Z

tf

t0

ðL1 þ L2Þ
�
¼ exp

�Z
tf

t0

ð−ψ†
1σ

μ∂μψ1 þ ieψ†
1σ

μψ1Aμ þ ψ†
2σ

μ∂μψ2 − ieψ†
2σ

μψ2AμÞ
�
; ð3:6Þ

where we skip the Euclidean path integral arising from the
far left part of the contour generating the thermal ensemble.
We can assume that the gauge field vanishes at a suffi-
ciently past time t0 → −∞, so that this Euclidean path
integral part does not contain any external gauge field Aμ:
the thermal ensemble is the one in the free theory that we
discuss in the previous section. The current expectation
value of our interest is simply the path integral

JμðtÞ ¼ hψ†
1σ

μψ1ðtÞiSK ¼ hψ†
2σ

μψ2ðtÞiSK; ð3:7Þ

where h� � �iSK is the path integral with the Schwinger-
Keldysh contour [not to be confused with the operator
expectation value in (2.26)]. Note that it does not matter in
the above whether we put ψ†

1σ
μψ1 or ψ

†
2σ

μψ2, since the part
of the contour with t0 > t cancels by itself. To do a
perturbation theory in eAμ it is convenient to work in
the “ra” combinations defined by

ψ r ≡ 1

2
ðψ1 þ ψ2Þ; ψa ≡ ψ1 − ψ2; ð3:8Þ

in terms of which the action in (3.6) becomes

exp

�
i
Z

tf

t0

ðL1 þ L2Þ
�
¼ exp

�Z
tf

t0

ð−ψ†
aσμ∂μψ r − ψ†

rσμ∂μψa þ ieðψ†
aσμψ r þ ψ†

rσμψaÞAμÞ
�
; ð3:9Þ

and the current we insert for the expectation value can be
chosen as

Jμr ¼ 1

2
ðψ†

1σ
μψ1 þ ψ†

2σ
μψ2Þ

¼ ψ†
rσμψ r þ

1

4
ψ†
aσμψa: ð3:10Þ

One can find that the second piece does not contribute
anything in the expectation value, so can be ignored. The
usefulness of the above “ra”-basis is due to the boundary
condition at tf: ψaðtfÞ ¼ 0. From the structure of the free
theory action in the ra-basis, this ensures that any free
theory correlation function with an “a”-type operators
appearing at the latest time always vanishes: this holds
true for two point functions trivially, and the Wick theorem
generalizes it to arbitrary correlation functions. This prop-
erty is nothing but what ensures the causal response as
discussed before in a different language, since the external
perturbation such as Aμ couples precisely to an “a”-type
operator. On the other hand, the physical expectation value
is computed by the “r”-type operator as shown in (3.10).
This means that the causal n-point response functions are
the correlation functions of the type Gra…a where the
physical observable corresponds to the first “r” and the
operators coupling to the external perturbations belong to
the other “a”-types.
It is straightforward to write down the Feynman rules for

the perturbation theory from the action (3.9) in the ra-basis.
The basic building block two-point functions are defined as
follows,

Graðx; yÞ ¼ hψ rðxÞψ†
aðyÞiSK

¼
Z

d2np
ð2πÞ2n e

ip·ðx−yÞGraðpÞ; ð3:11Þ

Garðx; yÞ ¼ hψaðxÞψ†
rðyÞiSK

¼
Z

d2np
ð2πÞ2n e

ip·ðx−yÞGarðpÞ; ð3:12Þ

Grrðx; yÞ ¼ hψ rðxÞψ†
rðyÞiSK

¼
Z

d2np
ð2πÞ2n e

ip·ðx−yÞGrrðpÞ; ð3:13Þ

where both sides should be understood as 2n−1 × 2n−1

matrices of spinor indices we omit here, and x; y are
dþ 1 ¼ 2n dimensional space-time coordinates. Note that
Gaa is absent. To compute above two point functions
explicitly, we translate them into the operator formalism so
that we can use the results in the previous section.
Considering operator time ordering carefully, one can
indeed show that

Graðx; yÞ ¼ θðx0 − y0ÞhfψðxÞ;ψ†ðyÞgi; ð3:14Þ

Garðx; yÞ ¼ −θðy0 − x0ÞhfψðxÞ;ψ†ðyÞgi; ð3:15Þ

Grrðx; yÞ ¼
1

2
h½ψðxÞ;ψ†ðyÞ�i; ð3:16Þ

where h� � �i is the operator thermal ensemble average
introduced in (2.26). For example, the equation for Gra
is derived as follows,
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2Graðx; yÞ ¼ hψ1ðxÞψ†
1ðyÞiSK þ hψ2ðxÞψ†

1ðyÞiSK − hψ1ðxÞψ†
2ðyÞiSK − hψ2ðxÞψ†

2ðyÞiSK
¼ hT ψðxÞψ†ðyÞi þ hψðxÞψ†ðyÞi þ hψ†ðyÞψðxÞi − hT̄ ψðxÞψ†ðyÞi
¼ 2θðx0 − y0ÞhfψðxÞ;ψ†ðyÞgi; ð3:17Þ

where T and T̄ are time ordering and anti-time ordering respectively. We see that the Gra is the retarded two point function
and Gar is the advanced one. The Grr encodes thermal fluctuations. Using the quantum expansion (2.23) and the explicit
thermal expectation values (2.28) and (2.29), it is straightforward to compute the above two point functions after some
amount of algebra to obtain

GraðpÞ ¼
i

p0 − j~pj þ iϵ
Pþ þ i

p0 þ j~pj þ iϵ
P− ¼ i

p01þ ~σ · ~p
ðp0 þ iϵÞ2 − j~pj2 ¼

−iðp · σ̄Þ
ðp0 þ iϵÞ2 − j~pj2 ;

GarðpÞ ¼
i

p0 − j~pj − iϵ
Pþ þ i

p0 þ j~pj − iϵ
P− ¼ −iðp · σ̄Þ

ðp0 − iϵÞ2 − j~pj2 ;

GrrðpÞ ¼ −
π

j~pj ðδðp
0 − j~pjÞ − δðp0 þ j~pjÞÞ

�
1

2
− nþðp0Þ

�
ðσ̄ · pÞ; ð3:18Þ

where the projection operators P� are defined as before in
(2.21),

P� ¼ 1

2

�
1� ~σ · ~p

j~pj
�
; ð3:19Þ

and

nþðp0Þ ¼ 1

1þ eβðp0−μÞ ; ð3:20Þ

is the thermal distribution with chemical potential μ. Note
that Gra and Gar do not depend on temperature in the free
theory, since fψðxÞ;ψ†ðyÞg is proportional to the identity
operator for any ðx; yÞ.
In the Feynman diagrams in momentum space, each

fermion line is drawn with an arrow whose direction is
from ψ† to ψ . For simplicity, we choose the same arrow to
also mean the momentum direction carried by the fermion
line. In writing down the expression corresponding to a
diagram, one writes the terms from right to left when
following the arrow direction. Each fermion loop accom-
panies an extra ð−1Þ sign after the spinor trace. Each loop
integral measure is

Z
d2nk
ð2πÞn : ð3:21Þ

From the form of the action (3.9), each external gauge field
with momentum p, AμðpÞ, gives a vertex insertion ðieÞσμ,
either “ra” or “ar” type.What we are going to compute is the
expectation value of the current (in momentum space)

Jμr ¼ ψ†
rσμψ r þ

1

4
ψ†
aσμψa; ð3:22Þ

where one can easily convince oneself that there is no
possible diagram involving the second term, so we can
consider only the first term. As an example, let us consider
the causal response of Jμ which are linear in the external
gauge potential (and hence we should consider diagrams
with two currents inserted). As shown in Fig. 2, there are two
diagrams possible. The first diagram involves Gra and Grr,
whereas the second diagram contains Gar and Grr. We
choose our loop momentum such that the momentum
appearing in the Grr line is always k. Then, the resulting
expression for JμðpÞ is

FIG. 2. The diagrams responsible for the retarded response of the current Jμ to one external gauge potential.
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Jμð1ÞðpÞ ¼ ð−1ÞieAνðpÞ
Z

d2nk
ð2πÞ2n tr½σ

μGraðpþ kÞσνGrrðkÞ

þσμGrrðkÞσνGarðk − pÞ�: ð3:23Þ

We now discuss the general structure of the diagrams
with ðm − 1Þ number of external gauge potentials (m > 1).
There are m number of possible diagrams, which is
organized as follows. Each diagram is a 1-loop diagram
with m number of currents inserted, and one of them is
JμðpÞ. We call the external momentum of the ith attached
gauge field, Aνi , labeled from Jμ along the arrow direction,
pi, i ¼ 1;…ðm − 1Þ, so that there are ðm − 1Þ vertex
insertions ieAνiðpiÞσνi , i ¼ 1;…ðm − 1Þ. There is an over-
all δ function dictating the momentum conservation,
ð2πÞ2nδð2nÞðp − p1 −…pm−1Þ, as usual. Among the m
number of fermion lines, one can choose one line to be
Grr with the loop momentum k. Then to have a non-
vanishing diagram, all the fermion lines along the arrow
direction between Jμ and the chosen line should be Gar,
and all the fermion lines from the chosen line to the Jμ

insertion must be Gra: the diagram is uniquely determined

by the position of the Grr line in the loop. There are
precisely m number of ways to have different diagrams.
Figure 3 shows the diagram where the Grr line is located
between ði − 1Þth and ith gauge potential insertions,
i ¼ 1;…; m (0th and mth insertion are by definition
JμðpÞ itself). This diagram gives

ð−1ÞðieÞm−1
Z

d2np1

ð2πÞ2n � � �
Z

d2npm−1

ð2πÞ2n ð2πÞ2nδðp − p1 − � � � − pm−1ÞAν1ðp1Þ � � �Aνm−1
ðpm−1Þ

Z
d2nk
ð2πÞ2n tr½σ

μGraðkþ pi þ � � � þ pm−1Þσνm−1 � � �Graðkþ piÞσνiGrrðkÞ

× σνi−1Garðk − pi−1Þ � � � σν1Garðk − p1 − � � �pi−1Þ�; ð3:24Þ

and we have to sum over i ¼ 1;…; m to find the final
Jμðm−1ÞðpÞ in ðm − 1Þth order of the gauge potential. When

i ¼ 1 (m), the Gar (Gra) are absent in the above formula.

IV. CHIRAL MAGNETIC EFFECT
IN d ¼ 2n DIMENSIONS

As discussed in the introduction, the CME in 2n
dimensions appears in the ðn − 1Þth order of the external
gauge field, so that we have to compute m ¼ n number of
diagrams whose contributions are given by (3.24) with
m ¼ n and i ¼ 1;…; n. In general, the result is highly non-
analytic near the zero momenta pi → 0 region, so that the
result in the zero momentum limit will in general depend on
how one approaches the zero momentum. Guided by

previous observations in literature, we expect that the
correct CMW coefficient is obtained when we first let
the frequencies be zero, p0

i → 0, before taking the zero
spatial momentum limit, ~pi → 0. In this section, we
therefore compute (3.24) after taking p0

i → 0 limit, and
show that one indeed recovers the right magnitude of the
CME in 2n dimensions in this limit. The computation of
(3.24) simplifies greatly in this zero frequency limit,
p0
i → 0, which allows us some degree of analytic compu-

tations. In this limit, one can also map the problem to the
purely Euclidean computation, but we will skip persueing
this possibility.
We aim to compute the loop integral in (3.24)

with m ¼ n,

Z
d2nk
ð2πÞ2n tr½σ

μGraðkþ pi þ � � � þ pn−1Þσνn−1…Graðkþ piÞσνiGrrðkÞσνi−1Garðk − pi−1Þ…σν1Garðk − p1 −…pi−1Þ�;

ð4:1Þ

FIG. 3. One of the diagrams responsible for the retarded
response of the current Jμ to ðm − 1Þ number of external gauge
potentials. There are m number of such diagrams with different
positions of Grr propagator.
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and sum the result over i ¼ 1;…; m. The numerator of the integrand is

ð−iÞn−1tr½σμððkþ pi þ � � �pn−1Þ · σ̄Þσνn−1…ððkþ piÞ · σ̄Þσνiðk · σ̄Þσνi−1ððk − pi−1Þ · σ̄Þ…σν1ððk − p1 − � � � − pi−1Þ · σ̄Þ�:
ð4:2Þ

We are interested in only the P-odd part of the contribution which involves the ϵ-tensor, and we need to use the following
statement that the P-odd part of the trace

tr½σμ1 σ̄ν1σμ2 σ̄ν2…σμn σ̄νn �; ð4:3Þ
is given by

ð2iÞn−1ϵμ1ν1…μnνn ; ð4:4Þ

where by definition, ϵ012���ð2n−1Þ ¼ þ1. To show this, start from the definitions (2.9) and (2.13) to have

tr½σμ1 σ̄ν1σμ2 σ̄ν2…σμn σ̄νn � ¼ tr½Pþðγ0γμ1γν1γ0Þ…ðγ0γμnγνnγ0Þ�
¼ ð−1Þntr½P−γ

μ1γν1…γμnγνn �

¼ ð−1Þn
2

tr½ð1 − γ5Þγμ1γν1…γμnγνn �: ð4:5Þ

The P-odd part is obtained from the γ5 matrix, and using the fact that γ5 ¼ in−1γ0γ1…γ2n−1, one has

−
1

2
ð−1Þntr½γ5γμ1γν1…γμnγνn � ¼ 1

2
ðiÞn−1ϵμ1ν1…μnνn tr 1 ¼ ð2iÞn−1ϵμ1ν1…μnνn : ð4:6Þ

Using this, the P-odd part of the numerator (4.2) becomes after some algebra

2n−1kνðp1Þμ1…ðpn−1Þμn−1ϵμνμ1ν1…μn−1νn−1 ; ð4:7Þ

which is the same for all i ¼ 1;…; m.
What is difficult is the rest part including the denominator of the integrand. It is written as

�
−

π

j~kj

�
ðδðk0 − j~kjÞ − δðk0 þ j~kjÞÞ

�
1

2
− nþðk0Þ

�

×
1

½ðk0 þ iϵÞ2 − j~kþ ~pi þ � � � þ ~pn−1j2�…½ðk0 þ iϵÞ2 − j~kþ ~pij2�
×

1

½ðk0 − iϵÞ2 − j~k − ~pi−1j2�…½ðk0 − iϵÞ2 − j~k − ~p1 − � � � − ~pi−1j2�
; ð4:8Þ

where we have put all p0
i ¼ 0. Using the on-shellness, ðk0Þ2 ¼ j~kj2, given by the delta functions, the above becomes

�
−

π

j~kj

�
ðδðk0 − j~kjÞ − δðk0 þ j~kjÞÞ

�
1

2
− nþðk0Þ

�

×
1

½−2~k · ð~pi þ � � � þ ~pn−1Þ − j~pi þ � � � þ ~pn−1j2 þ ik0ϵ�…½−2~k · ~pi − j~pij2 þ ik0ϵ�

×
1

½2~k · ~pi−1 − j~pi−1j2 − ik0ϵ�…½2~k · ð~p1 þ � � � þ ~pi−1Þ − j~p1 þ � � � þ ~pi−1j2 − ik0ϵ�
: ð4:9Þ
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There are total ðn − 1Þ terms in the denominator, and we would like to combine them using the Feynman parametrization

1

ðA1 � iϵÞ…ðAn−1 � iϵÞ ¼ ðn − 2Þ!
Z

1

0

dx1…dxn−1
δð1 − x1 − � � � − xn−1Þ

ðx1A1 þ � � � þ xn−1An−1 � iϵÞn−1 : ð4:10Þ

It is worth emphasizing that the Feynman formula is valid only with the crucial presence of iϵ in each term with the overall
same sign: if some of iϵ term appears with a different sign compared to others, the formula is not valid. Looking at (4.9), we
see that the first ðn − iÞ terms have þik0ϵ while the rest ði − 1Þ terms have −ik0ϵ. To make iϵ terms having the same sign,
we consider minus of each of the first ðn − iÞ terms to have

ð−1Þn−i
�
−

π

j~kj

�
ðδðk0 − j~kjÞ − δðk0 þ j~kjÞÞ

�
1

2
− nþðk0Þ

�

×
1

½2~k · ð~pi þ � � � þ ~pn−1Þ þ j~pi þ � � � þ ~pn−1j2 − ik0ϵ�…½2~k · ~pi þ j~pij2 − ik0ϵ�

×
1

½2~k · ~pi−1 − j~pi−1j2 − ik0ϵ�…½2~k · ð~p1 þ � � � þ ~pi−1Þ − j~p1 þ � � � þ ~pi−1j2 − ik0ϵ�
; ð4:11Þ

which now has the overall same sign for iϵ’s in each term, so that one can safely use the Feynman formula. The result is

ð−1Þn−i
�
−

π

j~kj

�
ðδðk0 − j~kjÞ − δðk0 þ j~kjÞÞ

�
1

2
− nþðk0Þ

�

× ðn − 2Þ!
Z

1

0

dx1…dxn−1
δð1 − x1 − � � � − xn−1Þ
½~k · ~Qi þ Δi − ik0ϵ�n−1

; ð4:12Þ

where

~Qi ¼ 2ðxn−1ð~pi þ � � � þ ~pn−1Þ þ � � � þ xi ~pi þ xi−1 ~pi−1 þ � � � þ x1ð~p1 þ � � � þ ~pi−1ÞÞ;
Δi ¼ xn−1j~pi þ � � � þ ~pn−1j2 þ � � � þ xij~pij2 − xi−1j~pi−1j2 − � � � − x1j~p1 þ � � � þ ~pi−1j2: ð4:13Þ

As examples, for n ¼ 3 we have

~Q1 ¼ 2ðx2ð~p1 þ ~p2Þ þ x1 ~p1Þ; Δ1 ¼ x2j~p1 þ ~p2j2 þ x1j~p1j2;
~Q2 ¼ 2ðx2 ~p2 þ x1 ~p1Þ; Δ2 ¼ x2j~p2j2 − x1j~p1j2;
~Q3 ¼ 2ðx2 ~p2 þ x1ð~p1 þ ~p2ÞÞ; Δ3 ¼ −x2j~p2j2 − x1j~p1 þ ~p2j2; ð4:14Þ

and for n ¼ 4 we have

~Q1 ¼ 2ðx3ð~p1 þ ~p2 þ ~p3Þ þ x2ð~p1 þ ~p2Þ þ x1~p1Þ;
Δ1 ¼ x3j~p1 þ ~p2 þ ~p3j2 þ x2j~p1 þ ~p2j2 þ x1j~p1j2;
~Q2 ¼ 2ðx3ð~p2 þ ~p3Þ þ x2 ~p2 þ x1~p1Þ;
Δ2 ¼ x3j~p2 þ ~p3j2 þ x2j~p2j2 − x1j~p1j2;
~Q3 ¼ 2ðx3 ~p3 þ x2 ~p2 þ x1ð~p1 þ ~p2ÞÞ;
Δ3 ¼ x3j~p3j2 − x2j~p2j2 − x1j~p1 þ ~p2j2;
~Q4 ¼ 2ðx3 ~p3 þ x2ð~p2 þ ~p3Þ þ x1ð~p1 þ ~p2 þ ~p3ÞÞ;
Δ4 ¼ −x3j~p3j2 − x2j~p2 þ ~p3j2 − x1j~p1 þ ~p2 þ ~p3j2: ð4:15Þ

Combining (4.7) and (4.12), our loop integral (4.1) becomes
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πð−1Þn2n−1ðn − 2Þ!ðp1Þμ1…ðpn−1Þμn−1ϵμ0μ1ν1…μn−1νn−1

Z
1

0

Yn−1
j¼1

dxjδ

�
1 −

Xn−1
j¼1

xj

�

×
Z

d2nk
ð2πÞ2n ðδðk

0 − j~kjÞ þ δðk0 þ j~kjÞÞ
�
1

2
− nþðk0Þ

� ð−1Þi
½~k · ~Qi þ Δi − ik0ϵ�n−1

; ð4:16Þ

where we have put ν ¼ 0 since one can easily check that
this is the only nonvanishing possibility for ν due to anti-
symmetric nature of the ϵ-tensor. At the end of the
computation, we have to sum over i ¼ 1;…; n.
We can now do the loop integration over k as

follows: since ~Qi is a fixed vector for ~k integration whose
measure is isotropic, one can conveniently choose

the direction of ~Qi as x̂2n−1 in the ð2n − 1Þ dimensional

vector space of ~k. We call the angle between ~Qi and ~k be θ,
so that

~Qi · ~k ¼ j ~Qijj~kj cos θ: ð4:17Þ

Then the metric in the ~k space is written as

ds2 ¼ dj~kj2 þ j~kj2dθ2 þ j~kj2sin2θdΩ2
2n−3; ð4:18Þ

where dΩ2
2n−3 is the metric on the unit S2n−3 sphere. Note

that our integrand in the above depends only on θ, so that
one can integrate over the S2n−3 trivially. Therefore, the
measure of the k integration becomes

Z
d2nk
ð2πÞ2n ¼

1

ð2πÞ2nVolðS
2n−3Þ

Z
dk0

Z
dj~kjj~kj2n−2

Z
π

0

dθ sin2n−3θ

¼ 1

22n−1πnþ1ðn − 2Þ!
Z

dk0
Z

dj~kjj~kj2n−2
Z

π

0

dθ sin2n−3θ: ð4:19Þ

Then, the loop integral (4.16) reduces to

ð−1Þn
ð2πÞn ðp1Þμ1…ðpn−1Þμn−1ϵμ0μ1ν1…μn−1νn−1

Z
1

0

Yn−1
j¼1

dxjδ

�
1 −

Xn−1
j¼1

xj

�

×
Z

dk0
Z

dj~kjj~kj2n−2ðδðk0 − j~kjÞ þ δðk0 þ j~kjÞÞ
�
1

2
− nþðk0Þ

�

× ð−1Þi
Z

π

0

dθ
sin2n−3θ

½j~kjj ~Qij cos θ þ Δi − ik0ϵ�n−1
: ð4:20Þ

Since Δi is Oðj~pj2Þ and j ~Qij is Oðj~pjÞ, we perform a derivative expansion for small ~pi limit by expanding the above
integrand in powers ofΔi=j ~Qij, and try to obtain the first nonzero result after summing over i ¼ 1;…; m. We will argue that

the first nonzero result arises in the ðn − 1Þth order of the expansion in Δi=j ~Qij, based on the following conjecture,

ðConjectureÞ∶
Z

1

0

Yn−1
j¼1

dxjδ

�
1 −

Xn−1
j¼1

xj

�Xn
i¼1

ð−1Þi
j ~Qijn−1

�
Δi

j ~Qij

�
s
¼ 0; s ¼ 0; 1;…; ðn − 2Þ: ð4:21Þ

We could not find a proof of this, but we have checked it for n ¼ 2 (four dimensions) and n ¼ 3 (six dimensions) explicitly,

and the case is quite convincing. This conjecture guarantees that the first ðn − 2Þth expansions in Δi=j ~Qij of (4.20) after
summing over i ¼ 1;…; n vanish, and the nonvanishing result first appears in the ðn − 1Þth order as

ð−1Þ
ð2πÞn

ð2n − 3Þ!
ðn − 1Þ!ðn − 2Þ! ðp1Þμ1…ðpn−1Þμn−1ϵμ0μ1ν1…μn−1νn−1

Z
1

0

Yn−1
j¼1

dxjδ

�
1 −

Xn−1
j¼1

xj

�

×
Z

dk0
Z

dj~kjðδðk0 − j~kjÞ þ δðk0 þ j~kjÞÞ
�
1

2
− nþðk0Þ

��
Δn−1

i

j ~Qij2n−2
�

× ð−1Þi
Z

1

−1
d cos θ

ð1 − cos2θÞn−2
ðcos θ − ik0ϵÞ2n−2 þOðj~pjnÞ; ð4:22Þ
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where we used the expansion

1

ðAþ xÞn−1 ¼ � � � þ ð−1Þn−1 ð2n − 3Þ!
ðn − 1Þ!ðn − 2Þ!

1

A2n−2 x
n−1 þ � � � : ð4:23Þ

The cos θ integration can be done as follows. First expand the numerator to obtain

Z
1

−1
dx

ð1 − x2Þn−2
ðx − ik0ϵÞ2n−2 ¼

Xn−2
l¼0

ð−1Þln−2Cl

Z
1

−1
dx

1

ðx − ik0ϵÞ2n−2l−2

¼ ð−2Þ
Xn−2
l¼0

ð−1Þl
ð2n − 2l − 3Þ n−2Cl ¼ ð−2Þð−1Þn

Xn−2
l¼0

ð−1Þl
ð2lþ 1Þ n−2Cl; ð4:24Þ

where in the last equality we change the summation variable l → ðn − 2Þ − l. We now use the identity

Xm
l¼0

ð−1Þl
ð2lþ 1Þ mCl ¼

22mðm!Þ2
ð2mþ 1Þ! : ð4:25Þ

To prove this, start from

Z
1

0

dxð1 − x2Þm ¼
Xm
l¼0

ð−1ÞlmCl

Z
1

0

dx x2l ¼
Xm
l¼0

ð−1Þl
ð2lþ 1Þ mCl; ð4:26Þ

and the left-hand side can be computed using the beta function to get the identity proved. Using this identity, the cos θ
integration finally gives

Z
1

−1
dx

ð1 − x2Þn−2
ðx − ik0ϵÞ2n−2 ¼ ð−2Þð−1Þn 2

2n−4½ðn − 2Þ!�2
ð2n − 3Þ! : ð4:27Þ

We now conjecture the following result for the Feynman parameter integration in (4.22) after summing over i ¼ 1;…; n,

ðConjectureÞ∶
Z

1

0

Yn−1
j¼1

dxjδ

�
1 −

Xn−1
j¼1

xj

�Xn
i¼1

ð−1Þi
�

Δn−1
i

j ~Qij2n−2
�

¼ −
1

ðn − 2Þ!22n−3 : ð4:28Þ

We have checked this formula up to n ¼ 5 (ten dimensions), which is quite nontrivial and convincing. Note that the result

does not depend on ~pi’s. Finally, the k0 and j~kj integration in (4.22) gives a simple result
Z

dk0
Z

dj~kjðδðk0 − j~kjÞ þ δðk0 þ j~kjÞÞ
�
1

2
− nþðk0Þ

�

¼
Z

∞

0

dj~kj
�
1

2
− nþðj~kjÞ þ

1

2
− nþð−j~kjÞ

�
¼ −μ: ð4:29Þ

Collecting (4.27), (4.28), and (4.29), the loop integral (4.22) finally becomes

ð−1Þnμ
ð2πÞnðn − 1Þ! ðp1Þμ1…ðpn−1Þμn−1ϵμ0μ1ν1…μn−1νn−1 ; ð4:30Þ

and this is our final result for the loop integration of (4.1).
Inserting our result into (3.24) (with m ¼ n), we have in momentum space

JμðpÞ ¼ ð−ieÞn−1 μ

ð2πÞnðn − 1Þ!
Z

d2np1

ð2πÞ2n…
Z

d2npn−1

ð2πÞ2n ð2πÞ2nδðp − p1 − � � � − pn−1Þ

× ϵμ0μ1ν1…μn−1νn−1ðp1Þμ1…ðpn−1Þμn−1Aν1ðp1Þ…Aνn−1ðpn−1Þ; ð4:31Þ
which becomes in real space,
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Jμ ¼ ð−1Þnen−1 μ

2n−1ð2πÞnðn − 1Þ!
ϵμνμ1ν1…μn−1νn−1uνFμ1ν1…Fμn−1νn−1 ; ð4:32Þ

where we have introduced the velocity vector of the static
fluid uμ ¼ ð1; ~0Þ, and Fμν ¼ ∂μAν − ∂νAμ is the field
strength. Comparing this with the hydrodynamic prediction
in Refs. [8,26], one finds a good agreement, which is an
explicit diagrammatic confirmation of the CME in 2n
dimensions.

V. KUBO FORMULA AND CHIRAL VORTICAL
EFFECT IN 2n DIMENSIONS

The computation in the previous sections can be extended
to the response functions to the 0i components of the metric
perturbations, δg0i, instead of gauge field perturbations. At
the linear order in δg0i in the action, this involves the
0i-components of the energy-momentum tensors

T0i ¼ −
i
4
ψ†ðσ0∂i

$
ψ þ σi∂0

$
ψÞ; ∂$ ¼ ~∂ − ∂⃖: ð5:1Þ

These operators couple to the 0i-components of external
metric perturbation δg0i in the action so as to introduce the
following additional factor in the Schwinger-Keldysh path
integral

exp

�
i
Z

tf

t0

ðT0i
ð1Þ − T0i

ð2ÞÞδg0i
�
: ð5:2Þ

The vertex in the Feynman diagrams is generated by

iLI ¼ iT0iδg0i ¼
1

4
ψ†ðσ0∂i

$
ψ þ σi∂0

$
ψÞδg0i; ð5:3Þ

and let us call this “Type I” vertex. Comparing with the
current Ji ¼ ψ†σiψ which couples to Ai, the structure is
similar with the replacements

Ai → δg0i; σi → −
i
4
ðσ0∂i

$
þ σi∂0

$
Þ; ð5:4Þ

in the vertices, so that one can follow similar steps in the
previous sections to compute P-odd correlation functions of
these energy-momentum vertices.
The full fermion action in a general metric background is

however nonlinear in the metric, so there are other terms in
the action which are nonlinear in the g0i perturbations, and
some of them are in fact relevant for our P-odd response
functions to the metric perturbations. Following the dis-
cussions in Ref. [27], there are terms containing one σ
matrix (the lowest term of which is our Type I vertex above)
and there are others containing three σ matrices coming
from spin connection terms, and this class of terms are at
least quadratic in δgμν. By the same reasoning as in
Ref. [27] one can show that for P-odd correlation functions
whose ϵ tensor emerges from the right number of σ and σ̄

matrices (that is 2n) in the numerator, we only need to
consider the precisely two types of vertices: the leading
Type I vertex with one σ matrix and the leading quadratic
vertex containing three σ matrices,

iLII ¼ −
1

16
ðψ†σ½iσ̄μσj�ψÞðδg0i∂μδg0jÞ; ð5:5Þ

where ½iμj� ¼ ð1=6Þðiμj� permutationsÞ is the antisym-
metrization. We will call this the “Type II” vertex.
Let us consider the diagrams for the expectation value of

the current JμðpÞ in response to the s (s ¼ 1;…; ðn − 1Þ)
number of δg0i ’s and t ¼ ðn − 1Þ − s number of Ai ’s. We
generally have diagrams with n1 number of Type I vertices,
n2 Type II vertices, and t ¼ ðn − 1Þ − s number of the
usual ieJiAi ¼ ieðψ†σiψÞAi vertices, with a condition
n1 þ 2n2 ¼ s. We will compute all these diagrams, and
as a first step let us consider the simplest case of n2 ¼ 0,
that is, the diagrams with only Type I and current vertices
without Type II. They correspond to replacing s number of
current vertices in the previous diagrams with the Type I
vertices, and there are ðn−1ÞCs ¼ ðn − 1Þ!=s!ðn − 1 − sÞ!
ways of doing it for each n diagrams in the previous
section. One can easily find that the anticipated P-odd
structure of the result in terms of ϵ-tensor and the external
momenta ~pi’s

∼
Z

d2np1

ð2πÞ2n …
Z

d2npn−1

ð2πÞ2n ð2πÞ2nδðp − p1 − � � � − pn−1Þ

× δg0ν1ðp1Þ…δg0νsðpsÞAνsþ1
ðpsþ1Þ…Aνn−1ðpn−1Þ

× ðp1Þμ1…ðpn−1Þμn−1ϵμ0μ1ν1…μn−1νn−1 ; ð5:6Þ

does not care how these s number of Type I vertices are
distributed in the given diagram, so the factor ðn−1ÞCs ¼
ðn − 1Þ!=s!ðn − 1 − sÞ! can simply be multiplied to
the result from a single choice of the positions of the
Type I vertices. Let us then consider the n diagrams as in
the previous section where the first s vertices along
the arrow directions are replaced by Type I vertices with
δg0ν1ðp1Þ;…; δg0νsðpsÞ. The denominator is identical, and
for the P-odd part of the numerator, we have a replacement
of the first s number of σi ’s from the vertex insertions with

σi → −
i
4
ðσ0∂i

$
þ σi∂0

$
Þ: ð5:7Þ

Each replaced vertex has two pieces: the first one with σ0

and the second with σi. In computing the σ matrix trace to
get a P-odd ϵ tensor structure, it is clear that one cannot
have the first piece appearing twice since that would bring
σ0 twice in (4.3). Therefore the first piece can be chosen at
most once. We therefore divide the diagrams into two
cases: the Case A where the first piece with σ0 never
appears, and the Case B where the first piece with σ0

appears precisely once.
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Case A:
Let us first compute the contributions where the first

piece is never chosen and all vertex replacement is simply

σi → −
i
4
σi∂0

$
: ð5:8Þ

The matrix structure is precisely the same, and in momen-

tum space the presence of the extra ∂0
$
−i=4∂0

$
factor gives

1=4 times the sum of the frequencies of the incoming and
outgoing momenta. Since we are considering the limit
p0
i ¼ 0, the incoming and outgoing frequencies for each

vertex is simply k0 of the loop momentum kμ, so that the

factor −i=4∂0
$

simply gives rise to an additional factor
1=4 × ð2k0Þ ¼ ð1=2Þk0 in the loop integration, compared
to the loop integration in the previous section. Since there

are s number of them, and including the combinatoric
factor ðn−1ÞCs ¼ ðn − 1Þ!=s!ðn − 1 − sÞ! mentioned in the

above, the total contribution is ð1=2Þsðk0Þsðn − 1Þ!=s!ðn −
1 − sÞ! times of the expression in the previous section
before performing the loop integration. Since the only
modification in the loop integral is the additional ðk0Þs, one
can simply borrow the result from the previous section
where the previous integral in (4.29)Z

dk0
Z

dj~kjðδðk0 − j~kjÞ þ δðk0 þ j~kjÞÞ
�
1

2
− nþðk0Þ

�

¼
Z

∞

0

dj~kj
�
1

2
− nþðj~kjÞ þ

1

2
− nþð−j~kjÞ

�
¼ −μ;

ð5:9Þ
is now modified by

1

2s
ðn − 1Þ!

s!ðn − 1 − sÞ!
Z

dk0
Z

dj~kjðk0Þsðδðk0 − j~kjÞ þ δðk0 þ j~kjÞÞ
�
1

2
− nþðk0Þ

�

¼ 1

2s
ðn − 1Þ!

s!ðn − 1 − sÞ!
Z

∞

0

dj~kjj~kjs
�
1

2
− nþðj~kjÞ þ ð−1Þs

�
1

2
− nþð−j~kjÞ

��

¼ 1

2s
ðn − 1Þ!

s!ðn − 1 − sÞ!
Z

∞

0

dj~kjj~kjs
�
1

2
− nþðj~kjÞ − ð−1Þs

�
1

2
− n−ðj~kjÞ

��

¼ 1

2s
ðn − 1Þ!

s!ðn − 1 − sÞ!
Z

∞

0

dj~kjj~kjs
�
1

2
ð1 − ð−1ÞsÞ − ðnþðj~kjÞ − ð−1Þsn−ðj~kjÞÞ

�
; ð5:10Þ

where we have used the identity

1

2
− nþð−j~kjÞ ¼ −

�
1

2
− n−ðj~kjÞ

�
: ð5:11Þ

Since in the vacuum we have n�ðj~kjÞ ¼ 0, the first constant
piece in the integrand is the vacuum contribution which is
divergent polynomially for odd s. In a properly regularized
theory, for example by a Pauli-Villars regularization which
preserves Lorentz symmetry, the regularized finite vacuum
result must be Lorentz invariant. However, one can easily
see that there is no possible Lorentz symmetric expression
that reduces to our expression for our choices for the
polarizations, and this means that the regularized vacuum
result must vanish identically, so that we do not need to
introduce renormalized couplings and the renormalized
vacuum result is unambiguously zero. Therefore we can
ignore the first piece, so that the final result is a replacement
of −μ in (5.9) or in (4.30) by

−μ → −
1

2s
ðn − 1Þ!

s!ðn − 1 − sÞ!
Z

∞

0

dj~kjj~kjsðnþðj~kjÞ

− ð−1Þsn−ðj~kjÞÞ: ð5:12Þ

Case B:
We next consider the case where only one replaced

vertex among s replaced vertices has the σ0 piece

σi → −
i
4
σ0∂i

$
; ð5:13Þ

while the rest ðs − 1Þ vertices has the second piece as
before

σi → −
i
4
σi∂0

$
¼ 1

2
k0σi: ð5:14Þ

There are s number of choices and one can easily find that
they all give the same final result, so let us consider the case
where the first vertex along the arrow direction has

−ði=4Þσ0∂i
$

while the next ðs − 1Þ vertices have
ð1=2Þk0σi. The computation of this case is more subtle,
but it does contribute to the expected P-odd result.
Including the combinatoric factor, the numerator

becomes
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ð−iÞn−1 ðn − 1Þ!
ðs − 1Þ!ðn − 1 − sÞ!

1

2s
ðk0Þs−1

�
k −

p1

2
− p2 − � � � − pi−1

�
ν1

× tr½σμððkþ pi þ � � � þ pn−1Þ · σ̄Þσνn−1 � � � ððkþ piÞ · σ̄Þσνiðk · σ̄Þ
× σνi−1ððk − pi−1Þ · σ̄Þ � � � σν2ððk − p2 − � � � − pi−1Þ · σ̄Þσ0ððk − p1 − � � � − pi−1Þ · σ̄Þ�; ð5:15Þ

where the meaning of indices ν1;…; νn−1 is that we have
the perturbations of

δg0ν1ðp1Þ;…; δg0νsðpsÞ; Aνsþ1
ðpsþ1Þ;…; Aνn−1ðpn−1Þ;

ð5:16Þ
which is obtained by replacing the first s gauge fields with
the metric perturbations in the expression for the JμðpÞ in
(3.24) with m ¼ n or in Fig. 3. Performing the trace and
extracting the P-odd part gives after some algebra,

ð−1Þ2n−1 ðn − 1Þ!
ðs − 1Þ!ðn − 1 − sÞ!

1

2s
ðk0Þs−1

�
k −

p1

2
− p2 − � � � − pi−1

�
ν1

× kνðp1Þμ1…ðpn−1Þμn−1ϵμ0μ1νμ2ν2…μn−1νn−1 ; ð5:17Þ

which is similar to the previous form (4.7) with a
few differences. Since 0-index appears in the ϵ tensor,
all other indices must be spatial. Especially, we have either
a single kν vector or a double vector kνkν1 structure
that have to be integrated in the loop integral over kμ.
After the same manipulation for the denominator using
the Feynman parametrization, the loop integration
over the ð2n − 1Þ dimensional spatial vector ~k will be
proportional to

Z
d2n−1~k
ð2πÞ2n−1

kν
½~k · ~Qi þ Δi − ik0ϵ�n−1

∼ ð ~QiÞν; ð5:18Þ

for the single vector structure, and

Z
d2n−1~k
ð2πÞ2n−1

kνkν1

½~k · ~QiþΔi− ik0ϵ�n−1
∼C1ð ~QiÞνð ~QiÞν1 þC2δ

ν1
ν ;

ð5:19Þ

for the double vector structure by rotational symmetry of
the integration measure. Since ~Qi is a linear combination of
~pi’s, the single vector structure and the first piece of the
double vector structure do not contribute to the final result
due to the antisymmetric nature of the ϵ tensor in (5.17).
Therefore, only the second piece in the double vector
structure proportional to δν1ν contributes, and for this
purpose we can simply replace

kνkν1 → δν1ν ·
j~k⊥j2

ð2n − 2Þ ¼ δν1ν ·
j~kj2sin2θ
ð2n − 2Þ ; ð5:20Þ

where ~k⊥ is the component of ~k which is perpendicular to
~Qi, and θ is the angle we introduce in the previous section
between ~k and ~Qi. The number ð2n − 2Þ in the denominator
is the number of dimensions of ~k⊥ that we are averaging
over. With all these, our numerator finally becomes almost
identical to the previous result (4.7) (with kν ¼ k0 ¼ −k0),
except the additional factor

ðn − 1Þ!
ðs − 1Þ!ðn − 1 − sÞ!

1

2s
ðk0Þs−2j~kj2sin2θ

ð2n − 2Þ

¼ ðn − 1Þ!
ðs − 1Þ!ðn − 1 − sÞ!

1

2s
ðk0Þssin2θ
ð2n − 2Þ ; ð5:21Þ

where we used j~kj2 ¼ ðk0Þ2 due to the delta function

structure δðk0 � j~kjÞ in the rest of the integrand. As in
the Case Awe have an extra ðk0Þs factor, and the presence
of sin2 θ now modifies the previous angular integration
(4.27)

Z
1

−1
dx

ð1 − x2Þn−2
ðx − ik0ϵÞ2n−2 ¼ ð−2Þð−1Þn 2

2n−4½ðn − 2Þ!�2
ð2n − 3Þ! ;

ð5:22Þ

to a new one

Z
1

−1
dx

ð1 − x2Þn−1
ðx − ik0ϵÞ2n−2 ¼ ð−2Þ

Xn−1
l¼0

ð−1Þl n−1Cl

ð2n − 2l − 3Þ ¼ ð−2Þð−1Þn−1
Xn−1
l¼0

ð−1Þl ðn−1ÞCl

ð2l − 1Þ

¼ ð−2Þð−1Þn 2
2n−3ðn − 1Þ!ðn − 2Þ!

ð2n − 3Þ! ; ð5:23Þ
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where in the last line we used a combinatoric identity nCl

Xn
l¼0

ð−1Þl nCl

ðlþ rÞ ¼
n!ðr − 1Þ!
ðnþ rÞ! ; ð5:24Þ

which can be proved by integrating
R
1
0 dx xr−1ð1 − xÞn

using the beta function. Comparing (5.22) and (5.23), we
see that one has an extra factor of 2ðn − 1Þ from the sin2 θ
term in the angular integration. Inserting this to (5.21), we
conclude that the Case B diagrams give the contribution
which is the same to the previous section result (4.30) with
a modification

−μ → −
1

2s
ðn − 1Þ!

ðs − 1Þ!ðn − 1 − sÞ!
Z

∞

0

dj~kjj~kjsðnþðj~kjÞ

− ð−1Þsn−ðj~kjÞÞ: ð5:25Þ

Note that the Case B result is precisely s times of the
Case A result, so that their sum, which is the final result of
the loop integration for the s number of δg0i insertions, is
(4.30) times

1

2s
ðn − 1Þ!

s!ðn − 1 − sÞ! ðsþ 1Þ; ð5:26Þ

with a replacement

μ →
Z

∞

0

dj~kjj~kjsðnþðj~kjÞ − ð−1Þsn−ðj~kjÞÞ: ð5:27Þ

We will shortly relate the chiral vortical effect with s
number of vorticity insertions to the P-odd response of the
current to the s number of δg0i perturbations we just
computed, after carefully deriving relevant Kubo formula
for anomalous transport coefficients in 2n dimensions. The
appearance of the above integration (5.27) in the chiral
vortical effect of free chiral fermions was previously
predicted in Ref. [17] using the entropy method of hydro-
dynamics, and our diagrammatic computation confirms it.
The result of the integration can be found in Ref. [17], and
it is given in terms of the Bernoulli polynomial as

Z
∞

0

dj~kjj~kjsðnþðj~kjÞ− ð−1Þsn−ðj~kjÞÞ

¼ 1

ðsþ 1Þ
�
2πi
β

�
sþ1

Bsþ1

�
1

2
þ βμ

2πi

�
∼

1

ðsþ 1Þμ
sþ1þ� � � ;

ð5:28Þ

where � � � involves polynomials of temperature T and μ
which seem to be related to (mixed) gravitational anomalies
[12]. The above formula applies equally well to the s ¼ 0
case in the previous section.
In summary, the P-odd response of the current JμðpÞ to

the s-number of δg0i and ðn − 1 − sÞ number of Ai
perturbations coming from the diagrams without any
Type II vertices (n2 ¼ 0) is given by

Jμðs;tÞðpÞjn2¼0 ¼ ð−iÞn−1
Z

d2np1

ð2πÞ2n …
Z

d2npn−1

ð2πÞ2n ð2πÞ2nδðp − p1 − � � � − pn−1Þ

× ϵμ0μ1ν1…μn−1νn−1ðp1Þμ1…ðpn−1Þμn−1δg0ν1ðp1Þ…δg0νsðpνsÞAνsþ1
ðpsþ1Þ…Aνn−1ðpn−1Þ

×
1

ð2πÞn
1

2s
1

s!ðn − 1 − sÞ!
�
2πi
β

�
sþ1

Bsþ1

�
1

2
þ βμ

2πi

�
; sþ t ¼ n − 1: ð5:29Þ

In real space, this is equivalent to

Jμðs;tÞjn2¼0 ¼
ð−1Þn

2n−1ð2πÞn
1

s!ðn − 1 − sÞ!
�
2πi
β

�
sþ1

Bsþ1

�
1

2
þ βμ

2πi

�

× ϵμνμ1ν1…μn−1νn−1uνð∂μ1δg0ν1Þ…ð∂μsδg0νsÞFμsþ1νsþ1
…Fμn−1νn−1 ; ð5:30Þ

where we introduce the static velocity vector uν ¼ −δν0,
and Fμν ¼ ∂μAν − ∂νAμ is the field strength.
We now compute the general case of having nonzero n2

number of Type II vertices. The computation is more or less
similar to what we have presented before, except a few
minor algebraic differences we will explain in detail. First,
there is an overall combinatoric factor of choosing the
positions of Type I and II vertices,

ðn − 1 − sþ n1 þ n2Þ!
n1!n2!ðn − 1 − sÞ! ¼ ðn − 1 − n2Þ!

n1!n2!ðn − 1 − sÞ! ; ð5:31Þ

where we have used n1 þ 2n2 ¼ s. Since the diagrams with
different positions all give the same P-odd result due to ϵ
tensor structure, let us choose n1 Type I vertices to appear
first, then n2 Type II, and finally ðn − 1 − sÞ current
vertices, along the arrow direction starting from the current
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insertion JμðpÞ as in Fig. 4. The Feynman rule for the Type
II vertex in momentum space is simple: for δg0iðp1Þ and
δg0jðp2Þ attached to the vertex, one has a vertex insertion

−
i
16

ðp1Þμσ½jσ̄μσi�: ð5:32Þ

Since we will have an antisymmetrization for ði; μ; jÞ in the
final P-odd result by the ϵ tensor contraction after perform-
ing σ matrix trace, it is perfectly fine to remove the
antisymmetrization in the above vertex for our computation
of P-odd part for simplicity, so that we will use the simpler
version in the following,

−
i
16

ðp1Þμσjσ̄μσi ¼ −
i
16

σjðp1 · σ̄Þσi: ð5:33Þ

Comparing this structure with the usual two separate
adjacent current insertions with Aiðp1Þ and Ajðp2Þ, now
with additional propagator of momentum p between them,

ðieÞ2σj −iðp · σ̄Þ
−p2 � ip0ϵ

σi; ð5:34Þ

we see that the numerator structure is almost identical. An
inspection of the momentum flow in the diagram such as in
Fig. 4 easily shows that the P-odd part of the numerator is in
fact identical to the case with current insertions instead,
except additional numeric factor of −1=16 for each Type II.
What is nontrivial is that the number of denominators from
the propagators is now reduced from n to n − n2 ≡ ~n.

Regarding the Type I vertices, the previous classification

in terms of the number of −ði=4Þσ0∂i
$

vertices applies here
as well, so we have either Case A or Case B. Let us first

consider Case A where all Type I vertices are −ði=4Þσi∂0
$
.

The above discussion leads to that the numerator trace gives
the result which is

�
k0

2

�
n1
×

�
−

1

16

�
n2 ð5:35Þ

times of the pure current insertion case (4.7). What is more
involved is the angular integration of the denominator since
the number of propagators in the denominator integral is
reduced by n2. The integral measure

Z
d2nk
ð2πÞ2n ¼

1

22n−1πnþ1ðn − 2Þ!
Z

dk0
Z

dj~kjj~kj2n−2
Z

1

−1
d cos θð1 − cos2θÞn−2; ð5:36Þ

is the same, but the integrand is now

X~n

i¼0

ð−1Þ ~n−i
�
−

π

j~kj

�
ðδðk0 − j~kjÞ − δðk0 þ j~kjÞÞ

�
1

2
− nþðk0Þ

�

× ð ~n − 2Þ!
Z

1

0

Y~n−1
j¼1

dxj
δð1 −P

jxjÞ
½j~kjj ~~Qij cos θ þ ~Δi − ik0ϵ� ~n−1

; ð5:37Þ

with appropriate ð ~~Qi; ~ΔiÞ and ~n ¼ n − n2, which is essentially the same integrand (4.12) for n2 ¼ 0 case before, but with
the replacement n → ~n. Since our previous conjectures (4.21) and (4.28) are for any n for any momenta ~pi, they still can be
applied to our case with the replacement n → ~n. The loop integral then becomes after some algebra (including k0ðk0Þn1 ¼
−ðk0Þn1þ1 from the numerator),

Z
dk0

Z
dj~kjðδðk0 − j~kjÞ þ δðk0 þ j~kjÞÞ

�
1

2
− nþðk0Þ

�
ðk0Þn1þ2n2

×
ð2~n − 3Þ!

22nþ2~n−4πnðn − 2Þ!ð ~n − 1Þ!ð ~n − 2Þ! ×
Z

1

−1
d cos θ

ð1 − cos2θÞn−2
ðcos θ − ik0ϵÞ2~n−2 ; ð5:38Þ

FIG. 4. Diagrams for Jμ with n1 Type I, n2 Type II, and
ðn − 1 − sÞ current vertices. We have n1 þ 2n2 ¼ s, and have to
sum over all possible n2 ranging from 0 to ½s=2�.
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where we used j~kj2n2 ¼ ðk0Þ2n2 from the delta function piece. The angular integral can be done as before using the identity
(5.24),

Z
1

−1
dx

ð1 − x2Þn−2
ðx − ik0ϵÞ2~n−2 ¼ ð−1Þ ~n−122n−4 ðn − 2Þ!ð ~n − 2Þ!ðn − ~n − 1Þ!

ð2~n − 3Þ!ð2n − 2~n − 1Þ! ; ð5:39Þ

so that the integral finally becomes

ð−1Þ ~n−1ðn2 − 1Þ!
22~nπnð ~n − 1Þ!ð2n2 − 1Þ!

Z
dk0

Z
dj~kjðk0Þsðδðk0 − j~kjÞ þ δðk0 þ j~kjÞÞ

�
1

2
− nþðk0Þ

�
; ð5:40Þ

where we used n1 þ 2n2 ¼ s and n − ~n ¼ n2. We see that the resulting ðk0; j~kjÞ integral is what we have seen before in
(5.27), leading to the same parametric dependence on ðT; μÞ. Combining the remaining factors ð1=2Þn1ð−1=16Þn2 from the
numerator, and including the combinatoric factor (5.31), the final result after some algebra is the same with the pure current
insertion case (4.30) with the replacement

μ →
1

2s
ðn − 1Þ!ðn2 − 1Þ!

2ð2n2 − 1Þ!n1!n2!ðn − 1 − sÞ!
Z

∞

0

dj~kjj~kjsðnþðj~kjÞ − ð−1Þsn−ðj~kjÞÞ: ð5:41Þ

This is a generalization of (5.12) to a nonzero n2, and
one can check that it indeed reduces to (5.12) correctly in
n2 ¼ 0 limit.
The Case B where one of the Type I vertices has

−ði=4Þσ0∂i
$

is also computed similarly as before. The net
result is that one has an additional combinatoric factor n1
from the possible choices of the Type I vertex which has

−ði=4Þσ0∂i
$
, and the angular integration gets an additional

factor

sin2θ
ð2n − 2Þ ¼

ð1 − cos2θÞ
ð2n − 2Þ ; ð5:42Þ

so that the angular integration is now modified to

1

ð2n − 2Þ
Z

1

−1
dx

ð1 − x2Þn−1
ðx − ik0ϵÞ2~n−2 ¼

ð−1Þ ~n−122n−2ðn − 1Þ!ð ~n − 2Þ!ðn − ~nÞ!
ð2n − 2Þð2~n − 3Þ!ð2n − 2~nþ 1Þ! : ð5:43Þ

Comparing with the previous angular integration (5.39), this is 1=ð2n − 2~nþ 1Þ ¼ 1=ð2n2 þ 1Þ times of (5.39). Combining
the additional combinatoric factor n1, this finally concludes that the Case B contribution is n1=ð2n2 þ 1Þ times of the Case
A, so that the sum of Case A and B, which is the final result, is ðn1 þ 2n2 þ 1Þ=ð2n2 þ 1Þ ¼ ðsþ 1Þ=ð2n2 þ 1Þ times of the
Case A result.
In summary, the final result for n2 number of Type II vertices insertion is the same with the pure current insertion case

(4.30) with the replacement

μ →
ðsþ 1Þ

2s
ðn − 1Þ!

ðn − 1 − sÞ!
1

ð2n2 þ 1Þ!ðs − 2n2Þ!
Z

∞

0

dj~kjj~kjsðnþðj~kjÞ − ð−1Þsn−ðj~kjÞÞ

¼ 1

2s
ðn − 1Þ!

ðn − 1 − sÞ!
1

ð2n2 þ 1Þ!ðs − 2n2Þ!
�
2πi
β

�
sþ1

Bsþ1

�
1

2
þ βμ

2πi

�
: ð5:44Þ

What we have to do lastly is to sum up all contributions with all possible n2 ranging from 0 to ½s=2�. Magically this is doable
compactly, using the combinatoric identity

X½s2�
n2¼0

1

ð2n2 þ 1Þ!ðs − 2n2Þ!
¼ 1

ðsþ 1Þ!
X½s2�
n2¼0

sþ1
C2n2þ1 ¼

2s

ðsþ 1Þ! : ð5:45Þ

With all these, the final response current in real space with s number of δg0i perturbations and t ¼ n − 1 − s number of
gauge fields is
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Jμðs;tÞ ¼
ð−1Þn

2n−1−sð2πÞn
1

ðsþ 1Þ!ðn − 1 − sÞ!
�
2πi
β

�
sþ1

Bsþ1

�
1

2
þ βμ

2πi

�

× ϵμνμ1ν1…μn−1νn−1uνð∂μ1δg0ν1Þ…ð∂μsδg0νsÞFμsþ1νsþ1
…Fμn−1νn−1 : ð5:46Þ

Following the notation in Ref. [26], we define

ΔBμ
ðs;tÞ ≡

1

n
ϵμνμ1ν1…μn−1νn−1uνð∂μ1δg0ν1Þ…ð∂μsδg0νsÞFμsþ1νsþ1

…Fμn−1νn−1 ; ð5:47Þ

where we reserve the notation Bμ
ðs;tÞ for the true chiral vortical current

Bμ
ðs;tÞ ≡

1

n
ϵμνμ1ν1…μn−1νn−1uνð∂μ1uν1Þ…ð∂μsuνsÞFμsþ1νsþ1

…Fμn−1νn−1 : ð5:48Þ

Then our results can be written as

Jμ ¼
X

sþt¼n−1

ð−1Þn
2n−1−sð2πÞn

n
ðsþ 1Þ!ðn − 1 − sÞ!

�
2πi
β

�
sþ1

Bsþ1

�
1

2
þ βμ

2πi

�
ΔBμ

ðs;tÞ

≡ X
sþt¼n−1

ξAFðs;tÞΔB
μ
ðs;tÞ; ð5:49Þ

with the transport coefficients ξAFðs;tÞ the meaning of whose
superscript AF (anomaly frame) will become clear when
we discuss the Kubo formula shortly.
Up to now, we have computed the P-odd response of the

current JμðpÞ to the external δg0i and Ai perturbations. It is
straightforward to compute the P-odd response of the
energy-momentum T0i to the same perturbations. One
caveat is that due to the presence of nonlinear terms of
metric perturbations in the action, the energy-momentum
itself is also modified from its flat space one,

T0i
I ¼ ð−i=4Þðσ0∂i

$
þ σi∂0

$
Þ, by additional terms involving

δg0i explicitly. Since only Type I and Type II terms in the
action are relevant in P-odd response functions, we only
need to compute the correction coming from Type II term to

the energy-momentum tensor for our P-odd response
function. This is given by

T0i
II ¼

i
16

ððψ†σ½iσ̄μσj�ψÞð∂μδg0jÞ þ ∂μðψ†σ½iσ̄μσj�ψδg0jÞÞ:
ð5:50Þ

Let us first consider the contribution from the flat space
energy-momentum, T0i

I , by simply replacing the current

vertex σi with the T0i, that is, ð−i=4Þðσ0∂i
$
þ σi∂0

$
Þ. If we

insert the second piece (Case A), there is no change in the
matrix trace and we simply get an additional factor of k0=2
compared to the above computation for Jμðs;tÞ, so that this

gives a contribution

T0i
ðs;tÞjA ¼ ð−1Þn

2n−sð2πÞn
n

s!ðn − 1 − sÞ!
1

ðsþ 2Þ
�
2πi
β

�
sþ2

Bsþ2

�
1

2
þ βμ

2πi

�
ΔBi

ðs;tÞ∶ CaseA ð5:51Þ

On the other hand, the insertion of the first piece (Case B)
can be treated by precisely the same way as before.
Considering n1 Type I, n2 Type II, ðn − 1 − sÞ current
vertices, we have the same combinatoric factor

ðn − 1 − n2Þ!
n1!n2!ðn − 1 − sÞ! ; ð5:52Þ

and additional numeric factors

�
1

2

�
n1þ1

�
−

1

16

�
n2
; ð5:53Þ

and the angular integration is modified by the additional
factor

sin2θ
2ðn − 1Þ : ð5:54Þ

The total number of j~kj in the integration similar to (5.44) is
now sþ 1 instead of s. The summation over n2 is done
precisely by the same way as in (5.45). The result is
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T0i
ðs;tÞjB ¼ ð−1Þn

2n−sð2πÞn
n

ðsþ 2Þ!ðn − 1 − sÞ!
�
2πi
β

�
sþ2

Bsþ2

�
1

2
þ βμ

2πi

�
ΔBi

ðs;tÞ∶ CaseB ð5:55Þ

which is 1=ðsþ 1Þ times of the Case A result.
We next compute the contribution coming from the T0i

II
vertex (Case C). Note that since T0i

II contains one δg0ν1
already, we should have ðs − 1Þ number of additional δg0i
insertions in the diagrams, so that n1 þ 2n2 ¼ ðs − 1Þ
and the number of propagators (denominators) is
n − n2 − 1 ¼ ~n − 1. See Fig. 5 for the diagrams of the
Case C. Working out the Feynman rule in the momentum
space, the T0i

II insertion with δg0ν1ðp1Þ attached corresponds
to

−
1

16
σ½iσ̄μσν1�ðp1 þ ptotÞμδg0ν1ðp1Þ; ð5:56Þ

where ptot is the total momentum flowing out from the T0i
II ,

which is simply

ptot ¼ p1 þ p2 þ � � � þ pn−1; ð5:57Þ

in our diagrams. Since σ trace will totally antisymmetrize
ðiμν1Þ indices anyway, one can safely remove antisymmet-
rization in the above vertex. Looking at the final σ trace,
only the term proportional to p1 survives the total anti-
symmetrization (since p2;…; pn−1 are necessarily con-
tracted with ϵ tensor already from other parts of
propagators), so that the vertex takes a final form

−
1

8
σiðp1 · σ̄Þσν1 : ð5:58Þ

Comparing this with the previous pure current response
function which will have the corresponding numerator piece

ðieÞσiiðp1 · σ̄Þσν1 ¼ −eσiðp1 · σ̄Þσν1 ; ð5:59Þ

we see that the effect of T0i
II insertion for the numerator is an

additional simple factor 1=8 compared to the pure current
result (4.7). The only other effects remaining are the
modification of the relation n1 þ 2n2 ¼ ðs − 1Þ and the
number of denominators n − n2 − 1 ¼ ~n − 1. Since all
previous computations such as (5.39) and (5.43) are derived
for any ðn1; n2; ~nÞ, it is straightforward to repeat the previous
algebra to compute these diagrams. In the first case where all
n1 Type I vertices are ð−i=4Þðσi∂0

$
Þ, we have combinatoric

and numeric factors

ðn − 1 − sþ n1 þ n2Þ!
n1!n2!ðn − 1 − sÞ! ×

1

8
×

�
k0

2

�
n1
×

�
−

1

16

�
n2
;

ð5:60Þ
and the angular integration involved is (since the number of
denominators is now ~n − 1 instead of ~n)

Z
1

−1
dx

ð1 − x2Þn−2
ðx − ik0ϵÞ2~n−4

¼ ð−1Þ ~n−2 2
2n−4ðn − 2Þ!ð ~n − 3Þ!ðn − ~nÞ!
ð2~n − 5Þ!ð2n − 2~nþ 1Þ! ; ð5:61Þ

which is (5.39) with ~n → ~n − 1. In the other case where one

Type I vertex is ð−i=4Þðσ0∂i
$
Þ while the rest ðn1 − 1Þ are

ð−i=4Þðσi∂0
$
Þ, there is an additional combinatoric factor n1

while the angular integration has an extra factor
sin2 θ=ð2n − 2Þ, so that it becomes

1

2n − 2

Z
1

−1
dx

ð1 − x2Þn−1
ðx − ik0ϵÞ2~n−4 ; ð5:62Þ

which is 1=ð2n − 2~nþ 3Þ ¼ 1=ð2n2 þ 3Þ times of (5.61),
so that this second case is n1=ð2n2 þ 3Þ times of the first
case. Summing these two cases, after straightforward alge-
bra, produces the result with n2 number of Type II vertices as

T0i
ðs;tÞjC;n2 ¼

ð−1Þn
2nð2πÞn

n
ðn − 1 − sÞ!

2ðn2 þ 1Þ
ðs − 1 − 2n2Þ!ð2n2 þ 3Þ!�

2πi
β

�
sþ2

Bsþ2

�
1

2
þ βμ

2πi

�
ΔBi

ðs;tÞ; ð5:63Þ

which has to be summed over n2 ranging from 0 to
½ðs − 1Þ=2�. Amusingly, this summation can be performed
by the combinatoric identity

FIG. 5. Diagrams for T0i
II contribution to the total T0i response

function. We have a constraint n1 þ 2n2 ¼ ðs − 1Þ, and have to
sum over all n2 ranging from 0 to ½ðs − 1Þ=2�.
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X½ðs−1Þ=2�

n2¼0

ðn2 þ 1Þ
ðs − 1 − 2n2Þ!ð2n2 þ 3Þ! ¼

s · 2s−1

ðsþ 2Þ! ; ð5:64Þ

so that the final result of the Case C is

T0i
ðs;tÞjC ¼ ð−1Þn

2n−sð2πÞn
n

ðn − 1 − sÞ!
s

ðsþ 2Þ!
�
2πi
β

�
sþ2

Bsþ2

�
1

2
þ βμ

2πi

�
ΔBi

ðs;tÞ∶ CaseC ð5:65Þ

Summing over all cases A, B, and C lastly gives the final result for the energy-momentum response

T0i
ðs;tÞ ¼

ð−1Þn
2n−1−sð2πÞn

n
s!ðn − 1 − sÞ!

1

ðsþ 2Þ
�
2πi
β

�
sþ2

Bsþ2

�
1

2
þ βμ

2πi

�
ΔBi

ðs;tÞ: ð5:66Þ

In summary, the total T0i response is

T0i ¼
X

sþt¼n−1
λAFðs;tÞΔB

i
ðs;tÞ; ð5:67Þ

with the transport coefficients

λAFðs;tÞ ¼
ð−1Þn

2n−1−sð2πÞn
n

s!ðn − 1 − sÞ!
1

ðsþ 2Þ
�
2πi
β

�
sþ2

Bsþ2

�
1

2
þ βμ

2πi

�
: ð5:68Þ

This completes our diagrammatic computations.
We now discuss the Kubo formula for anomalous trans-

port coefficients, generalizing Ref. [28] in 2n ¼ 4 dimen-
sions to arbitrary dimensions. The basic idea is the
following: what we have computed above is the P-odd
response of the current and T0i in the presence of the external
gauge field and metric δg0i perturbations. By computing the
same response in the framework of hydrodynamics with
unknown P-odd anomalous transport coefficients and com-
paring with what we have computed, one can determine the
P-odd anomalous transport coefficients. Strictly speaking,
the free fermion theory we are considering does not have a
hydrodynamic regime, so that this procedure should not be
applicable in principle. What has been assumed and also
showed in specific cases is that the zero frequency limit of
the free theory computation, or equivalently the Euclidean
correlation functions, is not renormalized in the presence of
the interactions [5,19],2 so that one may get the correct result
even from the free theory computation of the same quan-
tities. Our discussion is based on this expectation extended to

2n dimensions. There are also evidences for this in the
effective action approach [21–24].
However, we should point out that we cannot exclude a

possibility of nonperturbative dynamics, such as new
condensates, affecting the nonrenormalizability of the
anomalous transport coefficients, which are not captured
by perturbative nonrenormalization theorems [31–33].
This seems to be especially relevant to the temperature
dependent terms in the anomalous transport coefficients
[13–15,31,33].
There is an ambiguity in defining the hydrodynamics,

which corresponds to the choice of the fluid vector uμ. We
discuss Kubo formula in two such “frame” choices:
“Anomaly frame” and Landau frame.

A. Anomaly frame:

The anomaly frame, which was introduced in Ref. [8], is
the frame where the anomalous transport effects appearing
in the current and energy-momentum constitutive relations
take the simplest form,

Jμ ¼ ρuμ þ σ

�
Eμ − TΠμν∇ν

�
μ

T

��
þ � � � þ

X
sþt¼n−1

ξAFðs;tÞB
μ
ðs;tÞ þ � � � ;

Tμν ¼ ðϵþ pÞuμuν þ pgμν − 2ησμν þ � � � þ
X

sþt¼n−1
λAFðs;tÞðuμBν

ðs;tÞ þ uνBμ
ðs;tÞÞ þ � � � ; ð5:69Þ

2See Refs. [19,29,30] for the exceptions when the external gauge fields become dynamical.
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where Bμ
ðs;tÞ is defined in (5.48) above, and � � � means any

lower or higher order terms which are P-even. The η is the
shear viscosity,3 and

σμν ¼ 1

2
ΠμαΠνβ

�
∇αuβ þ∇βuα −

2

ð2n − 1Þ ð∇γuγÞ
�
;

Πμν ≡ gμν þ uμuν: ð5:70Þ

It is important to emphasize that there are no other P-odd
transport effects other than what is shown above appearing
in ðn − 1Þth order in derivatives, which is a major advan-
tage of working in the anomaly frame [8].4

Let us introduce the spatial gauge field Ai and the metric
δg0i perturbations in the static limit and solve the hydro-
dynamic equations5

∇μJμ ¼ 0; ∇μTμν ¼ 0; ð5:71Þ

with the above constitutive relations. This means that we
solve for the perturbations of hydrodynamic degrees of
freedom, ðuμ; p; ρÞ, induced by the external perturbations
ðAi; δg0iÞ. Since the hydrodynamics of a given frame choice
is a self-contained dynamical system of equations, one
expects to find a unique answer with reasonable boundary
conditions at infinity. We would like to obtain a linearized
and leading derivative contribution to ðδuμ; δp; δρÞ from
nonanomalous hydrodynamic response, while we would
like to trace the first leading effect from anomaly which
appears at ðn − 1Þth order. Since δBμ

ðs;tÞ is already ðn − 1Þth
order in terms of δuμ and Ai, it is sufficient to use the
leading expressions for δuμ in computing δBμ

ðs;tÞ for our
purpose. However, we may still need to keep ðn − 1Þth
order corrections to ðδuμ; δp; δρÞ coming from anomaly to
obtain the correct ðn − 1Þth order corrections to the
response of Ji and T0i from anomaly. This point will in
fact be important in the Landau frame choice dis-
cussed later.
First, from uμuνgμν ¼ −1, we have δu0 ¼ 0. It is easy to

derive δΓμ
μ0 ¼ 0, so that ∇μJμ ¼ 0 gives ∂iδJi ¼ 0. On the

other hand,

δJi ¼ ρδui − σT∂iδ

�
μ

T

�
þ � � � þ

X
sþt¼n−1

ξAFðs;tÞδB
i
ðs;tÞ þ � � � ;

ð5:72Þ

where all quantities without δ mean those in the unper-
turbed equilibrium state, and

δBi
ðs;tÞ ¼

1

n
ϵiνμ1ν1…μn−1νn−1uνð∂μ1δuν1Þ…ð∂μsδuνsÞ

Fμsþ1νsþ1
…Fμn−1νn−1 : ð5:73Þ

It is easy to see that ∂iδBi
ðs;tÞ ¼ 0 due to ϵ-tensor, so we get

from ∂iδJi ¼ 0,

ρ∂iδui − σT∂i∂iδ

�
μ

T

�
¼ 0; ð5:74Þ

up to leading nontrivial order in derivatives, and impor-
tantly the leading anomaly induced effect appearing at
ðn − 1Þth order is absent in this equation. Next, from
δΓ0

ii ¼ −∂iδg0i, the variation of ∇μTμ0 ¼ 0 gives

∂iδT0i − p∂iδg0i ¼ 0; ð5:75Þ

while the variation of T0i is

δT0i ¼ ðϵþpÞδuiþpδg0iþ � � � þ
X

sþt¼n−1
λAFðs;tÞδB

i
ðs;tÞ þ � � � ;

ð5:76Þ

so that we get from ∇μTμ0 ¼ 0,

∂iδui ¼ 0; ð5:77Þ

and again the leading anomaly contribution is absent in this
equation. Finally, the variation of the equation ∇μTμj ¼ 0
can be shown to become

∂iδTij ¼ 0; ð5:78Þ

whereas

δTij ¼ ðδpÞδij − 2ηδσij

¼ ðδpÞδij − η

�
∂iδuj þ ∂jδui −

2

ð2n− 1Þ δ
ijð∂kδukÞ

�
;

ð5:79Þ

which leads to

∂jδp − η

�
∂i∂iδuj þ ð2n − 3Þ

ð2n − 1Þ ∂jð∂iδuiÞ
�

¼ ∂jδp − η∂i∂iδuj ¼ 0; ð5:80Þ

where we used (5.77). Taking ∂j to the above and using
(5.77) again gives

∂j∂jδp ¼ 0: ð5:81Þ

The ellipticity of Laplace equation gives then δp ¼ 0,
which subsequently implies δui ¼ 0 and δρ ¼ 0 at leading
order. These results will in general be modified if we

3We ignore the bulk viscosity term −ζΠμν∇αuα since it does
not affect our following discussion.

4This frame is also characterized by the absence of anomaly
generated entropy flow. We thank Misha Stephanov for pointing
this to us.

5We ignore the anomaly term in ∇μJμ ¼ 0 since we don’t have
electric fields.
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include higher order P-even corrections, but what should be
emphasized is the absence of leading anomaly contribution
at ðn − 1Þth order in the above results of ðδuμ; δp; δρÞ.
Inserting these results to (5.72) and (5.76), and using the
identity

δui ¼ δg0i þ δui; ð5:82Þ

so that we have

δBi
ðs;tÞ ¼ ΔBi

ðs;tÞ; ð5:83Þ

where ΔBi
ðs;tÞ is defined previously in (5.47), one finally

concludes that the leading P-odd response of the current Ji

and T0i at ðn − 1Þth order is given by

JiP−odd ¼
X

sþt¼n−1
ξAFðs;tÞΔB

i
ðs;tÞ;

T0i
P−odd ¼

X
sþt¼n−1

λAFðs;tÞΔB
i
ðs;tÞ:

ð5:84Þ

Comparing this with our diagrammatic computation (5.49)
and (5.67), we see that what we called ðξAFðs;tÞ; λAFðs;tÞÞ in (5.49)
and (5.67) indeed coincide with the anomalous transport
coefficients in the anomaly frame appearing in the con-
stitutive relations (5.69).

B. Landau frame:

The discussion in the Landau frame is slightly more
complicated. As shown in Ref. [26], the leading ðn − 1Þth
order effect from anomaly appears only in the current
constitutive relation

Jμ ¼ ρuμ þ σ

�
Eμ − TΠμν∇ν

�
μ

T

��

þ � � � þ
X

sþt¼n−1
ξLFðs;tÞB

μ
ðs;tÞ þ � � � ; ð5:85Þ

whereas the energy-momentum may get contributions
starting at one order higher, that is, at nth order in
derivative,

Tμν ¼ ðϵþ pÞuμuν þ pgμν − 2ησμν þ � � �
þ η

ϵþ p

X
sþt¼n−1

λLFðs;tÞΠ
μαΠνβð∇αBðs;tÞβ þ∇βBðs;tÞαÞ

þ � � � ; ð5:86Þ

where we showed only one possible nth order contributions
since they turn out to be relevant, giving rise to a ðn − 1Þth
order correction to δui coming from anomaly. The previous
discussion up to (5.77) is the same, leading to ∂iδui ¼ 0.
For ∂iδTij ¼ 0, we now instead have

δTij ¼ ðδpÞδij − η

�
∂iδuj þ ∂jδui −

2

ð2n − 1Þ δ
ijð∂kδukÞ

�

þ η

ϵþ p

X
sþt¼n−1

λLFðs;tÞð∂iδBj
ðs;tÞ þ ∂jδBi

ðs;tÞÞ; ð5:87Þ

which gives the equation

∂jδp − η∂i∂iδuj þ η

ϵþ p

X
sþt¼n−1

λLFðs;tÞ∂i∂iδBj
ðs;tÞ ¼ 0;

ð5:88Þ

where we used ∂iδui ¼ 0 and ∂iδBi
ðs;tÞ ¼ 0. Taking ∂j to

the above then gives ∂i∂iδp ¼ 0, so that δp ¼ 0, and
we have

−∂i∂iδuj þ 1

ϵþ p

X
sþt¼n−1

λLFðs;tÞ∂i∂iδBj
ðs;tÞ ¼ 0; ð5:89Þ

which finally gives

δui ¼ 0þ � � � þ 1

ϵþ p

X
sþt¼n−1

λLFðs;tÞδB
i
ðs;tÞ; ð5:90Þ

where � � � means all possible P-even contributions beyond
leading order, but the main point is that we have identified
the leading ðn − 1Þth order effect from anomaly to
ðδui; δp; δρÞ unambiguously. Inserting these to (5.85)
and (5.86) produces the leading effects from anomaly at
ðn − 1Þth order as

JiP−odd ¼
X

sþt¼n−1

�
ξLFðs;tÞ þ

ρ

ϵþ p
λLFðs;tÞ

�
ΔBi

ðs;tÞ;

T0i
P−odd ¼

X
sþt¼n−1

λLFðs;tÞΔB
i
ðs;tÞ:

ð5:91Þ

Comparing this with our diagrammatic computation (5.49)
and (5.67), we conclude that

ξLFðs;tÞ ¼ ξAFðs;tÞ −
ρ

ϵþ p
λAFðs;tÞ; λLFðs;tÞ ¼ λAFðs;tÞ: ð5:92Þ

Note that the transport coefficients λLFðs;tÞ in the Landau

frame appear as nth order transport coefficients naively.

VI. DISCUSSION

Comparing our results with the predictions from hydro-
dynamics in Refs. [8,26], we find that our results for ξAFðs;tÞ
and λAFðs;tÞ remarkably agree with the hydrodynamics results.

Our results for the Landau frame transport coefficients ξLFðs;tÞ
take the form,
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ξLFðs;tÞ ¼ ξAFðs;tÞ −
ρ

ϵþ p
λAFðs;tÞ

¼ Cn
2s

ðsþ 1Þ!ðn − 1− sÞ!
��

2πi
β

�
sþ1

Bsþ1

�
1

2
þ βμ

2πi

�

−
ρ

ϵþ p
ðsþ 1Þ
ðsþ 2Þ

�
2πi
β

�
sþ2

Bsþ2

�
1

2
þ βμ

2πi

��
; ð6:1Þ

where

Cn ¼
ð−1Þnn

2n−1ð2πÞn ; ð6:2Þ

is a constant that depends only on the dimension 2n. Using
BmðxÞ ¼ xm þ � � �, and looking at the terms which contain
only μ, neglecting terms involving powers of temperature
T ¼ β−1, we have

ξLFðs;tÞ ¼ Cn
2s

ðsþ 1Þ!ðn − 1 − sÞ!�
μsþ1 −

ρ

ϵþ p
ðsþ 1Þ
ðsþ 2Þ μ

sþ2

�
þ powers of T;

ð6:3Þ

which agrees with the Eq. (3.157) of Ref. [26] with the
identification κ ¼ Cn=ðn − 1Þ!. The correct s dependence
should be noted. Given that we have summed over many
diagrams with different topologies, the agreement seems
quite nontrivial, and provides an explicit diagrammatic
confirmation of the hydrodynamic predictions.
The properties of spinor algebra are periodic in dimen-

sions with a period of 8 dimensions. Correspondingly, the
Hamiltonian describing the quantized one particle state
naturally realizes the 8 fold Dyson-Altland-Zirnbauer
classification of Hamiltonians in the topological phases
(see Ref. [34] for a review). It is natural to expect that
certain bulk properties of such systems inherit the similar 8
fold periodicity: see Ref. [35] for an example. Since we are
considering a finite temperature plasma of such particles,
we are led to ask a question whether there are characteristic
“hydrodynamics transport properties” that mirror the

underlying classification. A few simple things can be easily
observed. In the momentum flow induced by vorticities
only, that is,

T0i ∼ λðn−1;0Þϵ0ii1j1…in−1jn−1ð∂i1uj1Þ…ð∂in−1ujn−1Þ; ð6:4Þ

the transport coefficient λðn−1;0Þ is proportional to
Bnþ1ð1=2þ βμ=ð2πiÞÞ. Using the property Bmð1 − xÞ ¼
ð−1ÞmBmðxÞ, this does not vanish in the neutral system
(μ ¼ 0) only if n ¼ 2kþ 1, equivalently in 2n ¼ 4kþ 2
dimensions. This seems to be related to that pure gravita-
tional anomaly exists only in such dimensions. Similarly,
the current induced by vorticities only [whose
transport coefficient is ξðn−1;0Þ] is proportional to
Bnð1=2þ βμ=ð2πiÞÞ, which does not vanish in a neutral
system only if n ¼ 2k, or in 2n ¼ 4k dimensions. In 2n ¼
8kþ 2 dimensions, one can reduce a Weyl spinor further to
be Majorana which violates charge conjugation (C) max-
imally, and one cannot introduce U(1) charge in the system.
What would be a characteristic hydrodynamic property of
this system that is distinctive compared to 2n ¼ 8kþ 6?
One promising direction might be to classify the transport
coefficients in terms of discrete C, P, T symmetries [26].
One may repeat our computations including the damping

rate in the propagators. In four dimensions, it has been
shown that the damping rate representing a relaxation
dynamics due to a finite interaction does not change the
CME current [36], and we would naturally expect the same
in higher dimensions as well. It would be useful to check
this explicitly.
Another microscopic framework at weak coupling is the

kinetic theory. It would be interesting to check our results in
the recently developed chiral kinetic theory [37–39],
suitably generalized to higher dimensions as in
Refs. [40,41]. We leave this as a future problem.
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