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When two electromagnetic fields counterpropagate, they are modified due to mutual interaction via the
polarized virtual electron-positron states of the vacuum. By studying how photon-photon scattering effects
such as birefringence and four-wave mixing evolve as the fields pass through one another, we find a
significant increase during overlap when both electromagnetic variants can be nonzero. The results have
particular relevance for calculations based on a constant field background.
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I. INTRODUCTION

That electromagnetic fields can polarize virtual electron-
positron pairs of the vacuum has been known since the
early pioneering calculations of Sauter [1], Halpern [2],
Weisskopf [3] and Heisenberg and Euler [4], later being
rederived in the language of quantum electrodynamics by
Schwinger [5]. The polarized pairs facilitate the process of
photon-photon scattering, which can be broadly split into
inelastic processes such as vacuum pair-creation and elastic
processes where fermion states do not persist on the mass
shell. There are many predicted manifestations of elastic
effects. The polarization of scattered photons could be used
to verify this phenomenon through birefringence, polari-
zation rotation [6–12] and helicity flipping [9,13]. The
propagation direction of scattered photons could also
be used and signals of diffraction [14–17] and reflection
[18–20] have been calculated. Also in the frequency of
scattered photons, signals can occur through the process of
four-wave mixing [17,21], photon-splitting [8,22–25] and
photon-merging [26–29].
These phenomena are of interest in astrophysics,

for example to describe the behavior of magnetized neutron
stars [30–37], particularly in astrophysical electromagnetic
shocks [38–40] and in high-intensity laser physics [41–43],
being searched for in terrestrial experiments [44–46].
When photon wavelengths are much longer than the

length on which pair creation occurs, photon-photon
scattering can be described using an effective theory
for interacting electromagnetic fields given by the

Heisenberg-Euler Lagrangian. Typically one considers
the effect on some weak “probe” field, which can be a
single photon, as it passes through a “strong” field. In
applications to potential laser experiments, it is the asymp-
totic state of the probe field which is of primary interest as
detection apparatus is necessarily far removed from the
interaction region. In simulations of astrophysics in the
magnetospheres of neutron stars, one typically calculates
the effect on propagating photons in a classical magnetic
field, which is taken to vary adiabatically, with the con-
stant-field solution being integrated over macroscopic
regions in kinetic equations [30,47].
In the current paper, we focus on the evolution of an

oscillating probe field that scatters in a slowly varying
strong background, with both fields being described as
plane waves. We will often refer to an “overlap” of fields,
which is equivalent to the largest amplitude of the two
electromagnetic invariants, defined in the following sec-
tion. Using the Heisenberg-Euler Lagrangian, we will
identify a signal of elastic photon-photon scattering that
increases with the overlap of the fields and disappears when
the overlap tends to zero. Moreover, we will find that this
scattered “overlap field” can be much larger than the
“asymptotic” scattered field which persists after the probe
has passed through the background, particularly for param-
eters considered in high-intensity laser experiments. The
presence of the overlap field implies a difference in the
predicted physics when one calculates effects in a forever-
constant background compared to those in a constant
background evolved adiabatically from the infinite past.
Furthermore, the overlap field is neglected whenever an
approximation to elastic photon scattering in inhomo-
geneous fields is made by integrating over forever-constant
background scattering rates.
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II. ANALYTICAL METHOD

Let us consider the electromagnetic field to be the sum of
a weak probe and strong background field

Fμν ¼ Fμν
p þ Fμν

s ; ð1Þ

where F is the Faraday tensor [48] and the subscripts
p and s pertain, throughout the paper, to the probe and
strong fields, respectively. If one defines dimensionless
electromagnetic and secular invariants,

F ¼ −F2=4E2
cr; G ¼ −FF�=4E2

cr; ð2Þ

a¼ ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2þG2

p
þF �1=2; b¼ ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2þG2

p
−F �1=2; ð3Þ

where F2 ¼ FμνFμν, FF� ¼ FμνF�μν, giving G ¼ E ·B and
F ¼ ðE2 − B2Þ=2, in which E2 ¼ E ·E and electric and
magnetic fields E, B are dimensionless, having been
normalized by the critical field strength Ecr ¼ m2=e. We
set here and throughout ℏ ¼ c ¼ 1. The one-loop effective
action in a constant external field is given by the
Heisenberg-Euler Lagrangian [5]

LHE ¼ −
αm4

8π2

Z
∞

0

ds
e−s

s3

�
s2ab cot ascothbs − 1

þ s2

3
ða2 − b2Þ

�
: ð4Þ

As we are interested in the effects on electromagnetic fields
and wish to avoid a discussion on pair creation, we perform
a weak-field expansion of Eq. (4) for when E ≪ 1,

LHE ¼
m4

α

X∞
n¼1

Ln; ð5Þ

L1 ¼
μ1
4π
½ðE2 − B2Þ2 þ 7ðE · BÞ2�

L2 ¼
μ2
4π
ðE2 − B2Þ½2ðE2 − B2Þ2 þ 13ðE · BÞ2�;

L3 ¼
μ3
4π
½3ðE2 − B2Þ4 þ 22ðE2 − B2Þ2ðE ·BÞ2

þ 19ðE · BÞ4�; ð6Þ

where μ1 ¼ α=90π, μ2 ¼ α=315π, μ3 ¼ 4α=945π (the fine-
structure constant occurs in the denominator in the
Lagrange densities Eq. (6) due to rewriting fields in terms
of the critical field). The term Ln describes the effective
scattering of 2n photons and we will restrict ourselves to
the leading-order effects of L1 corresponding to effective
four-photon scattering or the “box diagram,” and L2

corresponding to effective six-photon scattering or the
“hexagon diagram,” as demonstrated in Fig. 1. It has been
shown that in the low-frequency limit ω=m ≪ 1, a direct

calculation of four-photon scattering agrees with the
leading-order term in the above weak-field expansion
[49]. A further and more restrictive condition can be placed
on the frequencies we consider, when we demand that the
work performed by the external field over the reduced
Compton wavelength is less than the electron rest energy
ω=mE ≪ 1. Applying the Euler-Lagrange equations to
L¼LMWþLHE, where LMW ¼ m4ðE2 − B2Þ=8πα leads
to the classical Maxwell equations, one arrives at a wave
equation modified by vacuum polarization,

□E ¼ T½E;B�; ð7Þ

where we have defined a source term,

T ¼ 4π½∇ ∧ ∂tMþ ∂2
tP −∇ð∇ · PÞ�; ð8Þ

for dimensionless magnetization M ¼ ðα=m4Þ∂LHE=∂B
and polarization P ¼ ðα=m4Þ∂LHE=∂E. To simplify the
discussion, let us consider the probe and strong fields
to counterpropagate with normalized wave vectorsbkp ¼ ð0; 0; 1Þ, bks ¼ ð0; 0;−1Þ and calculate scattering
along the axis of symmetry. This effectively reduces the
system to one spatial and one temporal dimension. An
interesting consequence of this is that the charge density,
given by ∇ · P, disappears. This is due to the electromag-
netic field having no component in the direction of
inhomogeneity, which is the direction of propagation along
the z axis. Therefore, the final term in Eq. (8) can be
neglected. Assuming the change in the fields due to
scattering is small, we then solve

ð∂2
t − ∂2

zÞE ¼ T½Eð0Þ�; ð9Þ

where □Eð0Þ ¼ □Bð0Þ ¼ 0 are vacuum solutions to the

wave equation, and Bð0Þj ¼ bkj ∧ Eð0Þj for j ∈ fs; pg. In

particular, we will choose Eð0Þðx−;xþÞ¼Epðx−ÞþEsðxþÞ,
where x� ¼ t� z. We wish to solve the scattering problem
for when two initially well-separated excitations of the
electromagnetic field Epðx−Þ and EsðxþÞ that vanish on
the boundary (limx�→�∞Ep;s ¼ 0) collide at some finite t
and z. The solution to Eq. (9) is acquired using

Eðt; zÞ ¼ Eð0Þðt; zÞ þ ΔEðt; zÞ ð10Þ

FIG. 1. The Heisenberg-Euler Lagrangian contains effective
vertices for classical electromagnetic fields interacting via the
quantum effects described by the four-photon scattering box
diagram and six-photon scattering hexagon diagram.
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ΔEðt; zÞ ¼
Z

dt0dz0GRðt − t0; z − z0ÞT½Eð0Þðt0; z0Þ�; ð11Þ

where GR is the retarded Green’s function for the wave
equation in one spatial and one temporal dimension [50]

GRðt; zÞ ¼
1

2
θðtÞθ

�
t
v
− jzj

�
; ð12Þ

for propagation speed v, whichwewill assume to be equal to
the speed of light v ¼ 1 in all calculations in this paper.
Applying this method to Eq. (9), we have

ð∂2
t − ∂2

zÞΔE ¼ T½Eð0Þ�: ð13Þ

The approximationT½E� ≈ T½Eð0Þ� in Eqs. (11) and (13) can
be understood by the following argument. Since the sourceT
contains, to leading order in E ≪ 1, the cube of electro-
magnetic fields E3, the lowest order neglected term is
∼E2ΔE. An approximation for ΔE can be made by using
Eq. (11), which turns out to give ΔE ∼ αE3Lφ for
some phase length Lφ. Therefore, if αE2Lφ ≪ 1, the
approximation of neglecting the vacuum’s influence on
the driving fields when calculating vacuum polarization,
T½E� ≈ T½Eð0Þ�, can be justified.We note the importance not
only of field strength, but also of phase length.
Through partial integration in t, the scattered field

becomes a sum of forward- (positive z direction) and
backward-propagating scattered fields

ΔEðt; zÞ ¼ ΔE
!ðt; zÞ þ ΔE

 ðt; zÞ; ð14Þ

where boundary terms can be neglected when the initial
overlap of fields is zero, and

ΔE
!ðt; zÞ ¼

Z
z

−∞

dz0

2
Jðx− þ z0; z0Þ ð15Þ

ΔE
 ðt; zÞ ¼

Z
∞

z

dz0

2
Jðxþ − z0; z0Þ; ð16Þ

where x� ¼ t� z and J is the current occurring in
Maxwell’s equations

Jðt; zÞ ¼ 4π½bkp ∧ ∂zMðt; zÞ þ ∂tPðt; zÞ�: ð17Þ

The interpretation of ΔE
!ðt; zÞ, ΔE

 ðt; zÞ as the forward-
and backward-scattered field, respectively, can be seen
more clearly by rewriting Eqs. (15) and (16) in light cone
coordinates (where the substitution y ¼ 2ðz0 − zÞ has been
made):

ΔE
!ðx−; xþÞ ¼

Z
0

−∞

dy
4
Jðx−; xþ þ yÞ ð18Þ

ΔE
 ðx−; xþÞ ¼

Z
∞

0

dy
4
Jðx− − y; xþÞ: ð19Þ

Therefore ΔE
!ðt; zÞ remains constant on the probe-

field light cone, (x− constant i.e. forward-scattered) and

ΔE
 ðt; zÞ on the strong field light cone (xþ constant i.e.

backward-scattered).

A. Overlap and asymptotic field

To make clearer what is happening, we calculate by way
of example, part of the forward-scattered field Eq. (15)
arising from the second term in the current Eq. (17) using
Eqs. (10) and (11). The polarization is

P½E� ¼ μ1
2π
½2ðE2 − B2ÞEþ 7ðE · BÞB�; ð20Þ

where we recall we consider P½Eð0Þ� and since Eð0Þðt; zÞ ¼
EsðxþÞ þ Epðx−Þ and similarly for the magnetic field,
which are both plane waves, we see different combinations
of powers of Es and Ep will occur in P. For brevity, let us
focus on terms proportional to the probe field squared.
Then the corresponding part of the scattered field is

ε
Z

z

−∞

dz0

2
∂t0 ðE2

pEsÞ; ð21Þ

where ε is the polarization vector that absorbs all
other constants in this example, Ep ¼ Epðt0 − z0Þ, Es ¼
Esðt0 þ z0Þ and the derivative is evaluated at t0 ¼ x− þ z0,
which becomes

−ε
Z

z

−∞

dz0

2
∂z0 ðE2

pÞEs þ ε
Z

z

−∞

dz0

2
E2
p∂z0 ðEsÞ: ð22Þ

Equation (22) is the asymptotic plus the overlap field,
respectively. To elaborate these labels, we can use that the
derivatives are evaluated on the light cone of the probe field
so that Eq. (22) becomes

1
2
εE0pðx−ÞEpðx−Þ

R
0
−∞ dyEsðxþ þ yÞ þ 1

2
εE2

pðx−ÞEsðxþÞ;
ð23Þ

where 0 indicates the derivative. For the first term, we see
that on the probe light cone (e.g. x− ¼ 0), long after the
collision in the asymptotic limit t; z → ∞, the term remains
(assuming the integration over the strong field is non-
vanishing). Therefore we label this the asymptotic scattered
field. The second term corresponds to a surface term and
the strong and probe fields are evaluated on their respective
light cones. When the overlap of the fields, or equivalently
the amplitude of the field invariants, tends to zero, so does
this term and therefore we label this the overlap scattered
field. We note that if a constant field is adiabatically
evolved from the infinite past, the overlap field is
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generated. This should be contrasted with the case of an
ever-present constant field, in which the overlap field
vanishes identically.
In this example we considered the probe field squared,

corresponding to generation of a second harmonic
(the frequency of the strong field is taken to be much
smaller than that of the probe), also referred to as
“photon-merging”. A division into overlap and asymptotic
scattered fields can be made in each combination of powers
of strong and probe fields that occur in the interaction.
To investigate these ideas, we will choose the probe and

strong fields in this paper to be of the form

EpðφpÞ ¼ εpEpe
−ðφpΦpÞ

2

cosφp ð24Þ

EsðφsÞ ¼ εsEse
−ðφsΦsÞ2 ; ð25Þ

where Φj ¼ ωjτj and φj ¼ kμj xμ for j ∈ fs; pg, εp · εp ¼
εs · εs ¼ 1 and we are interested in the case ωpτs ≫ 1.

III. NUMERICAL METHOD

The numerical solution of the nonlinear Maxwell equa-
tions following from the sum of classical and Heisenberg-
Euler Lagrangians is based on the PCMOL (pseudo
characteristic method of lines) [51], matrix inversion and
the CVODE ODE-Solver from SUNDIALS (suite of non-
linear and differential/algebraic equation solvers) [52].
Since we assume propagation only in the z direction and
only transverse polarizations, the resulting equations of
motion can be written in matrix form,

ð14 þAÞ∂tfþ ðQþBÞ∂zf ¼ 0; ð26Þ

where f ¼ ðEx; Ey; Bx; ByÞT , 14 ¼ diagð1; 1; 1; 1Þ is
the identity matrix in four dimensions, Q ¼
adiagð1;−1;−1; 1Þ is an antidiagonal matrix and A ¼
ðaijÞ and B ¼ ðbijÞ are the nonlinear corrections resulting
from Eq. (5) with aij ¼ bij ¼ 0 for i > 2. For the weak
field expansion L1 (L2), the components are quadratic
(fourth order) polynomials of the field components.
Let us first consider the linear case with A ¼ B ¼ 0. In

the PCMOL, one uses the diagonalizability of the matrixQ,
which means one can find a basis u ≔ Pf such that
Λ ¼ PQP−1 ¼ diagð−1;−1; 1; 1Þ is diagonal with real
eigenvalues:

P ¼ 1ffiffiffi
2
p

0
BBB@

-1 0 0 1

0 1 1 0

1 0 0 1

0 -1 1 0

1
CCCA u≔ Pf ¼ 1ffiffiffi

2
p

0
BBB@

By −Ex

Ey þBx

Ex þBy

Bx −Ey

1
CCCA:

ð27Þ

The new set of equations is given by

∂tuþ Λ∂zu ¼ 0: ð28Þ

The eigenvalues are called the characteristic speeds and the
positive (negative) sign corresponds to a component
propagating in the positive (negative) z direction. The
system, which is taken to be of a length of 320 μm, is
discretized in space using N ¼ 2 × 105 points. The
four-dimensional vector u can then be mapped onto a
4N-dimensional one, u ¼ ð…ui−14 ui1u

i
2u

i
3u

i
4u

iþ1
1 …Þ, where

0 < i ≤ N labels the grid point. The spatial derivatives of
the components uij are approximated with upwind-biased
finite differences determined by the sign of the character-
istic speed. This is done using fourth-order stencils [53],
where the values of the derivative near the boundary are
also approximated with fourth-order accuracy using grid
points only inside the simulation box. Since the derivatives
at one point are calculated with the field values at the
specific and surrounding points, the action of the derivative
can be written as a matrix multiplication: ∂zu ≈ Du, where
D is a 4N × 4N matrix. In the PCMOL, the equations are
now transformed back to the original basis f, but the system
is solved in u, which is completely equivalent. This has the
advantage of automatically implementing open boundary
conditions due to the upwind character in the single
components. The electric and magnetic fields are then
obtained by applying P−1 for output at each grid point.
We now consider the nonlinear case. To bring the system

to an ODE form u0ðtÞ ¼ fðu; tÞ (f is called the “right-
hand-side function,” the 0 denotes the time derivative), we
need to invert the matrix ð14 þAÞ. Since A is a local
operator of the field components, it is only necessary to
consider the inversion for each single grid point. We rewrite
A as A ¼MN with

M ¼

0
BBB@

1 0

0 1

0 0

0 0

1
CCCA; N ¼

�
a11 a12 a13 a14
a21 a22 a23 a24

�
ð29Þ

and apply the Woodbury formula [54],

ð14 þAÞ−1 ¼ 14 −Mð12 þ NMÞ−1N; ð30Þ

to reduce the inversion of the 4 × 4-matrix ð14 þAÞ to one
of the 2 × 2 matrix,

ð12 þ NMÞ ¼
�
1þ a11 a12
a21 1þ a22

�
; ð31Þ

which is performed at each evaluation of the right-hand-
side function f via an LU factorization. Since our method
employs a weak field expansion, we expect only small
corrections from the nonlinearities A and B, such that the
matrix ð14 þAÞ−1ðQþBÞ has similar spectral properties
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(i.e. the same signs of the eigenvalues) as Q. Therefore we
use the same biased differencing as in the linear case. The
system is now solved using the parallel, extended-precision
version of CVODE, where the nonlinear right-hand-side
function is given by

fðu; tÞ ¼ −Pð14 þAÞ−1ðQþ BÞP−1Du: ð32Þ

Pð14 þAÞ−1ðQþ BÞP−1 is now a block-diagonal 4N ×
4N matrix with 4 × 4 blocks acting on each grid point, as
explained above. We use the provided Adams-Moulton
methods and the functional iteration to solve the corre-
sponding linear system of equations. The signals are
analyzed using a spatial Fourier transform in Wolfram
MATHEMATICA [55], and the frequency components are
filtered under the assumption ω ¼ jkj and transformed
back to spatial coordinates. To analyze the dc component,
we subtract the analytical expression of the strong pulse
from the signal.

IV. COMPETING VACUUM PROCESSES

For clarity, we consider each frequency component of
the scattered field separately and neglect the change in
frequency due to the background frequency scale
1=τs ≪ ωp. To leading order in Es; Ep ≪ 1, the scattered
field can be written as

ΔE ¼
X∞
l¼1

El
pe

−lðφpΦpÞ
2 ½Cl sin lφp þ ~Cl cos lφp�

þ E2
p½C0 þ ~C0�: ð33Þ

In Eq. (33) we note that the scattered field is written as a sum
over harmonics of the probe field. Each higher harmonic
involves a higher power of Ep ≪ 1 so in general higher
harmonics are less likely in this regime. For each harmonic
we then note two spacetime-dependent vector terms with
coefficientsCl and ~Cl. TheCl terms are out of phasewith the
probe field and form the asymptotic field whereas the ~Cl
terms are in phase with the probe field and correspond to
the overlap field. Although we neglect processes of a
higher order than four- and six-photon scattering in the
current analysis, they can be calculated straightforwardly
using the method used here. We highlight the fact that
limEs→0Cl ¼ limEs→0

~Cl ¼ limEs→0C0 ¼ limEs→0
~C0 ¼ 0,

showing that ΔE vanishes in the limit where the strong or
probe field is absent. In the following we comment on the
first few harmonics.

A. Fundamental harmonic

If the scattered field is much weaker than the probe, it
can be described by analogy with a modified refractive
index, 1þ δn, δn ≪ 1. The probe field light cone then
becomes φp ¼ ωp½t=ð1þ δnÞ − z�. Expanding cosφp in

δn, the leading-order scattered field is in antiphase with the
probe field, so this effect should be entirely covered by the
asymptotic field in our analysis. For the current scenario we
find

C1 ¼ −μ1εs;1E2
s
ωpτs

ffiffiffi
π
p
ffiffiffi
2
p 1þ erfð ffiffiffi

2
p

φs=ΦsÞ
2

ð34Þ

~C1 ¼ −μ1εs;1E2
sðφsÞ; ð35Þ

where the polarization of the scattered field is given by

εs;1 ¼ c1;1εs þ c1;2bks ∧ εs; ð36Þ

with coefficients

c1;1 ¼ 4εs · εpð1 − bks · bkpÞ; ð37Þ

c1;2 ¼ 7ðεs · bkp ∧ εp þ εp · bks ∧ εsÞ: ð38Þ

In particular, we notice that when bkp ¼ bks, c1;1 ¼ c1;2 ¼ 0

and vacuum polarization effects disappear, as they must in a
single plane wave background [5]. The polarization vector
of the scattered field in all harmonics will be a function of
these coefficients, so we highlight that c1;1 originates from
evaluating Fps ¼ −Fμν

p Fsμν=4E2
cr and c1;2 from evaluating

Gps ¼ −Fμν
p F�sμν=4E2

cr. Therefore, a considerable simplifi-
cation occurs when εs∥εp implying c1;2 → 0 or when
εs ⊥ εp implying c1;1 ¼ 0. A consistency check of
Eqs. (34) and (35) can be performed by calculating the
implied altered dispersion relation for the probe field. We
note that the well-known modified refractive index forbkp ¼ −bks in a constant background is given by [6]

δnðφsÞ ¼
2αE2

sðφsÞ
45π

½4ðεp · εsÞ2 þ 7ðεp ∧ εsÞ2�: ð39Þ

If the corresponding phase difference δφp is calculated by
integrating Eq. (39) over the shape of Es in the following
way,

δφpðz0Þ ¼ ωp

Z
z0

−∞
dz δnðφsÞjt¼z−x−0 ; ð40Þ

then the asymptotic field and Eq. (34) can be recovered
exactly.
The presence of the overlap field in the fundamental

harmonic cannot be described by a modified index of
refraction. If the background is wider than several probe
wavelengths (ωpτs ≫ 1), then the amplitude of the overlap
field is much smaller than that of the asymptotic in the
fundamental harmonic. Both parts of the scattered field
have the same polarization as the probe in this case.
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B. Second harmonic

The strongest contribution to the scattered field with
double the frequency of the probe originates from four- and
six-photon scattering. We find

C2 ¼ −μ2εs;2E3
s
ωpτs

ffiffiffi
π
p
ffiffiffi
3
p 1þ erfð ffiffiffi

3
p

φs=ΦsÞ
2

ð41Þ

~C2 ¼ −
μ1
2
εp;1EsðφsÞ −

μ2
2
εs;2E3

sðφsÞ; ð42Þ

where

εp;1 ¼ c1;1εp þ c1;2bkp ∧ εp ð43Þ

εs;2 ¼ c2;1εs þ c2;2bks ∧ εs; ð44Þ

with c2;1 ¼ 3c21;1=2þ 13c21;2=49 and c2;2 ¼ 13c1;1c1;2=14.
In one temporal and one spatial dimension, merging of two
photons via four-photon scattering in a strictly constant
background is suppressed for kinematical reasons.
However, when the background contains some inhomoge-
neity, the second harmonic can be generated. This is also
the case when a constant background is adiabatically
evolved from the infinite past. Since the second-harmonic
overlap field is of order α2 and the asymptotic field of order
α3, there is a range of parameters for which the overlap field
dominates. Let us define the gauge- and relativistically
invariant parameter ζ,

ζ ¼
Z

∞

−∞
dφsζðφsÞ; ð45Þ

where ζðφsÞ ¼ ½χðφsÞ�2=η, χ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkpFsj2

q
=m is the

so-called quantum nonlinearity parameter [56] and
η ¼ kpks=m2. For the current scenario, ζ ¼ E2

sωpτs
ffiffiffiffiffiffi
2π
p

,
and by comparing Eqs. (41) and (42), we note that when
ζ ≪ 1, the overlap field can dominate. The evolution of the
scattered field is illustrated in Fig. 2, and directly compared
with the position of the probe and strong fields. In Fig. 3,
the maximum of the amplitude of the simulated second-
harmonic signal is plotted and the evolution for the
asymptotic and overlap fields compared. In the second
harmonic, the rate of change of the overlap field is
proportional to the gradient of the background. In Fig. 3
we observe that the maximum of the amplitude of the
overlap field initially increases to an overall maximum
when the probe and strong fields most overlap, after which
the second harmonic is further generated field but phase-
shifted by π and destructively interferes with the already
present second harmonic field.

FIG. 2 (color online). The smaller panels plot snapshots of the
total electric field above the larger panels showing the corre-
sponding state of the scattered overlap (red dashed) and asymp-
totic (blue solid) second harmonic field at times
t4 > t3 > t2 > t1. The electric fields are in units of the probe
field amplitude, Ep.

FIG. 3 (color online). The second harmonic overlap field
(dashed line) generated in four-photon scattering can dominate
the asymptotic field (dot-dashed line) generated in six-photon
scattering. Agreement is also shown between simulation (points)
and theory (solid line) for Es ¼ 0.02, Ep ¼ 0.005,
λp ¼ 2000 nm, τs ¼ 6.4λp and τp ¼ 5λp, where the field is in
units of the probe amplitude, Ep.
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C. Higher harmonics

In the presence of some background inhomogeneity, a
given harmonic is generated in the overlap field at one order
in α lower than in the scattered field. For example, in one
spatial and one temporal dimension, no asymptotic third
harmonic signal is generated from the hexagon diagram,
but an overlap signal is permitted. We find

~C3 ¼ −
μ2
4
εp;2E2

sðφsÞ; ð46Þ

where εp;2 ¼ c2;1εp þ c2;2bkp ∧ εp and the leading-
order term in C3 can be found by calculating the octagon
diagram in the weak-field Heisenberg-Euler expansion
using Eq. (6).
Although the overlap and asymptotic fields have differ-

ent spacetime dependencies, we find that the polarization
selection rules for higher harmonic generation are identical.
In particular,

lγ∥ → γ0∥; 2lγ⊥ → γ0∥ ð2l − 1Þγ⊥ → γ0⊥; ð47Þ

where γ∥ corresponds to a probe photon obeying
εp ∧ εs ¼ 0, γ⊥ to εp · εs ¼ 0, l ∈ Nþ and γ0 is the photon
generated through scattering. Therefore odd harmonics
exhibit a slightly different polarization behavior and in
particular admit a photon-merging cascade in the ⊥
component. However, since this requires a minimum of
three photons to merge, it is presumably only of relevance
when the probe photon density is very high or path length
very long. Another feature of this mechanism is that probe
photons that are in a superposition of linear polarizations
can access the γ⊥ þ γ⊥ → γ0⊥ channel, but only once. This
can be seen by the coefficient of the outgoing ⊥ channel
depending on the overlap of probe photon ⊥ and ∥
components [e.g. c2;2 in Eq. (44)]. After being scattered
once, the merged photons are then confined to residing in a
polarization eigenmode thereafter.
The lowest-order nontrivial effect of the polarized

vacuum on probe photons is a modification of the index
of refraction [Eq. (39)] leading to k2 ≠ 0. We note that
taking this nontrivial dispersion into account, more har-
monics can be generated for a given-order diagram in
which photons are no longer described by null fields as
F2 ≠ 0. In particular, the signal must no longer be in
harmonics of the incoming field. We will postpone analysis
of this particular problem, which requires longer path
lengths, for a future publication.

D. Zeroth harmonic

With the zeroth harmonic, dc component, or rectifica-
tion, we are referring to a signal with the low frequency
≈1=τs ≪ ωp of the background. One probe photon is
absorbed by and one photon emitted from the polarized
vacuum pairs, leaving a photon of the frequency associated

with the background. From momentum conservation, the
scattered field has a momentum vector in the backwards
direction. We find

C0 ¼ −μ1εp;1Es

ffiffiffi
π

2

r
τp
τs

φs

Φs
e−ð

φs
Φs
Þ2 1þ erfð ffiffiffi

2
p

φp=ΦpÞ
2

~C0 ¼ −
1

2
μ1εp;1EsðφsÞe−2ð

φp
Φp
Þ2 : ð48Þ

Emission in the backwards direction is demonstrated in
Fig. 4, and contrasts with the photon-merging behavior
shown in Fig. 3. Moreover, when the background varies,
both asymptotic and overlap signal are generated in four-
photon scattering. The polarization of the dc component is
then parallel to the strong field γ∥.
Frequency down-conversion can also produce non-dc

components, for example in γ þ γ → γ þ γ0, for probe
photons γ, the scattered photon γ0 is at the fundamental
frequency. However, the more photons that participate, the
smaller the effect when Ep ≪ 1. We stress the difference of
frequency down-conversion from photon splitting, as in the
current case, no photon quantum is being split into quanta
of lower energy.

V. DISCUSSION

Our results suggest that when one approximates photon-
photon scattering in spacetime-varying fields by assuming
that scattering is at each instant equivalent to that in a

FIG. 4 (color online). Both asymptotic (dot-dashed line) and
overlap (dashed line) signals for frequency down-conversion
originate from four-photon scattering. The leading-order asymp-
totic signal is due to the change in background due to interaction
with the probe. Theory (solid line) and simulation (points) agree
and show a backwards-propagating signal. The parameters are the
same as in Fig. 3 and fields in units of the probe amplitude, Ep.
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strictly constant background, important physics is missed.
We have seen how this even arises when a photon
propagates through a quasiconstant background, due to
the photon-photon interaction current involving derivatives
of combinations of fields. When this current is integrated
over, part of the scattered field is generated by a surface
term that depends on the state of the background in the
photon’s past. Therefore it can occur that changes in the
background strength, even when over distances much
larger than the photon wavelength, can lead to a significant
contribution to the rate of photon-photon scattering. In
particular, the predicted evolution of the total scattered field
is different for a strictly constant background compared to a
constant background that has been adiabatically evolved
from the infinite past. This could have potential implica-
tions for effects calculated in the overlap of probe and
strong fields that rely on the instantaneously constant
background approximation, such as the so-called “vacuum
resonance” [57,58] in strongly magnetized pulsars, which
could be searched for in a program similar to the GEMS
mission [59].
The intense magnetic field of certain neutron stars offers

an excellent possibility to study strong-field quantum
electrodynamical effects using polarization measurements
of emitted photons [59,60]. The process of photon-splitting
has been hypothesized to be of particular importance in the
magnetospheres of neutron stars. Here we compare the
density of photons (number per unit volume) that split
ργ→2γ0 with those that merge ρ2γ→γ0 in a quasiconstant
magnetic field of strength B. We repeated the calculation
leading to Eqs. (41) and (42), first taking the limit τp;s → ∞
and setting the background electric field to zero but
allowing a background field strength difference ΔB over
the seed photons’ history, defining Δ ¼ ΔB=B. We then
find

~ρ2γ→γ0 ¼ 2α3
�
11� 3

180π

�
2

B2Δ2
ω

m
ðρπƛ3Þρ ð49Þ

ρ2γ→γ0 ¼ 8α3
�
37∓11

315π

�
2

B2ζ2
ω

m
ðρπƛ3Þρ ð50Þ

ργ→2γ0 ¼
α3

10

�
19

315π

�
2 L
ƛ
B6

�
ω

m

�
5

ρ; ð51Þ

where ~ρ2γ→γ0 and ρ2γ→γ0 refer to merging in the overlap and
asymptotic fields, respectively, ρ is the density of seed
photons with frequency ω, L is propagation distance of the
seed photon, ζ ¼ B2ωL and � refer to seed photon
polarization being perpendicular or parallel to that of the
external field and we have adapted the rate for photon-
splitting from [61]. Photon-splitting requires dispersion to
be taken into account and has a strong dependence on the
frequency being split ∼ðω=mÞ5, whereas photon merging
requires a high density of photons such that the number of

seeds in a cylindrical volume of radius ƛ around the
photon’s trajectory is not too small. Although a full
comparison is beyond the scope of this paper, if one notes
that in a photon gas at temperature T the density of photons
with energies ∈ ½ω;ωþ δω�, δω=ω ≪ 1 is of the order
ρ ∼ ω2δω½expðω=TÞ − 1�−1, then the ratio of second har-
monic generation to photon splitting is of the dependency

ρ2γ→γ0

ργ→2γ0
∼

Lδω

eω=T − 1
ð52Þ

~ρ2γ→γ0

ργ→2γ0
∼
�
m
ω

Δ
B2

�
2 ƛ
L
δω

m
1

eω=T − 1
: ð53Þ

When is harmonic generation more prevalent than electron-
positron pair creation in a strongly magnetized thermal
photon gas? If the number density of pairs created in
photon-photon collisions is ρ2γ→eþe− and pairs created
through photon decay in a background constant magnetic
field ργ→eþe− then

ρ2γ→eþe− ∼ 2
1

ƛ3
L
ƛ

�
α

2π

�
2
�
T
m

�
3

e−
2m
T ð54Þ

ργ→eþe− ∼
33=4α

4
ffiffiffi
2
p

π3=2
1

ƛ3
L
ƛ

�
T
m

�
2

δ1=4e−
4ffiffiffi
3δ
p
; ð55Þ

for T=m ≪ 1 and δ ¼ TB=2m ≪ 1 where the pair-creation
densities were adapted from [62,63] for a constant mag-
netic background. In order to calculate the total density of
merged photons created in a photon gas, we would have to
extend our calculation to include merging of photons with
different wave vectors and integrate the double-photon rate
over a double Bose-Einstein distribution. However, from
Eqs. (54) and (55) we already note that for T=m ≪ 1, pair
creation is exponentially suppressed whereas photon
merging (and splitting) are perturbative in T=m. Since
T=m ∼ 10−4 for strongly magnetized neutron stars [34],
one could pose the question whether harmonic generation,
along with photon splitting, can be an important factor in
the evolution of these stellar objects.
We close by noting that only the asymptotic photon

merging signal is of relevance to laser physics, and then
only when the laser background occurs to an even power
and hence contains a slowly-varying component. This
occurs in six-photon scattering if pulses collide at an angle
which is proportional to E3

pE2
s , or in eight-photon scattering

which is proportional to E3
pE4

s and considering that
Ep;s ≪ 1, these signals are greatly suppressed. This sup-
pression can be potentially overcome by using an ultrashort
strong laser pulse and looking off-axis for emitted photons
[17] using more than two laser frequencies and off-axis
beams [21], or using a charged projectile such as a
proton [64,65].
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VI. CONCLUSION

We have shown that when an oscillating probe field
propagates through a background field with some inho-
mogeneity, a source of photon-photon scattering appears
when the two fields overlap and the field invariants are
nonvanishing. This “overlap field” disappears when the
overlap of the two fields tends to zero and is distinct from
the “asymptotic field” that persists after scattering has taken
place. Moreover, the overlap field permits high harmonic
generation for a specific harmonic at an order of the fine
structure constant lower than in the asymptotic field. By
integrating the weak-field expansion of the Heisenberg-
Euler Lagrangian using the Green’s function for the wave
equation in one spatial and one temporal dimension, we
compared the nature of the overlap and asymptotic fields
and identified a suitable nonlinearity parameter. We have

highlighted the potential importance of this effect in
astrophysical environments by calculating the density of
merged photons and contrasted this with the density of
photons split and density of photons seeding pair creation.
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