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The emergent gauge theories are reconsidered in light of supersymmetry and an appropriate emergence
conjecture is formulated. Accordingly, it might be expected that only global symmetries are fundamental
symmetries of nature, whereas local symmetries and associated massless gauge fields could solely emerge
due to spontaneous breaking of the underlying spacetime symmetries involved, such as relativistic
invariance and supersymmetry. We further argue that this breaking, taken in the form of the nonlinear
σ-model-type pattern for vector fields or superfields, puts essential restrictions on geometrical degrees of
freedom of a physical field system that makes it adjust itself in such a way that its global internal symmetry
G turns into the local symmetry Gloc. Otherwise, a given field system could lose too many degrees of
freedom, thus getting unphysical, which would make it impossible to set the required initial conditions in
an appropriate Cauchy problem, or to choose self-consistent equal-time commutation relations in quantum
theory. Remarkably, this emergence process may naturally be triggered by supersymmetry, as is illustrated
in detail by an example of a general supersymmetric QED model which is then extended to the Standard
Model and GUTs. The requirement of vacuum stability in such a class of models makes both Lorentz
invariance and supersymmetry become spontaneously broken in the visible sector. As a consequence, the
massless photon and other gauge bosons appear as the corresponding Goldstone and pseudo-Goldstone
zero modes and special local invariance is simultaneously generated. Due to this invariance, all possible
Lorentz violations turn out to be completely canceled out among themselves. However, broken
supersymmetry effects related to the existence of a light pseudo-Goldstino (being essentially a photino)
are still left in the theory. It typically appears in the low-energy particle spectrum as the eV-scale stable
lightest supersymmetric particle or the electroweak-scale long-lived next-to-lightest supersymmetric
particle, and in both cases it is accompanied by a very light gravitino that could be considered as some
observational signature in favor of emergent supersymmetric theories.

DOI: 10.1103/PhysRevD.90.065015 PACS numbers: 11.15.-q, 11.30.Cp, 11.30.-j, 11.30.Pb

I. INTRODUCTION

It is now conventional wisdom that internal gauge
symmetries form the basis of modern particle physics, being
most successfully realized within the celebrated Standard
Model (SM) of quarks and leptons and their fundamental
strong, weak, and electromagnetic interactions. At the same
time, local gauge invariance, contrary to theglobal symmetry
case, may look like a cumbersome geometrical input rather
than a “true” physical principle, especially in the framework
of an effective quantum field theory (QFT) becoming,
presumably, irrelevant at very high energies. In this con-
nection, one could wonder whether there is any basic
dynamical reason that necessitates gauge invariance and
the associated masslessness of gauge fields as some emer-
gent phenomenon arising from a more profound level of
dynamics. By analogy with a dynamical origin of massless
scalar particle excitations, which is very well understood in
terms of spontaneously broken global internal symmetries
[1], one could think that the origin ofmassless gauge fields as
vector Nambu-Goldstone (NG) bosons is related to the
spontaneous violation of Lorentz invariance which is in fact

the minimal spacetime global symmetry underlying particle
physics. This well-known approach, providing a viable
alternative to quantum electrodynamics [2], gravity [3],
and Yang-Mills theories [4], has a long history that started
over 50 years ago.
However, the role of Lorentz invariance may change, and

its spontaneous violation may not be the only reason why
massless photons could dynamically appear, if spacetime
symmetry is further enlarged. In this connection, special
interest is related to supersymmetry which has made a
serious impact on particle physics in the last few decades
(though it has not been yet discovered). Actually, as we will
see, the situation is changed dramatically in the SUSY
inspired emergent gauge theories. In sharp contrast to non-
SUSY analogs, it appears that the spontaneous Lorentz
invariance violation (SLIV) caused by an arbitrary potential
of vector superfield Vðx; θ; θ̄Þ never goes any further than
some nonlinear gauge constraint put on its vector field
component AμðxÞ associated with a photon. This allows us
to think that physical Lorentz invariance is somewhat
protected by SUSY, thus only requiring the “condensation”
of the gauge degree of freedom in the vector field Aμ. The
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point is, however, that even in the case when SLIV is not
physical it inevitably leads to the generation of massless
photons as vector NG bosons, provided that SUSY itself is
spontaneously broken. In this sense, a generic trigger for
massless photons to dynamically emerge happens to be
spontaneously broken supersymmetry rather than physi-
cally manifested Lorentz noninvariance.
The paper is organized in the following way. In the next

section we give a brief sketch of existing emergent gauge
theories in light of supersymmetry. This help us to see more
clearly the significant changes which appear to be neces-
sary in a supersymmetric context, and to properly formulate
an emergence conjecture, in Sec. III. We give a detailed
presentation of emergent gauge invariant Abelian and non-
Abelian theories and show the somewhat fundamental
relationship between spontaneous Lorentz violation and
emergent gauge invariance due to which all SLIV con-
tributions to physical processes completely cancel out
among themselves. In essence, the only way for SLIV to
manifest itself observationally may appear to be if gauge
invariance in these theories turns out to be broken in an
explicit rather than spontaneous way. As a result, the SLIV
cancellation mechanism does not work longer and one
inevitably comes to physical Lorentz violation, as is
explicitly demonstrated in Sec. III E. In the next section
we consider the supersymmetric QED model extended by
an arbitrary polynomial potential of a massive vector
superfield that breaks gauge invariance in the SUSY
invariant phase. However, the requirement of vacuum
stability in such a class of models makes both supersym-
metry and Lorentz invariance become spontaneously bro-
ken. As a consequence, the massless photino and photon
appear as the corresponding Nambu-Goldstone zero modes
in an emergent SUSY QED, and also a special gauge
invariance is simultaneously generated. Due to this invari-
ance, all observable relativistically noninvariant effects
appear to be completely canceled out and physical
Lorentz invariance is recovered. Further in Sec. V, all basic
arguments developed in SUSY QED are generalized
successively to the Standard Model and grand unified
theories (GUTs). For definiteness, we focus on the Uð1Þ ×
SUðNÞ symmetrical theories. Such a split group form is
dictated by the fact that in the pure non-Abelian symmetry
case, one only has the SUSY invariant phase in the
theory that makes it inappropriate for an outgrowth of
an emergence process. As possible realistic realizations, the
Standard Model case with the electroweak Uð1Þ × SUð2Þ
symmetry and flipped SUð5Þ GUT are briefly discussed.
Phenomenological implications are largely given in
Sec. VI. The most interesting part of them is related to
the massless photino mentioned above. This photino being
mixed with another Goldstino appearing from a sponta-
neous SUSY violation in the hidden sector essentially turns
into the light pseudo-Goldstino whose physics is consid-
ered in significant detail. This physics is unambiguously

related to the class of models where SUSY breaks, at least
partially, in the visible sector as well. This is the only class
of models where emergent supersymmetric QED or the
Standard Model can be self-consistently realized. And
finally in Sec. VII, we summarize the main results and
conclude.

II. PHOTONS AS NAMBU-GOLDSTONE
ZERO MODES: A BRIEF SKETCH

Below, we briefly comment on some known models
where an idea of emergent gauge theory according to which
photons and other gauge fields may appear as Nambu-
Goldstone zero modes is realized in one way or the other.
They include the composite models, where this idea was
considered for the first time [2,5–7], and three other ones:
the vector field potential-based models [8,9], the vector
field constraint-based models [10–12], and models with
external vector backgrounds [13,14], together with their
supersymmetric extensions [15–17]. Some quick summary
on them may be useful before we finally turn to emergent
SUSY models introduced recently [18], which we consider
in significant detail in subsequent sections.

A. Composite models

The first models [2] realizing the SLIV conjecture were
based on the four-Fermi interaction where the photon
appears as a fermion-antifermion pair composite state in
complete analogy with massless composite scalar fields
(identified with pions) in the original Nambu–Jona-Lasinio
model [1]. This old idea is better expressed nowadays in
terms of an effective field theory where the standard QED
Lagrangian is readily obtained through the corresponding
loop radiative effects due to the N fermion species involved
[5–7]. Also, instead of the old four-Fermi model, one can
start with the generalized effective action with all possible
multi-Fermi interactions [6]:

Lðψ ; ψ̄Þ¼ ψ̄ iðiγ∂−mÞψ iþN
X∞
n¼1

G2n

�
ψ̄ iγμψ i

N

�
2n
: ð1Þ

Here summation over flavor indices i (and spacetime
indices μ) is implied so that the Lagrangian Lðψ ; ψ̄Þ
possesses a UðNÞ global flavor symmetry. This model is
evidently nonrenormalizable and can be only considered as
an effective theory valid at sufficiently low energies. The
dimensionful couplings G2n are proportional to appropriate
powers of some UV cutoff Λ and are ultimately related to
some energy scale up to which this effective theory is valid,
G2n ∼ Λ4−6n. Factors of N in (1) are chosen in such a way
as to provide a well-defined large N limit so that the
correlators for the properly normalized fermion bilinears
ðψ̄ iγμψ iÞ=N will scale as N0.
The action (1) can be rewritten using the standard trick of

introducing an auxiliary field Aμ:
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Lðψ ; ψ̄ ; AμÞ ¼ ψ̄ iðiγ∂ − γA −mÞψ i − NVðAμAμÞ: ð2Þ

The potential V is a power series in AμAμ,

VðAμAμÞ ¼ μ2

2
AμAμ −

λð4Þc

4
ðAμAμÞ2 þ � � � ; ð3Þ

with coefficients chosen as

μ2 ¼ 1

2G2

; λð4Þc ¼ 1

4

G4

G4
2

;… ð4Þ

and by solving the algebraic equations of motion for Aμ and
substituting back into (2), one recovers the starting
Lagrangian (1). If instead one integrates out the fermions
ψ i, an effective action emerges in terms of the composite Aμ

field alone, which acquires its own dynamics:

Seff ¼ N
Z

d4x

�
1

4e2
FμνFμν þ VðAμAμÞ þ AμJμ þ � � �

�
;

ð5Þ

where the coupling constant e2 is given by

e2 ¼ 12π2

lnðΛ2=m2Þ ; ð6Þ

with Λ standing for the UV cutoff mentioned above.1 Since
the fermions ψ i are minimally coupled to the vector field Aμ

in (2), its kinetic term generated in this way appears gauge
invariant provided that a gauge invariant cutoff is chosen.
Furthermore, since there are N species of fermions, the
effective action (5) has an overall factor of N. And lastly,
introducing in the basic Lagrangian the minimal couplings
of some extra matter fields ΨI (I ¼ 1; 2;…) to the basic
fermions ψ i via conserved currents, JμðΨÞψ̄ iγμψ i, one
generates the minimal matter couplings given in (5), which
are also gauge invariant.
Let us turn now to the Lorentz violation in the model. As

is readily seen from Eqs. (3)–(4), the quartic term in the
effective action Seff may only appear when higher-order
terms, beyond the four-Fermi interaction, are activated in
the basic Lagrangian (1). This quartic term is enough to
generate the familiar Mexican hat structure of the potential
V (3) and induce spontaneous Lorentz violation through
the nonvanishing vacuum expectation value (VEV) of the
vector field Aμ (for more detail, see the next section).
Thereby, three Lorentz generators become broken for both

timelike and spacelike Lorentz violation. As a result, the
three massless NG modes associated with this symmetry
breaking emerge. They might be interpreted as the photon
components. However, owing to the lack of gauge invari-
ance in the starting fermion Lagrangian (1) the effective
theory for the composite vector field (5) is not entirely
gauge invariant either. Apart from the vector field poly-
nomial terms, it also contains many vector field-derivative
terms [represented by ellipses in (5)]. These terms may
badly break gauge invariance unless they are properly
suppressed by taking the number of fermion speciesN to be
large enough. The absence of well-defined approximate
gauge invariance could make it hard to explicitly demon-
strate that these NG modes emerging due to spontaneous
Lorentz violation really form together a massless photon as
a gauge field candidate. Rather, there would be in general
three separate massless Goldstone modes, two of which
may mimic the transverse photon polarizations, while the
third one must be appropriately suppressed.
Nevertheless, as was argued in [6], it appears possible to

arrange an effective theory the way that gauge invariance is
violated at leading order in N only by potential terms in (5).
At this order the gauge invariant form of the kinetic terms in
(5) implies that only the transverse NG bosons propagate,
exactly as in the conventional Lorentz invariant electrody-
namics. As a consequence, interactions between conserved
matter currents JμðΨÞ give the standard QED results at
leading order plus Lorentz noninvariant corrections occur-
ring at order 1=N. The third NG boson effects are also
suppressed by 1=N. Altogether, one comes to the emergent
effective QED where the spontaneously broken Lorentz
invariance may appear as a controllable approximate
symmetry in low-energy physics.

B. Potential-based models

One could think that composite models contain too many
prerequisites and complications related to the large number
of basic fermion species involved, their proper arrange-
ment, nonrenormalizability of the fundamental multi-Fermi
Lagrangian, stability under radiative corrections, and so on
indefinitely. This approach contains in fact a cumbersome
invisible sector which induces the effective emergent
theory. A natural question arises whether one could start
from the effective vector field theory (5) instead, thus
having spontaneous Lorentz violation from the outset.
Actually, by making a proper redefinition of the vector

field Aμ → ieAμ in (5), one comes to a conventional QED-
type Lagrangian extended by arbitrary vector field potential
energy terms which explicitly break gauge invariance. For a
minimal potential containing bilinear and quartic vector
field terms, one comes to the Lagrangian

LV ¼ LQED −
λc
4
ðAμAμ − n2M2Þ2; ð7Þ

1This value (6) simply follows from the usual vacuum
polarization integral. Although quadratic divergence does not
appear in the loop diagrams thanks to the global current
conservation, logarithmic divergences do. Note that all couplings
and masses [see also (4)] appearing in the emergent effective
theory are evaluated at zero four-momenta.
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where the coupling constant λc is determined as in (5), the
mass term n2M2 (properly expressed through parameters of
the effective theory) stands for the proposed SLIV scale,
while nμ is a properly oriented unit Lorentz vector,
n2 ¼ nμnμ ¼ �1. This partially gauge invariant model,
sometimes referred to as the “bumblebee” model [8] (see
also [9] and references therein), means in fact that the
vector field Aμ develops a constant background value

hAμi ¼ nμM; ð8Þ
and Lorentz symmetry SOð1; 3Þ breaks down to SOð3Þ or
SOð1; 2Þ depending on whether nμ is timelike (n2 ¼ þ1) or
spacelike (n2 ¼ −1).2 By expanding the vector field around
this vacuum configuration,

AμðxÞ ¼ aμðxÞ þ nμðMþAÞ; nμaμ ¼ 0; ð9Þ

one finds that the aμ field components, which are orthogo-
nal to the Lorentz-violating direction nμ, describe a mass-
less vector Nambu-Goldstone boson, while the A field
corresponds to a massive Higgs mode away from the
potential minimum. Due to the presence of this mode,
the model may lead to some physical Lorentz violation in
terms of the properly deformed dispersion relations for the
photon and matter fields involved that appear from the
corresponding radiative corrections to their kinetic
terms [6].
However, as was argued in [19], a bumblebeelike model

appears generally unstable; its Hamiltonian is not bounded
from below beyond the constrained phase space determined
by the nonlinear condition AμAμ ¼ n2M2. With this con-
dition imposed, the massive Higgs mode never appears, the
Hamiltonian is positive, and the model is physically
equivalent to the nonlinear constraint-based QED, which
we consider in the next section. Apart from the instability,
the potential-based models were shown [20] to be
obstructed from having a consistent ultraviolet completion,
whereas the most of viable effective theories possess such a
completion. The problems mentioned certainly appear in
the effective theories emerging from the composite models
as well. Nevertheless, since a natural mass scale associated
with spontaneous Lorentz violation is presumably of the
Planck-scale order, only quantum-gravity theory might
make the ultimate conclusion on physical viability of such
models at all energy scales.

C. Constraint-based models

This class of models starts directly with the nonlinearly
realized Lorentz symmetry for underlying vector field
AμðxÞ through the “length-fixing” constraint

AμAμ ¼ n2M2 ð10Þ

implemented into a conventional QED. The constraint-
based models were first studied by Nambu a long ago [10]
(see also [21]), and in more detail in recent years
[11,12,22–25]. The constraint (10) is in fact very similar
to the constraint appearing in the nonlinear σmodel for pions
[26], σ2 þ π2 ¼ f2π , where fπ is the pion decay constant.
Rather than impose by postulate, the constraint (10) may be
implemented into the standard QED Lagrangian LQED

through the invariant Lagrange multiplier term,

L¼LQED−
λ

2
ðAμAμ−n2M2Þ; n2¼ nμnμ ¼�1; ð11Þ

provided that initial values for all fields (and their momenta)
involved are chosen so as to restrict the phase space to values
with a vanishing multiplier function λðxÞ, λ ¼ 0. Actually,
due to an automatic conservation of the matter current in
QED, an initial value λ ¼ 0 will remain for all time.3 In a
general case, when nonzero values of λ are also allowed, it
appears problematic to have a stable theory with a positive
Hamiltonian (for a detailed discussion, see [19]). It is worth
noting that, though the Lagrange multiplier term formally
breaks gauge invariance in the Lagrangian (11), this break-
ing is in fact reduced to the nonlinear gauge choice (10). On
the other hand, since gauge invariance is no longer generi-
cally assumed, it seems that the vector field constraint (10)
might be implemented into the general vector field theory (7)
rather than the gauge invariant QED in (11). The point is,
however, that both theories are equivalent once the con-
straint (10) holds. Indeed, due to the simple structure of the
vector field polynomial in (7), they lead to practically the
same equations of motion in both cases.
One way or another, the constraint (10) means in essence

that the vector field Aμ develops the VEV (8), causing again
an appropriate (timelike or spacelike) Lorentz violation at a
scale M. The point is, however, that in sharp contrast to the
nonlinear σ model for pions, the nonlinear QED theory, due
to gauge invariance in the starting Lagrangian LQED in (11)
or in (7), ensures that all the physical Lorentz-violating
effects turn out to be nonobservable. Actually, as was
shown in the tree [10] and one-loop approximations [11],
the nonlinear constraint (10) implemented as a supplemen-
tary condition appears in essence as a possible gauge choice
for the vector field Aμ, while the Smatrix remains unaltered
under such a gauge convention. So, as generally expected,

2Note that such freedom in the choice of either n2 value exists
in fact for the minimal vector field potential in (7). For the higher-
order terms included, the potential may have a minimum for only
positive or only negative n2.

3Interestingly, this solution with the Lagrange multiplier field
λðxÞ being vanished can technically be realized by introducing in
the Lagrangian (11) an additional Lagrange multiplier term of the
type ξλ2, where ξðxÞ is a new multiplier field. One can now easily
confirm that a variation of the modified Lagrangian Lþ ξλ2 with
respect to the ξ field leads to the condition λ ¼ 0, whereas a
variation with respect to the basic multiplier field λ preserves the
vector field constraint (10).
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the SLIV inspired by the nonlinear constraint (10), while
producing an ordinary photon as a true Goldstone vector
boson (aμ),

Aμ ¼ aμþnμ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−n2a2

p
; nμaμ ¼ 0ða2≡aμaμÞ; ð12Þ

leaves physical Lorentz invariance intact.4 Similar results
were also confirmed for spontaneously broken massive
QED [22], non-Abelian theories [23], and tensor field
gravity [25], which will be discussed from a supersym-
metry point of view in later sections.
To conclude, the constraint-based emergent gauge

theories are in fact indistinguishable from conventional
gauge theories. Their emergent nature could only be
seen when taking the nonlinear gauge condition (10).
Any other gauge, e.g., Coulomb gauge, is not in line with
the emergent picture, since it breaks Lorentz invariance in
an explicit rather than spontaneous way. As to observa-
tional evidence in favor of emergent theories, the only way
for SLIV to cause physical Lorentz violation would appear
only if gauge invariance in these theories were really
broken [27], rather than merely constrained by some gauge
condition. This leads us to some general observation that, in
contrast to the spontaneous violation of internal symmetries,
SLIV seems not to necessarily imply a physical breakdown
of Lorentz invariance. Rather, when appearing in a gauge
theory framework, this may ultimately result in a nonlinear
gauge choice in an otherwise gauge invariant and Lorentz
invariant theory. In substance, the SLIVansatz, due to which
the vector field AμðxÞ develops the VEV (8), may itself be
treated as a pure gauge transformation with a gauge function
linear in coordinates, ωðxÞ ¼ nμxμM. From this viewpoint,
gauge invariance inQED leads to the conversionof SLIVinto
gauge degrees of freedom of the massless photon that
emerges. This is what one could refer to as the generic
nonobservability of SLIV in QED. Moreover, as was shown
some time ago [28], gauge theories, both Abelian and non-
Abelian, can beobtainedby themselves from the requirement
that the physical nonobservability of SLIV be induced by
vector fields rather than from the standard gauge principle.
Wewill hereafter refer to this case of the constraint-based

models as an “inactive” SLIV, as opposed to an “active”
SLIV leading to physical Lorentz violation which appears
if gauge invariance is explicitly broken, as is presented later
in Sec. III E.

D. Models with external vector backgrounds

Although we are mainly focused here on spontaneous
Lorentz violation, it must not be ruled out that Lorentz

invariance might be explicitly, rather than spontaneously,
broken at high energies. This has attracted considerable
attention in recent years as an interesting phenomenological
possibility appearing in direct Lorentz noninvariant exten-
sions of QED and the Standard Model [13,14,29,30]. They
are generically regarded as effective theories originated
from a more fundamental theory at some large scale
probably related to the Planck scale MP. These extensions
may be in a certain measure motivated [8] by a string theory
according to which an explicit (from a QFT point of view)
Lorentz violation might be in essence a spontaneous
Lorentz violation related to hypothetical tensor-valued
fields acquiring nonzero VEVs in some nonperturbative
vacuum. These VEVs appear effectively as a set of external
background constants so that interactions with these coef-
ficients have preferred spacetime directions in an effective
QFT framework. The full SM extension (SME) [14] is then
defined as an effective gauge invariant field theory obtained
when all such Lorentz-violating vector and tensor field
backgrounds are contracted term by term with SM (and
gravitational) fields. However, without a completely viable
string theory, it is not possible to assign definite numerical
values to these coefficients. Moreover, not to have disas-
trous consequences (especially when these coefficients are
contracted with nonconserved currents) one also has to
additionally propose that observable Lorentz-violating
effects are properly suppressed [13,14,29,30], which in
many cases is a serious theoretical problem. Therefore, one
has in essence a purely phenomenological approach, treat-
ing the above arbitrary coefficients as quantities to be
bounded in experiments as if they would simply appear
due to explicit Lorentz violation. Actually, in sharp contrast
to the above formulated SLIV in a pure QFT framework,
there is nothing in the SME itself that requires that these
Lorentz-violation coefficients emerge due to a process of a
spontaneous Lorentz violation. Indeed, the corresponding
massless vector (tensor) NG bosons are not required to be
generated, nor do these bosons have to be associated with
photons or any other gauge fields of SM.
Apart from Lorentz violation in the Standard Model, one

can generally think that the vacuum in quantum gravity
may also determine a preferred rest frame at the micro-
scopic level. If such a frame exists, it must be very much
hidden in low-energy physics since, as was mentioned
above, numerous observations severely limit the possibility
of Lorentz-violating effects for the SM fields [13,14,29,30].
However, the constraints on Lorentz violation in the
gravitational sector are generally far weaker. This allows
us to introduce a pure gravitational Lorentz violation having
no significant impact on the SM physics. An elegant way
that is close in spirit to our SLIV model (11), (12) seems to
appear in the so-called Einstein-aether theory [31]. This is in
essence a general covariant theory in which local Lorentz
invariance is broken by some vector “aether” field uμ
defining the preferred frame. This field is similar to our

4Indeed, the nonlinear QED contains a plethora of Lorentz-
and CPT-violating couplings when it is expressed in terms of the
zero photon modes aμ. However, the contributions of all these
couplings to physical processes completely cancel out among
themselves.
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constrained vector fieldAμ, apart from that this field is taken
to be unit uμuμ ¼ 1. It spontaneously breaks Lorentz
symmetry down to a rotation subgroup, just like our
constrained vector field Aμ does for a timelike Lorentz
violation. So, they both give a nonlinear realization of
Lorentz symmetry, thus leading to its spontaneous violation
and inducing the corresponding Goldstone-like modes. The
crucial difference is that, while modes related to the vector
field Aμ are collected into the physical photon, modes
associated with the unit vector field uμ (one helicity-0 and
two helicity-1 modes) exist on their own, appearing in some
effective SM and gravitational couplings. Some of them
might disappear, being absorbed by the corresponding spin-
connection fields related to local Lorentz symmetry in the
Einstein-aether theory. In any case, while aether field uμ can
significantly change dispersion relations of the fields
involved, thus leading to many gravitational and cosmo-
logical consequences of preferred frame effects, it certainly
cannot be a physical gauge field candidate (say, the photon
in QED).

E. Supersymmetric models

While there are many papers in the literature on Lorentz
noninvariant extensions of supersymmetric models (for
some interesting ideas, see [15–17,32] and references
therein), an emergent gauge theory in a SUSY context
has only recently been introduced [18]. Actually, the
situation was shown to be seriously changed in a SUSY
context which certainly disfavors some emergent models
considered above. It appears that, while the constraint-
based models of an inactive SLIV successfully matches
supersymmetry, the composite and potential-based models
of an active SLIV leading to physical Lorentz violation
cannot be conceptually realized in the SUSY context. The
reason is that, in contrast to an ordinary vector field theory
where all kinds of polynomial terms ðAμAμÞn (n ¼ 1; 2;…)
can be included into the Lagrangian in a Lorentz invariant
way, SUSY theories only admit the bilinear mass term
AμAμ in the vector field potential energy. As a result,
without stabilizing high-linear [at least quartic, as in (7)]
vector field terms, the potential-based SLIV never occurs in
SUSY theories. The same could be said about composite
models as well: the fundamental Lagrangian with multi-
Fermi current-current interactions (1) cannot be constructed
from any matter chiral superfields. So, all the models
considered above, except for the constraint-based models,
are ruled out in the SUSY framework and, therefore,
between the two basic SLIV versions, active and inactive,
SUSY unambiguously chooses the inactive SLIV case.
Meanwhile, some efforts have been made [15–17] over

the last decade to construct Lorentz-violating operators
for matter and gauge fields interacting with external
vector field backgrounds in the supersymmetric QED
and Standard Model. These backgrounds, according to
the SME approach [14] discussed above, are generated by

some Lorentz-violating dynamics at an ultraviolet scale of
order the Planck scale. An advantage over the ordinary
SME was shown to be that in the supersymmetric Standard
Model, the lowest possible dimension for such operators is
5. Therefore, they are suppressed by at least one power of
an ultraviolet energy scale, providing a possible explan-
ation for the smallness of Lorentz violation and its stability
against radiative corrections. All possible dimension-5 and
dimension-6 Lorentz-violating operators in the SUSY QED
[17] were classified, their properties were analyzed at the
quantum level, and their observational consequences in this
theory were described. These operators, as was confirmed,
do not induce destabilizing D terms, nor gauge anomaly
and the Chern-Simons term for photons. Dimension-5
Lorentz-violating operators were shown to be constrained
by low-energy precision measurements at 10−10–10−5 level
in units of the inverse Planck scale, while the Planck-scale
suppressed dimension-6 operators are allowed by obser-
vational data.
Also, the supersymmetric extension of the Einstein-

aether theory [33] discussed above has been constructed.
It has been found that the dynamics of the superaether is
somewhat richer than that of its non-SUSY counterpart. In
particular, the model possesses a family of inequivalent
vacua exhibiting different symmetry breaking patterns
while remaining stable and ghost free. Interestingly enough,
as long as the aether VEV preserves spatial supersymmetry
(SUSY algebra without boosts), the Lorentz breaking does
not propagate into the SM sector at the renormalizable level.
The eventual breaking of SUSY, that must be incorporated in
any realistic model, is unrelated to the dynamics of the aether.
It is assumed to come from a different source characterized
by a lower energy scale. However, in spite of the superaether
model’s own merits, an important final step which would
lead to natural accommodation of this model into the
supergravity framework has not yet been done.

III. GAUGE THEORIES EMERGING FROM
CONSTRAINTS

A. An emergence conjecture revised

Given the current status of models considered above, it
may seem that an “emergence level” of an effective theory
is decreased when going from the original composite
models to the vector field theoretical ones. At first glance,
the latter models look less fundamental if it is granted that
emergent degrees of freedom (gauge bosons) are neces-
sarily built of more fundamental degrees of freedom
(fermions). However, the compositeness itself hardly is
important for emergent theories and, in essence, one can
equally specify the emergent gauge bosons simply as the
NG modes associated with spontaneous Lorentz violation,
no matter they are composite or elementary.
Another seemingly depreciating point might be that the

vector field theoretical models are taken to possess gauge
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invariance from the outset (being partial in the potential-
based models and full in the constraint-based ones),
whereas in the composite models [2] one tries to derive
it, though this has not yet been really achieved. However,
the most important side of the nonlinear vector field
constraint (10) was shown [34] (see also [35,36]) to be
that one does not need to especially postulate the starting
gauge invariance. Normally, one can start in the framework
of an arbitrary relativistically invariant Lagrangian which is
proposed only to possess some global internal symmetry.
Nonetheless, looking for the theories which are compatible
with the vector field constraint (10), one inevitably comes
to gauge invariance. Namely, gauge invariance in such
theories has to appear in essence as a response of an
interacting field system to putting the covariant constraint
(10) on its dynamics, provided that we allow parameters in
the corresponding Lagrangian density to be adjusted so as
to ensure self-consistency without losing too many degrees
of freedom. Otherwise, a given field system could get
unphysical in the sense that a superfluous reduction in the
number of degrees of freedom would make it impossible to
set the required initial conditions in the appropriate Cauchy
problem. Namely, it would be impossible to specify
arbitrarily the initial values of the vector and other field
components involved, as well as the initial values of the
momenta conjugated to them. Furthermore, in quantum
theory, to choose self-consistent equal-time commutation
relations would also become impossible [37].
Let us dwell upon this point in more detail.

Conventionally, while a standard variation principle
requires the equations of motion to be satisfied, for a
general four-vector field Aμ it is still possible (in contrast to
scalar and fermion fields) to eliminate one extra component
in order to describe a pure spin-1 particle by imposing a
supplementary condition. Typically, this is covariantly
achieved by taking the divergence from a general vector
field equation of motion. In the massive vector field case
there are three physical spin-1 states to be described by the
Aμ field. Similarly in the massless vector field case,
although there are only two physical (transverse) photon
spin states, one cannot construct a massless four-vector
field Aμ as a linear combination of creation and annihilation
operators for helicity�1 states in a relativistically covariant
way, unless one fictitious state is added [38]. So, in both the
massive and massless vector field cases, only one compo-
nent of the Aμ field may be eliminated and still preserve
physical Lorentz invariance. Now, once the SLIV constraint
(10) is imposed, it is therefore not possible to satisfy
another supplementary condition since this would super-
fluously restrict the number of degrees of freedom for the
vector field. To avoid this, its equation of motion should
be automatically divergenceless, that is, only possible in
the gauge invariant theory. Thus, due to spontaneous
Lorentz violation determined by the constraint (10), being
the only possible covariant and holonomic vector field

constraint, the theory has to acquire on its own gauge-type
invariance, which gauges the starting global symmetry of
the interacting vector and matter fields involved. In such a
way, one comes to the gauge symmetry emergence (GSE)
conjecture:
Let there be given an interacting field system containing

some vector field (or vector field multiplet)Aμ together with
fermion (ψ), scalar (ϕ) and other matter fields in an arbitrary
relativistically invariant Lagrangian LðAμ;ψ ;ϕ;…Þ which
possesses only global Abelian or non-Abelian internal
symmetry G. Suppose that an underlying relativistic invari-
ance of this field system is spontaneously broken in terms of
the length-fixing covariant constraint put on vector fields,
AμAμ ¼ n2M2. If this constraint is preserved under the time
development given by the field equations of motion, then in
order to be protected from further reduction in degrees of
freedom, this systemwill modify its global symmetryG into
a local symmetry Gloc, that will in turn convert the vector
field constraint itself into a gauge condition, thus virtually
resulting in a gauge invariant and Lorentz invariant theory.
So, the nonlinear SLIV condition (10), due to which true

vacuum in the theory is chosen and massless gauge fields
are generated, may provide a dynamical setting for all
underlying internal symmetries involved through the GSE
conjecture. One might think that the length-fixing vector
field constraint (10) itself seems not to be especially
singled out in the present context. Actually, it looks like
that the GSE conjecture might be equally formulated for
any type of covariant constraint. However, as we argue later
in Sec. III D, the SLIV constraint appears to be the only one
whose application leads to a full conversion of an internal
global symmetry G into a local symmetry Gloc that forces a
given field system to remain always physical.

B. Emergent Abelian gauge invariance

To see how technically a global internal symmetry may
be converted into a local one, let us consider in detail the
question of consistency of a possible constraint for a
general four-vector field Aμ with its equation of motion
in an Abelian symmetry case,G ¼ Uð1Þ. In the presence of
the SLIV constraint CðAÞ ¼ AμAμ − n2M2 ¼ 0 (10), it
follows that the equations of motion can no longer be
independent. The important point is that, in general, the
time development would not preserve the constraint. So the
parameters in the Lagrangian have to be chosen in such a
way that effectively we have one less equation of motion
for the vector field. This means that there should be some
relationship among all the vector and matter field Eulerians
(EA; Eψ ; ...) involved.

5 Such a relationship can quite gen-
erally be formulated as a functional—but by locality just a
function—of the Eulerians, FðEA; Eψ ;…Þ, being put equal

5Hereafter, the notation EA stands for the vector field Eulerian
ðEAÞμ ≡ ∂L=∂Aμ − ∂ν½∂L=∂ð∂νAμÞ�. We use similar notations
for other field Eulerians as well.
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to zero at each spacetime point with the configuration space
restricted by the constraint CðAÞ ¼ 0:

FðC ¼ 0;EA; Eψ ;…Þ ¼ 0: ð13Þ

This relationship must satisfy the same symmetry require-
ments of Lorentz and translational invariance, as well as all
the global internal symmetry requirements, as the general
starting Lagrangian does. This Lagrangian is supposed to
also include the standard Lagrange multiplier term with the
field λðxÞ,

LtotðA;ψ ;…;λÞ¼LðA;ψ ;…Þ− λ

2
ðAμAμ−n2M2Þ; ð14Þ

the variation under which results in the above constraint
CðAÞ ¼ 0. In fact, the relationship (13) is used as the basis
for an emergence of gauge symmetries in the SLIV con-
strained vector field theories [35,36]. Note that, while the
Lagrange multiplier field is presented in the total
Lagrangian Ltot, it does not appear in the equations of
motion of the vector field determined by the Eulerian EA in
the expression (13). This occurs naturally, as we explained
in the previous section, if initial values for all fields
involved are chosen so as to restrict their phase space to
values with a vanishing multiplier function λðxÞ (see also
footnote 4).
Let us now consider a “Taylor expansion” of the function

F expressed as a linear combination of terms involving
various field combinations multiplying or derivatives acting
on the Eulerians. We are taking for simplicity only one
matter (say, fermion) field ψ in the model. The constant
term in this expansion is of course zero since the relation
(13) must be trivially satisfied when all the Eulerians
vanish, i.e., when the equations of motion are satisfied.
We consider just the terms containing field combinations
(and derivatives) with the lowest mass dimension 4,
corresponding to the Lorentz invariant expressions

∂μðEAÞμ; AμðEAÞμ; Eψψ ; ψ̄Eψ̄ ; ð15Þ

to eventually have an emergent gauge theory at a renor-
malizable level. The higher-dimension terms we will
discuss later in Sec. III D. Now, under the assumption that
the SLIV constraint (10) is preserved under the time
development given by the equations of motion, we show
how gauge invariance of the physical Lagrangian LðA;ψÞ
in (14) is established. A conventional variation principle
applied to the total Lagrangian LtotðA;ψ ; λÞ requires the
following equations of motion for the vector field Aμ and
the auxiliary field λ to be satisfied:

ðEAÞμ ¼ 0; CðAÞ ¼ AμAμ − n2M2 ¼ 0: ð16Þ

However, in accordance with general arguments given
above, the existence of five equations for the

four-component vector field Aμ (one of which is the
constraint) means that not all of the vector field Eulerian
components can be independent. Therefore, there must be a
relationship of the form given in Eq. (13). When being
expressed as a linear combination of the Lorentz invariant
terms (15), this equation leads to the identity between the
vector and matter field Eulerians of the following type,

∂μðEAÞμ ¼ itEψψ − itψ̄Eψ̄ ; ð17Þ

where t is some constant.6 This identity immediately
signals the invariance of the basic Lagrangian LðA;ψÞ in
(14) under vector and fermion field local Uð1Þ trans-
formations whose infinitesimal form is given by

δAμ ¼ ∂μω; δψ ¼ itωψ : ð18Þ

Here ωðxÞ is an arbitrary function, only restricted by the
requirement to conform with the nonlinear constraint (10):

ðAμ þ ∂μωÞðAμ þ ∂μωÞ ¼ n2M2: ð19Þ

Conversely, the identity (17) follows from the invariance of
the physical Lagrangian LðA;ψÞ under the transformations
(78). Indeed, both direct and converse assertions are
particular cases of Noether’s second theorem [39].
So, we have shown how the choice of a vacuum

conditioned by the SLIV constraint (10) enforces the
choice of the parameters in the starting Lagrangian
LtotðA;ψ ; λÞ, so as to convert the starting global Uð1Þ
charge symmetry into a local one, thus demonstrating
an emergence of gauge symmetry (18) that allows the
emerged Lagrangian to be determined in full. For a
theory with renormalizable couplings, it is in fact the
conventional QED Lagrangian (11) extended by the
Lagrange multiplier term,

LemðA;ψ ; λÞ ¼ LQEDðA;ψÞ −
λ

2
ðAμAμ − n2M2Þ; ð20Þ

which provides the SLIV constraint (10) imposed on the
vector field Aμ.

6Note that the term proportional to the vector field itself,
AμðEAÞμ, which would correspond to the self-interaction of the
vector field, is absent in the identity (17). In the presence of this
term, the transformations of the vector field given below in (18)
would be changed to δAμ ¼ ∂μωþ cωAμ. The point is, however,
that these transformations cannot in general form a group unless
the constant c vanishes, as can be readily confirmed by
constructing the corresponding Lie bracket operation for two
successive vector field variations. We shall see later that nonzero
c-type coefficients necessarily appear in the non-Abelian internal
symmetry case, resulting eventually in an emergent gauge
invariant Yang-Mills theory.
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C. Non-Abelian gauge fields as
pseudo-Goldstone modes

We still have only considered a single vector field case
with an underlying global Uð1Þ symmetry. However, an
extension to a theory possessing from the outset some
global non-Abelian symmetry G is quite straightforward
[35,36]. Suppose that this theory contains an adjoint vector
field multiplet Ap

μ and some fermion matter field multiplet
ψ belonging to one of the irreducible representations of G
given by matrices tp,

½tp; tq� ¼ ifpqrtr;

TrðtptqÞ ¼ δpq ðp; q; r ¼ 0; 1;…;Υ − 1Þ; ð21Þ

where fpqr stand for structure constants, while Υ is a
dimension of the G group. The corresponding Lagrangian
LtotðAμ;ψ; λÞ is supposed to also include the standard
Lagrange multiplier term with the field function λðxÞ:

LtotðAμ;ψ; λÞ ¼ LðAμ;ψÞ −
λ
2
ðAp

μApμ − n2M2Þ;
n2 ≡ npμnpμ ¼ �1; ð22Þ

the variation under which results in the vector field length-
fixing constraint

CðAÞ ¼ Ap
μApμ − n2M2 ¼ 0 ð23Þ

(where npμ stands now for some properly oriented “unit”
rectangular matrix; see below). The need to preserve the
constraint CðAÞ ¼ 0 with time implies that the equations of
motion for the vector fields Ap

μ cannot all be independent.
As a result, the so-called “emergence identity,” analogous
to the identity (17), inevitably occurs:

∂μðEp
AÞμ ¼ fpqrAq

μðEr
AÞμ þ EψðitpÞψ þ ψ̄ð−itpÞEψ̄ : ð24Þ

An identification of the coefficients of the Eulerians on the
right-hand side of the identity (24) with the structure
constants fpqr and generators tp (21) of the group G is
quite transparent. This simply follows from the fact that the
right-hand side of this identity must transform in the same
way as the left-hand side, which transforms as the adjoint
representation of G. Note that, in contrast to the Abelian
case, the term proportional to the vector field multiplet Ap

μ

itself, which corresponds to a self-interaction of non-
Abelian vector fields, also appears in the identity (24).
Again, Noether’s second theorem [39] can be applied
directly to this identity in order to derive the gauge
invariance of the Lagrangian LðAμ;ψÞ in (22). Indeed,
with the constraint (23) implied, the LðAμ;ψÞ tends to be
invariant under vector and fermion field local transforma-
tions having the infinitesimal form

δAp
μ ¼ ∂μω

p þ fpqrAq
μωr;

δψ ¼ ðitpÞωpψ; δψ̄ ¼ ψ̄ð−itpÞωp: ð25Þ

For a theory with renormalizable coupling constants, this
emergent gauge symmetry leads to the conventional Yang-
Mills-type Lagrangian,

LemðAμ;ψ;λÞ¼LYMðAμ;ψÞ−
λ
2
ðAp

μApμ−n2M2Þ; ð26Þ

where we also include the corresponding Lagrange multi-
plier term. As in the above Abelian case, this term does not
contribute to the vector field equation of motion in the
identity (24).
Now let us turn to the spontaneous Lorentz violation

which is caused by the nonlinear vector field constraint
(23) determined by the Lagrange multiplier term in
(26). Although the Lagrangian LemðAμ;ψ; λÞ only has
an SOð1; 3Þ ×G invariance, the last term in it possesses
a much higher accidental symmetry SOðΥ; 3ΥÞ according
to the dimension Υ of the adjoint representation of G to
which the vector fields Ap

μ belong. This symmetry is indeed
spontaneously broken at a scale M,

hAp
μ ðxÞi ¼ npμM; ð27Þ

with the vacuum direction determined now by the unit
rectangular matrix npμ which describes simultaneously both
of the non-Abelian SLIV cases, timelike,

SOðΥ; 3ΥÞ → SOðΥ − 1; 3ΥÞ; ð28Þ
or spacelike,

SOðΥ; 3ΥÞ → SOðΥ; 3Υ − 1Þ; ð29Þ

depending on the sign of n2 ≡ npμnpμ ¼ �1. In both cases,
this matrix has only one nonzero element, subject to the
appropriate SOð1; 3Þ and (independently)G rotations. They
are, specifically, n00 or n

0
3 provided that the vacuum expect-

ationvalue (27) is developed along thep ¼ 0 direction in the
internal space and along the μ ¼ 0 or μ ¼ 3 direction,
respectively, in the ordinary four-dimensional spacetime.
As was argued in [23,34], side by side with one true

vector Goldstone boson corresponding to the spontaneous
violation of the actual SOð1; 3Þ ⊗ G symmetry of the
Lagrangian LemðAμ;ψ; λÞ, the Υ − 1 pseudo-Goldstone
vector bosons (PGB) related to the breakings (28), (29)
of the accidental symmetry SOðΥ; 3ΥÞ of the constraint
(23) per se are also produced.7 Remarkably, in contrast to

7Note that in total there appear 4Υ − 1 pseudo-Goldstone
modes, complying with the number of broken generators of
SOðΥ; 3ΥÞ. From these 4Υ − 1 pseudo-Goldstone modes, 3Υ
modes correspond to the Υ three-component vector states, as will
be shown below, while the remaining Υ − 1 modes are scalar
states which will be excluded from the theory.
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the familiar scalar PGB case [26], the vector PGBs remain
strictly massless, since they are protected by the simulta-
neously generated non-Abelian gauge invariance. Together
with the above true vector Goldstone boson, they also come
into play properly completing the whole gauge multiplet of
the internal symmetry group G taken.
After the explicit use of this constraint (23), which

virtually appears as a single condition put on the vector
field multiplet Ap

μ , one can identify the pure Goldstone field
modes apμ as follows:

Ap
μ ¼ apμ þ npμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − n2a2

p
; npμapμ ¼ 0 ða2 ≡ apμapμÞ:

ð30Þ

There is also an effective “Higgs” mode npμ ðM2 − n2a2Þ1=2
determined by the SLIV constraint. Note that, apart from
the pure vector fields, the general zero modes apμ contain

Υ − 1 scalar modes, ap
0

0 or ap
0

3 (p0 ¼ 1;…;Υ − 1), for the
timelike (npμ ¼ n00gμ0δ

p0) or spacelike (npμ ¼ n03gμ3δ
p0)

SLIV, respectively. They can be eliminated from the theory,
if one imposes appropriate supplementary conditions on the
Υ − 1 fields apμ which are still free of constraints. Using
their overall orthogonality (30) to the physical vacuum
direction npμ , one can formulate these supplementary
conditions in terms of a general axial gauge for the entire
apμ multiplet:

n · ap ≡ nμapμ ¼ 0; p ¼ 0; 1;…;Υ − 1: ð31Þ

Here nμ is the unit Lorentz vector, analogous to the vector
introduced in the Abelian case, which is now oriented in
Minkowskian spacetime so as to be “parallel” to the
vacuum unit npμ matrix. This matrix can be taken hereafter
in the “two-vector” form,

npμ ¼ nμϵp; ϵpϵp ¼ 1; ð32Þ

where ϵp is the unit G group vector belonging to its adjoint
representation. As a result, in addition to the Higgs mode
excluded earlier by the above orthogonality condition (30),
all the other scalar fields are eliminated. Consequently only
the pure vector fields, api (i ¼ 1; 2; 3) or apμ0 (μ

0 ¼ 0; 1; 2),
for timelike or spacelike SLIV, respectively, are left in the
theory. Clearly, the components ap¼0

i and ap¼0
μ0 correspond

to the true Goldstone boson, for each type of SLIV,
respectively, while all the others (for p ¼ 1;…;Υ − 1)
are vector PGBs. Substituting the parametrization (30) into
the emergent Lagrangian (26) and expanding the square
root in powers of a2=M2, one is led to a highly nonlinear
theory in terms of the zero vector modes apμ which contains
a variety of Lorentz- and CPT-violating couplings.
However, as in the Abelian symmetry case, they do not
lead to physical Lorentz violation effects, which turn out to

be strictly canceled among themselves [23], thus giving one
more example of an inactive SLIV.

D. Constraints inducing and uninducing
gauge invariance

We now turn to a question that naturally arises: whether
the length-fixing vector field constraints (10), (23), both for
the Abelian and non-Abelian symmetry cases, are of
fundamental importance for an emergence conjecture. It
seems that the basic relations among all fields’ Eulerians,
called above the emergence identities (17), (24), might
occur for any type of covariant constraints introduced
through the corresponding Lagrange multiplier terms. On
the other hand, if one keeps in mind the minimal single-
field constraints there are only two possible covariant
constraints for vector fields in a relativistically invariant
theory: the holonomic SLIV constraints (10), (23) and the
nonholonomic one, known as the Lorentz condition,

C0ðAÞ ¼ ∂μAμ ¼ 0; C0ðAÞ ¼ ∂μApμ ¼ 0; ð33Þ

for Abelian and non-Abelian vector fields, respectively (the
index p enumerates the G group generators). In general, of
course, many nonminimal covariant constraints are also
possible. However, as we argue below, just the SLIV
constraints (10), (23) seem to push the origin of gauge
invariance in a theory so as to provide a sufficient number
of degrees of freedom for a physical field system evolved
over time. Other covariant constraints, when being put on
the fields, will lead, at best, to partial gauge invariance.
We consider a general quantum field theory where the

vector fields, on their own or together with matter fields, are
subject to some covariant constraint(s) whose precise form
is yet unknown. Rather than postulate this form in terms of
the SLIV constraints (10), (23), as we have done in
previous sections, let us try to derive them. We suppose
that such constraints could be determined in general by the
underlying Lagrangian itself rather than introduced from
outside through some Lagrange multiplier terms. Let there
be given an interacting field system containing vector
field(s) Aμ together with fermion (ψ ), scalar (ϕ), and other
matter fields in a relativistically invariant Lagrangian
LðAμ;ψ ;ϕ;…Þ which only possesses global Abelian or
non-Abelian symmetryG. Suppose that the Lagrangian L is
separated into two parts, L ¼ Lg þ ~L, which we call the
generic and constraint-bearing ones, respectively. We
assume that all possible constraint(s) which can be put
on the given field system are completely determined by the
variation of the Lagrangian ~L that specifies some extra
source current Jμ ¼ ð ~EAÞμ for vector field Aμ. We show
below that in order for the given field system to remain
physical, this current has to be vanished or conserved,
which, in turn, makes the generic Lagrangian Lg become
gauge invariant.
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For the sake of generality, we consider the non-Abelian
symmetry case (21), writing the total Lagrangian in an
appropriate notation taken above, L ¼ Lg þ ~L. We suppose
that vector field multiplet Ap

μ belongs to an adjoint
representation of a group G with structure constants
fpqr, while matter fields (we leave only fermion fields,
for simplicity) transform according to some representation
given by matrices ðtpÞij. Consider first the case when the
extra source current for vector fields Ap

μ vanishes:

Jpμ ¼ ð ~Ep
AÞμ ¼ 0; p ¼ 0; 1;…;Υ − 1: ð34Þ

This allegedly happens due to the appropriately restricted
vector field configurations rather than vanishing coupling
constants in the Lagrangian ~L. One can see, however,
that such conditions eliminate too many vector field degrees
of freedom. Namely, 4Υ degrees appear to be eliminated,
whereas only Υ degrees—one for each vector field
species—may be excluded. Additional constraints could
also appear for matter fields, if they are contained in the
Lagrangian ~L. This means that for these constraints to be
admissible, only a special class of the constraint-bearing
Lagrangians ~L has to be taken. Actually, the only way to
proceed, as one may readily confirm, could be the case if the
Lagrangian ~L would depend on all the fields involved only
through the “length squared” invariantsAp

μApμ, ψ̄ iψ i, and so
on. Thiswouldmean that in theminimal casewith the lowest
mass dimension couplings, the Lagrangian ~L only contains a
conventional fourth-order polynomial in vector field Ap

μ ,

~Lmin ¼ −
λc
4
ðAp

μApμ − n2M2Þ2; ð35Þ

where λc and n2M2 are the corresponding vector field
parameters (n2 ¼ �1). In general, there could be, of course,
a variety of high-dimensional vector-vector and vector-
fermion couplings of type

ðAp
μApμÞk; k ≥ 3; ðAp

μApμÞlðψ̄ iψ iÞm; l ≥ 0;m ≥ 1;

ð36Þ

and so forth, being properly suppressed by some high-scale
mass(es). This structure of the Lagrangian ~L provides the
following expressions for vector and fermion field
Eulerians,

Jpμ ¼ ð ~Ep
AÞμ ¼ 2Apμ ∂ ~L

∂ðAq
μAqμÞ ;

~EψðitpÞψ ¼ ψ̄ðitpÞ ~Eψ̄ ; ð37Þ

the first of which actually reduces all constraints (34) to the
single one,

∂ ~L=∂ðAq
μAμqÞ ¼ 0; ð38Þ

while the second one is satisfied automatically. As a result,
for the minimal Lagrangian ~Lmin (35), the condition (38)
immediately leads to the SLIV constraint (23). Now, just as
in the previous section, assuming that this constraint is
preserved under the time development given by the equa-
tions of motion, the so-called emergence identity, analogous
to identity (24), inevitably occurs:

∂μðEp
A þ ~Ep

AÞμ ¼ fpqrAq
μðEr

A þ ~Er
AÞμ þ ðEψ þ ~EψÞðitpÞψ

þ ψ̄ð−itpÞðEψ̄ þ ~Eψ̄Þ; ð39Þ
where the Eulerians for vector and fermion fields are
generated by both Lagrangians Lg and ~L, respectively.
Due to constraints taken (34) and the equation for fermion
Eulerians in (37), all the Eulerians generated by the
constraint-bearing Lagrangian ~L disappear, so that only
the generic Lagrangian Lg contributes to both sides of this
identity. This implies according to Noether’s second theo-
rem [39] that the generic Lagrangian Lg is in fact gauge

invariant. As to the constraint-bearing Lagrangian ~L, it may
only contain some constant term, and also two-Fermi and
multi-Fermi interaction terms. They appear as soon as the
constraint equation (38) is solved with respect to Aq

μAμq,
which are then substituted back into the ~L (35), (36).8

Actually, the Lagrangian ~L also appears to be gauge
invariant, and likewise for the generic Lagrangian Lg

[though the constraint (38) itself breaks gauge invariance].
For a minimal Lagrangian ~Lmin (35) the theory completely
coincides with the above SLIV constraint case given by the
Lagrangian (26) provided that the constraint (38) in its final
form (23) is also included through an appropriate Lagrange
multiplier term. Remarkably, symmetry of the constraint
(38) uniquely established above from the requirement not to
have toomany degrees of freedomeliminated ismuchhigher
than the symmetry of thewhole Lagrangian (26). This, as we
could see in the previous section, allows us to treat non-
Abelian gauge fields as pseudo-Goldstone bosons.
Let us now turn to the nonzero extra vector field source

current Jpμ which is only required to be conserved,

∂μJpμ ¼ ∂μð ~Ep
AÞμ ¼ 0; ð40Þ

that gives in principle a sufficient number of constraints
(one for each vector field species, p ¼ 0; 1;…;Υ − 1). We
start deriving the divergenceless conditions for the equa-
tions of motion of the vector fields Ap

μ . Indeed, varying the
total Lagrangian L ¼ Lg þ ~L and taking four-divergence
from the corresponding vector field Eulerians, one has

8Such substitution is in principle an allowed procedure, since
virtually it does not change the equations of motion of the fields
involved.
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∂μðEp
AÞμ þ ∂μð ~Ep

AÞμ ¼ 0: ð41Þ

Next, since no other constraints than the proposed current
conservation (40) are admissible, the first four-divergence
term in Eq. (41) has to vanish either identically or as a result
of the equations of motion for vector and fermion fields.
This implies that in the absence of these equations of
motion there must hold the general identity given in (39).
However, in contrast to the previous case, the Eulerians
generated by the constraint-bearing Lagrangian ~L, which
vanish on the left-hand side of this identity, will give
nonzero contributions to its right-hand side. Thus, having
different vector field Eulerians in the identity (39), one has
to conclude that Noether’s second theorem [39] does not
hold for this case. This means that gauge invariance fails in
general to emerge when the constraint in terms of source
current conservation (40) for the vector field multiplet Ap

μ is
required. In contrast to the previous case with the vanishing
source current Jpμ, where structure of the constraint-
bearing Lagrangian ~L was virtually established (35), (36)
by the constraints (34) required, now this Lagrangian,
despite the constraints (40) imposed, is still left quite
arbitrary. However, if we additionally propose that, as in
the previous case, the Lagrangian ~L depends on all the
fields involved only through their length squared invariants,
then all goes well and gauge invariance arises. Indeed,
using the Lagrangian form determined above (35), (36) and
corresponding expressions for vector and fermion field
Eulerians (37), one can easily confirm that all “tilded”
terms induced by the constraint-bearing Lagrangian ~L in
the identity (39) are strictly canceled for obvious symmetry
reasons. So, this identity acquires a form to which
Noether’s second theorem [39] can be directly applied in
order to finally establish gauge invariance of the generic
Lagrangian Lg.
Eventually, for a minimal case with the mass squared

dimension and dimensionless coupling constants, the
whole emergent theory acquires a form

LemðAμ;ψ; λc;M2Þ ¼ LYMðAμ;ψÞ −
λc
4
ðAp

μApμ − n2M2Þ2;
ð42Þ

where the first term is a conventionalYang-Mills Lagrangian
arising from a generic Lagrangian Lg, while the second term

is a minimal constraint-bearing Lagrangian ~Lmin (35). In
contrast to the previous case, we have obtained some gauge
noninvariant extensions to Yang-Mills theory in the form of
the potential with the mass and self-interaction terms for
vector fields. Note that for the Abelian symmetry case, the
emergent Lagrangian (42) turns to the bumblebee model (7)
considered in Sec. II B. Interestingly,while theLagrangian ~L
taken above (35), (36) provides an emergence of gauge
invariance in the generic Lagrangian Lg (Lg → LYM), it

breaks this gauge invariance by itself. In the simplest case
(λc → 0, λcM2 → M2

A), one has the massive Yang-Mills
theory where the constraint (40) is reduced to the spin-1
condition (33) for massive vector fields (having the mass
MA). This particular case was thoroughly studied in its own
right quite long ago [37].
One can conclude that the length-fixing vector field

constraints (10), (23) seem really to be of fundamental
significance for emergent gauge invariance. Actually, when
constraints being put on the field system are determined by
the underlying Lagrangian itself, rather than taken ad hoc
through some Lagrange multiplier terms, the SLIV con-
straints (10), (23) appear strongly preferred over other ones.
Indeed, as was shown, only the strictly vanishing vector
field source current, Jpμ ¼ 0, that corresponds to the SLIV
constraints (10), (23), leads to the full conversion of a
starting global symmetry G of the total Lagrangian L ¼
Lg þ ~L into a local one Gloc. For nonzero current J

p
μ , on the

other hand, when the vector field constraint is solely
determined by the current conservation, ∂μJaμ ¼ 0, gauge
symmetry does not emerge or, at best, may only be partial.

E. Gauge invariance versus spontaneous
Lorentz violation

One can see that the gauge theory framework, be it taken
from the outset or emerged, makes in turn spontaneous
Lorentz violation physically unobservable in both the
Abelian and non-Abelian symmetry cases. We referred
to it above as the inactive SLIV, in contrast to the active
SLIV case where physical Lorentz invariance could effec-
tively occur. From the present standpoint, the only way for
an active SLIV to occur would be if the emergent gauge
symmetries presented above were slightly broken at small
distances. This could naturally happen, for example, in a
partially gauge invariant theory (42) which emerges due to
the properly chosen constraint (40) being put on the
physical field system, as was illustrated above. A more
radical point of view would be that the considered field
system could become unphysical at distances presumably
controlled by quantum gravity. One could think that
quantum gravity could in principle hinder the setting of
the required initial conditions in the appropriate Cauchy
problem, thus admitting a superfluous restriction of vector
fields in terms of some high-order operators which occur at
the Planck scale.
Recall in this connection that in the emergence equa-

tions (17) and (24), we have only considered the lowest-
dimension terms which eventually provide an emergent
gauge theory at a renormalizable level. All other terms
[following from the expansion in (13)] contain field
combinations and derivatives with higher mass dimension
and must therefore have coefficients with an inverse mass
dimension. We expect the mass scale associated with these
coefficients should correspond to a large fundamental mass
(e.g., the Planck mass MP). Hence we may conclude that
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such higher-dimensional terms must be highly suppressed
and can be neglected for the effective low-energy gauge
invariant theory. However, these terms could lead to the
breaking of an emergent gauge symmetry at high energies,
just what is actually needed for SLIV to become active.
This may be a place where the emergent vector field
theories may significantly differ from conventional gauge
theories that could have some observational evidence at low
energies. Below we present some particular models to see
more clearly how it may happen.
Looking for some appropriate examples of physical

Lorentz violation in a QFT framework, one necessarily
comes across a problem of proper suppression of gauge
noninvariant high-dimension couplings where such viola-
tion can in principle occur. Remarkably enough, for QED-
type theories with the supplementary vector field constraint
(10) gauge symmetry breaking naturally appears only for
five- and higher-dimensional couplings. Indeed, all dimen-
sion-4 couplings are generically gauge invariant, if the vector
field kinetic term has a standard FμνFμν and, apart from
relativistic invariance, the restrictions related to the con-
servation of parity, charge-conjugation symmetry, and fer-
mion number conservation are generally imposed on a theory
[27]. With these restrictions taken, one can easily confirm
that all possible dimension-5 couplings are also combined by
themselves in somewould-be gauge invariant form, provided
that the vector field is constrained by the SLIV condition
(10). Indeed, for chargedmatter fermions interactingwith the
vector field, such couplings generally amount to

Ldim 5¼
1

M
D
̬ �
μψ̄ ·D

̬
μψþ G

M
AμAμψ̄ψ ; AμAμ¼n2M2:

ð43Þ

Such couplings could presumably become significant at an
ultraviolet scaleM, probably close to the Planck scale MP.
They, besides the covariant derivative terms, also include an
independent “seagull” fermion-vector field term with the
coupling constant G being in general of the order 1. Themain
point regarding the Lagrangian (43) is that, while it is gauge
invariant in itself, the coupling constant ě in the covariant
derivative D

̬
μ ¼ ∂μ þ ie

̬
Aμ differs in general from the

coupling e in the covariant derivative Dμ ¼ ∂μ þ ieAμ in
the standard Dirac Lagrangian (11):

LQED ¼ −
1

4
FμνFμν þ ψ̄ðiγμDμ −mÞψ : ð44Þ

Therefore, gauge invariance is no longer preserved in the
total Lagrangian LQED þ Ldim 5. It is worth noting that,
though the high-dimension Lagrangian part Ldim 5 (43)
usually only gives some small corrections to a conventional
QED Lagrangian (44), the situation may drastically change
when the vector field Aμ develops a VEV and SLIVoccurs.
Actually, putting the SLIV parametrization (12) into the

basicQEDLagrangian (44), one comes to the truly emergent

model for QED being essentially nonlinear in the vector
Goldstone modes aμ associated with photons. This model
contains, among other terms, the inappropriately large
(while false, see below) Lorentz-violating fermion bilinear
−eMψ̄γμnμψ . This term appears when the effective Higgs
mode expansion in Goldstone modes aμ [as is given in the
parametrization (12)] is applied to the fermion current
interaction term −eψ̄γμAμψ in the QED Lagrangian (44).
However, due to local invariance this bilinear term can be
gauged away by making an appropriate redefinition
of the fermion field ψ → e−ieωðxÞψ with a gauge function
ωðxÞ linear in coordinates, ωðxÞ ¼ ðxμnμÞM. Meanwhile,
the dimension-5 Lagrangian Ldim 5 (43) is substantially
changed under this redefinition that significantly modifies
fermion bilinear terms,

Lψ̄ψ ¼ iψ̄γμ∂μψ þ 1

M
∂μψ̄ · ∂μψ − iΔe

M
M

nμψ̄ ∂μ
↔

ψ

−mfψ̄ψ ; ð45Þ

where we retained the notation ψ for the redefined fermion

field and denoted, as usual, ψ̄ ∂μ
↔

ψ ¼ ψ̄ð∂μψÞ − ð∂μψ̄Þψ .
Note that the extra fermion derivative terms given in (45) are
produced just due to the gauge invariance breaking that is
determined by the electromagnetic charge difference Δe ¼
e
̬
− e in the total Lagrangian LQED þ Ldim 5. As a result,

there appears the entirely new, SLIV inspired, dispersion
relation for a charged fermion (taken with four-momentum
pμ) of type

p2
μ ≅ ½mf þ 2δðpμnμÞ�2;

mf ¼ m − GM2=M − δ2n2M;
ð46Þ

given to an accuracy ofOðm2
f=M

2Þwith a properlymodified
total fermion mass mf. Here δ stands for the small character-
istic, positive or negative, parameter δ ¼ ðΔeÞM=M of
physical Lorentz violation that reflects the joint effect as is
given, from the one hand, by the SLIV scale M and, from the
other, by the charge difference Δe being a measure of an
internal gauge noninvariance. Notably, the spacetime in itself
still possesses Lorentz invariance; however, fermions with
SLIVcontributing into their totalmassmf (46) propagate and
interact in it in the Lorentz noncovariant way. At the same
time, the photon dispersion relation is still retained unde-
formed in the order 1=M considered.
So, itwas shown that SLIVcausedby thevector fieldVEV

(8), while being superficial in a strictly gauge invariant
theory, may become physically significant when this gauge
invariance is broken at the SLIV scale M, close to the scale
M, which is proposed to be located near the Planck mass
scale MP. This may happen even at relatively low energies
provided thegaugenoninvariancecausedbyhigh-dimension
couplingsofmatter andvector fields is notvanishingly small.
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As a consequence, through special dispersion relations
appearing for matter charged fermions, one is led to a
new class of phenomena which could be of distinctive
observational interest in particle physics and astrophysics
[27]. They include a significant change in the Greizen-
Zatsepin-Kouzmin cutoff for ultra-high energy cosmic-ray
nucleons, stability of high-energy pions and W bosons,
modification of nucleon beta decays, and some others just in
the presently accessible energy area in cosmic ray physics.
However, though one could speculate about some generi-

cally broken or partial gauge symmetry in a QFT framework
[27], this appears to be too high a price for an actual Lorentz
violation which may stem from SLIV. And, what is more,
should one insist on physical Lorentz violation, if emergent
gauge fields are anywaygenerated through the “safe” inactive
SLIV models which recover a conventional Lorentz invari-
ance? As will be seen in later sections, emergent SUSY
theories are most likely to give a negative answer to this
question, thus favoring just an inactive SLIV version.

IV. EMERGENT SUSY THEORIES: A QED PRIMER

In contrast to theories probing physical Lorentz non-
invariance, be it caused by generically broken gauge sym-
metry or external tensor-valued backgrounds, we are
primarily focused here on a spontaneous Lorentz violation
in an actual gauge invariant QFT framework related to the
Standard Model rather than its hypothetical effective SME
counterpart originated somewhere around the Planck scale.
In essence, we try to extend emergent gauge theories with
SLIVand an associated emergence of the SM gauge bosons
as massless vector Nambu-Goldstone modes studied earlier
[5,6,9,10,28] to their supersymmetric analogs. Generally
speaking, itmay turnout that SLIVis not theonly reasonwhy
massless photons could dynamically appear, if spacetime
symmetry is further enlarged. In this connection, special
interest may be related to supersymmetry, as was recently
argued in [18]. Actually, the situation is changed remarkably
in the SUSY inspired emergent models which, in contrast to
non-SUSY theories, could naturally have some clear obser-
vational evidence. Indeed, as we discussed in Sec. III E,
ordinary emergent theories admit some experimental veri-
fication only if gauge invariance is properly broken, caused
by some high-dimension couplings. Their SUSY counter-
parts, and primarily emergent SUSY QED, generically
appear with supersymmetry spontaneously broken in a
visible sector to ensure stability of the theory. Therefore,
theverification is now related to an inevitable emergence of a
Goldstino-like photino state in the SUSY particle spectrum
at low energies, while physical Lorentz invariance is still left
intact.9 In this sense, a generic trigger for a massless photon

to appear may be spontaneously broken supersymmetry
rather than physically manifested spontaneous Lorentz
violation.
In this and subsequent sections, the supersymmetric

emergent gauge theories, including their possible observa-
tional consequences, are considered in significant detail.

A. Spontaneous SUSY violation

Precisely speaking, since gauge invariance is not generi-
cally assumed in an emergent approach, some essential
gauge-noninvariant couplings inevitably occur in the theory
in a preemergent phase. They, as seen above, are basically
related to the vector field self-interaction terms, triggering
an emergence process in non-SUSY theories. Starting from
this standpoint, we consider a conventional supersymmetric
QED being similarly extended by an arbitrary polynomial
potential of a general vector superfield Vðx; θ; θ̄Þ which in
the standard parametrization [40] has a form

Vðx; θ; θ̄Þ ¼ Cþ iθχ − iθ̄ χ̄þ i
2
θθS −

i
2
θ̄ θ̄ S� − θσμθ̄Aμ

þ iθθθ̄ λ̄0 −iθ̄ θ̄ θλ0 þ 1

2
θθθ̄ θ̄D0; ð47Þ

where its vector field component Aμ is usually associated
with a photon. Note that, apart from an ordinary photino
field λ and an auxiliary D field, the superfield (47) contains
in general some additional degrees of freedom in terms of
the dynamical C and χ fields and nondynamical complex
scalar field S [we have used the brief notations, λ0 ¼
λþ i

2
σμ∂μχ̄ and D0 ¼ Dþ 1

2
∂2C with σμ ¼ ð1; ~σÞ and

σ̄μ ¼ ð1;−~σÞ]. The corresponding Lagrangian can be
written as

L ¼ LSQED þ 1

2
D2 þ

X
k¼1

bkVkjD; ð48Þ

where, besides a standard SUSY QED part, new potential
terms are presented in the sum by corresponding D-term
expansions VkjD of the vector superfield (47) into the
component fields (bk are some constants). It can readily be
checked that the first term in this expansion is the known
Fayet-Iliopoulos D term, while other terms only contain
bilinear, trilinear, and quartic combinations of the super-
field components Aμ, S, λ, and χ, respectively.10 Actually,

9Of course, physical Lorentz violation will also appear if one
admits some gauge noninvariance in the emergent SUSY theory
as well. This may happen, for example, through high-dimension
couplings being supersymmetric analogs of the couplings (43).

10Without loss of generality, we may restrict ourselves to the
third degree superfield polynomial in the Lagrangian L (48) to
eventually have a theory with dimensionless coupling constants
for component fields. However, for the sake of completeness, it
seems better to proceed with a general case. As we have recently
learned, a similar self-interaction polynomial for the vector
superfield [see also below the Lagrangian (51)] had been first
considered quite long ago [41] to get some kind of economic
Higgs model in a massive SUSY QED.
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the higher-degree terms only appear for the scalar field
component CðxÞ. Expressing them all in terms of the C
field polynomial,

PðCÞ ¼
X
k¼1

k
2
bkCk−1ðxÞ; ð49Þ

and its first three derivatives

P0
C ≡ ∂P

∂C ; P00
C ≡ ∂2P

∂C2
; P000

C ≡ ∂3P
∂C3

; ð50Þ

one has for the whole Lagrangian L,

L ¼ LSQED þ 1

2
D2 þ P

�
Dþ 1

2
∂2C

�

þ P0
C

�
1

2
SS� − χλ0 − χ̄ λ̄0 −

1

2
AμAμ

�

þ 1

2
P00
C

�
i
2
χ̄ χ̄ S −

i
2
χχS� − χσμχ̄Aμ

�
þ 1

8
P000
C ðχχχ̄ χ̄Þ;

ð51Þ

where, for more clarity, we still omitted in LSQED matter
superfields, reserving them for Sec. VI. As one can see,
extra degrees of freedom related to the C and χ component
fields in a general vector superfield Vðx; θ; θ̄Þ appear
through the potential terms in (51), rather than from the
properly constructed supersymmetric field strengths, as
they appear for the vector field Aμ and its gaugino
companion λ.
Note that all terms in the sum in (48) except the Fayet-

Iliopoulos D term explicitly break gauge invariance.
However, as we will see in the next section, the special
gauge invariance constrained by some gauge condition will
be recovered in the Lagrangian in the broken SUSY phase.
Furthermore, as is seen from (51), the vector field Aμ may
only appear with a bilinear mass term in the polynomially
extended superfield Lagrangian (48), in sharp contrast to the
non-SUSY theory case where, apart from the vector field
mass term, some high-linear stabilizing terms necessarily
appear in a similar polynomially extended Lagrangian. This
means in turn that physical Lorentz invariance is still
preserved in the theory. Actually, only supersymmetry
appears to be spontaneously broken, as mentioned above.
Indeed, varying the Lagrangian L with respect to the D

field we come to

D ¼ −PðCÞ; ð52Þ
which finally gives the following potential energy for the
field system considered:

UðCÞ ¼ 1

2
½PðCÞ�2: ð53Þ

The potential (53) may lead to spontaneous SUSY breaking
in the visible sector, provided that the polynomial P (49)
has no real roots, while its first derivative has

P ≠ 0; P0
C ¼ 0. ð54Þ

This requires PðCÞ to be an even degree polynomial with
properly chosen coefficients bk in (49) that will force its
derivative P0

C to have at least one root, C ¼ C0, in which
the potential (53) is minimized. Therefore, supersymmetry
is spontaneously broken and the C field acquires the VEV:

hCi ¼ C0; P0
CðC0Þ ¼ 0: ð55Þ

As an immediate consequence that one can readily see
from the Lagrangian L (51), a massless photino λ, being a
Goldstone fermion in the broken SUSY phase, makes all the
other component fields in the superfield Vðx; θ; θ̄Þ, includ-
ing the photon, also become massless. However, the ques-
tion then arises whether this masslessness of the photon will
be stable against radiative corrections, since gauge invari-
ance is explicitly broken in the Lagrangian (51). We show
below that it could be the case if the vector superfield
Vðx; θ; θ̄Þ would appear to be properly constrained.

B. Instability of superfield polynomial potential

Let us first analyze possible vacuum configurations for
the superfield components in the polynomially extended
QED case taken above. In general, besides the “standard”
potential energy expression (53) determined solely by the
scalar field component CðxÞ of the vector superfield (47),
one also has to consider other field component contribu-
tions into the potential energy. A possible extension of the
potential energy (53) seems to appear only due to the pure
bosonic field contributions, namely, due to couplings of the
vector and auxiliary scalar fields, Aμ and S, in (51),

U ¼ 1

2
P2 þ 1

2
P0ðAμAμ − SS�Þ; ð56Þ

rather than due to the potential terms containing the
superfield fermionic components.11 It can be immediately
seen that these new couplings in (56) can make the potential
unstable since the vector and scalar fields mentioned may in
general develop any arbitrary VEVs. This happens, as
emphasized above, due to the fact that their bilinear term
contributions are not properly compensated by appropriate
four-linear field terms which are generically absent in a
SUSY theory context.
For more detail we consider the extremum conditions for

the entire potential (56) with respect to all fields involved:

11Actually, this restriction is not essential for what follows and
is taken just for simplicity. Generally, the fermion bilinears
involved could also develop VEVs.
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C, Aμ, and S. They are given by the appropriate first partial
derivative equations

U 0
C ¼ PP0 þ 1

2
P00ðAμAμ − SS�Þ ¼ 0;

U 0
Aμ

¼ P0Aμ ¼ 0; U 0
S ¼ −P0S� ¼ 0; ð57Þ

where and hereafter all the VEVs are denoted by the
corresponding field symbols (supplied below with the
lower index 0). One can see that there can occur a local
minimum for the potential (56) with the unbroken SUSY
solution,12

C ¼ C0; PðC0Þ ¼ 0; P0ðC0Þ ≠ 0;

Aμ0 ¼ 0; S0 ¼ 0; ð58Þ

with the vanishing potential energy

Us
min ¼ 0; ð59Þ

provided that the polynomial P (49) has some real root
C ¼ C0. Otherwise, a local minimum with the broken
SUSY solution can occur for some other C field value
(though denoted by the same letter C0),

C ¼ C0; PðC0Þ ≠ 0; P0ðC0Þ ¼ 0;

Aμ0 ≠ 0; S0 ≠ 0; Aμ0A
μ
0 − S0S�0 ¼ 0: ð60Þ

In this case one has the nonzero potential energy

Uas
min ¼

1

2
½PðC0Þ�2; ð61Þ

as directly follows from the extremum equations (57) and
potential energy expression (56).
However, as the standard second partial derivative test

shows, the fact is that the local minima mentioned above
are minima with respect to the C field VEV (C0) only.
Actually, for all three fields’ VEVs included, the potential
(56) has indeed saddle points with “coordinates” indicated
in (58) and (60), respectively. For testing convenience, this
potential can be rewritten in the form

U ¼ 1

2
P2 þ 1

2
P0gΘΘ0

BΘBΘ0 ;

gΘΘ
0 ¼ diagð1;−1;−1;−1;−1;−1Þ; ð62Þ

with only two variable fields C and BΘ, where the new field
BΘ unifies the Aμ and S field components, BΘ ¼ ðAμ; SαÞ

(Θ ¼ μ; a; μ ¼ 0; 1; 2; 3; α ¼ 1; 2).13 The complex S field
is now taken in a real basis,

S1 ¼ ðSþ S�Þ=2; S2 ¼ ðS − S�Þ=2i; ð63Þ
so that the “vector” BΘ field has one time and five space
components. As a result, one finally comes to the follow-
ing Hessian 7 × 7 matrix [being in fact the second-order
partial derivatives matrix taken in the extremum point (C0,
Aμ0, S0) (58)]

HðUsÞ ¼
� ½P0ðC0Þ�2 0

0 P0ðC0ÞgΘΘ0

�
;

jHðUsÞj ¼ −½P0ðC0Þ�8: ð64Þ

This matrix clearly has the negative determinant jHðUsÞj,
as is indicated above, that confirms that the potential
definitely has a saddle point for the solution (58). This
means the VEVs of the Aμ and S fields can take in fact
any arbitrary value making the potential (56), (62) be
unbounded from below in the unbroken SUSY case that is
certainly inaccessible.
One might think that in the broken SUSY case the

situation would be better, since due to the conditions (60)
the BΘ term completely disappears from the potential U
(56), (62) in the ground state. Unfortunately, the direct
second partial derivative test in this case is inconclusive,
since the determinant of the corresponding Hessian 7 × 7
matrix appears to vanish:

HðUasÞ ¼
�
PðC0ÞP00ðC0Þ P00ðC0ÞgΘΘ0

BΘ0

P00ðC0ÞgΘΘ0
BΘ0 0

�
;

jHðUasÞj ¼ 0: ð65Þ

Nevertheless, since in general the BΘ term can take both
positive and negative values in small neighborhoods
around the vacuum point (C0, Aμ0, S0) where the conditions
(60) are satisfied, this point also turns out to be a saddle
point. Thus, the potential U (56), (62) appears generically
unstable in both the SUSY invariant and SUSY broken
phases.

C. Stabilization of vacuum by constraining
vector superfield

The only possible way to stabilize the ground states (58)
and (60) seems to be seeking the proper constraints on the
superfield component fields (C, Aμ, S) themselves rather
than on their expectation values. Indeed, if such (potential

12Hereafter, by PðC0Þ and P0ðC0Þ are meant the C field
polynomial P (49) and its functional derivative P0 (50) taken
in the potential extremum point C0.

13Interestingly, the BΘ term in the potential (62) possesses the
accidental SOð1; 5Þ symmetry. This symmetry, though it is not
shared by kinetic terms, appears in fact to be stable under
radiative corrections, since the S field is nondynamical and,
therefore, can always be properly arranged.
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bounding) constraints are physically realizable, the vacua
(58) and (60) will be automatically stabilized. Besides, as
we confirm, instead of gauge symmetry broken in the
extended QED Lagrangian (51) some special gauge invari-
ance is recovered in (51) at the SUSY breaking minimum of
the potential (53).
Let us try to understand first what such constraints may

look like. We will expand the action around the vacuum
(55) by writing

CðxÞ ¼ C0 þ cðxÞ; ð66Þ
which gives for the C field polynomial PðCÞ (49) and
its derivatives (50) to the lowest order in the Higgs-like
field cðxÞ

PðCÞ≃ PðC0Þ þ
1

2
P00
CðC0Þc2; P0

CðCÞ≃ P00
CðC0Þc;

P00
CðCÞ≃ P00

CðC0Þ þ P000
C ðC0Þc;

P000
C ðCÞ≃ P000

C ðC0Þ þ P0000
C ðC0Þc; ð67Þ

with P0
CðC0Þ ¼ 0 taken at the minimum point C0, as is

determined in (55). Now, combining the equations of
motion for cðxÞ and for some other component field, say
SðxÞ, both derived by varying the Lagrangian (51), one has

AμAμ − SS� ¼ Oðc; c∂2cÞ; χχ ¼ OðcÞ; ð68Þ

where we have used approximate equalities (67) with
typical nonzero values of all PðC0Þ, P00

CðC0Þ, P000
C ðC0Þ,

P0000
C ðC0Þ taken at the minimum point C0. For the vanish-

ingly small Higgs-like mode cðxÞ in (66) and (68), one
eventually comes to the necessary constraints which have
to be put on the V superfield components to provide
stability of the total potential (56).

These pure heuristic arguments can be also realized in a
more rigorous way by properly constraining the vector
superfield Vðx; θ; θ̄Þ from the outset. In a SUSY context, a
constraint can only be put on an entire superfield rather than
individually on its field components. Actually, one can
constrain the vector superfield (47) by analogy with the
constrained vector field in the nonlinear QED model (11).
This will be done again through some invariant Lagrange
multiplier coupling simply by adding its D term to the
above Lagrangian (48), (51):

Ltot ¼ Lþ 1

2
ΛðV − C0Þ2jD; ð69Þ

where Λðx; θ; θ̄Þ is some auxiliary vector superfield, while
C0 is the constant background value of the C field which
minimizes the potential U (53). Accordingly, the potential
vanishes for the supersymmetric minimum or acquires
some positive value corresponding to the SUSY breaking
minimum (54) in the visible sector. We will consider both
cases simultaneously using the same notation C0 for either
of the background values of the C field.
Note that first of all, the Lagrange multiplier term in (69)

has in fact the simplest possible form that leads to some
nontrivial constrained superfield Vðx; θ; θ̄Þ. The alternative
minimal forms, such as the bilinear form ΛðV − C0Þ or
trilinear one ΛðV2 − C2

0Þ, appear too restrictive. One can
easily confirm that they eliminate most component fields in
the superfield Vðx; θ; θ̄Þ, including the physical photon and
photino fields that are definitely inadmissible. As to
appropriate nonminimal high-linear multiplier forms, they
basically lead to the same consequences as follow from the
minimal multiplier term taken in the total Lagrangian (69).
Writing down its invariant D term through the component
fields, one finds

ΛðV − C0Þ2jD ¼ CΛ

�
~CD0 þ

�
1

2
SS� − χλ0 − χ̄ λ̄0 −

1

2
AμAμ

��
þ χΛ½2 ~Cλ0 þ iðχS� þ iσμχ̄AμÞ� þ χ̄Λ½2 ~C λ̄0 −iðχ̄S − iχσμAμÞ�

þ 1

2
SΛ

�
~CS� þ i

2
χ̄ χ̄

�
þ 1

2
S�Λ

�
~CS −

i
2
χχ

�

þ 2Aμ
Λð ~CAμ − χσμχ̄Þ þ 2λ0Λð ~CχÞ þ 2λ̄0Λð ~C χ̄Þ þ 1

2
D0

Λ
~C2; ð70Þ

where

CΛ; χΛ; SΛ; A
μ
Λ; λ

0
Λ ¼ λΛ þ i

2
σμ∂μχ̄Λ;

D0
Λ ¼ DΛ þ 1

2
∂2CΛ ð71Þ

are the component fields of the Lagrange multiplier super-
field Λðx; θ; θ̄Þ in the standard parametrization (47) and

~C stands for the difference CðxÞ − C0. Varying the
Lagrangian (69) with respect to these fields and properly
combining their equations of motion,

∂Ltot

∂ðCΛ; χΛ; SΛ; A
μ
Λ; λΛ; DΛÞ

¼ 0; ð72Þ
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we find the constraints which appear to be put on the V
superfield components,14

C ¼ C0; χ ¼ 0; AμAμ ¼ SS�: ð73Þ

They also determine the corresponding D term (52),
D ¼ −PðC0Þ, for the spontaneously broken supersym-
metry. Again, as in the non-SUSY case (11), we only take
a solution with initial values for all fields (and their
momenta) chosen so as to restrict the phase space to
vanishing values of the multiplier component fields (71).
This will provide, as before, a ghost-free theory with a
positive Hamiltonian.15

Remarkably, the constraints (73) do not touch the
physical degrees of freedom of the superfield Vðx; θ; θ̄Þ
related to photon and photino fields. The point is, however,
that apart from the constraints (73), one has the equations of
motion for all fields involved in the basic superfield
Vðx; θ; θ̄Þ. With vanishing multiplier component fields
(71), as was proposed above, these equations appear in
fact as extra constraints on components of the superfield
Vðx; θ; θ̄Þ. Indeed, equations of motion for the fields C, S,
and χ received by the corresponding variations of the total
Lagrangian Ltot (69), (51) turn out to be, respectively,

PðC0ÞP0ðC0Þ¼ 0; SðxÞP0ðC0Þ¼ 0; λðxÞP0ðC0Þ¼ 0;

ð74Þ

where the basic constraints (73) emerging at the potential
extremum point C ¼ C0 have also been used. One can
immediately see now that these equations turn to trivial
identities in the broken SUSY case, in which the factor
P0ðC0Þ in each of them appears to identically vanish,
P0ðC0Þ ¼ 0 (60). In the unbroken SUSY case, in which
the potential (53) vanishes instead, i.e., PðC0Þ ¼ 0 and
P0ðC0Þ ≠ 0 (58), the situation is drastically changed.
Indeed, though the first equation in (74) still automatically
turns into an identity at the extremum point CðxÞ ¼ C0, the
other two equations require that the auxiliary field S and the
photino field λ identically vanish as well. This causes in
turn that the photon field should also vanish according to
the basic constraints (73). Besides, the D field component
in the vector superfield also vanishes in the unbroken

SUSY case according to Eq. (52),D ¼ −PðC0Þ ¼ 0. Thus,
one is ultimately left with a trivial superfield Vðx; θ; θ̄Þ
which only contains the constant C field component C0,
which is unacceptable. So, we have to conclude that the
unbroken SUSY fails to provide stability of the potential
(56), even by constraining the superfield Vðx; θ; θ̄Þ. In
contrast, in the spontaneously broken SUSY case, extra
constraints do not appear at all, and one has a physically
meaningful theory that we basically consider in what
follows.
Finally, implementing the constraints (73) into the total

Lagrangian Ltot (69), (51) through the Lagrange multiplier
terms for component fields, we come to the emergent
SUSY QED appearing in the broken SUSY phase:

Lem¼LSQEDþPðCÞDþDΛ

4
ðC−C0Þ2−

CΛ

4
ðAμAμ−SS�Þ:

ð75Þ

The last two terms with the component multiplier functions
CΛ and DΛ of the auxiliary superfield Λ (71) provide the
vacuum stability condition of the theory. In essence, one
does not need now to postulate from the outset gauge
invariance for the physical SUSY QED Lagrangian LSQED.
Rather, one can derive it following the emergence con-
jecture specified for Abelian theories in Sec. III B. Indeed,
due to the constraints (73), the Lagrangian LSQED is only
allowed to have a conventional gauge invariant form:

LSQED ¼ −
1

4
FμνFμν þ iλσμ∂μλ̄þ

1

2
D2: ð76Þ

Thus, for the constrained vector superfield involved,

V̂ðx; θ; θ̄Þ ¼ C0 þ
i
2
θθS −

i
2
θ̄ θ̄ S� − θσμθ̄Aμ

þ iθθθ̄ λ̄−iθ̄ θ̄ θλþ 1

2
θθθ̄ θ̄D; ð77Þ

we have the almost standard SUSY QED Lagrangian with
the same states—a photon, a photino, and an auxiliary
scalar D field—in its gauge supermultiplet, while another
auxiliary complex scalar field S only gets involved in the
vector field constraint. The linear (Fayet-Iliopoulos)D term
with the effective coupling constant PðC0Þ in (75) shows
that supersymmetry in the theory is spontaneously broken,
due to which the D field acquires the VEV, D ¼ −PðC0Þ.
Taking the nondynamical S field in the constraint (73) to be
some constant background field (for a more formal dis-
cussion, see below), we come to the SLIV constraint
(10) which we discussed above regarding an ordinary
nonsupersymmetric QED theory (Sec. II C). As is seen
from this constraint in (75), one may only have the timelike
SLIV in a SUSY framework but never the spacelike one.
There also may be a lightlike SLIV, if the S field

14Indeed, the equations ∂Ltot=∂DΛ ¼ 0 and ∂Ltot=∂SΛ ¼ 0
immediately give the constraints C ¼ C0 and χ ¼ 0, respectively,
while the equation ∂Ltot=∂CΛ ¼ 0 leads to the constraint AμAμ ¼
SS� once the previous two constraints are satisfied. They
coincide, as expected, with constraints arisen for the vanishingly
small Higgs-like mode cðxÞ in Eqs. (66) and (68).

15As in the nonsupersymmetric case discussed above (see also
footnote 3), this solution with all vanishing components of the
basic Lagrangian multiplier superfield Λðx; θ; θ̄Þ can be reached
by introducing in the total Lagrangian (69) an appropriate extra
Lagrange multiplier term of the type ΣΛ2, where ΣðxÞ is a new
multiplier superfield.
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vanishes.16 So, any possible choice for the S field corre-
sponds to the particular gauge choice for the vector field Aμ

in an otherwise gauge invariant theory. So, the massless
photon appearing first as a companion of a massless
photino (being a Goldstone fermion in the visible broken
SUSY phase) remains massless due to this recovering
gauge invariance in the emergent SUSY QED. At the same
time, the “built-in&quot; nonlinear gauge condition in (75)
allows us to treat the photon as a vector Goldstone boson
induced by an inactive SLIV.

D. Constrained vector superfield: A formal view

We proceed by showing that our extended Lagrangian
Ltot (69), (51), underlying the emergent QED model, is
SUSY invariant, and also the constraints (73) on the field
space appearing due to the Lagrange multiplier term in (69)
are consistent with supersymmetry. The first part of this
assertion is somewhat immediate, since the Lagrangian
Ltot, aside from the standard supersymmetric QED part
LSQED (48), only contains D terms of various vector
superfield products. They are, by definition, invariant under
conventional SUSY transformations [40] which for the
component fields (47) of a general superfield Vðx; θ; θ̄Þ
(47) are written as

δξC ¼ iξχ − iξ̄ χ̄; δξχ ¼ ξSþ σμξ̄ð∂μCþ iAμÞ;
1

2
δξS ¼ ξ̄ λ̄þσ̄μ∂μχ;

δξAμ ¼ ξ∂μχ þ ξ̄∂μχ̄ þ iξσμλ̄ − iλσμξ̄;

δξλ ¼
1

2
ξσμσ̄νFμν þ ξD;

δξD ¼ −ξσμ∂μλ̄þ ξ̄σμ∂μλ: ð78Þ

However, there may still be left a question about whether
supersymmetry remains in force when the constraints (73)
on the field space are “switched on,” thus leading to the
final Lagrangian Lem (75) in the broken SUSY phase with
both dynamical fields C and χ eliminated. This Lagrangian
appears similar to the standard supersymmetric QED taken
in the Wess-Zumino gauge, except that supersymmetry is
spontaneously broken in our case. In both cases, the photon
stress tensor Fμν, the photino λ, and the nondynamical
scalar D field form an irreducible representation of the
supersymmetry algebra [the last two lines in (78)].
Nevertheless, any reduction of component fields in the
vector superfield is not consistent in general with the linear
superspace version of supersymmetry transformations,

whether it is the Wess-Zumino gauge case or our con-
strained superfield (77). Indeed, a general SUSY trans-
formation does not preserve the Wess-Zumino gauge: a
vector superfield in this gauge,

VWZðx; θ; θ̄Þ ¼ θσμθ̄Aμ þ iθθθ̄ λ̄−iθ̄ θ̄ θλþ 1

2
θθθ̄ θ̄D;

ð79Þ
acquires all possible extra terms when being SUSY trans-
formed. The same also occurs with our constrained super-
field V̂ (77). The point, however, is that in both cases a total
supergauge transformation,

V → V þ i
2
ðΩ − Ω�Þ; ð80Þ

where Ω is an arbitrary chiral superfield transformation
parameter [40],

Ω ¼ φþ
ffiffiffi
2

p
θψ þ θθF þ iθσμθ̄∂μφ −

iffiffiffi
2

p θθθ̄σμ∂μψ

−
1

4
θθθ̄ θ̄ ∂2φ; ð81Þ

can always restore the vector superfield initial (restricted)
form (77) or (79), respectively. In a conventional super-
symmetric QED in the Wess-Zumino supergauge taken, an
ordinary gauge freedom is left untouched. This means that
the nontrivial part of the VWZ superfield transformation
amounts to

VWZ → VWZ − θσμθ̄∂μφ; Aμ → Aμ − ∂μφ; ð82Þ

where the scalar component φ in the SUSY transformation
parameter Ω (81) is used. In contrast, in the emergent
SUSY QED (75), the ordinary gauge is fixed by the vector
field constraint (73). However, this constraint remains
under supergauge transformation (80) applied to our super-
field V̂ (77). Indeed, the essential part of this transformation
which directly acts on the constraint (73) has the form

V̂ → V̂ þ i
2
θθF −

i
2
θ̄ θ̄F� − θσμθ̄∂μφ; ð83Þ

where the real and complex scalar field components, φ and
F, in a chiral superfield parameterΩ, are properly activated.
As a result, the vector and scalar fields, Aμ and S, in the
supermultiplet V̂ (77) transform as

Aμ → aμ ¼ Aμ − ∂μφ; S → s ¼ Sþ F: ð84Þ

It can be immediately seen that our basic Lagrangian Lem

(75), (76), being gauge invariant and containing no
scalar S field, is automatically invariant under either of
these two transformations individually. In contrast, the

16Indeed, this case, first mentioned in [10], may also mean
spontaneous Lorentz violation with a nonzero VEV hAμi ¼ð eM; 0; 0; eMÞ and Goldstone modes A1;2 and ðA0 þ A3Þ=2 − eM.
The “effective” Higgs mode ðA0 − A3Þ=2 can be then expressed
through Goldstone modes so the lightlike condition AμAμ ¼ 0
can be satisfied.
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supplementary vector field constraint (73) also turns out to
be invariant under supergauge transformations (84), but
only if they act jointly. Indeed, for any choice of the scalar
φ in (84) there can always be found such a scalar F (and
vice versa) that the constraint remains invariant. In other
words, the vector field constraint is invariant under super-
gauge transformations (84) but is not invariant under an
ordinary gauge transformation. As a result, in contrast to
the Wess-Zumino case, the supergauge fixing in our case
will also lead to the ordinary gauge fixing. We will use this
supergauge freedom to reduce the scalar field bilinear SS�
to some constant background value and find the final
equation for the gauge function φðxÞ. It is convenient to
come to real field basis (63) Sα and Fα (α; β;… ¼ 1; 2) and
choose the parameter fields Fα as

Fα ¼ rαðMþ fÞ; r2α ¼ 1; ð85Þ

so that the old Sα fields in (84) are related to the new ones
sα in the following way:

Sα ¼ sα − rαðMþ fÞ; rαSα ¼ 0;

SαSα ¼ sαsα þ ðMþ fÞ2; ð86Þ

where M is a mass parameter, fðxÞ is some Higgs field–like
function, while rα is a two-component unit vector orthogo-
nal to the scalar “doublet" Sα. Actually, the parametrization
(86) formally looks as if the old fields Sα would develop the
VEV, hSαi ¼ −rαM, due to which some related SOð2Þ
symmetry was spontaneously violated and corresponding
zero modes in terms of the new fields sα could be
consequently produced. Eventually, for the properly chosen
“Higgs field” f,

f ¼ −Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − sαsα

q
; ð87Þ

we come to

AμAμ ¼ M2; ð88Þ

which is nothing but our old constraint (10) taken for the
timelike SLIV. Recall that this constraint, as was thor-
oughly discussed in Sec. II C, does not physically break
gauge invariance. It rather fixes the gauge to which such a
gauge function φðxÞ has to satisfy. Actually, comparing the
relation between the old and new vector fields in (84) with a
conventional SLIV parametrization (12), one can find a
simple expression for this gauge function,

φ ¼
Z

x
dðnμxμÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − n2a2

p
; ð89Þ

that explicitly demonstrates that this gauge condition is
possible, at least in the case when the new vector fields in

(84) are taken in terms of the Lorentz breaking zero
modes (a2 ¼ aμaμ,nμaμ ¼ 0).
To summarize, it was shown that the constraints on the

allowed configurations of the vector-superfield component
fields (73), that provide the potential energy stability in a
general polynomially extended Lagrangian (69), are
entirely consistent with supersymmetry. One might think
that, unlike the gauge invariant linear (Fayet-Iliopoulos)
superfield term, the quadratic and higher-order superfield
terms in the starting Lagrangian (69) would seem to break
gauge invariance. However, the fear proves groundless. In
the broken SUSY phase, one eventually comes to the
standard SUSY QED-type Lagrangian (75) being supple-
mented by the vector field constraint invariant under super-
gauge transformations. Thus, the gauge noninvariance
mentioned above amounts to the gauge-fixing condition
with a gauge functionwhich can be explicitly calculated (89).

V. ON EMERGENT SUSY STANDARD
MODELS AND GUTS

A. Potential of Abelian and non-Abelian
vector superfields

In this section we extend our discussion to the non-
Abelian internal symmetry case given by some group G
with generators tp (21). This case may correspond in
general to some grand unified theory which includes the
Standard Model and its possible extensions. For definite-
ness, we will be further focused on the Uð1Þ × SUðNÞ
symmetrical theories, though any other non-Abelian group
in place of SUðNÞ is also admissible. Such a split group
form is dictated by the fact that in the pure non-Abelian
symmetry case, supersymmetry does not get spontaneously
broken in a visible sector, which makes it inappropriate for
an outgrowth of an emergence process.17 So, the theory
now contains the Abelian vector superfield V, as is given in
(47), and non-Abelian superfield multiplet Vp:

Vpðx;θ; θ̄Þ¼Cpþ iθχp− iθ̄χ̄pþ i
2
θθSp−

i
2
θ̄ θ̄Sp

−θσμθ̄Ap
μ þ iθθθ̄λ̄0p− iθ̄ θ̄ θλ0pþ1

2
θθθ̄ θ̄D0p;

ð90Þ

where its vector field components Ap
μ are usually associated

with an adjoint gauge field multiplet, ðAμÞij ≡ ðAp
μ tpÞij

(i; j; k ¼ 1; 2;…; N; p; q; r ¼ 1; 2;…; N2 − 1). Note that,
apart from the conventional gaugino multiplet λp and the
auxiliary fields Dp, the superfield Vp contains in general
the additional degrees of freedom in terms of the dynamical

17In principle, SUSY may be spontaneously broken in the
visible sector even in the pure non-Abelian symmetry case,
provided that the vector superfield potential includes some
essential high-dimension couplings.
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scalar and fermion field multiplets Cp and χp and non-
dynamical complex scalar field Sp. Note that for the non-
Abelian superfield components we use hereafter the bold
symbols and take again the brief notations, λ0p ¼ λp þ
i
2
σμ∂μχ̄p and D0p ¼ Dp þ 1

2
∂2Cp.

Augmenting the SUSY and Uð1Þ × SUðNÞ invariant
GUT by some polynomial potential of vector superfields
V and Vp, one comes to

L ¼ LSGUT þ
1

2
D2 þ 1

2
DpDp

þ ½ξV þ b1V3=3þ b2VðVVÞ þ b3ðVVVÞ=3�D;
ð91Þ

where ξ and b1;2;3 stand for coupling constants, and the
last term in (91) contains products of the Abelian super-
field V and the adjoint SUðNÞ superfield multiplet
Vi

j ≡ ðVptpÞij. The round brackets denote hereafter traces
for the superfield Vi

j,

ðVV…Þ≡ TrðVV…Þ; ð92Þ
and its field components (see below). For simplicity, we
restricted ourselves to the third degree superfield terms in
the Lagrangian L to eventually have a theory at a
renormalizable level. Furthermore, we have only taken
the odd power superfield terms that provide, as we see
below, an additional discrete symmetry of the potential with
respect to the scalar field components in the V and Vp

superfields:

C → −C; Cp → −Cp: ð93Þ

Finally, by eliminating the auxiliary D and Dp fields in the
Lagrangian L, we come to the total potential for all
superfield bosonic field components written in terms of
traces mentioned above (92):

UB ¼UBðC;CÞþ
1

2
b1CðAμAμ−SαSαÞ

þ1

2
b2C½ðAμAμÞ− ðSαSαÞþ

1

2
b2½AμðAμCÞ−SαðSαCÞ�

þ1

2
b3½ðAμAμCÞ− ðSαSαCÞ�; ð94Þ

where the potential terms depending only on scalar fields C
and Ci

j ≡ ðCataÞij are collected in

UBðC;CÞ ¼
1

8
½ξþ b1C2 þ b2ðCCÞ�2

þ 1

2

�
b22C

2ðCCÞ þ b2b3CðCCCÞ

þ 1

4
b23ðCCCCÞ

�
; ð95Þ

and complex scalar fields Sα and Spα are now taken in the
real field basis (63). One can see that all these terms are
invariant under the discrete symmetry (93), whereas the
vector field couplings inUB break it. However, they vanish
when the V and Vp superfields are properly constrained,
which we actually confirm in the next section.
As in the SUSY QED case (Sec. IV B), consider first the

pure scalar field potential UBðC;CÞ. The corresponding
extremum conditions for C and Ca fields are

U0
C ¼ b1ðξþ b1C2ÞCþ b2ðb1 − 2b2ÞCðCCÞ ¼ 0;

TrðU0
Ci
j
Þ ¼ 3b2CðCCÞ þ b3ðCCCÞ ¼ 0; ð96Þ

respectively.18 As the second partial derivative test shows,
the simplest solution to the above equations,

C0 ¼ 0; Ci
j ¼ 0; ð97Þ

provides, under conditions put on the potential parameters,

ξ; b1 > 0; b2 ≥ 0 or ξ; b1 < 0; b2 ≤ 0; ð98Þ

its global minimum

UBðC;CÞasmin ¼
1

8
ξ2: ð99Þ

This minimum corresponds to the broken SUSY phase with
the unbroken internal symmetry Uð1Þ × SUðNÞ that is just
what one would want to trigger an emergence process. This
minimum appears in fact due to the Fayet-Iliopoulos linear
term in the superfield polynomial in (91). As can easily be
confirmed, in the absence of this term, namely, for ξ ¼ 0
and any arbitrary values of all other parameters, there
is only the SUSY symmetrical solution with unbroken
internal symmetry:

UBðC;CÞsymmin ¼ 0: ð100Þ

Interestingly, the symmetrical solution corresponding to
the global minimum (100) may appear for the nonzero
parameter ξ as well,

Cð�Þ
0 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−ξ=b1

p
; Ci

j ¼ 0; ð101Þ

provided that

ξb1 < 0: ð102Þ

18In more detail, we first calculated here the variations U0
C ¼ 0

and U0
Ci
j
¼ 0, then took the trace from the second one [thus

properly simplifying it due to the traceless condition for the
adjoint SUðNÞ multiplet TrðCi

jÞ ¼ 0], and finally substituted it
into the first one.
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However, as we saw in the QED case, in the unbroken
SUSY case one comes to the trivial constant superfield
when all factual constraints are included into consideration
[see Eqs. (74) and the subsequent discussion] and, there-
fore, this case is in general of little interest.19

B. Constrained vector supermultiplets

Let us now take the vector fields Aμ and Ap
μ into

consideration that immediately reveals that, in contrast to
the pure scalar field part (95), UBðC;CÞ, the vector field
couplings in the total potential (94) make it unstable. This
happens, as was emphasized before, due to the fact that
bilinear term VEV contributions of the vector fields Aμ and
Ap
μ , as well as the auxiliary scalar fields Sα and Spα , are not

properly compensated by appropriate four-linear field
terms which are generically absent in a supersymmetric
theory framework.
Again, as in the supersymmetric QED case considered

above, the only possible way to stabilize the ground state
(97)–(99) seems to be seeking the proper constraints on the
superfields’ component fields (C, Cp; Aμ, Ap; Sα, Sp)
themselves rather than on their expectation values.
Provided that such constraints are physically realizable,
the required vacuum will be automatically stabilized. This
will be done again through some invariant Lagrange
multiplier couplings simply by adding their D terms to
the above Lagrangian (91):

Ltot ¼ Lþ 1

2
ΛðV − C0Þ2jD þ 1

2
ΠðVVÞjD; ð103Þ

where Λðx; θ; θ̄Þ and Πðx; θ; θ̄Þ are auxiliary vector super-
fields. Note that C0 presented in the first multiplier
coupling is just the constant background value of the C
field for which the potential part UBðC;CÞ in (94) vanishes
as appears for the supersymmetric minimum (100) or has
some nonzero value corresponding to the SUSY breaking
minimum (99) in the visible sector. We will consider both
cases simultaneously using the same notation C0 for either
of the potential minimizing values of the C field. The
second multiplier coupling in (103) provides, as we will
soon see, the vanishing background value for the non-
Abelian scalar field, Ca ¼ 0, due to which the underlying
internal symmetry Uð1Þ × SUðNÞ is left intact in both
unbroken and broken SUSY phases. As was emphasized
before, the Lagrange multiplier terms presented in (103)
have in fact the simplest possible form that leads to some
nontrivial constrained superfields Vðx; θ; θ̄Þ and
Vpðx; θ; θ̄Þ. By writing down their invariant D terms
through the component fields, one finds precisely the same
expression (70) as in the SUSY QED case for the Abelian
superfield V and the slightly modified one for the non-
Abelian superfield Va:

ΠðVVÞjD ¼ CΠ

�
CD0þ

�
1

2
SS�−χλ0−χ̄ λ̄0 −

1

2
AμAμ

��
þ χΠ½2Cλ0þiðχS�þiσμχ̄AμÞ� þ χ̄Π½2Cλ̄0 − iðχ̄S − iχσμAμÞ�

þ 1

2
SΠ

�
CS�þ i

2
χ̄ χ̄

�
þ 1

2
S�Π

�
CS −

i
2
χ χ

�
þ 2Aμ

ΠðCAμ − χσμχ̄ Þ þ 2λ0ΠðCχ Þ þ 2λ̄0ΠðCχ̄ Þ þ
1

2
D0

ΠðCCÞ; ð104Þ

where the bold field symbols grouped into pairs mean
hereafter the SUðNÞ scalar products of the component field
multiplets (for instance, CD0 ¼ CpD0p, and so forth), and

CΠ; χΠ; SΠ; A
μ
Π; λ0Π ¼ λΠ þ i

2
σμ∂μχ̄Π;

D0
Π ¼ DΠ þ 1

2
∂2CΠ ð105Þ

are the component fields of the Lagrange multiplier super-
field Πðx; θ; θ̄Þ in the standard parametrization (90). Vary-
ing the total Lagrangian (103) with respect to the

component fields of both multipliers, (71) and (105),
and properly combining their equations of motion, we find
the constraints which appear to be put on the V and Va

superfields components (in the same way 14 for both
Abelian and non-Abelian superfield cases),

C ¼ C0; χ ¼ 0; AμAμ ¼ SαSα;

Cp ¼ 0; χp ¼ 0; ðAμAμÞ ¼ ðSαSαÞ;
α ¼ 1; 2: ð106Þ

As before in the SUSY QED case, one may only have the
timelike SLIV in a supersymmetric Uð1Þ × SUðNÞ frame-
work but never the spacelike one (there also may be a
lightlike SLIV, if the S and S fields vanish). Also note that
we only take the solution with initial values for all fields
(and their momenta) chosen so as to restrict the phase space
to vanishing values of the multiplier component fields (71)

19It is worth noting that for nonzero b1 values there are also lots
of local and global SUSY breaking minima with both nonzero
scalar field VEVs C0 and ðCi

jÞ0 in some parameter area (b1;3 > 0

ðb1;3 < 0Þ, b2 < 0 (b2 > 0). This means that the SUðNÞ sym-
metry is also spontaneously broken in this case that otherwise
(when b1 ¼ 0) would not be happen in itself, as is clearly seen
from the extremum conditions (96).
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and (105) that will provide a ghost-free theory with
a positive Hamiltonian.20

Again, apart from the constraints (106), one has the
equations of motion for all fields involved in the basic
superfields Vðx; θ; θ̄Þ and Vpðx; θ; θ̄Þ. With vanishing
multiplier component fields (71) and (105), as was pro-
posed above, these equations appear in fact as extra
constraints on components of the V and Vp superfields.
Indeed, equations of motion for the Sα, χ, and C fields on
the one hand and for the Spα , χp, and Cp fields on the other
are obtained by the corresponding variations of the total
Lagrangian Ltot (103), including the potential (94). They
turn out to be, respectively,

SαC0 ¼ 0; λC0 ¼ 0; ðξþ b1C2
0ÞC0 ¼ 0;

SpαC0 ¼ 0; λpC0 ¼ 0;

b2½AμAμ i
j − SαSα i

j� þ b3½ðAμAμÞ ij − ðSαSαÞ ij� ¼ 0; ð107Þ

where the basic constraints (106) emerging at the potential
UBðC;CÞ extremum point (C0, C

p
0 ¼ 0) have been also

used for both broken and unbroken SUSY cases. Note
also that the equations for gauginos λ and λp in (107)
are received by variation of the potential terms in (91)
containing fermion field couplings,

UF ¼ b1Cðχλ0 þ χ̄ λ̄0Þ þ b2C½ðχλ0Þ þ ðχ̄ λ̄0Þ�

þ 1

2
b2½χðλ0CÞ þ χ̄ðλ̄0CÞ þ λ0ðχCÞ þ λ̄0ðχ̄CÞ�

þ b3ðχλ0CÞ þ ðχ̄ λ̄0 CÞ�: ð108Þ

One can immediately see now that all equations in (107) but
the last equation system21 turn into trivial identities in the
broken SUSY case (97) in which the corresponding C field
value appears to be identically vanished, C0 ¼ 0. In the
unbroken SUSY case (101), this field value is definitely
nonzero, C0 ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffi

−ξ=b1
p

, and the situation is radically
changed. Indeed, as follows from the equations (107), the
auxiliary fields SðxÞ and Sp, as well as the gaugino fields
λðxÞ and λpðxÞ, have to identically vanish. This causes in
turn that the gauge vector fields Aμ and Ap

μ should also
vanish according to the basic constraints (106). So, we have
to conclude, as in the SUSY QED case, that the unbroken
SUSY fails to provide stability of the potential (56) even by
constraining the superfields V and Vp and, therefore, only

the spontaneously broken SUSY case could in principle
lead to a physically meaningful emergent theory.

C. Broken SUSY phase: An emergent
Uð1Þ × SUðNÞ theory

With the constraints (106) providing vacuum stability for
the total Lagrangian Ltot (103), we eventually come to the
emergent theory with a local Uð1Þ × SUðNÞ symmetry that
appears in the broken SUSY phase (97). Actually, imple-
menting these constraints into the Lagrangian through the
Lagrange multiplier terms for component fields, one has

Lem ¼ LSGUT þ
1

2
ξDþDΛ

4
ðC − C0Þ2 −

CΛ

4
ðAμAμ − SS�Þ

þDΠ

4
ðCCÞ − CΠ

4
ðAμAμ−SS�Þ; ð109Þ

with the multiplier component functions CΛ and DΛ of the
auxiliary superfield Λ (71) and component functions CΠ
and DΠ of the auxiliary superfield Π (105) presented in the
Lagrangian (103). Again, with these constraints and the
emergence conjecture specified for non-Abelian theories in
Sec. III C, one does not need to postulate gauge invariance
for the physical SUSY GUT Lagrangian LSGUT from
the outset. Instead, one can derive it. Indeed, even if the
Lagrangian LSGUT is initially taken to only possess the
global Uð1Þ × SUðNÞ symmetry, it will tend to uniquely
acquire a standard gauge invariant form

LSGUT ¼ −
1

4
FμνFμν þ iλσμ∂μλ̄þ

1

2
D2

−
1

4
FpμνFp

μν þ iλpσμDμλ̄
p þ 1

2
DpDp; ð110Þ

where the conventional gauge field strengths for both Uð1Þ
and SUðNÞ parts and terms with proper covariant deriv-
atives for gaugino fields λp necessarily appear. Again as in
the pure Abelian case, for the respectively constrained
vector superfields V and Vp, we come in fact to a
conventional SUSY GUT Lagrangian with a standard
gauge supermultiplet containing gauge bosons Aμ and
Ap, gauginos λ and λp, and auxiliary scalar D and Dp

fields, whereas other auxiliary scalar fields Sα and Spα get
solely involved in the Lagrange multiplier terms (110).
Actually, the only remnant of the polynomial potential of
vector superfields V and Vp (91) that survived in the
emergent theory (109) appears to be the Fayet-IliopoulosD
term, which shows that supersymmetry in the theory is
indeed spontaneously broken and the D field acquires the
VEV, D ¼ − 1

2
ξ.

Let us show now that this theory is in essence gauge
invariant and the constraints (106) on the field space
appearing due to the Lagrange multiplier terms in (103)
are consistent with supersymmetry. Namely, as was argued
above (Sec. IV D), though restricted vector superfields are

20As in the nonsupersymmetric case discussed above (see
footnote 3), this solution with all vanishing components of the
basic Lagrangian multiplier superfields Λðx; θ; θ̄Þ and Πðx; θ; θ̄Þ
can be reached by introducing some extra Lagrange multipliers.

21This equation system is not at all dependent on the critical C
field value. It allows us, as we will see in the next section, to
eliminate the auxiliary scalar fields Sα and Saα from the theory,
thus properly expressing them through the vector fields Aμ
and Aa

μ.
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not strictly compatible with the linear superspace version of
SUSY transformations, their supermultiplet structure can
be restored by appropriate supergauge transformations.
Following the same argumentation, one can see that these
transformations keep invariant the constraints (106) put on
the vector fields Aμ and Ap. Leaving aside the Uð1Þ sector
considered above in significant detail, we will now focus on
the SUðNÞ symmetry case with the constrained superfield
Vp transformed as

Vp → Vp þ i
2
ðΩ −Ω�Þp: ð111Þ

The essential part of this transformation which directly acts
on the vector field constraint,

Ap
μApμ ¼ SpS�p; ð112Þ

has the form

Vp → Vp þ i
2
θθFp −

i
2
θ̄ θ̄F�p − θσμθ̄∂μφp; ð113Þ

where the real and complex scalar field components, φp

and Fp, in a chiral superfield parameter Ωp are properly
activated. As a result, the corresponding vector and scalar
component fields, Ap

μ and Spα , in the constrained super-
multiplet Vp transform as

Ap
μ →apμ ¼Ap

μ −∂μφp; Sp→ sp¼SpþFp: ð114Þ

One can readily see that our basic Lagrangian Lem (109),
being gauge invariant and containing no auxiliary scalar
fields Sp, is automatically invariant under either of these
two transformations individually. In contrast, the supple-
mentary vector field constraint (112) also turns out to be
invariant under supergauge transformations (114), but only
if they act jointly. Indeed, for any choice of the scalar φp in
(114), there can always be found such a scalar Fa (and vice
versa) that the constraint remains invariant. In other words,
the vector field constraint is invariant under supergauge
transformations (114) but is not invariant under an ordinary
gauge transformation. As a result, in contrast to the Wess-
Zumino case, the supergauge fixing in our case will also
lead to the ordinary gauge fixing. We will use this super-
gauge freedom to reduce the scalar field bilinear SpS�p to
some constant background value and find a final equation
for the gauge functionφpðxÞ. It is convenient to come to the
real field basis (63) for scalar fields Spα and Fp

α (α ¼ 1; 2)
and choose the parameter fields Fa

α as

Fp
α ¼ rαϵpðMþ f Þ; rαs

p
α ¼0; r2α¼1; ϵpϵp¼1;

ð115Þ

so that the old Spα fields in (114) are related to the new ones
spα in the following way:

Spα ¼ spα − rαϵpðMþ f Þ; rαs
p
α ¼ 0;

SpαS
p
α ¼ spαs

p
α þ ðMþ f Þ2: ð116Þ

where M is a new mass parameter, f ðxÞ is some Higgs
field–like function, rα is again the two-component unit
vector chosen to be orthogonal to the scalar spα, while ϵp is
the unit SUðNÞ adjoint vector. Again, this parametrization
for the old fields Spα formally looks as if they develop the
VEV, hSpαi ¼ −rαϵpM, due to which the related SOð2Þ ×
SUðNÞ symmetry would be spontaneously violated and
corresponding zero modes in terms of the new fields spα
could be consequently produced (indeed, they never appear
in the theory). Eventually, for an appropriate choice of the
Higgs field–like function f ðxÞ in (116),

f ¼ −Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − spαs

p
α

p
; ð117Þ

we come in (112) to the condition

Ap
μApμ ¼ M2; ð118Þ

conforming with a general non-Abelian vector field con-
straint (23) established above in Sec. III C. As the vector
field constraint (88) for the Uð1Þ symmetry case, this
constraint also leads exclusively to the timelike SLIV.
Again, one can calculate the gauge function φpðxÞ by
comparing the relation between the old and new vector
fields in (114) with a conventional SLIV parametrization
for non-Abelian vector fields (30),

φp ¼ ϵp
Z

x
dðnμxμÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − n2a2

p
; ð119Þ

expressing it through the Goldstone and pseudo-Goldstone
modes apμ involved (a2 ≡ apμapμ).
Remarkably, thanks to the generic high symmetry of the

constraint (118), one can apply the emergence conjecture
with dynamically produced massless gauge modes to any
non-Abelian internal symmetry case as well, though SLIV
itself could produce only one zero vector mode. The point
is, as was presented in significant detail in Sec. III C, that
although we only propose Lorentz invariance SOð1; 3Þ and
internal symmetry Uð1Þ × SUðNÞ of the Lagrangian Lem

(109), the emerged constraint (118) in fact possesses a
much higher accidental symmetry SOðΥ; 3ΥÞ determined
by the dimension Υ ¼ N2 − 1 of the SUðNÞ adjoint
representation to which the vector fields Ap

μ belong.22

This symmetry is indeed spontaneously broken at a scale
M, leading exclusively to the timelike SLIV case (28), as is

22Actually, the total symmetry is even higher if one keeps in
mind both constraints (10) and (118) put on the vector fields Aμ
and Aa

μ, respectively. As long as they are independent, the related
total symmetry is in fact SOð1; 3Þ × SOðΥ; 3ΥÞ until it starts
breaking.
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determined by the positive sign in the SUSY SLIV
constraint (118). The emerging pseudo-Goldstone vector
bosons, as was thoroughly explained in Sec. III C, may be
in fact considered as candidates for non-Abelian gauge
fields, which together with the true vector Goldstone boson
entirely complete the adjoint multiplet of the internal
symmetry group SUðNÞ. Remarkably, they remain strictly
massless, protected by the simultaneously generated non-
Abelian gauge invariance. When expressed in these zero
modes, the theory looks essentially nonlinear and contains
many Lorentz- and CPT-violating couplings. However, as
in the SUSY QED case, they do not lead to physical SLIV
effects which due to simultaneously generated gauge
invariance appear to be strictly canceled out.
Finally, it is worth noting that with the parametrizations

(12), (30), (86), (116), (117) taken above for Abelian and
non-Abelian vector and scalar field components, one comes
to the following relations between them:

sαsαij þ ϵij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − s2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − s2

p
þ b3
b2

½ðsαsαÞij − ðϵϵÞijs2�

¼ aμaμij þ ϵij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
þ b3
b2

½ðaμaμÞij − ðϵϵÞija2Þ�; ð120Þ

as is determined by the equation system in (107) (with a full
contraction of the field indices in s2 ≡ sαsα, s2 ≡ spαs

p
α ,

a2 ≡ aμaμ, and a2 ≡ apμapμ). They allow us to express the
auxiliary scalar fields sα and siαj through the vector zero
modes aμ and apμ , thus completely excluding the former
from the theory.

D. Some immediate outcomes

Quite remarkably, an obligatory split symmetry form
Uð1Þ × SUðNÞ [or Uð1Þ ×G, in general] of plausible
emergent theories which could exist beyond the prototype
QED case, leads us to the standard electroweak theory with
the Uð1Þ × SUð2Þ symmetry as the simplest possibility.
The potential of type (91) written for the corresponding
superfields requires spontaneous SUSY breaking in the
visible sector to avoid the vacuum instability in the theory.
Eventually, this requires the SLIV-type constraints to be
put on the hypercharge and weak isospin vector fields,
respectively,

BμBμ ¼ M2; Wp
μWpμ ¼ M2 ðp ¼ 1; 2; 3Þ: ð121Þ

These constraints are independent from each other and
possess, as was generally argued above, the total symmetry
SOð1; 3Þ × SOð3; 9Þ which is much higher than the actual
Lorentz invariance and electroweak Uð1Þ × SUð2Þ sym-
metry in the theory. Thanks to this fact, one Goldstone and
three pseudo-Goldstone zero vector modes bμ and wp

μ are
generated to eventually complete the gauge multiplet of the
Standard Model,

Bμ ¼ bμ þ nμ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − bμbμ

q
; nμbμ ¼ 0;

Wp
μ ¼ wp

μ þ nμϵp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − wq

μwqμ
q

; nμwpμ ¼ 0; ð122Þ

where the unit vectors nμ and ϵp are defined in accordance
with a rectangular unit matrix npμ taken in the two-vector
form (32). The true vector Goldstone boson appears to be
some superposition of the zero modes bμ and w3

μ. This
superposition is in fact determined by the conventional
Higgs doublet in the model since just through the Higgs
field couplings these modes are only mixed. Thus, when the
electroweak symmetry gets spontaneously broken, an
accidental degeneracy related to the total symmetry of
constraints mentioned above is lifted. As a consequence,
the vector pseudo-Goldstones acquire masses and only the
photon, being the true vector Goldstone boson in the
model, is left massless.23 In this sense, there is not much
difference for the photon in emergent QED and SM: it
emerges as a true vector Goldstone boson in both
frameworks.
Going beyond the Standard Model, we unavoidably

come to the flipped SUð5Þ GUT [42] as a minimal and
in fact distinguished possibility. Indeed, the Uð1Þ sym-
metry part being mandatory for emergent theories now
naturally appears as a linear combination of a conventional
electroweak hypercharge and another hypercharge belong-
ing to the standard SUð5Þ. The flipped SUð5Þ GUT has
several advantages over the standard SUð5Þ one—the
doublet-triplet splitting problem is resolved with use of
only minimal Higgs representations and protons are nat-
urally long lived, neutrinos are necessarily massive, and
supersymmetric hybrid inflation can easily be implemented
successfully. Also in string theory, the flipped SUð5Þmodel
is of significant interest for a variety of reasons. In essence,
the above-mentioned natural solution to the doublet-triplet
splitting problem without using large GUT representations
is in the remarkable conformity with string theories where
such representations are typically unavailable. Also, in
weakly coupled heterotic models, the flipped SUð5Þ allows
us to achieve gauge coupling unification at the string scale
1017 GeV if some extra vectorlike particles are added. They
are normally taken to transform in the 10 and 10 repre-
sentations, which is easy to engineer in string theory.
So, supersymmetric emergent theories look attractive

both theoretically and phenomenologically whether they
are considered at low energies in terms of the Standard
Model or at very high energies as the flipped SUð5Þ GUTs
inspired by superstrings. However, their most generic
manifestations seem to be related to a spontaneous
SUSY violation in the visible sector that we discuss in
the next section.

23More details on how the zero vector modes can acquire
masses in both emergent QED and SM can be found in [22,27].
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VI. PHENOMENOLOGICAL IMPLICATIONS:
PHOTINO AS PSEUDO-GOLDSTINO

Let us now turn to the matter sector described by chiral
matter superfields which have not yet been included in both
QED and the Standard Model. In their presence, the SUSY
breaking in the tree approximation we have used above is in
fact phenomenologically ruled out by the well-known
supertrace sum rule [40]. In a supersymmetric QED, it
looks especially simple:

STrM2 ≡X
J

ð−1Þ2Jð2Jþ 1ÞTrðm2
J Þ ¼ 2TrQhDi; ð123Þ

where mJ is the mass matrix for spin J fields, Q is the
electric charge matrix of the chiral superfields under
consideration, and hDi is the VEV of the gauge superfield
D component. One can easily confirm that for all realistic
cases requiring TrQ ¼ 0 to cancel the anomalies related to
Uð1Þem, this sum rule leads to some unacceptably light
superpartners in the theory.24

Usually, the solution to this problem is related to a softly
broken SUSY [40] that in our case would be inaccessible.
Indeed, inclusion of direct soft mass terms for superpartners
in the model would mean that the visible SUSY is
explicitly, rather than spontaneously, broken, which would
immediately invalidate the whole idea of the emergent
nature of QED and SM. Therefore, we need models where
SUSY spontaneously breaks, at least partially, in the visible
sector as well. Actually, in the presence of a hidden sector,
an additional visible SUSY breaking is not forbidden
phenomenologically. Below, we will also consider a class
of the pure visible SUSY breaking models, where super-
symmetry is solely broken at tree level. Since this section is
largely concerned with the phenomenological aspects of
emergent SUSY theories, it is reasonable to consider them
in a context of the entire SUð3ÞC × SUð2ÞL ×Uð1ÞY
Standard Model, rather than in the pure QED framework.

A. Two-sector SUSY breaking

According to a conventional two-sector paradigm, super-
symmetry breaking entirely occurs in a hidden sector and
then this breaking is mediated to the visible sector by some
indirect interactions whose nature depends on a particular
mediation scenario [40]. An emergent approach for QED
and SM advocated here requires some modification of this
idea. While a hidden sector is largely responsible for
supersymmetry breaking, providing a reliable solution to
the problem of superpartner masses in the theory, super-
symmetry itself can also be spontaneously broken in the
visible sector that ultimately leads to a double spontaneous

SUSY breaking pattern. As a result, the simplified picture
discussed above in the SUSY QED case (Sec. IV) is
properly changed: a strictly massless fermion eigenstate, a
true Goldstino ζg, should now be some mix of the visible
sector photino λ and the hidden sector Goldstino κ0,

ζg ¼
hDiλþ hF0iκ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hDi2 þ hF0i2

p ; ð124Þ

where hDi and hF0i are the corresponding D- and F-term
VEVs in the visible and hidden sectors, respectively (we
use the primed letters for the hidden sector entities).25 We
have also proposed that spontaneous SUSY breaking in the
hidden sector goes basically through the F-term VEVs and,
in addition, we neglected possible mixing in (124) with
other neutralinos in both visible and hidden sectors. So, the
orthogonal combination of these states, which may be
referred to as a pseudo-Goldstino, is

ζpg ¼
hF0iλ − hDiκ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hDi2 þ hF0i2

p : ð125Þ

In the supergravity context, a true Goldstino ζg is eaten
through the super-Higgs mechanism to form the longi-
tudinal component of a massive gravitino ζG, while a
pseudo-Goldstino ζpg gets some mass whose value depends
on the particular mediation scenario taken. However, in any
case, due to large soft masses that are required to be
mediated, one may generally expect that SUSY is broken
more strongly in the hidden sector than in the visible one,
hF0i ≫ hDi. This means in turn that the pseudo-Goldstino
(125) is largely given by the pure photino state,

ζpg ≃ λ: ð126Þ

These pseudo-Goldstone photinos seem to be of special
observational interest in the model that, apart from some
indication of the SM emergent nature, may shed light on
SUSY breaking physics. The possibility that the super-
symmetric SM visible sector might also spontaneously
break SUSY, thus giving rise to some pseudo-Goldstino
state was also considered, though in a different context, in
[43,44]. Though this idea may be implemented in super-
symmetric QED or SM with practically any hidden sector
SUSY breaking scenario, we choose the gauge-mediated
scheme. This scenario allows for a natural suppression of
flavor violations in the supersymmetric sector [40] and has
very distinctive phenomenological features.
Let us note first of all that our polynomially extended

QED and SM Lagrangians (48) and (91) are not only SUSY

24Even worse, because particles with different electric charges
cannot mix, the supertrace (123) vanishes separately in each
charge sector, thus leading to light sparticles for all types of
charges individually.

25Note that what we call photino in QED is the linear
combination of bino and neutral wino in the SM framework.
Thus, the term photino means hereafter the “photino content” of
the neutralino states involved, rather than the pure photino state.
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invariant but also generically possesses continuous R
symmetry Uð1ÞR [40]. Indeed, vector superfields always
have zero R charge, since they are real. Accordingly, it
follows that the physical components in the constrained
vector superfield V̂ (77) transform as

Aμ → Aμ; λ → eiαλ; D → D; ð127Þ

and, therefore, they have R charges 0, 1, and 0, respectively.
Along with that, we assume a suitable R-symmetric matter
superfield setup as well, making a proper R-charge assign-
ment for the basic fermions and scalars (and messenger
fields) involved. This will lead to the light pseudo-
Goldstone matter in the gauge-mediated scenario
[43,44]. Normally, if the visible sector possesses the R
symmetry which is preserved in the course of the media-
tion, then the masslessness of a photino (a gaugino, in
general) is protected up to the supergravity effects which
violate R symmetry.26 As a result, our pseudo-Goldstino
will acquire the mass being proportional to the gravitino
mass. The latter can be typically estimated as

m3=2 ≃ hF0i=MP ð128Þ

(where we omitted the negligibleD-term VEV contribution
from the visible sector) that simply follows from dimen-
sional analysis, since this mass must vanish in the limits
when supersymmetry is restored (hF0i → 0) and when
gravity is turned off (MP → ∞). Once the gravitino mass
is fixed by the properly chosen scale hF0i of the hidden
sector SUSY breaking, it is straightforward to calculate the
supergravity contribution to the pseudo-Goldstino mass
(see [44] and references therein). It appears that in theories
with both F-term and D-term visible sector breakings, the
pseudo-Goldstino acquires a mass which is always lighter
(much lighter in most of the parameter space) than twice the
gravitino mass, mpg < 2m3=2. This means that the pseudo-
Goldstino ζpg, being practically the visible sector photino λ
(126), is in fact the lightest supersymmetric particle (LSP)
in the model considered. Taking the mass m3=2 to be much
smaller than the weak scale, say being of the keV order or
less, one naturally comes to a possible solution for both
gravitino and pseudo-Goldstino overproduction problems
in the early Universe [44].
Apart from cosmological problems, many other sides of

new physics related to pseudo-Goldstinos appearing
through the multiple SUSY breaking were also studied

recently (see [43,44,46] and references therein). The point
is, however, that nonvanishing F terms have been used
exclusively as the only mechanism of visible sector SUSY
breaking.27 In this connection, our pseudo-Goldstone
photinos caused by a nonvanishing D term in the visible
sector SUSY may lead to somewhat different observational
consequences.
One interesting difference concerns the R-symmetry role

in these approaches, though they both may typically start
with an R-invariant setup, as we discussed above. However,
for an appreciable R-symmetry violation due to the SUSY
breaking mediation, one would come to dramatic conse-
quences in the F-term visible sector SUSY breaking case
that are basically determined by the superpotential men-
tioned above. 27 The reason is that even after coupling of
the visible sector to a hidden source of SUSY breaking, a
light pseudo-Goldstino persists as a remnant of the original
visible SUSY breaking dynamics [44]. Its tree-level mass is
suppressed because it is only induced by small mixings
with gauginos, while at one loop its mass is still protected
by the visible sector R symmetry. Actually, though
R-violating mediation causes in general some rise of the
pseudo-Goldstino mass, it is always one loop factor sup-
pressed relative to the weak scale and typically located in
the cosmologically dangerous range Oð10 MeV–1 GeVÞ.
As to interactions, the pseudo-Goldstino inherits rather
small couplings to supersymmetric SM fields through the
mixing with gauginos and Higgsinos that determines its
lifetime, which is typically longer than a second, the time at
which big bang nucleosynthesis begins. As a result, one is
unavoidably led to the conclusion that the visible sector
pseudo-Goldstino is generically overproduced in the early
Universe, unless R symmetry remains. In contrast, in the

26Note that Majorana masses for gauginos always break a
continuous R symmetry, as is clearly seen from transformations
(127). For R invariance, one might properly extend a field content
in the theory so as to achieve Dirac gaugino masses (that is not yet
assumed in our case). Remarkably, the properly arranged R
symmetry in the theory supplemented by additional matter and
Higgs chiral supermultiplets may lead to a very efficient
suppression of flavor-changing effects [45].

27We briefly consider below this case tomake clear a significant
difference between the F-term visible sector SUSY breaking with
our D-term breaking (see below). In the framework of super-
symmetric SM, some minimal setup [43] of the visible sector F-
term SUSY breaking includes, together with ordinary Yukawa
interactions for quarks and leptons, a simple O’Raifeartaigh-type
superpotential. So, the total superpotential is

W ¼ WYuk þ fXðHuHd − ηÞ þ μuHuRu þ μdHdRd;

where, apart from the standardHiggs doubletsHu;d, the newHiggs
doublets Ru;d appear and also, like the next-to-minimal super-
symmetric SM, there is a gauge singlet field X (f, η, μu;d stand for
some coupling constants and mass parameters). This superpoten-
tial possesses R symmetry with R charges 0, 1, and 2 for standard
Higgs doublets Hu;d, quarks and leptons (Q, Uc, Dc, L, Ec) and
extra superfields (Ru, Rd, X), respectively. Remarkably, in the
absence of gauge interactions, this superpotential on its own is an
example of a Wess-Zumino model having, as argued in [47], the
persistent zero mode which remains for the arbitrary scalar field
configurations that emerge. In the entire framework of super-
symmetric SMwith a hidden sector included, this mode appears as
a massless (at tree level) pseudo-Goldstino mode that can be
cosmologically safe or dangerous depending on whether R
symmetry is exact or appreciably broken.
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D-term visible sector SUSY breaking case, nothing dra-
matic would happen if R symmetry were really violated in
the course of the mediation. Depending on the particular
type of this violation, the pseudo-Goldstino, which now is
essentially the visible sector photino λ (being properly
mixed with other neutralinos), could in principle become
the next-to-lightest supersymmetric particle (NLSP), which
then decays into a gravitino and photon (see the next
section).
Another, and more tangible, difference belongs to the

Higgs boson decays in the supersymmetric SM framework.
For the light pseudo-Goldstino and gravitino, these decays
are appreciably modified. Actually, for the F-term visible
sector SUSY breaking, 27 the dominant channel becomes
[43,44] a conversion of the Higgs boson (say, the lighter
CP-even Higgs boson h0) into a conjugated pair of the
corresponding pseudo-Sgoldstinos ϕpg and ϕ̄pg,

h0 → ϕpg þ ϕ̄pg ð129Þ

being superpartners of pseudo-Goldstinos ζpg and ζ̄pg,
respectively. If this decay is kinematically allowed, one
may conclude that the Higgs boson could dominantly
decay invisibly. By contrast, for theD-term SUSY breaking
case considered here, the roles of a pseudo-Goldstino and
a pseudo-Sgoldstino are just played by a photino and a
photon, respectively, that could make the standard
two-photon decay channel of the Higgs boson be even
somewhat enhanced. In light of the recent discovery of a
Higgs-like state [48] just through its visible decay modes,
the F-term SUSY breaking in the visible sector seems to be
disfavored by data, whileD-term SUSY breaking is not yet
in trouble with them.

B. Pure visible sector SUSY breaking scenario

Let us consider now the pure visible sector SUSY
breaking models which, contrary to conventional lore,
can also be constructed (see [49] and references therein).
They appear to include some relatively low-scale extra
hyperchargeUð1ÞY0 gauge symmetry which, when properly
assigned to quarks and leptons and their superpartners,
allows us to construct some phenomenologically viable
supersymmetric SM extensions. So, for the tree-level
supertrace equation (123) one has on its right-hand side

STrM2 ¼ 2½gYTrðYÞhDi þ gY0TrðY0ÞhD0i�; ð130Þ

where gY and gY0 are the corresponding gauge coupling
constants. The first term in the bracket related to the
standard Uð1Þ hypercharge symmetry will vanish since
the quark and lepton representations are chosen to be
anomaly free, which leads to the traceless condition
TrðYÞ ¼ 0. However, if in the second term in (130) the
D-term VEV hD0i is nonvanishing and the trace TrðY0Þ
over quarks and leptons is separately nonzero, as is the case

when all quark and lepton superfields (as well as Higgs
superfields) are given Y0 hypercharges of the same sign,28

then all the sparticles can receive large masses. Normally,
the extra Uð1ÞY0 hypercharge gauge symmetry is broken at
tree level and the corresponding gauge boson Z0 acquires a
mass. Its lower bound has been recently pushed up to MZ0

> 2.33 TeV at LHC [50]. In general, the Z0 boson is mixed
with an ordinary Z boson of the SM. As of now, for the MZ0

bound value mentioned, their mixing angle appears well
below its experimental upper limit [50].
Generally, such models [49] are indeed rather compli-

cated. They, apart from gauge and matter superfields of the
conventional minimal supersymmetric Standard Model
(MSSM), contain several exotic chiral superfields with
SM quantum numbers: an SUð3ÞC octet superfield, an
SUð2ÞL triplet superfield, two vectorlike pairs of the
Uð1ÞY hypercharged superfields, and several MSSM singlet
fields only chargedunderUð1ÞY0. These fields are introduced
to cancel all the anomalies related to SUð3Þ2CUð1ÞY0 ,
SUð2Þ2LUð1ÞY0 , Uð1Þ2YUð1ÞY0 , and others. Supersymmetry
is spontaneously broken at tree level by Fayet-Iliopoulos
terms for bothUð1Þ andUð1ÞY0 hypercharges leading to the
D- and D0-term VEVs shown above in the supertrace
equation (130). Apart from that, a special O’Raifeartaigh-
type superpotential is introduced to break SUSY and the
Uð1ÞY0 spontaneously at tree level by generating the proper
F-term VEVs (referred to as the F0-term VEVs for what
follows). Due to this F0-term breaking, all of the MSSM
matter superpartners (squarks and sleptons) and gauginos
receive soft-breaking diagonal masses,

m2
sq=sl ≃ g2Y0 hD0i2 þ ðΔmÞ21−loop;

Mgaugino ≃ ðΔMÞ1−loop; ð131Þ

at tree level and one loop, respectively. Remarkably, not only
the universal tree-level SUSY breaking contribution related
to the extra Uð1ÞY0 symmetry but also all radiative correc-
tions implied in (131) turn out to be “flavor blind.”Actually,
spontaneous SUSY breaking caused by a generic Uð1ÞY0

symmetry mechanism is transmitted to superparticles
according to some gauge-mediated–like scenario with
the SM ×Uð1ÞY0 gauge bosons playing the role of
messenger fields.
In order to generate one-loop gaugino masses in (131)

which are large enough to satisfy current experimental
bounds (e.g., m~g > 800 GeV [50] for the gluino mass), the
heavy sector F0- and D0-term VEVs must be of order
ð30 TeVÞ2. This is in fact a single input scale in the theory.
Note that due to the same sign Y0 hypercharges assigned to

28The simplest choice would be to assign positive Y 0 hyper-
charges (Y 0 ¼ þ1) to all quark and lepton superfields and
negative Y 0 hypercharges (Y 0 ¼ −2) to the Higgs superfields
Hu;d (for some earlier discussions, see the first paper in [40] and
references therein).
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all the quarks and leptons, the bare μ term is forbidden in
the theory, but an effective μ term is generated once the
Uð1ÞY0 symmetry is spontaneously broken at the input scale
mentioned. To obtain the proper electroweak scale, one has
to require a single tree-level tuning of the Fayet-Iliopoulos
parameters in Uð1ÞY and Uð1ÞY0 sectors. However, it is not
a fine-tuning in the ordinary sense, since radiative correc-
tions to the Higgs boson masses are appreciably suppressed
in the theory. Thus, these masses naturally remain the tree-
level order values which are chosen to be of the electro-
weak-scale order. As some immediate outcome, the theory
predicts relatively light gauginos and quite heavy squarks
and sleptons with masses around 7–8 TeV for the input
scale indicated. Such heavy squarks and sleptons may not
be easily observable at the LHC in the foreseen future. One
of the most attractive features of the theory is, as mentioned
above, that flavor changing processes are naturally sup-
pressed, similar to those in gauge-mediated SUSY theories.
For more details on this class of models, we refer the reader
to the original paper [49] and only consider here some of
their generic predictions concerning the Goldstino
phenomenology.
Indeed, all models of low-energy supersymmetry break-

ing predict that the gravitino may be the LSP, as is
determined in the entire supergravity framework where
the gravitino acquires a mass by eating the Goldstino
through the super-Higgs mechanism. This Goldstino in the
model considered is mostly made of heavy sector fields.
This is in fact a combination of the respective Uð1ÞY0

gaugino and chiral fermions underlying the above-
mentioned O’Raifeartaigh-type superpotential which
breaks SUSY and the Uð1ÞY0 at tree level. In addition,
it also may have some small Higgsino content, which
might be relevant for a subsequent gravitino phenomenol-
ogy. The mass of the gravitino can be estimated this time
as (the standard F- and D-term VEV contributions are
neglected)

m3=2 ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hF0i2 þ hD0i2

p
MP

; ð132Þ

where the relatively low F0- and D0-term VEVs mentioned
above give for its value m3=2 ∼ 0.07 eV, which is definitely
safe for cosmology [40]. The gravitino, by absorbing the
Goldstino, inherits its nongravitational interactions and so
can play an important role in collider physics.
The generic interactions of the Goldstino ζg (being

the longitudinal part of a massive gravitino ζG) follow,
as usual [40], from the total supercurrent conservation that
determines its effective low-energy Lagrangian as

Leff ¼ −iζ̄gσ̄μ∂μζg −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hF0i2 þ hD0i2
p ðζg∂μjμ þ H:c:Þ;

ð133Þ

where jμ is the supercurrent which includes contributions
from all matter and gauge supermultiplets involved. As a
consequence, one has the basic Goldstino-scalar-chiral
fermion vertex,

ζwg ∂μðσνσ̄μψ iÞw∂νφ
�i; ð134Þ

and Goldstino-gaugino-gauge boson vertex,

−ζwg ∂μ½ðσνσ̄ρσμλ̄pÞwFp
νρ�=2

ffiffiffi
2

p
; ð135Þ

in the theory (here w stands for a spinor index, while
indices i and p belong to the SM group representations for
matter and gauge supermultiplets, respectively). Since this
derivation depends only on the total supercurrent conser-
vation, the Lagrangian (133) holds independently of the
details of supersymmetry breaking. It universally deter-
mines the decay rate of any sparticle ~X into its superpartner
X plus the Goldstino/gravitino (ζg=ζG) whether (X, ~X) is a
chiral superfield pair (φ, ψ) or a vector superfield pair (Aμ,
λ), respectively.
Remarkably, an orthogonal combination to the Goldstino

ζg, namely, the pseudo-Goldstino ζpg, happens to be mostly
a bino,29 or a photino (126) if we turn to a pure QED
framework. In the SM context, this bino is a NLSP having
the electroweak-scale order mass. As a consequence, the
photino being the linear combination of the bino and the
neutral wino will dominantly decay into the photon and
the gravitino with a decay rate entirely determined by the
interaction vertex (135):

Γð~γ → γ þ ζGÞ≃
m5

~γk~γ
16πðhF0i2 þ hD0i2Þ ; ð136Þ

where k~γ is the pure photino content of the pseudo-
Goldstino ζpg in the supersymmetric SM. For typical
values k~γ ∼ 0.15, m~γ ∼ 100 GeV in the model, and the
heavy sector VEVs hF0i ∼ hD0i ∼ 30 TeV taken above, one
has for the photino lifetime τ~γ ∼2 × 10−15 s that could
make its mean decay length reach up to 0.5 μm under LHC
energies.
To summarize, the emergent Standard Models with

spontaneous SUSY breaking, which only occurs in the
visible sector, seem not to violate any current phenomeno-
logical constraint. In general, these models predict light
gauginos and quite heavy squarks and sleptons which may
not be observable at the LHC. The LSP is a stable very light

29For a typical range of parameters in the model considered in
[49], this pseudo-Goldstino has a content

ζpg ¼ −0.9999 ~B − 0.003 ~W0 − 0.002 ~H0
u þ 0.004 ~H0

d;

including, apart from the bino, the vanishingly small admixtures
of the wino ~W0 and the Higgsinos ~H0

u;d.
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gravitino with a significant Higgsino admixture, while the
NLSP is mostly a bino. Apart from that, it is worth noticing
some other advantages of these low-scale models thor-
oughly described in [49]. Proton decay is sufficiently and
naturally suppressed, even for a rather low cutoff scale
about 108 GeV. The strong CP problem is naturally solved
through the Nelson-Barr mechanism [51]. In addition, an
introduction of the extra Uð1ÞY0 helps to sufficiently
suppress the B- and L-violating interactions. An interesting
generic cold dark matter candidate is also found. This is the
lightest particle among several SM singlet fields introduced
in the theory heavy sector to cancel all possible anomalies
related to the Uð1ÞY0 symmetry. Although it typically has
the TeV-scale order mass, it appears absolutely stable due to
some surviving discrete symmetry of the appropriate
O’Raifeartaigh superpotential taken.

VII. SUMMARY AND CONCLUSIONS

As we argued above, spontaneous Lorentz violation in a
vector field theory framework may be active, as in the
composite and potential-based models, leading to physical
Lorentz violation, or inactive, as in the constraint-based
models, resulting in the nonlinear gauge choice in an
otherwise Lorentz invariant theory. Remarkably, between
these two basic SLIV versions, SUSY unambiguously
chooses the inactive SLIV case. Indeed, SUSY theories
only admit the bilinear mass term in the vector field
potential energy. As a result, without stabilizing quartic
vector field terms, the physical spontaneous Lorentz
violation never occurs in SUSY theories. Hence, it follows
that the composite and potential-based SLIV models can in
no way be realized in the SUSY context. This may have far-
reaching consequences in that supergravity and superstring
theories could also disfavor such models in general.
Nevertheless, even in the case when SLIV is not physical

it inevitably leads to the generation of massless photons as
vector NG bosons provided that SUSY itself is sponta-
neously broken. In this sense, a generic trigger for massless
photons to dynamically emerge happens to be spontane-
ously broken supersymmetry rather than physically man-
ifested Lorentz noninvariance. To see how this idea might
work we considered a supersymmetric QED model
extended by an arbitrary polynomial potential of a general
vector superfield that induces spontaneous SUSY violation
in the visible sector, and gauge invariance gets broken as
well. Notably, massless photons at this point are related to
spontaneously broken supersymmetry (SBS) itself rather
than gauge invariance. Actually, SBS only provides the
tree-level masslessness of a photon (as a photino
companion) but cannot protect it against radiative correc-
tions since its generic massless mode is only a photino
rather than a whole gauge supermultiplet. Nevertheless,
though gauge invariance is explicitly broken by the super-
field potential, the special gauge invariance is in fact
recovered in the broken SUSY phase that universally

protects the photon masslessness. This invariance is only
restricted by the nonlinear gauge condition (73) put on the
vector field. The point, however, is that this length-fixing
gauge condition happens at the same time to be the SLIV-
type constraint which treats in turn the physical photon
as the Lorentzian NG mode. So, figuratively speaking,
the photon passes through three evolution stages, being
initially the massive vector field component of a general
vector superfield (51), then the tree-level massless
companion of the Goldstone photino in the broken
SUSY stage (55), and finally the generically massless state
as the emergent Lorentzian NG mode in the inactive SLIV
stage (73).
All basic arguments developed in SUSY QED were then

generalized to Standard Model and grand unified theories.
Remarkably, thanks to a generic high symmetry of the
length-fixing SLIV constraint put on the vector fields, the
emergence conjecture with dynamically produced massless
gauge modes can be applied to any non-Abelian internal
symmetry case. Specifically, one can argue that in a theory
with an internal symmetry group G, not only the pure
Lorentz symmetry SOð1; 3Þ, but also the larger accidental
symmetry SOðΥ; 3ΥÞ of the SLIV constraint (118) in itself
appears to be spontaneously broken (Υ is a dimension of
the group G). As a result, although the pure Lorentz
violation on its own still generates only one genuine
Goldstone vector boson, the accompanying pseudo-
Goldstone vector bosons related to the SOðΥ; 3ΥÞ breaking
also come into play, properly completing the whole gauge
multiplet of the internal symmetry group G taken.
Remarkably, they appear to be strictly massless as well,
being protected by the simultaneously generated non-
Abelian gauge invariance. For definiteness, we focused
on the Uð1Þ × SUðNÞ symmetrical theories. Such a split
group form is dictated by the fact that in the pure non-
Abelian symmetry case one only has the SUSY invariant
phase in the theory that would make it inappropriate for an
outgrowth of an emergence process. As briefly discussed,
supersymmetric emergent theories look attractive both
theoretically and phenomenologically whether they are
considered at low energies in terms of the Standard
Model or at very high energies as the flipped SUð5Þ
GUTs inspired by superstrings.
However, their most generic manifestations seem to be

related to a spontaneous SUSY violation in the visible
sector that we finally considered. The photino emerging
due to this violation will be then mixed with another
Goldstino which stems from a spontaneous SUSY violation
in the hidden sector. Eventually, it essentially turns into a
light pseudo-Goldstino whose physics seems to be of
special interest. Such a pseudo-Goldstone photino appears
typically as the eV-scale stable LSP or the electroweak-
scale long-lived NLSP, being accompanied by a very light
gravitino in both cases, that can be considered as some
observational signature of the class of models where SUSY
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breaks, at least partially, in the visible sector as well. This is
the only class of models where emergent supersymmetric
QED or the Standard Model can be successfully realized.
So, in contrast to non-SUSY analogs, the emergent SUSY
theories even with the Lorentz-preserving inactive SLIV
could naturally have some clear observational signal. Its
validation, apart from some indication of an emergent
nature of gauge symmetries, could shed considerable light
on the SUSY breaking physics that has been actively
studied in recent years.
We conclude with a general remark that supersymmetry

with its well-known advantages, such as naturalness, grand
unification, and dark matter candidate, seems to possess
one more attractive feature: it may trigger, through its own
spontaneous violation, a dynamical generation of massless

gauge fields as massless NG modes during which physical
Lorentz invariance itself is generically preserved. An
extension of this idea to the local supersymmetry case,
which could presumably underlie an emergent supergravity
theory unifying all elementary forces, seems to be espe-
cially interesting and worth pursuing.
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