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We study a deformation of N ¼ 2 supersymmetric QCD with a UðNÞ gauge group and Nf number of
quark flavors induced by the mass term μ for the adjoint matter which breaks supersymmetry down to
N ¼ 1 QCD. Recently this deformation was shown to lead to a weakly coupled dual theory only in two
particular sets of vacua: the r ¼ N vacuum and the so-called zero vacua which can be found at r < Nf − N,
where r is the number of condensed quarks. For small quark masses and intermediate values of μ, the gauge
group of the dual theory is UðNf − NÞ ×Uð1Þ2N−Nf , where the Abelian sector is heavy and can be
integrated out. However, at larger values of μ, the Abelian sector enters the strong coupling regime. We
show that the ’t Hooft matching conditions in the chiral limit require the Seiberg neutral meson field M
from this sector to become light. In the r ¼ N vacuum, M is constructed of a monopole and an
antimonopole connected by confining magnetic strings, while in the zero vacua, it is built of a quark and
antiquark connected by confining electric strings.
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I. INTRODUCTION

Some time ago, we started [1] a program of detailing
Seiberg’s duality [2,3] in N ¼ 1 theories introducing
masses for the matter fields and exploring diverse discrete
vacua using additional information (see also Refs. [4,5] and
additional references below) following from the Seiberg-
Witten solution [6,7] of the N ¼ 2 theory. Despite spec-
tacular overall progress, one particular corner of the
parameter space—namely, its chiral limit—has not yet
been studied, as was noted in Ref. [8]. This paper is
devoted to thorough studies of the chiral limit, and thus
completes the program. The picture of the Seiberg duality
emerging on the basis of deformations of theN ¼ 2 theory
is fully self-consistent. It provides a clear-cut understanding
of the processes on both sides of duality.
Seiberg’s dual of N ¼ 1 supersymmetric QCD (SQCD)

with the SUðNÞ gauge group and Nf quark flavors is a
theory with the SUð ~NÞ gauge group and the same number
of dual quarks, plus a neutral meson field MB

A. Here

~N ≡ Nf − N: ð1:1Þ

Seiberg’s duality was generalized toN ¼ 2 supersymmetric
QCD deformed by the mass term μ for the adjoint matter in
the large-μ limit [9]. At large μ, the adjoint matter can be
integrated out, leading to anN ¼ 1 QCD-like theory with a
quartic superpotential suppressed at large μ [9–12]. This
theory has the same number of vacua as that in the original
N ¼ 2QCDin the small-μ limit. Thesevacua—the so-called
r vacua—are characterized by a parameter r, the number of
condensed (s)quarks in the classical domain of large and
generic quark mass parametersmA (A ¼ 1;…; Nf). Clearly,

r cannot exceed N, the rank of the gauge group. In the
original formulation [2,3], Seiberg’s duality was suggested
for the monopole vacua with r ¼ 0 (all other vacua become
runaway vacua in the limit μ → ∞).
Chronologically, the first attempt to obtain Seiberg’s

duality from μ-deformedN ¼ 2QCD can be traced back to
Ref. [10]. The dual gauge group SUð ~NÞ was identified at
the root of the baryonic branch.1 However, Seiberg’s
neutral mesonic fields M were not detected.
Much later, we studied a version of the theory with the

UðNÞ gauge group and ðN þ 1Þ < Nf < 3=2N. We dem-
onstrated that the μ deformation leads to a weakly coupled
dual theory only for two particular sets of the vacuum
states—namely, in the r ¼ N vacuum and in the so-called
zero vacua [5,13]. The latter can be found at r < ~N.
Both sets of vacua have vanishing gaugino condensates

in the limit, in which the values of the quark masses become
small. In other vacua (the so-called Λ vacua), the gaugino
condensate is of the order of μΛ2

N¼2
, where ΛN¼2 is the

scale of N ¼ 2 QCD. The gaugino condensate becomes
large in the large-μ limit. Correspondingly, these vacua do
not have a weakly coupled dual description [13].
The gauge group of the dual theory in the r ¼ N and zero

vacua is

Uð ~NÞ × Uð1ÞN− ~N:

For small quark masses and intermediate values of μ,
namely

1It corresponds to the r ¼ N quark vacuum in the UðNÞ
version of the theory we consider in this paper.
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mA ≪ μ ≪ ΛN¼2;

the vacuum expectation values (VEVs) of the charged
scalar fields in the Uð ~NÞ sector are determined by
parameters

ξsmall ∼ μm; ð1:2Þ
while the VEVs in the Abelian Uð1ÞN− ~N sector are
determined by

ξlarge ∼ μΛN¼2: ð1:3Þ

Given that m ≪ ΛN¼2, the notation in Eqs. (1.2) and (1.3)
is self-evident.
The dual theory is infrared free; at intermediate values of

μ, both scales—ξsmall and ξlarge—are small enough to
ensure weak coupling. However, the Abelian sector is
much heavier and thus can be integrated out. Moreover,
since

ffiffiffiffiffiffiffiffiffiffi
ξsmall

p
≪ μ in this domain, the adjoint matter is also

heavy and can be integrated out too. This leads to a weakly
coupled low-energy dual theory with the Uð ~NÞ Seiberg
dual gauge group and charged light matter [5,13]. Although
the correct Seiberg dual gauge group emerges in this setup,
Seiberg’s neutral-meson M fields are still missing. As we
will see below, they will show up in the chiral limit.
To this end, we make the next step and consider larger

values of μ,

μ ≫ ΛN¼2:

In this domain, we pass to the chiral limit, or small quark
masses, keeping the parameter ξsmall fixed and small
enough to ensure the weak coupling in the Uð ~NÞ sector.
At the same time, the Abelian Uð1ÞN− ~N sector enters a
strong coupling regime. Then we use the ’t Hooft anomaly-
matching conditions [14] to show that neutral M mesons
coming from this sector must become light. We find a
physical interpretation of the Seiberg M mesons: in the
r ¼ N vacuum, M is constructed of a monopole and
antimonopole connected by confining magnetic strings,
while in the zero vacua, M is constructed of a quark and
antiquark connected by confining electric strings. The
match of our dual description in these sets of vacua with
Seiberg’s dual theory becomes complete.
In the first part of the paper (Secs. II and III), we briefly

summarize our previous results on r duality outside the
chiral limit, emphasizing its peculiarities, such as the
“instead-of-confinement” mechanism. In Sec. IV, we pass
to the exploration of the chiral limit and discover that the
neutral Seiberg MB

A mesons show up in the light sector.
Thus, r duality proves to be completely woven into the
fabric of Seiberg’s duality.
The paper is organized as follows: In Sec. II, we review

duality and the instead-of-confinement mechanism in an
r ¼ N vacuum in theN ¼ 2 limit of small μ. In Sec. III, we

review the dual theory at intermediate μ. Next, in Sec. IV,
we consider large μ and use anomaly-matching conditions
to show that monopole-antimonopole stringy mesons
originating from the Abelian Uð1ÞN− ~N sector of the theory
should become light. We also present the dual low-energy
theory in this region and discuss its mass spectrum. In
Sec. V, we review the low-energy description in r vacua
with r < Nf=2 at small μ. In Sec. VI, we consider a subset
of these vacua—namely, zero vacua at intermediate and
large μ—and show that stringy quark-antiquark mesonic
states should become light as we increase μ. Sec. VII
contains our summary and conclusions.

II. DUALITY IN THE r ¼ N VACUUM AT SMALL μ

In this section, we briefly review non-Abelian duality in
the r ¼ N vacua at small μ established in Refs. [4,15]. The
gauge symmetry of our basic model is

UðNÞ ¼ SUðNÞ × Uð1Þ:
In the absence of deformation, the model under consid-
eration is N ¼ 2 SQCD with Nf massive quark hyper-
multiplets. We assume that Nf > N þ 1, but Nf < 3

2
N.

The latter inequality ensures that the dual theory can be
infrared free.
Our basic theory is described in detail in our previous

papers (e.g., Refs. [16,17]; see also the reviews in
Ref. [18]). The field content is as follows: The N ¼ 2
vector multiplet consists of the Uð1Þ gauge field Aμ and the
SUðNÞ gauge field Aa

μ (a ¼ 1;…; N2 − 1) and their Weyl
fermion superpartners; plus the complex scalar fields a and
aa, and their Weyl superpartners, respectively.
As for the matter sector, the Nf quark multiplets of the

UðNÞ theory consist of the complex scalar fields qkA and
~qAk (squarks) and their fermion superpartners—all in the
fundamental representation of the SUðNÞ gauge group.
Here k ¼ 1;…; N is the color index, while A is the flavor
index, A ¼ 1;…; Nf. We will treat qkA and ~qAk as rec-
tangular matrices with N rows and Nf columns.
In addition, we introduce the mass term μ for the adjoint

matter breaking N ¼ 2 supersymmetry down to N ¼ 1.
This deformation term

Wdef ¼ μTrΦ2; Φ≡ 1

2
Aþ TaAa ð2:1Þ

does not break N ¼ 2 supersymmetry in the small-μ limit;
see Refs. [16,19,20]. At large μ, this theory obviously flows
to N ¼ 1. The fields A and Aa in Eq. (2.1) are chiral
superfields, the N ¼ 2 superpartners of the Uð1Þ and
SUðN) gauge bosons.

A. The r ¼ N vacuum at large ξ

This theory has a set of r vacua, where r is the number of
condensed (s)quarks in the classical domain of large
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generic quark masses mA (A ¼ 1;…; Nf, and r ≤ N). In
the first part of this paper, we consider the r ¼ N vacua (for
a review, see Ref. [18]). These vacua have the maximal
possible number of condensed quarks, r ¼ N. Moreover,
the gauge group UðNÞ is completely Higgsed in these
vacua, and as a result, they support non-Abelian strings
[16,21–23]. The occurrence of these strings ensures the
confinement of monopoles in these vacua.
First, we will assume that μ is small, much smaller than

the quark masses:

jμj ≪ jmAj; A ¼ 1;…; Nf: ð2:2Þ
In the quasiclassical region of large quark masses, scalar

quarks develop VEVs triggered by the deformation param-
eter μ. They are given by

hqkAi ¼ h ~̄qkAi ¼ 1ffiffiffi
2

p

0
BBB@

ffiffiffiffiffi
ξ1

p
… 0 0 … 0

… … … … … …

0 …
ffiffiffiffiffi
ξN

p
0 … 0

1
CCCA;

k ¼ 1;…; N; A ¼ 1;…; Nf; ð2:3Þ
where we present the quark fields as matrices in the color
(k) and flavor (A) indices, while the parameters ξ are given
in the quasiclassical approximation by

ξP ≈ 2μmP; P ¼ 1;…; N: ð2:4Þ
The quark condensate [Eq. (2.3)] results in the sponta-

neous breaking of both the gauge and flavor symmetries.
A diagonal global SUðNÞ combining the gauge SUðNÞ
and an SUðNÞ subgroup of the flavor SUðNfÞ group
survives in the limit of (almost) equal quark masses.
This is color-flavor locking.
Thus, the unbroken global symmetry is as follows:

SUðNÞCþF × SUð ~NÞ ×Uð1Þ: ð2:5Þ
Here SUðNÞCþF is a global unbroken color-flavor rotation,
which involves the first N flavors, while the SUð ~NÞ factor
stands for the flavor rotation of the ~N quarks.
The presence of the global SUðNÞCþF group is the

reason for the formation of the non-Abelian strings
[16,17,21–23]. At small μ, these strings are BPS saturated
[19,20], and their tensions are determined by the param-
eters ξP [17]; see Eq. (2.4):

TP ¼ 2πjξPj; P ¼ 1;…; N: ð2:6Þ
These strings confine monopoles. In fact, in the UðNÞ
theories, confined elementary monopoles are junctions of
two “neighboring” Pth and ðPþ 1Þth strings; see Ref. [18]
for a review.
Now, let us briefly discuss the perturbative excitation

spectrum. Since both the Uð1Þ and SUðNÞ gauge groups

are broken by the squark condensation, all gauge bosons
become massive.
To the leading order in μ, N ¼ 2 supersymmetry is

not broken. In fact, with nonvanishing ξP’s [see Eq. (2.4)],
both the quarks and the adjoint scalars combine with the
gaugebosons to form longN ¼ 2 supermultiplets [20]. In the
equal-mass limit, ξP ≡ ξ, and all states come in representa-
tions of the unbroken global group [Eq. (2.5)]—namely, in
the singlet and adjoint representations of SUðNÞCþF,

ð1; 1Þ; ðN2 − 1; 1Þ; ð2:7Þ

and in the bifundamental representations

ðN̄; ~NÞ; ðN; ~̄NÞ: ð2:8Þ
The representations in Eqs. (2.7) and (2.8) are marked with
respect to two non-Abelian factors in Eq. (2.5). The singlet
and adjoint fields are (i) the gauge bosons and (ii) the first N
flavors of the squarks qkP (P ¼ 1;…; N), together with their
fermion superpartners. The bifundamental fields are the
quarks qkK with K ¼ N þ 1;…; Nf. Quarks transform in
the two-index representations of the global group [Eq. (2.5)]
due to the color-flavor locking.
The above quasiclassical analysis is valid if the theory is

at weak coupling. From Eq. (2.3), we see that the weak
coupling condition is

ffiffiffi
ξ

p
∼

ffiffiffiffiffiffiffi
μm

p
≫ ΛN¼2; ð2:9Þ

where we assume all quark masses to be of the same order,
mA ∼m. This condition means that the quark masses are
large enough to compensate the smallness of μ.

B. r-dual theory

Now we will relax the condition in Eq. (2.9) and pass to
the strong coupling domain at

j
ffiffiffiffiffi
ξP

p
j ≪ ΛN¼2; jmAj ≪ ΛN¼2; ð2:10Þ

still keeping μ small.
As was shown in Refs. [4,5], in the r ¼ N vacuum,

N ¼ 2 QCD undergoes a crossover transition as the value
of ξ decreases. The domain [Eq. (2.10)] can be described in
terms of weakly coupled (infrared free) r-dual theory with
the gauge group

Uð ~NÞ × Uð1ÞN− ~N ð2:11Þ
and Nf flavors of light quark-like dyons.

2 Note that we call
our dual theory the “r dual” because the N ¼ 2 duality

2Previously, the SUð ~NÞ gauge group was identified [10] at the
root of the baryonic Higgs branch in the N ¼ 2 supersymmetric
SUðNÞ Yang-Mills theory with massless quarks and vanishing ξ
parameters.

N ¼ 1 DUALITY IN THE CHIRAL LIMIT FROM … PHYSICAL REVIEW D 90, 065014 (2014)

065014-3



described here can be generalized to other r vacua with
r > Nf=2. This leads to a theory with the dual gauge group
UðNf − rÞ ×Uð1ÞN−Nfþr [24]. However, the deformation
of these r-dual theories to N ¼ 1 theory at larger μ can be
performed within the weak coupling regime only in the
r ¼ N vacuum [13], which we discuss here.
The light dyonsDlA (l ¼ 1;…; ~N and A ¼ 1;…; Nf) are

in the fundamental representation of the gauge group
SUð ~NÞ and are charged under the Abelian factors indicated
in Eq. (2.11). In addition, there are ðN − ~NÞ light dyonsDJ

(J ¼ ~N þ 1;…; N), neutral under the SUð ~NÞ group, but
charged under the Uð1Þ factors.
The color charges of all these dyons are identical to those

of quarks.3 This is the reason we call them quark-like
dyons. However, these dyons are not quarks [4]. As we will
review below, they belong to a different representation of
the global color-flavor locked group. Most importantly,
condensation of these dyons still leads to the confinement
of monopoles.
The dyon condensates have the form [5,17]

hDlAi ¼ h ~̄DlAi ¼ 1ffiffiffi
2

p

0
BB@

0 … 0
ffiffiffiffiffi
ξ1

p
… 0

… … … … … …

0 … 0 0 …
ffiffiffiffiffi
ξ ~N

p

1
CCA;

ð2:12Þ

hDJi ¼ h ~̄DJi ¼
ffiffiffiffiffi
ξJ
2

r
; J ¼ ð ~N þ 1Þ;…; N: ð2:13Þ

The important feature apparent in Eq. (2.12), as compared
to the squark VEVs in the original theory [Eq. (2.3)], is a
“vacuum leap” [4]. Namely, if we pick up the vacuum with
nonvanishing VEVs of the first N quark flavors in the
original theory at large ξ, and then reduce ξ below ΛN¼2,
the system goes through a crossover transition and ends up
in the vacuum of the r-dual theory with the dual gauge
group [Eq. (2.11)] and nonvanishing VEVs of the ~N last
dyons [plus VEVs of the ðN − ~NÞ dyons that are the SUð ~NÞ
singlets].
The parameters ξP in Eqs. (2.12) and (2.13) are deter-

mined by the quantum version of the classical expressions
in Eq. (2.4) [17]. They can be expressed in terms of the
roots of the Seiberg-Witten curve [6,7]. The Seiberg-Witten
curve in our theory has the form [10]

y2 ¼
YN
P¼1

ðx − ϕPÞ2 − 4

�
ΛN¼2ffiffiffi

2
p

�
N− ~N YNf

A¼1

�
xþ mAffiffiffi

2
p

�
;

ð2:14Þ

where ϕP are gauge-invariant parameters on the Coulomb
branch.
In the r ¼ N vacuum, the curve in Eq. (2.14) has N

double roots and reduces to

y2 ¼
YN
P¼1

ðx − ePÞ2: ð2:15Þ

This reflects the condensation of N quarks.
Quasiclassically, at large masses, eP’s are given by the
mass parameters,

ffiffiffi
2

p
eP ≈ −mP (P ¼ 1;…; N).

The dyon condensates [Eq. (2.12)] at small masses in the
r ¼ N vacuum are determined by [5,17]

ξP ¼ −2
ffiffiffi
2

p
μeP: ð2:16Þ

As long as we keep ξP and the masses small enough
[i.e., in the domain given in Eq. (2.10)], the coupling
constants of the infrared-free r-dual theory (frozen at the
scale of the dyon VEVs) are small: the r-dual theory is at
weak coupling.
At small masses, in the region given in Eq. (2.10), the

double roots of the Seiberg-Witten curve are

ffiffiffi
2

p
eI ¼ −mIþN;ffiffiffi

2
p

eJ ¼ ΛN¼2 exp

�
2πi

N − ~N
J

�
;

I ¼ 1;…; ~N; and

J ¼ ð ~N þ 1Þ;…; N: ð2:17Þ

In particular, the ~N first roots are determined by the masses
of the last ~N quarks—a reflection of the fact that the non-
Abelian sector of the dual theory is infrared free and is at
weak coupling in the domain of Eq. (2.10).

C. “Instead-of-confinement” mechanism

Now, we will consider the limit of almost equal
quark masses. Both the gauge group and the global
flavor SUðNfÞ group are broken in the vacuum.
However, the form of the dyon VEVs in Eq. (2.12)
shows that the r-dual theory is also in the color-flavor
locked phase. Namely, the unbroken global group of the
dual theory is

SUðNÞ × SUð ~NÞCþF ×Uð1Þ; ð2:18Þ

where this time the SUð ~NÞ global group arises from
color-flavor locking.
In much the same way as in the original theory, the

presence of the global SUð ~NÞCþF symmetry is the
reason behind formation of the non-Abelian strings.
Their tensions are still given by Eq. (2.6), where the

3Because of monodromies [6,7,25], the quarks pick up root-
like color-magnetic charges in addition to their weight-like color-
electric charges at strong coupling [4].
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parameters ξP are determined by Eq. (2.16) [5,17].
These strings still confine monopoles [4].4

In the equal-mass limit, the global unbroken sym-
metry [Eq. (2.18)] of the dual theory at small ξ coincides
with the global group [Eq. (2.5)] of the original theory in
the r ¼ N vacuum at large ξ. However, this global
symmetry is realized in two very distinct ways in the dual
pair at hand. As was already mentioned, the quarks and
UðNÞ gauge bosons of the original theory at large ξ come
in the following representations of the global group
[Eq. (2.5)]:

ð1; 1Þ; ðN2 − 1; 1Þ; ðN̄; ~NÞ; and ðN; ~̄NÞ:

At the same time, the dyons and Uð ~NÞ gauge bosons of the
r-dual theory form

ð1; 1Þ; ð1; ~N2 − 1Þ; ðN; ~̄NÞ; and ðN̄; ~NÞ ð2:19Þ

representations of Eq. (2.18). We see that the adjoint
representations of the ðCþ FÞ subgroup are different in
two theories.
The quarks and gauge bosons which form the adjoint

ðN2 − 1Þ representation of SUðNÞ at large ξ, and the quark-
like dyons and dual gauge bosons which form the adjoint
ð ~N2 − 1Þ representation of SUð ~NÞ at small ξ are, in fact,
distinct states [4].
Thus, the quark-like dyons are not quarks. At large ξ,

they are heavy solitonic states. However, below the cross-
over, at small ξ, they become light and form the funda-
mental “elementary” states DlA of the r-dual theory. Vice
versa, quarks are light at large ξ but become heavy below
the crossover.
This raises the question: what exactly happens with

quarks when we reduce ξ?
They are in the “instead-of-confinement” phase. The

Higgs-screened quarks and gauge bosons at small ξ decay
into the monopole-antimonopole pairs on the curves of
marginal stability (the so-called wall crossing) [4,15]. The
general rule is that the only states that exist at strong
coupling inside the curves of marginal stability are those
which can become massless on the Coulomb branch
[6,7,25]. For the r-dual theory, these are light dyons shown
in Eq. (2.12), gauge bosons of the dual gauge group, and
monopoles.
At small nonvanishing values of ξ, the monopoles and

antimonopoles produced in the decay process of the adjoint

ðN2 − 1; 1Þ states cannot escape from each other and fly to
opposite infinities because they are confined. Therefore, the
(screened) quarks and gauge bosons evolve into stringy
mesons (in the strong coupling domain of small ξ) as shown
in Fig. 1—namely, monopole-antimonopole pairs con-
nected by two strings [4,5].
The flavor quantum numbers of stringy monopole-

antimonopole mesons were studied in Ref. [15] in the
framework of an appropriate two-dimensional CPðN − 1Þ
model which describes world-sheet dynamics of the non-
Abelian strings [16,21–23]. In particular, confined monop-
oles are seen as kinks in this world-sheet theory. If two
strings in Fig. 1 are “neighboring” strings P and Pþ 1
[P ¼ 1;…; ðN − 1Þ], each meson is in the two-index
representation MB

AðP;Pþ 1Þ of the flavor group, where
the flavor indices are A; B ¼ 1;…; Nf. It splits into singlet,
adjoint, and bifundamental representations of the global
unbroken group [Eq. (2.18)]. In particular, at small ξ, the
adjoint representation of SUðNÞ contains former (screened)
quarks and gauge bosons of the original theory.
Masses of these stringy mesons are determined by

string tensions given by the parameters ξP and ξPþ1; see
Eqs. (2.16) and (2.17). In particular, in the r-dual theory the
tensions of ~N non-Abelian strings from the Uð ~NÞ sector
are light, of the order of ξsmall ∼ μm, while the tensions of
ðN − ~NÞ “Abelian” strings from the Uð1ÞN− ~N sector are
much heavier, of the order of ξlarge ∼ μΛN¼2. The majority
of stringy mesons are unstable and decay into each other or
into the “elementary” states [Eq. (2.19)] of the r-dual
theory, the dyons and gauge bosons. For example, the
mesons MB

AðP; Pþ 1Þ which form representations
[Eq. (2.19)] can decay into elementary states with the
same quantum numbers [4,15].

III. INTERMEDIATE μ

In this section, we will discuss what happens to the
r-dual theory in the r ¼ N vacuum described above once
we increase μ to intermediate values, which are large
enough to decouple the adjoint matter [5,24]. We also
discuss the relation of our dual theory to Seiberg’s dual.

A. Emergence of the Uð ~NÞ gauge group

Combining Eqs. (2.12), (2.13), (2.16), and (2.17), we see
that the VEVs of the non-Abelian dyons DlA are deter-
mined by

FIG. 1 (color online). Meson formed by a monopole-
antimonopole pair connected by two strings. Open and closed
circles denote the monopole and antimonopole, respectively.

4An explanatory remark regarding our terminology is in order.
Strictly speaking, the dyons carrying root-like electric charges are
confined as well. We refer to all such states collectively as
“monopoles.” This is to avoid confusion with the quark-like
dyons which appear in Eqs. (2.12) and (2.13). The latter dyons
carry weight-like electric charges. As was already mentioned,
their color charges are identical to those of quarks; see Ref. [4] for
further details.
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ffiffiffiffiffiffiffiffiffiffi
ξsmall

p
∼

ffiffiffiffiffiffiffi
μm

p ð3:1Þ

and are much smaller than the VEVs of the Abelian dyons
DJ in the domain given in Eq. (2.10). The latter are of the
order of

ffiffiffiffiffiffiffiffiffi
ξlarge

p
∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μΛN¼2

p
: ð3:2Þ

This circumstance is most crucial. It allows us to increase μ
and decouple the adjoint fields without violating the weak
coupling condition in the dual theory [5].
Let us uplift μ to the intermediate domain:

jμj ≫ jmAj; A ¼ 1;…; Nf; μ ≪ ΛN¼2: ð3:3Þ

The VEVs of the Abelian dyons [Eq. (2.13)] are large. This
makes Uð1Þ gauge fields of the dual group [Eq. (2.11)]
heavy. Decoupling these gauge factors, together with the
adjoint matter and the Abelian dyons themselves, we obtain
the low-energy theory with the

Uð ~NÞ ð3:4Þ

gauge fields and the following set of non-Abelian dyons:
DlA (l ¼ 1;…; ~N, A ¼ 1;…; Nf). The superpotential for
DlA has the form [5]

W ¼ −
1

2μ
ð ~DADBÞð ~DBDAÞ þmAð ~DADAÞ; ð3:5Þ

where the color indices are contracted inside each paren-
thesis. Minimization of this superpotential leads to the
VEVs [Eq. (2.12)] of non-Abelian dyons determined by
ξsmall; see Eq. (2.17).
Below the scale μ, our theory becomes dual to N ¼ 1

SQCD with the scale

~ΛN−2 ~N
N¼1 ¼ ΛN− ~N

N¼2

μ ~N
: ð3:6Þ

In order to keep this infrared-free theory in the weak
coupling regime, we impose that

j ffiffiffiffiffiffiffi
μm

p j ≪ ~ΛN¼1: ð3:7Þ

This means that at large μ, we must keep the quark masses
sufficiently small.
Let us briefly summarize the mass spectrum of ourUð ~NÞ

r-dual theory at intermediate μ [5]. The lightest states are
4N ~N bifundamental dyons (we count real bosonic degrees
of freedom). Their masses are of the order of quark mass
differences ðmA −mBÞ. Half of the dyons, namely 2 ~N2,
from singlet and adjoint representations of SUð ~NÞ, are also
light with masses of the order of m ∼mA. Another ~N2

dyonic states become scalar superpartners for the massive
gauge bosons of the Uð ~NÞ gauge group (altogether 4 ~N2

states). These are much heavier, with masses of the order of

~g
ffiffiffiffiffiffiffiffiffiffi
ξsmall

p
, where ~g is the gauge coupling constant of the

r-dual theory. On top of that we have stringy monopole-
antimonopole mesons (see Fig. 1) MB

AðP;Pþ 1Þ, where
P ¼ 1;…; ð ~N − 1Þ, while A; B ¼ 1;…; Nf. Their masses

are of the order of
ffiffiffiffiffiffiffiffiffiffi
ξsmall

p
; they are determined by tensions

of light non-Abelian strings.
Note that in the intermediate domain of μ [Eq. (3.3)], we

assume that μ ≪ ΛN¼2. This condition ensures that the
heavy Abelian Uð1ÞðN− ~NÞ sector is at weak coupling too
and really heavy. At weak coupling, the masses of the states
in this sector can be determined in the quasiclassical
approximation. They are of the order of gUð1Þ

ffiffiffiffiffiffiffiffiffi
ξlarge

p
for

“elementary” states, where gUð1Þ are couplings in the Uð1Þ
factors, and are of the order of

ffiffiffiffiffiffiffiffiffi
ξlarge

p
for stringy mesons

MB
AðP;Pþ 1Þ with P ¼ ~N;…; ðN − 1Þ.
If we relax the condition μ ≪ ΛN¼2, this sector enters a

strong coupling regime, and certain states could in principle
become light and couple to our low-energy Uð ~NÞ theory.
We will see in the next section that this is exactly what
happens at larger values of μ and is, in fact, required by the
’t Hooft anomaly matching [14].

B. Connection to Seiberg’s duality

The gauge group of our r-dual theory is Uð ~NÞ, the same
as the gauge group of Seiberg’s dual theory [2,3]. This
suggests that there should be a close relation between two
duals. For intermediate values of μ, this relation was found
in Refs. [13,26].
Originally Seiberg’s duality was formulated for N ¼ 1

SQCD, which in our setup corresponds to the limit μ → ∞.
Therefore, in the original formulation, Seiberg’s duality
referred to the monopole vacua with r ¼ 0. Other vacua,
with r ≠ 0, have condensates of r quark flavors
h ~qqiA ∼ μmA, and therefore disappear in the limit
μ → ∞: they become runaway vacua. However, as was
already mentioned in Sec. I, Seiberg’s duality can be
generalized to the μ-deformed N ¼ 2 QCD [9,12]. At
large μ, μ-deformed N ¼ 2 QCD flows to N ¼ 1 QCD
with an additional quartic quark superpotential. This theory
has all r vacua which were present in the original N ¼ 2
QCD in the small-μ limit. The generalized Seiberg dual
theory for the μ-deformed UðNÞN ¼ 2 SQCD at large but
finite μ has the gauge group Uð ~NÞ, Nf flavors of Seiberg’s
“dual quarks” hlA (l ¼ 1;…; ~N and A ¼ 1;…; Nf), and the
superpotential

WS ¼ −
κ2

2μ
TrðM2Þ þ κmAMA

A þ ~hAlhlBMA
B; ð3:8Þ

where MB
A is Seiberg’s neutral mesonic field, defined as
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ð ~qAqBÞ ¼ κMB
A: ð3:9Þ

Here, κ is a parameter of the dimension of mass needed to
formulate Seiberg’s duality [2,3]. The last two terms in
Eq. (3.8) were originally suggested by Seiberg, while the
first term is a generalization to finite μ which originates
from the quartic quark potential [9,12].
Now let us assume the fields MB

A to be heavy and
integrate them out. This implies that κ is large. Integrating
out the M fields in Eq. (3.8), we get

WLE
S ¼ μ

2κ2
ð ~hAhBÞð ~hBhAÞ þ

μ

κ
mAð ~hAhAÞ: ð3:10Þ

The change of variables

DlA ¼
ffiffiffiffiffiffiffi
−
μ

κ

r
hlA; l ¼ 1;…; ~N; A ¼ 1;…; Nf ð3:11Þ

brings this superpotential to the form

WLE
S ¼ 1

2μ
ð ~DADBÞð ~DBDAÞ −mAð ~DADAÞ: ð3:12Þ

We see that (up to a sign) this superpotential coincides with
the superpotential of our r-dual theory [Eq. (3.5)]. As was
already mentioned, the dual gauge groups also coincide for
Seiberg’s and r-dual theories in the r ¼ N vacuum. Note
that the kinetic terms are not known in Seiberg’s dual
theory; thus, normalization of the h fields is not fixed.
We see that the r-dual and Seiberg’s dual theories match.

However, it seems that this match is not complete. The
mesonic field MB

A is supposed to be light in the Seiberg
duality.
It seems there is no apparent candidate for a light neutral

field with these flavor quantum numbers in the r-dual
theory. Moreover, the match outlined above assumes that
the M field is heavy and can be integrated out.
In principle, there are candidates for the Seiberg M field

with correct flavor quantum numbers in the r-dual theory.
These are the monopole-antimonopole stringy mesons
MB

AðP;Pþ 1Þ from the Abelian sector with P ¼ ~N;…;
ðN − 1Þ. They could produce the Seiberg M field.
But at intermediate μ (3.3), the Uð1ÞðN− ~NÞ Abelian sector

is at weak coupling. This ensures that the masses of the
Abelian MB

AðP;Pþ 1Þ mesons can be determined quasi-
classically. As was discussed in Sec. III A, they are of the
order of

ffiffiffiffiffiffiffiffiffi
ξlarge

p
and cannot possibly become light. We will

come back to this issue in Sec. IV B.
The resolution of this puzzle is that Seiberg’s duality

refers to much larger values of μ than those given by the
upper bound in Eq. (3.3). In fact, the generalized Seiberg
duality assumes that

μ ≫ ΛN¼1; ð3:13Þ

where ΛN¼1 is the scale of the original N ¼ 1 QCD,

Λ2N− ~N
N¼1

¼ μNΛN− ~N
N¼2

: ð3:14Þ

The domain given in Eq. (3.13) is above the intermediate-μ
domain considered in this section.
This leads us to the conclusion that at intermediate μ, we

have a perfect match between the r-dual and Seiberg’s dual
theories. In this domain, the SeibergM meson is heavy and
should be integrated out, implying the superpotential in
Eq. (3.12), which agrees with the superpotential in Eq. (3.5)
obtained in the r-dual theory.
This match, together with the identification in Eq. (3.11),

reveals the physical nature of Seiberg’s “dual quarks.” They
are not monopoles, as naive duality suggests. Instead, they
are quark-like dyons appearing in the r-dual theory below
the crossover. Their condensation leads to the confinement
of monopoles and the instead-of-confinement phase [24]
for quarks and gauge bosons of the original theory.

IV. LARGE μ

Now we turn to the large-μ domain. Increasing μ, we
simultaneously reduce m while keeping ξsmall sufficiently
small; see Eq. (3.7). Namely, we assume

ξsmall ∼ μm ≪ ~ΛN¼1; μ ≫ ΛN¼1: ð4:1Þ
This ensures that our low-energy Uð ~NÞ r-dual theory is at
weak coupling. However, the Abelian Uð1ÞðN− ~NÞ sector
ultimately enters the strong coupling regime. As was
already mentioned, we lose analytic control over this sector
and, in particular, certain states can become light and
couple to our low-energy Uð ~NÞ theory. Below, we will
show that this indeed happens, as required by the ’t Hooft
anomaly matching.
The anomaly matching was previously analyzed in

Ref. [2] as a basis for the very formulation of the
Seiberg duality. In particular, the anomaly matching
requires us to have a light neutral meson M field in the
dual theory. Without Seiberg’s M meson, the anomalies do
not match. A novelty of our discussion in this section is that
we have a symmetry breaking in the r-dual theory at the
scale

ffiffiffiffiffiffiffiffiffiffi
ξsmall

p
and have to match anomalies at energies

above and below this scale. This leads to a rather restrictive
bound for theM-meson mass. Also, since we μ-deform our
r-dual theory and start from a well understoodN ¼ 2 limit,
we can reveal a physical interpretation for the M meson.

A. Anomaly matching

The limit [Eq. (4.1)] ensures that the quark masses are
rather small. They are the smallest parameters of the theory.
Thus, we are in the chiral limit. Above the scale m, the
global group of our theory before the symmetry breaking
includes independent left and right chiral rotations, namely
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SUðNfÞL × SUðNfÞR ×Uð1ÞR; ð4:2Þ

where Uð1ÞR is the nonanomalous (with respect to the non-
Abelian gauge bosons) R symmetry [2].5 Note that here we
use the fact that μ is large and the adjoint matter is
decoupled. For example, in the N ¼ 2 limit in which
the adjoint matter is present, the chiral group in Eq. (4.2) is
broken by the Yukawa couplings to the adjoint matter even
at small values of the quark masses.
The general prescription of the anomaly matching is as

follows: the anomalies of all unbroken global currents must
be the same at all energies well above m (below m, chiral
symmetries are broken). In particular, we calculate the
anomalies in the ultraviolet (UV) domain in terms of quarks
and gauge bosons of the original theory and match them
with the anomalies calculated in the infrared (IR) domain in
terms of the relevant degrees of freedom of the dual theory.
The UV energy should be large enough to ensure the
original theory is at weak coupling, EUV ≫ ΛN¼1. Note
that μ should be even larger, μ ≫ EUV , so that the adjoint
matter really decouples and we do have chiral symmetry.
This explains why we do not check the anomaly matching
at intermediate values of μ (see Sec. III).
Under the symmetry in Eq. (4.2), the squark fields

transform as [2,3]

q∶
�
Nf; 1;

~N
Nf

�
; ~q∶

�
1; N̄f;

~N
Nf

�
: ð4:3Þ

In particular, the R charges of the squarks under Uð1ÞR are
determined by the number of flavors Nf and the rank of the
gauge group N. Note that the fermions (quarks) have R
charges R − 1, where R is the charge of the boson
component of a given multiplet, while gauginos have the
unit R charge.
Quark-like dyons of the r-dual theory transform as

D∶
�
N̄f; 1;

N
Nf

�
; ~D∶

�
1; Nf;

N
Nf

�
; ð4:4Þ

where the R charges of dyons are determined by Nf and ~N,
the rank of the dual gauge group. Also, in much the same
way as in Ref. [2], we assume that D is in the antifunda-
mental representation of SUðNfÞL. We μ-deform our r-dual
theory starting from the N ¼ 2 limit in which the chiral
symmetries are broken. Hence, no memory remains as to
which of the two SUðNfÞ factors in Eq. (4.2) was left
handed or right handed in the original quark theory. It is
possible that the dyon appears in the fundamental

representation of SUðNfÞR at large μ. Then the trans-
formations in Eq. (4.4) ensue (upon redefinition of D
and ~D).
The anomaly matching in the IR domain EIR ≫

ffiffiffiffiffiffiffiffiffiffi
ξsmall

p
closely follows the calculation in Ref. [2], and we skip it
here. The main result is that without the M meson, the
anomalies do not match. Including the M meson, we see
that it has quantum numbers of ~qAqB and transforms as [2]

M∶
�
Nf; N̄f;

2 ~N
Nf

�
: ð4:5Þ

Thus, the anomaly matching requires the presence of the
M meson.
So far, we have considered the anomaly matching at

energies EIR ≫
ffiffiffiffiffiffiffiffiffiffi
ξsmall

p
, which ensures that the M meson

cannot be heavier than
ffiffiffiffiffiffiffiffiffiffi
ξsmall

p
. Below, we will show that in

fact the upper bound on the M-meson mass is much more
restrictive.
To this end, let us consider energies EIR ≪

ffiffiffiffiffiffiffiffiffiffi
ξsmall

p
still

well above the scale of the chiral symmetry breaking. At
these energies, the unbroken global group is

SUðNÞ × SUð ~NÞ ×Uð1ÞV ×Uð1ÞR0 ; ð4:6Þ

where the first three factors are vector-like symmetries
[Eq. (2.18)], while the additional R symmetry appears in
the chiral limit.
Let us check that we have an unbroken R sym-

metry. Consider first dyons of the r-dual theory. We
can combine the Uð1ÞR transformation with the axial
subgroup of the non-Abelian factors in Eq. (4.2) to make
the R0 charges of the last ~N dyons vanish. In this way, we
arrive at

RD
0 ¼ N

Nf
þ
�

~N
Nf

;…;
~N
Nf

;−
N
Nf

;…;−
N
Nf

�

¼ ð1;…; 1; 0;…; 0Þ; ð4:7Þ

where we divide the charges of Nf dyons into N þ ~N
entries shown in the brackets. This Uð1ÞR0 symmetry is
unbroken by the dyon VEVs; see Eq. (2.12).
This leads to the following transformation law of dyons

under the unbroken symmetry in Eq. (4.6):

DP∶
�
N̄; 1;

Nf

2N
; 1

�
; ~DP∶

�
N; 1;−

Nf

2N
; 1

�
;

DK∶ ð1; ~̄N; 0; 0Þ; ~DK∶ ð1; ~N; 0; 0Þ; ð4:8Þ

where P ¼ 1;…; N and K ¼ ðN þ 1Þ;…; Nf. Here we
also combine the vector flavor SUðNfÞ transformation with
the Uð1Þ gauge transformation to get vanishing charges
under Uð1ÞV of the last ~N dyons.

5The gauge group of our original theory is UðNÞ; thus, it
includes Abelian Uð1Þ gauge fields. Uð1ÞR symmetry is anoma-
lous with respect to Uð1Þ gauge fields. Still, we have the freedom
to make the Uð1Þ gauge coupling small so that the Uð1ÞR current
is approximately conserved.
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Now, let us find the quark R charges. We will see below
that the diagonal entries of the N × N upper-left block
of the meson matrixMB

A also develops VEVs in the vacuum
of the dual theory. Since the M mesons are defined as
quark-antquark pairs of the original theory, this means that
the Uð1ÞR0 symmetry is unbroken if the first N quarks have
vanishing R0 charges. We define

Rq
0 ¼

~N
Nf

þ
�
−

~N
Nf

;…;−
~N
Nf

;
N
Nf

;…;
N
Nf

�

¼ ð0;…; 0; 1;…; 1Þ: ð4:9Þ

Thus, the quarks transform under the unbroken symmetry
[Eq. (4.6)] as follows:

qP∶ ðN; 1; 0; 0Þ; ~qP∶ ðN̄; 1; 0; 0Þ;

qK∶
�
1; ~N;

Nf

2 ~N
; 1

�
; ~qK∶

�
1; ~̄N;−

Nf

2 ~N
; 1

�
: ð4:10Þ

Here we again combine the vector flavor SUðNfÞ trans-
formation with the Uð1Þ gauge transformation to get
vanishing charges of the first N quarks under Uð1ÞV.
The transformation properties of the M field ensue from
Eq. (4.10):

MP
P0∶ ðNN̄; 1; 0; 0Þ; MP

K∶ ðN; ~̄N; 0; 1Þ;
MK

P∶ ðN̄; ~N; 0; 1Þ; MK
K0∶ ð1; ~N ~̄N; 0; 2Þ; ð4:11Þ

where P;P0 ¼ 1;…; N and K;K0 ¼ ðN þ 1Þ;…; Nf.
The list of anomalies to be checked is

Uð1ÞR0 × SUðNÞ2∶ −
δmn

2
NjUV ¼ −

δmn

2
NjIR;

Uð1ÞR0 × SUð ~NÞ2∶ 0jUV ¼ δps

2
ð− ~N þ ~NÞjIR;

Uð1ÞR0 × Uð1Þ2V∶ 0jUV ¼ 0jIR;
Uð1ÞR0∶ − 2N2 þ N2jUV ¼ −N2 ¼ − ~N2 − N2

þ ~N2jIR;
Uð1Þ3R0∶ − 2N2 þ N2jUV ¼ −N2 ¼ − ~N2 − N2

þ ~N2jIR; ð4:12Þ

where n;m and p; s are the adjoint indices in SUðNÞ
and SUð ~NÞ, respectively. Here, the UV contributions are
calculated in terms of the fermion quarks and gauginos,
while the IR contributions come from the fermion compo-
nents of (screened) dyons andM fields. For example, in the
second line, the IR anomaly is saturated byDK andMK

K0 . In
the fourth line, the UV contribution comes from the quarks
qP, ~qP and gauginos. The IR contribution comes from the
light dyons (a half ofDK and ~DK states; see Sec. III A),MP

P0
and MK

K0 , respectively.

Needless to say, all anomalies match. The contribution of
the M meson is essential. Since EIR can lie in the window
m ≪ EIR ≪

ffiffiffiffiffiffiffiffiffiffi
ξsmall

p
, we find the upper bound for the

M-meson mass,

mM ≲m: ð4:13Þ
We see that the M meson is rather light; its mass is
determined by the small-scale m of the chiral symmetry
breaking. Thus, the M mesons play the role of π mesons in
our theory.

B. Interpretation of the Seiberg M mesons

As was already discussed, the candidates for the Seiberg
M mesons in the r-dual theory are stringy mesons
MB

AðP;Pþ 1Þ [P ¼ ~N;…; ðN − 1Þ] from the Abelian
Uð1ÞðN− ~NÞ sector. This sector is at strong coupling at large
μ; therefore, certain states from this sector can become
light. Perturbative states from this sector (quark-like dyons
and Abelian gauge fields) are singlets with respect to the
global group [Eq. (4.6)] and cannot play theM-meson role.
Note that stringy mesons MB

AðP;Pþ 1Þ [where
P ¼ 1;…; ð ~N − 1Þ] from the Uð ~NÞ low-energy theory also
cannot play theM-meson role. First, they are represented in
the Uð ~NÞ low-energy theory by themselves as nonpertur-
bative solitonic states and cannot be added to this theory as
new “fundamental” or “elementary” fields. Second, they
are too heavy, with mass of the order of

ffiffiffiffiffiffiffiffiffiffi
ξsmall

p
determined

by the tensions of the non-Abelian strings, which can be
calculated at weak coupling.
Thus, we propose that the SeibergMB

A meson is one of a
multitude of the monopole-antimonopole stringy mesons
MB

AðP;Pþ 1Þ [where P ¼ ~N;…; ðN − 1Þ] from the
Abelian Uð1ÞðN− ~NÞ sector. At large μ, this meson should
become light, with mass of the order of m. It should be
incorporated in the Uð ~NÞ low-energy theory as a new
“fundamental” or “elementary” field. Note that other states
from the Abelian sector are still heavy and decouple.

C. Effective action

Since ourUð ~NÞ r-dual theory is at weak coupling, we can
write down its effective action. In particular, since this
theory is a μ deformation of a particular N ¼ 2 r-dual
theory, the quark-like dyons DlA have canonically normal-
ized kinetic terms. Using the procedure described in Sec. III
B in the opposite direction, we “integrate the M-meson in”
the superpotential [Eq. (3.5)]. In this way, we arrive at

W ¼ κ2

2μ
TrðM2Þ − κmAMA

A þ κ

μ
~DAlDlBMA

B: ð4:14Þ

We suggest that Eq. (4.14) is a correct continuation of the
superpotential [Eq. (3.5)] of the r-dual theory to large μ.
Then the effective action of the r-dual theory at large μ

takes the form
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S¼
Z

d4x

�
1

4~g2
ðFa

μνÞ2þ
1

4~g2Uð1Þ
ðFμνÞ2þj∇μDAj2þj∇μ

~̄D
Aj2

þ2

γ
Trj∂μMj2þ ~g2

2
ðD̄ATaDA− ~DATa ~̄D

AÞ2

þ
~g2Uð1Þ
8

ðD̄ADA− ~DA
~̄D
AÞ2þκ2

μ2
TrjDMj2þκ2

μ2
Trj ~̄DMj2

þγ

2

κ2

μ2
j ~DADB−μmAδ

B
AþκMB

Aj2
�
; ð4:15Þ

where the covariant derivative is defined as

∇μ ¼ ∂μ −
i
2
Aμ − iTaAa

μ; ð4:16Þ

and we introduce gauge potentials for SUð ~NÞ and Uð1Þ
gauge groups, while ~g and ~gUð1Þ are associated dual gauge
couplings. We also introduce the coupling constant γ for the
M field.
We assume that κ is a function of μ and m with the

following behavior:

κ ∼
�
μ

3
4Λ

1
4

N¼2
; μ ≪ ΛN¼2;ffiffiffiffiffiffiffi

μm
p

; μ ≫ ΛN¼2:
ð4:17Þ

This dependence ensures that the M meson is heavy, with
mass of the order of

ffiffiffiffiffiffiffiffiffi
ξlarge

p
, at intermediate μ, and it

becomes light, with mass of the order of m, at large μ.
Minimization of the potential in Eq. (4.15) gives VEVs

[Eq. (2.12)] for dyons [see also Eqs. (2.16) and (2.17)],
while the M-field VEVs are

diaghMB
Ai ¼

μ

κ
ðm1;…; mN; 0;…; 0Þ: ð4:18Þ

These VEVs ensure chiral symmetry breaking [Eq. (4.6)] in
the (almost) equal-mass limit.
Now, let us briefly discuss the mass spectrum of r-dual

theory [Eq. (4.15)]. Much in the same way as at inter-
mediate μ, the lightest states are 4N ~N bifundamental dyons
with masses of the order of the quark mass differences
ðmA −mBÞ. Half (2 ~N2) of the dyons from the singlet and
adjoint representations of SUð ~NÞ have masses of the order
of m. Moreover, the M mesons are also light, with masses
of the order of m.
Other ~N2 dyonic states, together with the gauge bosons

of theUð ~NÞ gauge group, are much heavier, with masses of

the order of ~g
ffiffiffiffiffiffiffiffiffiffi
ξsmall

p
. In addition, we have stringy

monopole-antimonopole mesons MB
AðP;Pþ 1Þ, where

P ¼ 1;…; ð ~N − 1Þ, with masses of the order of
ffiffiffiffiffiffiffiffiffiffi
ξsmall

p
.

However, now at large μ, all these stringy monopole-
antimonopole mesons can decay into light Seiberg M
mesons.

V. VACUA WITH r < Nf=2 AT SMALL μ

Now consider r vacua with r < N, in which the first r
quarks develop nonvanishing VEVs in the large-mass limit.
In the classically unbrokenUðN − rÞ pure gauge sector, the
gauge symmetry gets broken through the Seiberg-Witten
mechanism [6]: first down to Uð1ÞN−r by the condensation
of the adjoint fields, and then almost completely by the
condensation of ðN − r − 1Þ monopoles. A single Uð1Þ
gauge factor survives, though, because the monopoles are
charged only with respect to the Cartan generators of the
SUðN − rÞ group.
The presence of this unbroken Uð1Þ factor in all r < N

vacua makes them different from the r ¼ N vacuum: in the
latter, there are no long-range forces.
The low-energy theory in the given r vacuum has the

gauge group

UðrÞ ×Uð1ÞN−r ð5:1Þ

if the quark masses are almost equal. Moreover, Nf quarks
are charged under the UðrÞ factor, while ðN − r − 1Þ
monopoles are charged under the Uð1Þ factors. If
0 < r < ðN − 1Þ, then the r vacua are hybrid vacua in
which both quarks and monopoles are condensed. Note that
the quarks and monopoles are charged with respect to
orthogonal subgroups of UðNÞ and therefore are mutually
local (i.e., they can be described by a local Lagrangian).
The low-energy theory is infrared free, and it is at weak
coupling as long as VEVs of quarks and monopoles are
small. The quark VEVs are given by

hqkAi ¼ h ~̄qkAi ¼ 1ffiffiffi
2

p

0
BB@

ffiffiffiffiffi
ξ1

p
… 0 0 … 0

… … … … … …

0 …
ffiffiffiffi
ξr

p
0 … 0

1
CCA;

k ¼ 1;…; r; A ¼ 1;…; Nf; ð5:2Þ

where in the quasiclassical domain of large quark masses
the r parameters ξ1;:::;r are

ξP ≈ 2μmP; P ¼ 1;…; r: ð5:3Þ

These parameters can be made small in the limit of largemA
if μ is sufficiently small.
In quantum theory, the ξP parameters are determined by

the roots of the Seiberg-Witten curve [Eq. (2.14)]; see
Refs. [24,27]. The Seiberg-Witten curve in the r < N
vacuum has N − 1 double roots which are associated
with r condensed quarks and ðN − r − 1Þ condensed
monopoles.
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Namely, the Seiberg-Witten curve factorizes [28]

y2 ¼
Yr
P¼1

ðx − ePÞ2
YN−1

K¼rþ1

ðx − eKÞ2ðx − eþNÞðx − e−NÞ:

ð5:4Þ

The first r-quark double roots are associated with the mass
parameters in the large-mass limit,

ffiffiffi
2

p
eP ≈ −mP, where

P ¼ 1;…; r. The other ðN − r − 1Þ double roots associated
with the light monopoles are much smaller and are
determined by ΛN¼2. The last two unpaired roots are also
much smaller. For the single-trace deformation superpo-
tential [Eq. (2.1)], their sum vanishes [28]:

eþN þ e−N ¼ 0: ð5:5Þ

The root eþN determines the value of the gaugino condensate
[29]:

e2N ¼ 2S
μ
; S ¼ 1

32π2
hTrWαWαi: ð5:6Þ

The superfield Wα includes the gauge field strength tensor.
In terms of the roots of the Seiberg-Witten curve, the

quark VEVs are given by the formula [24,27]

ξP ¼ −2
ffiffiffi
2

p
μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðeP − eþNÞðeP − e−NÞ

q
;

P ¼ 1;…; ðN − 1Þ: ð5:7Þ

In fact, this formula is universal: it determines both the
VEVs of r quarks and ðN − r − 1Þ monopoles [27].
Namely, the index P runs over P ¼ 1;…; ðN − 1Þ in
Eq. (5.7) with quark and monopole VEVs given by
Eq. (5.2) and

hmPðPþ1Þi ¼ h ~̄mPðPþ1Þi ¼
ffiffiffiffiffi
ξP
2

r
;

P ¼ ðrþ 1Þ;…; ðN − 1Þ; ð5:8Þ

respectively. Here mPP0 denotes the monopole with the
charge given by the root αPP0 ¼ wP − wP0 of the SUðNÞ
algebra with the weights wP (P < P0).
Condensation of r quarks leads to formation of non-

Abelian magnetic strings that confine monopoles from the
SUðrÞ sector [strings are non-Abelian in the (almost) equal
quark mass limit]. Tensions of the magnetic strings are
determined by Eq. (2.6) with P ¼ 1;…; r. In a similar way,
condensation of ðN − r − 1Þ monopoles leads to the for-
mation of the Abelian electric strings which confine quarks
from Uð1ÞN−r. Their tensions are also given by Eq. (2.6)
with P ¼ ðrþ 1Þ;…; ðN − 1Þ; for more details on the
confinement of monopoles and quarks in the hybrid vacua,
see Ref. [27].

Now, let us consider the limit of small quark masses. As
was already mentioned, in the r vacua with r > Nf=2, there
is a crossover to the r-dual theory with the dual gauge
group UðNf − rÞ × Uð1ÞN−Nfþr [24]. The r ¼ N vacuum
considered in the previous sections provides us with the
simplest example of this behavior.
Now, let us focus on r vacua with smaller r. If r < Nf=2,

the low-energy theory essentially remains the same as at
large mA—namely, infrared-free UðrÞ ×Uð1ÞN−r gauge
theory with Nf flavors of light states charged under a
non-Abelian gauge factor and ðN − r − 1Þ singlet monop-
oles charged under Uð1ÞN−r [13,30]. Although the color
charges of light non-Abelian states are identical to those of
quarks,6 they are not quarks. In much the same way as in
the r ¼ N vacuum, we call these states quark-like dyons
DlA, l ¼ 1;…; r, A ¼ 1;…; Nf. We will see in Sec. VI B
that they have chiral R charges different from those of
quarks.7 At large masses, these dyons are heavy monopole-
antimonopole stringy states while below crossover; at small
masses, they become light fundamental (or elementary)
states of the UðrÞ ×Uð1ÞN−r gauge theory.
The quark-like dyons from the UðrÞ sector and the

monopoles from the orthogonal Uð1ÞN−r sector develop
VEVs determined by Eq. (5.7). In particular, dyons develop
VEVs

hDlAi ¼ h ~̄DlAi ¼ 1ffiffiffi
2

p

0
BB@

ffiffiffiffiffi
ξ1

p
… 0 0 … 0

… … … … … …

0 …
ffiffiffiffi
ξr

p
0 … 0

1
CCA;

l ¼ 1;…; r; A ¼ 1;…; Nf: ð5:9Þ

The theory is at weak coupling, provided the ξP parameters
are small.
What happens to quarks of the original theory? In much

the same way as in the r ¼ N vacuum, the screened qkA

quarks (with k ¼ 1;…; r) of the UðrÞ gauge sector decay
into monopole-antimonopole pairs and evolve into stringy
mesons as shown in Fig. 1. These quarks are in the instead-
of-confinement phase.
We would like to stress, however, that there is a peculiar

distinction of this picture with the one in the r ¼ N
vacuum. In the limit of small and almost equal masses,
the dyon condensation breaks the global SUðNfÞ group
down to

SUðrÞCþF × SUðNf − rÞ ×Uð1ÞV: ð5:10Þ

6As we reduce m, the quarks pick up root-like color-magnetic
charges, in addition to their weight-like color-electric charges due
to monodromies; see Ref. [30].

7In Ref. [13], the chiral limit was not considered. It was
concluded that these states are identical to quarks. Here we
correct this interpretation.
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In particular, color-flavor locking takes place in the SUðrÞ
factor. In contrast to the case of the r ¼ N vacuum, both
dyons and monopole-antimonopole stringy mesons, which
originate from screened quarks of the large-m theory are in
the same representations of this group. Namely, they form
singlet and adjoint representaions of SUðrÞCþF, as well as
bifundamental representations,

ð1; 1Þ; ðr2 − 1; 1Þ; ðr̄; Nf − rÞ; ðr; N̄f − r̄Þ;
ð5:11Þ

where we mark representations with respect to two non-
Abelian factors in Eq. (5.10). The Uð1ÞR symmetry which
distinguishes screened dyons and monopole-antimonopole
mesons (former screened quarks) is broken. Therefore,
monopole-antimonopole stringy mesons are unstable and
decay into dyons, which are lighter.
There are also other quarks qkA charged with respect to

the Abelian Uð1ÞN−r gauge group with l ¼ ðrþ 1Þ;…; N
in the original theory. These are still confined by Abelian
strings formed as a result of the monopole condensation in
the small-m limit.

VI. ZERO VACUA

In this section, we consider zero vacua at intermediate
and large μ [13]. These vacua form a subset of r vacua with
small r, r < ~N.

A. Intermediate μ

In the small-mass limit, r double roots of the Seiberg-
Witten curve associated with light dyons are still deter-
mined by quark masses:

ffiffiffi
2

p
eP ¼ −mP; P ¼ 1;…; r: ð6:1Þ

The above expression is valid in r vacua with r < Nf=2.
Other roots are much larger, of the order of ΛN¼2.
However, in contrast to the r ¼ N vacuum (see Sec. III A),
this does not allow us to increase μ, keeping the UðrÞ
theory at weak coupling. The point is that dyons’ VEVs
which are supposed to be small to ensure weak coupling
(in the IR-free theory) are not determined entirely by eP in
the r < N vacua. They are given by parameters ξP that
depend also on the gaugino condensate, which determines
the values of the unpaired roots in Eq. (5.7). In the majority
of the r vacua, the gaugino condensate is of the order of
S ∼ μΛ2

N¼2
. We refer to these vacua as theΛ vacua. In the Λ

vacua, all parameters ξ are of the order of ξ ∼ μΛN¼2, and
we cannot increase μwithout destroying the weak coupling
condition [13].
However, there are two exceptions. One is the r ¼ N

vacuum, in which the gaugino condensate vanishes, and ~N
parameters ξ are determined by the quark masses; see
Eqs. (2.16) and (2.17) [5]. We considered this vacuum in

the previous sections. Another exception is the subset of the
r < ~N vacua, which we call the zero vacua [13]. In the zero
vacua, the gaugino condensate is extremely small [12,13]:

S ≈ μ
m

Nf−2r
~N−r

Λ
N− ~N
~N−r
N¼2

e
2πk
~N−r

i ≪ μm2; k ¼ 1;…; ð ~N − rÞ; ð6:2Þ

in the limit of small equal quark masses. This behavior
can be obtained from the exact Cachazo-Seiberg-Witten
solution for the chiral ring of the theory [29]; see
also Ref. [13].
Thus, in the zero vacua we can neglect contributions of

the unpaired roots as compared to the quark masses in
Eq. (5.7). It turns out that ξ’s are given by [13]

ξP≈−2μ
�
m1;…;mr;0;…;0;ΛN¼2;…;ΛN¼2e

2πi
N− ~N

ðN− ~N−1Þ
�
;

ð6:3Þ

where ð ~N − rÞ entries are of the order of
ffiffiffiffiffiffiffiffi
S=μ

p
and are

taken to be zero in the quasiclassical approximation, while
the last entries are large. They determine the VEVs of
ðN − ~NÞ monopoles.
Now we can increase μ to intermediate values:

jμj ≫ jmAj; A ¼ 1;…; Nf; μ ≪ ΛN¼2: ð6:4Þ

The monopole Uð1Þð ~N−rÞ sector associated with almost
vanishing entries in Eq. (6.3) enters the strong regime. It is
shown in Ref. [13] that it goes through a crossover at
μ ∼ eN ∼

ffiffiffiffiffiffiffiffi
S=μ

p
, and the domain of intermediate μ can be

described in terms of the weak coupling μ dual theory with
the gauge group

Uð ~NÞ × Uð1ÞN− ~N; ð6:5Þ

Nf flavors of quark-like dyons charged with respect to the
Uð ~NÞ gauge group, and ðN − ~NÞ singlet monopoles
charged with respect to the Uð1ÞN− ~N Abelian sector.
The restoration of the Uð ~NÞ gauge group occurs because
ð ~N − rÞ Coulomb branch parameters ϕP of the Seiberg-
Witten curve almost vanish, being determined by the small
value of the gaugino condensate [13].
Qualitatively, the enhancement of the UðrÞ gauge group

to Uð ~NÞ can be understood as follows: As we reduce m,
the expectation values of monopoles in theUð ~N − rÞ sector
tend to zero; see Eq. (6.3). Confinement of quarks in this
sector becomes weaker and eventually disappears.
However, confined quark-antiquark pairs cannot just move
apart, because they have “wrong” chiral charges; see the
next subsection. They decay into a pair of quark-like dyons
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qþ ~q → D̄þ ~̄Dþ λþ λ ð6:6Þ

via emission of two gauginos.
These dyons and gauge fields of the Uð ~N − rÞ sector

become unconfined and enter the non-Abelian Coulomb
phase. Moreover, dyons of the Uð ~N − rÞ sector combine
with dyons of the UðrÞ sector to form light non-Abelian
matter of the enhanced Uð ~NÞ gauge group.
Note also that VEVs of r dyons are given by ξsmall, while

VEVs of ðN − ~NÞmonopoles are much larger and given by
ξlarge; see Eq. (6.3). Therefore, the monopole sector is
heavy and can be integrated out together with the adjoint
matter. In much the same way as in the r ¼ N vacuum, this
leaves us with the low-energy theory with Seiberg’s dual
gauge group

Uð ~NÞ ð6:7Þ

and Nf flavors of dyons with the superpotential [13]

Wzero vac ¼ −
1

2μ
ð ~DADBÞð ~DBDAÞ þmAð ~DADAÞ: ð6:8Þ

This is the same superpotential as in the r ¼ N vacuum;
see Eq. (3.5).
Note, that the dyons in this setup have ~N colors;

however, only r of them condense, r < ~N. Thus, our
low-energy infrared-free Uð ~NÞ theory is in the mixed
Coulomb-Higgs phase with regards to dyons. In particular,
the Uð ~N − rÞ subgroup of Uð ~NÞ remains unbroken, and
ð ~N − rÞ massless gauge bosons are present. The gauge
bosons of the UðrÞ subgroup and their dyon N ¼ 1
superpartners have masses of the order of ~g

ffiffiffiffiffiffiffiffiffiffi
ξsmall

p
.

Other dyons charged with respect to Uð ~NÞ have masses
of the order of m.
Quarks of the original theory charged with respect to

Uð1ÞN− ~N are confined by electric strings formed due to the
condensation of monopoles in the heavy Uð1ÞN− ~N Abelian
sector. In much the similar way as in the r ¼ N vacuum,
these stringy mesons are the candidates for Seiberg’s M
mesons. At intermediate values of μ, the Uð1ÞN− ~N Abelian
sector is at weak coupling, and these mesons are heavy,
with masses of the order of

ffiffiffiffiffiffiffiffiffiffi
ξlarge

p
∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μΛN¼2

p
.

We can compare our low-energy Uð ~NÞ μ-dual theory to
Seiberg’s dual. In much the same way as in the r ¼ N
vacuum, we find a perfect match [13]. Namely, if we integrate
outM fields in Seiberg’s dual superpotential [Eq. (3.8)] (they
are heavy at intermediate values of μ) and make identification
[Eq. (3.11)] similar to that in the r ¼ N vacuum, we arrive at
the superpotential, which coincides (up to a sign) with our
superpotential in Eq. (6.8).
The identification [Eq. (3.11)] reveals the physical nature

of the Seiberg “dual quarks.” In much the sameway as in the
r ¼ N vacuum, they are not monopoles. Instead, they are
quark-like dyons, which have color charges identical to those

of quarks but different global charges. Condensation of r
dyons leads to the confinement of monopoles and the
“instead-of-confinement" phase for quarks in theUðrÞ sector.

B. Large μ

Now we assume that μ is large while
ffiffiffiffiffiffiffiffiffiffi
ξsmall

p
is small

enough to ensure the weak coupling regime in the low-
energy Uð ~NÞ μ-dual theory; see Eq. (4.1). By the same
token as in the r ¼ N vacuum, we can use the anomaly
matching to show that Seiberg’s M mesons should become
light at large μ.
If the IR energy scale is large, EIR ≫

ffiffiffiffiffiffiffiffiffiffi
ξsmall

p
, the global

group is given by Eq. (4.2), and in this case the anomaly
matching was carried out in Ref. [2]. Namely, the trans-
formation properties of quarks of the original theory andM
mesons are given by Eqs. (4.3) and (4.5). Let us consider
the dyon charges. The R charge is determined by the
anomaly cancellation requirement with respect to non-
Abelian gauge bosons [2]. It is determined by the number
of flavors and the rank of the gauge group. Say, for quarks
of the original theory it is given by ~N=Nf; see Eq. (4.3).
The rank of the gauge group in the μ-dual theory is
different, however. It equals ~N. Thus, the R charges of
the DlA dyons are given by

RD ¼ N
Nf

: ð6:9Þ

This tells us that the quarks and dyons are in fact
different states, as was mentioned above. We arrive at our
μ-dual theory starting from theN ¼ 2 limit by virtue of the
μ deformation. Moving along in this way, we break
the Uð1ÞR symmetry. Thus, we were unable to observe
the above distinction. The dyons appeared just as quarks
with a truncated number of colors. Now, studying the chiral
limit, we see that in fact they are different states.
As was already explained, the weakly confined quark-

antiquark pairs decay into unconfined dyon pairs via a
wall-crossing-like process

qþ ~q → D̄þ ~̄Dþ λþ λ ð6:10Þ

upon increasing μ; see Eq. (6.6). It is easy to see that this
decay respects the R-charge conservation, where we use the
fact that the gaugino R charge is unity. Equation (6.10)
shows that the dyon transformation laws are

D∶
�
N̄f; 1;

N
Nf

�
; ~D∶

�
1; Nf;

N
Nf

�
: ð6:11Þ

In particular, the DlA dyon transforms in the N̄f represen-
tation of the SUðNfÞL rather than8 in the representation Nf.

8This important circumstance was noted by Chernyak [8].
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We see that the dyon transformation properties are the
same in both the zero and the r ¼ N vacua [see Eq. (4.4)],
and that they coincide with those for the Seiberg dual
quarks [2]. Thus, the anomaly matching at the IR energy
scale

EIR ≫
ffiffiffiffiffiffiffiffiffiffi
ξsmall

p

follows the calculation presented in Ref. [2]. The conclud-
ing result is that the light neutral MB

A field is needed to
match the anomalies.
If EIR ≪

ffiffiffiffiffiffiffiffiffiffi
ξsmall

p
, the unbroken global group is

SUðrÞ × SUðNf − rÞ × Uð1ÞV: ð6:12Þ

In particular, it is easy to see that the chiral Uð1ÞR
symmetry is broken in the zero vacua in contradistinction
with the r ¼ N case. In fact, we cannot arrange combina-
tions similar to those in Eqs. (4.7) and (4.9) to ensure that
the R0 charges of the r components of quarks and ðNf − rÞ
components of M mesons (which develop VEVs) vanish.
The required axial rotation from the non-Abelian sub-
groups in Eq. (4.2) does not respect the Yukawa interaction
ð ~DADBÞMA

B. Therefore, we cannot match anomalies at
energies below

ffiffiffiffiffiffiffiffiffiffi
ξsmall

p
.

Thus, in the zero vacua, the anomaly matching gives a
less restrictive upper bound on the M-meson mass as
compared to the r ¼ N vacuum, namely mM ≲ ffiffiffiffiffiffiffi

μm
p

.
Still, we can obtain a more restrictive estimate for the
M-meson mass using the Goldstone theorem. The number
of broken generators in the breaking of Eq. (4.2) down to
Eq. (6.12) is

r2 þ ðNf − rÞ2 þ 4rðNf − rÞ: ð6:13Þ

While r2 and 4rðNf − rÞ broken generators can be
accounted for by light dyons in the rr̄ and bifundamental
representations, respectively, the extra ðNf − rÞ2 light
states are missing. These can be accounted for by the light
M meson. As a result, we conclude that theM-meson mass
should be lighter, namely

mM ∼m; ð6:14Þ
as is the case in the r ¼ N vacuum.
The physical interpretation of Seiberg’sM mesons in the

zero vacua is as follows: As was already mentioned, the
candidates for the M mesons can be found among mesonic
states from the heavy Abelian Uð1ÞN− ~N sector—quark-
antiquark pairs connected by confining strings. The

majority of these mesons are similar to those shown in
Fig. 1, in which the monopoles should be replaced by
quarks. However, a peculiar feature of all r < N vacua is
that there are only ðN − 1Þ strings; one of the strings is
missing. Therefore, some of these mesons are formed by
quarks and antiquarks connected by only one string, while
the other one is missing; see Refs. [24,27] for more details.
Now, similarly to the situation in the r ¼ N vacuum, we

suggest that one of these quark-antiquark stringy mesons
becomes light at large μwhen theUð1ÞN− ~N sector enters the
strong coupling regime. ThisM meson should be integrated
in the Uð ~NÞ μ-dual theory as a “fundamental” (elementary)
field. Other fields of the Abelian Uð1ÞN− ~N sector are heavy
and can be integrated out. The superpotential and action of
the low-energy Uð ~NÞ μ-dual theory are given in Eqs. (4.14)
and (4.15).

VII. SUMMARY AND CONCLUSIONS

To summarize, at large μ and small ξsmall, μ-deformed
SQCD in the r ¼ N vacuum is described by the weakly
coupled infrared-free r-dual Uð ~NÞ theory [Eq. (4.15)] with
Nf light quark-like dyon flavors. Condensation of the light
dyons DlA in this theory triggers formation of the non-
Abelian strings and confinement of monopoles. The quarks
and gauge bosons of the original N ¼ 1 SQCD are in the
“instead-of-confinement” phase: they evolve into the
monopole-antimonopole stringy mesons shown in Fig. 1.
There is also Seiberg’s neutral-meson M field which is a
monopole-antimonopole stringy meson from the heavy
Abelian sector. It becomes anomalously light and plays
the role of a “pion” at large μ.
In the zero r-vacua, we have the weak coupling descrip-

tion in terms of the infrared-free μ-dual Uð ~NÞ theory
[Eq. (4.15)] with Nf flavors of quark-like dyons. Only r
dyons condense (r < ~N), leading to the confinement of
monopoles in theUðrÞ sector. TheUð ~N − rÞ sector is in the
non-Abelian Coulomb phase for dyons. Seiberg’sM meson
is a quark-antiquark stringy state which comes from the
heavy Abelian sector. It becomes light at large μ.
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