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In view of the obstacles encountered in any attempts to solve the Minkowski-space Bethe-Salpeter
equation for bound states of two fermions, we study the possibility to model the bound-state features, at
least at a qualitative level, by a Schrödinger description. Such a nonrelativistic potential model can be
constructed by applying, to any given Bethe-Salpeter spectral data, “geometric spectral inversion” in its
recently extended form, which tolerates also singular potentials. This leads to the adaptation of explicit
models that provide an overview accounting for the Bethe-Salpeter formalism’s complexities.
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I. INTRODUCTION: MOTIVATION
AND INCENTIVE

The Bethe-Salpeter formalism offers a description of
bound states consistent with all the requirements of
relativistic quantum field theory [1–3]: bound states with
all their properties, such as their masses or the distribution
of the relative momenta of their constituents (encoded in
suitably defined amplitudes playing the role of a kind of
wave functions) arise as solutions of appropriate equations
of motion, called the (homogeneous) Bethe-Salpeter (BS)
equation in the case of bound states composed of two
constituents or the (homogeneous) Faddeev equation for
three-particle systems. In these equations, the underlying
dynamics enter via the full propagators of the constituents
and their interactions kernels—Green functions which, at
least in principle, may be deduced from the infinite tower of
corresponding Dyson-Schwinger equations. In practice, we
are limited to adequate truncations of this tower and the
tight bounds of perturbation theory.
However, attempts to obtain solutions to the BS equation

inMinkowski space, characterized by the pseudo-Euclidean
space-time metric tensor gμν ¼ diagðþ1;−1;−1;−1Þ,
have to face serious obstacles in the form of singularities
induced by propagators or interaction kernels. The usual
remedy is to trust in analytic continuation and Cauchy’s
integral theorem and to formulate the BS equation in
Euclidean space, with metric gμν ¼ δμν. However, even if
the two approaches yield the same bound-state masses,
predictions based on the amplitudes describing the con-
stituents’ motion differ drastically.
In view of this, we recently proposed [4] to construct,

by spectral inversion of the bound-state energies,

approximately equivalent Schrödinger models, and
applied [4] this idea, as a kind of feasibility study, to
Minkowski-space BS results for bound states of two
scalar particles. Here, we extend this analysis to the case
of higher relevance for physics: fermionic bound-state
constituents. Couplings of fermions to bosons distinguish
between bosons of different Lorentz nature. We use as
input BS findings from the exchange of a single scalar,
pseudoscalar, or massless vector boson reported in
Refs. [5–7], and invert the data by our generalization to
singular potentials [8] of a previously formulated inver-
sion technique [9–14]. We may get a first idea of what to
expect by inspecting the BS formalism’s nonrelativistic
limit; see, e.g., Refs. [15–18].
The outline of this paper is as follows. In Sec. II, we

recall, merely to the extent required for the present
investigation, the principal features of our previously
constructed geometric spectral inversion theory [4,8]. To
prepare the grounds for the applications of this approach to
the energy levels of fermion–(anti-)fermion bound states
resulting from the (Minkowski-space) BS formalism, we
collect, in Sec. III, the binding-energy predictions of
Refs. [5–7]. In Sec. IV, we subject these mass spectra to
the inversion procedure. The insights gained by these
efforts finally motivate us to search, in Sec. V, for analytic
models, based on shifted-Coulomb or Hulthén potentials,
rather accurately reproducing the data.

II. GEOMETRIC SPECTRAL INVERSION

Let us start by sketching briefly the reasoning of
Refs. [4,8] leading to the spectral inversion algorithm
and stating a uniqueness theorem. The underlying
functional inversion was first introduced in Ref. [14].
We consider the discrete spectrum of a Schrödinger
Hamiltonian operator
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H ≡ −Δþ vfðrÞ; r≡ ∥r∥; r ∈ R3; ð1Þ

where fðrÞ is an attractive central-potential shape and v> 0
is its coupling parameter. Assume that fðrÞ is monotone
nondecreasing and no more singular than the Coulomb
potential fðrÞ ¼ −1=r. Then, the operator inequality
[19,20] H ≥ 1=ð4r2Þ þ vfðrÞ, along with a simple varia-
tional upper bound to hHi, enables us to show that a
discrete spectrum exists for sufficiently large coupling
v > v1 > 0. In particular, the ground-state energy E may
be written as a function E ¼ FðvÞ. We are interested in the
problem: can we reconstruct the potential shape fðrÞ from
the spectral data, given by, e.g., the ground-state curve
FðvÞ? We call this type of reconstruction “geometric
spectral inversion.”
Discrete spectra of operators bounded from below can be

characterized variationally [21]; their ground-state energy is

FðvÞ ¼ inf
ψ∈DðHÞ
∥ψ∥¼1

ðψ ; HψÞ; ð2Þ

whereDðHÞ is the domain ofH. Define, for the ground state
ψ , the kinetic potential f̄ðsÞ associated with the potential
fðrÞ by a constrained minimization that keeps the mean
kinetic energy s≡ h−Δi constant,

f̄ðsÞ≡ inf
ψ∈DðHÞ
∥ψ∥¼1

ðψ ;−ΔψÞ¼s

ðψ ; fψÞ: ð3Þ

A final minimization over s allows us to recover the
eigenvalue FðvÞ of H from f̄ðsÞ,

FðvÞ ¼ min
s>0

½sþ vf̄ðsÞ�: ð4Þ

The spectral function FðvÞ turns out to be concave (i.e.,
F″ðvÞ < 0) and can be shown [9] to satisfy

F″ðvÞf̄″ðsÞ ¼ −
1

v3
< 0: ð5Þ

Hence, FðvÞ and f̄ðsÞ have opposite convexities and, more-
over, are related by a Legendre transformation f̄↔F [22],

f̄ðsÞ ¼ F0ðvÞ; s ¼ FðvÞ − vF0ðvÞ; ð6Þ

1

v
¼ −f̄0ðsÞ; FðvÞ

v
¼ f̄ðsÞ − sf̄0ðsÞ: ð7Þ

FðvÞ is not necessarily monotone, but f̄ðsÞ is monotone
decreasing. By Eq. (6), in place of s also the coupling, labeled
u for this purpose, may be used as a minimization parameter.
A different formulation of this minimization is found if

changing the kinetic-energy parameter from s to r itself, by
inverting the (monotone) function f̄ðsÞ to define the K
function

K½f�ðrÞ ¼ s ¼ ðf̄−1∘fÞðrÞ; ð8Þ
which exhibits invariance with respect to scale and shifts
(with constants A > 0 and B),

K½AfþB�ðrÞ ¼ K½f�ðrÞ: ð9Þ
In terms of K, Eq. (4) becomes

FðvÞ ¼ min
r>0

½K½f�ðrÞ þ vfðrÞ�: ð10Þ

Clearly, K still depends on f, but Eq. (10) has FðvÞ on one
side and fðrÞ on the other. By inversion of this relation,
we may accomplish F → f. To this end, we construct a
sequence of approximate K functions which do not depend
on f.
Now, suppose that a fðrÞ may be written as the smooth

transformation fðrÞ ¼ gðhðrÞÞ of a “basis potential” hðrÞ.
Then, the knowledge of the spectrum of −Δþ vhðrÞ may
be exploited to study the spectrum of −Δþ vfðrÞ. For
definite convexity of the transformation function g, the
kinetic-potential formalism immediately provides energy
bounds. This follows from Jensen’s inequality [23], which
we rephrase, for our present goal, in terms of the kinetic-
potential bounds

g00 ≥ 0 ⇒ f̄ðsÞ ≥ gðh̄ðsÞÞ; g00 ≤ 0 ⇒ f̄ðsÞ ≤ gðh̄ðsÞÞ:
ð11Þ

For these, we write f̄ðsÞ ≈ gðh̄ðsÞÞ, where the symbol ≈ is
understood to indicate the appropriate inequality whenever
g has definite convexity. Expressed in terms of K functions,
the above results read

K½f� ¼ f̄−1∘f ≈ ðg∘h̄Þ−1∘ðg∘hÞ ¼ h̄−1∘h ¼ K½h�: ð12Þ
Thus, K½f� ≈ K½h� is the approximation sought; it no longer
depends on f. The corresponding energy bounds become

E ¼ FðvÞ ≈min
s>0

½sþ vgðh̄ðsÞÞ� ¼ min
r>0

½K½h�ðrÞ þ vfðrÞ�:
ð13Þ

For an eigenvalue E of H known as function E ¼ FðvÞ
of the coupling v > v1, the kinetic potential f̄ðsÞ is found
by inverting the Legendre transformation (6),

FðvÞ¼min
s>0

½sþvf̄ðsÞ�⇒ f̄ðsÞ¼max
v>v1

�
FðvÞ
v

−
s
v

�
: ð14Þ

Furthermore, we also have to invert the relation (10)
between F½n� and K½n�,

KðrÞ ¼ max
v>v1

½FðvÞ − vfðrÞ�: ð15Þ

We implement the inversion procedure by starting from a
suitably chosen seed potential shape, f½0�ðrÞ, from which
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we generate a sequence ff½n�ðrÞg∞n¼0 of improving approx-
imations to the potential. The idea behind this is to arrive at
a map g such that gðf½n�ðrÞÞ is close to fðrÞ in the sense that
the arising eigenvalue is close to our starting point FðvÞ. At
each stage, the envelope approximation is used. At stage n,
the best transformation g½n� is deduced by using the current
potential approximation f½n�ðrÞ as the envelope basis. Thus,
each step in the generation of the sequence ff½n�ðrÞg∞n¼0

reads

f̄¼g½n�∘f̄½n�⇒g½n� ¼ f̄∘ðf̄½n�Þ−1⇒f½nþ1� ¼g½n�∘f½n� ¼ f̄∘K½n�:

ð16Þ

In more detail, the ultimate procedure of our inversion
algorithm may be summarized symbolically in the follow-
ing way:

f½n�ðrÞ ⟶ F½n�ðvÞ
⟶ K½n�ðrÞ ¼ max

u>v1
½F½n�ðuÞ − uf½n�ðrÞ�

⟶ f½nþ1�ðrÞ ¼ max
v>v1

�
FðvÞ
v

−
K½n�ðrÞ

v

�
: ð17Þ

For the step f½n�ðrÞ ⟶ F½n�ðvÞ we need to know
E ¼ F½n�ðvÞ, which we get by solving ð−Δþ vf½n�Þψ ¼
Eψ numerically.
The potential shape fðrÞ is severely constrained by

knowledge of FðvÞ. Consider a singular potential fðrÞ
of the form

fðrÞ ¼ gðrÞ
r

; ð18Þ

where gð0Þ < 0, g0ðrÞ ≥ 0, and gðrÞ is not constant.
Examples of such singular shapes fðrÞ are Yukawa,
gðrÞ ¼ −e−ar, Hulthén, gðrÞ ¼ r=ðear − 1Þ, and linear-
plus-Coulomb, gðrÞ ¼ −aþ br2, with a; b > 0. For this
class of potentials, we have proved [8] the following.
Theorem: the potential fðrÞ in H ¼ −Δþ vfðrÞ is

uniquely determined by its ground-state energy func-
tion E ¼ FðvÞ.

III. SPECTRAL DATA FROMMINKOWSKI-SPACE
BETHE-SALPETER EQUATION FOR FERMIONIC

BOUND-STATE CONSTITUENTS

A. Bethe-Salpeter bound-state energies as input data
to spectral inversion

In their discussion [5–7] of the homogeneous Bethe-
Salpeter equation in Minkowski space, Carbonell and
Karmanov consider bound states of two fermionic con-
stituents of equal masses m, bound by exchanging between
these constituents a single boson of mass μ and of scalar,
pseudoscalar, or vector Lorentz nature. In Table I, we
reproduce, from Refs. [5–7], the five sets of associated
binding energies, E, presently available in the literature,
computed by numerical solution of the corresponding
Minkowski-space Bethe-Salpeter equation, versus our cou-
pling parameter, v, and, for the sake of later ease of
reference, grasp the opportunity to label these data sets
in a mnemonic way (last row of Table I).

TABLE I. Couplings v and binding energies E arising from (Minkowski-space) Bethe-Salpeter equations describing bound states of
fermionic constituents of mass m ¼ 1, computed for two-fermion systems bound by the exchange of a single scalar or pseudoscalar
boson of mass μ ¼ 0.15 or μ ¼ 0.5 and for fermion–antifermion systems bound by a single massless vector-boson exchange [5–7].a The
numerical values of the binding energies E have been computed for the choices Λ ¼ 2 for the vertex form-factor parameter Λ in the
vertex form factor FðkÞ of Eq. (19) and L ¼ 1.1 for the “mass” L in the “discontinuity-smoothing” factor ηðp; PÞ of Eq. (20).

v

Fermion-fermion bound state Fermion–antifermion bound state

Scalar-boson exchange Pseudoscalar-boson exchange Vector-boson exchange

μ ¼ 0.15 μ ¼ 0.50 μ ¼ 0.15 μ ¼ 0.50 μ ¼ 0 E

0.6217 2.008 17.89 33.61 0.2598 −0.01
0.7998 2.347 18.53 34.23 0.3907 −0.02
0.9510 2.627 18.80 34.68 0.4984 −0.03
1.089 2.880 19.35 35.05 0.5934 −0.04
1.222 3.119 19.66 35.36 0.6802 −0.05
1.840 4.203 20.86 36.60 1.046 −0.10
3.049 6.227 22.51 38.25 1.626 −0.20
4.313 8.260 23.76 39.58 2.109 −0.30
5.656 10.40 24.81 41.00 2.534 −0.40
6.919 12.53 25.71 41.85 2.914 −0.50
Data S1 Data S2 Data P1 Data P2 Data V

aNote that inspection of the nonrelativistic limit reveals that our coupling, v, is related by v ¼ g2=ð4πÞ to the coupling g used in
Refs. [5–7].
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B. Additional complications in the case of fermionic
bound-state constituents

In their numerical studies, Carbonell and Karmanov find,
at least for both scalar- and vector-boson exchanges, that
beyond some critical value gc of the respective coupling
constant g, namely, gc ¼ 2π in the scalar-boson case and
gc ¼ π in the vector-boson case, the resulting energy
spectrum is unbounded from below. This—strange but
for good reasons beyond doubt highly unwanted—feature
is cured by the introduction of a vertex form factor FðkÞ,
k≡ p − q, of the form

FðkÞ ¼ μ2 − Λ2

k2 − Λ2 þ iε
; lim

Λ→∞
FðkÞ ¼ 1; ð19Þ

and by the regularization of the relevant interaction vertices
by replacing the corresponding coupling constant g by
gFðkÞ. Moreover, the interaction kernels exhibit a discon-
tinuous behavior as functions of the respective integration
variables. These discontinuities are smoothed by multiply-
ing the entire integral equation, that is, both left-hand side
and right-hand side, by a factor ηðp;PÞ which is reminis-
cent of the product of the free propagators of two spinless
particles carrying momenta p1 and p2,

ηðp;PÞ ¼ m2 − L2

ð1
2
Pþ pÞ2 − L2 þ iε

m2 − L2

ð1
2
P − pÞ2 − L2 þ iε

;

lim
L→∞

ηðp; PÞ ¼ 1; L > m: ð20Þ

Carbonell and Karmanov claim that the latter modification
does not change the resulting solutions of the BS equation.

IV. CONSTRUCTION OF EFFECTIVE
POTENTIALS BY GEOMETRIC SPECTRAL

INVERSION

We now use our inversion theory [8] to find the potential
shape fðrÞ in the Schrödinger HamiltonianH, Eq. (1), that,
for any spectral data set in Table I, generates those binding
energies E for the given values of the coupling parameter v.
Let us start our inversion algorithm, Eq. (17), from a pure
Coulomb seed potential f½0�ðrÞ ¼ −α=r, with constant
α > 0. Since there are merely ten points for each data
set, it is necessary first to represent each energy curve FðvÞ
by a smooth interpolating function. Each data set deter-
mines a cutoff value v0 of the coupling, defined by
Fðv0Þ ¼ 0. In cases such as data P2 of Table I, where v0 ≈
30.8 is large, we found that the inversion algorithm
converges very slowly. It became clear that it was much
more effective to shift the abscissas of the data by using the
new variable u≡ v − v0, in effect inverting F ðuÞ≡
Fðv0 þ uÞ instead of FðvÞ ¼ Fðv0 þ uÞ. Thus, using the
data set P2 of Table I, we find the potential shape whose
graph is plotted in Fig. 1: an abuse of notation allows us to
label the energy ordinate generically as FðuÞ.

V. MINIMAL SCHRÖDINGER MODELS

A. Coulomb model

Encouraged by the effectiveness and rapid convergence
of the inversion of Sec. IV, we adopt tentatively the
following simplified method. Consider the Schrödinger
Hamiltonian H for the relative energy of two particles of
common mass m,

H ¼ −
1

m
Δþ ðv − v0Þ

�
−
a
r
þ b

�
; ð21Þ

where the three adjustable parameters fa; b; v0g are the
Coulomb weight a, a potential shift b, and the critical
coupling for vanishing energy, v0. All corresponding exact
eigenenergies EnlðvÞ are immediately given by the elemen-
tary formula

EnlðvÞ ¼ bðv − v0Þ −
ma2ðv − v0Þ2
4ð1þ nþ lÞ2 ;

n ¼ 0; 1; 2;…; l ¼ 0; 1; 2;…: ð22Þ
For the case at hand, we have m ¼ 1 for the mass, we set
u≡ v − v0, and we consider the ground state (identified by

0 1 2 3 4 5

r

-3

-2

-1

0

f(r)  

0 1 2 3 4 5 6 7 8 9 10 11 12

u

-0.5

-0.4

-0.3

-0.2

-0.1

0

F(u)  

data

FIG. 1 (color online). Geometric inversion of the data set P2 of
fermion–antifermion binding energies in Table I. We depict, for
the potential fðrÞ, a sequence of three iterations of inversion,
f½k�ðrÞ, k ¼ 0; 1; 2; 3, where the seed, f½0�ðrÞ ¼ −0.2=r, is the
lowest (red) curve, as well as, in the insert graph, both the
interpolation curve FðuÞ of the binding-energy input (hexagons)
and the corresponding eigenvalue curve of the Hamiltonian
H ¼ −Δþ uf½3�ðrÞ. Since E ¼ 0 for v0 ≈ 30.8, the sequence
inverts FðuÞ, where u≡ v − v0. [Note that FðuÞ is positive in the
interval u ∈ ð0; ucÞ, uc ¼ 4b=a2 ¼ 2.3726, rising to a maximum
of 0.0072 at the interval center.]
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the quantum numbers n ¼ l ¼ 0) for which we obtain the
energy formula E ¼ FðuÞ and its exact inversion fðrÞ as
follows:

FðuÞ ¼ −
a2u2

4
þ bu ⟶ fðrÞ ¼ −

a
r
þ b: ð23Þ

The idea is that we fit the energy formula to the given
energy data by finding the best parameter triple fa; b; v0g:
this, in turn, specifies the associated potential shape, fðrÞ.
The fast convergence of the inversion algorithm that we
exhibited numerically in Fig. 1 is, in fact, realized analyti-
cally in just a single step, as we now show in the following
subsection.

B. Exact inversion in one step

We prove, for the inversion algorithm of Sec. II, that if
the seed is of Coulombic shape, f½0�ðrÞ ¼ −α=r, then the
first iteration of the algorithm yields f½1�ðrÞ ¼ −a=rþ b.
To show this, we simply apply the inversion algorithm, as
follows:

H½0� ¼−Δ−
αu
r
⇒F½0�ðuÞ¼−

ðαuÞ2
4

⟶K½0�ðrÞ¼max
u>0

½F½0�ðuÞ−uf½0�ðrÞ�¼ 1

r2

⟶f½1�ðrÞ¼max
u>0

�
FðuÞ
u

−
K½0�ðrÞ

u

�

⇒f½1�ðrÞ¼max
u>0

�
−
a2u
4

−
1

r2u
þb

�
¼−

a
r
þb:

Thus, the inversion F → f is achieved in one step. This
finding itself is perhaps neither profound nor surprising, but
it illuminates our observation, made in the present context,
that geometric spectral inversion is very efficient when
there exists a critical coupling v0 ≠ 0 and the energy is
considered to be a function of ðv − v0Þ. We note in passing
that the second algorithmic step yields the K function
K½0�ðrÞ ¼ 1=r2, which does not depend on the parameter α,
even though the seed, f½0�ðrÞ ¼ −α=r, does. This is con-
sistent with the general invariance of K functions, noted in
Eq. (9) above.

C. Application of the Coulomb model to Bethe-Salpeter
binding energies

We apply the model (23) to each of the data sets in
Table I. The fitted values of the parameters fa; b; v0g are
collected in Table II, whereas the graphical results for the
potential shapes fðrÞ and the corresponding v-form energy
curves FðvÞ are depicted in Figs. 2–6; the interpolated
hexagons represent the original discrete spectral data from
Table I.

D. Equivalent Hulthén model

As is rather well known [24,25], for the (nonrelativistic)
Schrödinger Hamiltonian operator with Hulthén potential,

H ¼ −Δþ v

�
−

α

expðβrÞ − 1

�
; α > 0; β > 0; ð24Þ

the energy eigenvalues of bound states with vanishing orbital
angular momentum (l ¼ 0, s states) can be given exactly,

En ¼ −
½vα − β2ðnþ 1Þ2�2

½2βðnþ 1Þ�2 ;

vα ≥ β2ðnþ 1Þ2; n ¼ 0; 1; 2;…: ð25Þ
If we consider the ground state (n ¼ 0) and set α ¼ v0a2 and
β ¼ v0a, then we arrive at the operator–eigenvalue pair

−Δþ v

�
−

v0a2

expðv0arÞ − 1

�
þ bðv − v0Þ

⟶ E ¼ −
a2ðv − v0Þ2

4
þ bðv − v0Þ: ð26Þ

0 1 2 3 4 5
r

-3

-2

-1

0

f(r)  

  dataset = 11, a = 0.06544314, b = -0.075782, v0 = 0.539623

0 1 2 3 4 5 6 7

v

-0.5

-0.4

-0.3

-0.2

-0.1

0

F(v)

FIG. 2 (color online). Binding-energy data S1 from Table I
(interpolated hexagons) and corresponding potential shape given
by the model (23).

TABLE II. Values found for the parameters fa; b; v0g of the
shifted Coulomb potential for each of the five data sets in Table I.

Data set a b v0

S1 0.0654431 −0.075782 0.539623
S2 0.0233604 −0.046011 1.948014
P1 0.1589268 0.0 16.841319
P2 0.1432232 0.012167 30.76632
V 0.3773324 −0.086117 0.181089
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We note that Eqs. (26) and (23) describe the same spectral
curve. There is, however, a qualitative formal difference: in
the Coulomb model (23), the potential shape fðrÞ is simply
multiplied by the coupling ðv − v0Þ, whereas, in the Hulthén
Hamiltonian (26), the operator term bðv − v0Þ contributes
the part bv to the potential and simultaneously an additional

part bv0 is subtracted from the energy operator at the end.
Thus, although the Hulthén model involves a pair potential
that is similar to the Yukawa potential, its use in the context
of the present model structure—where ðv − v0ÞfðrÞ so
effectively leads to FðvÞ—does not remain our first choice.
Of course, when b ¼ 0, this difference between the models

0 1 2 3 4 5
r

-3

-2

-1

0

f(r)  

  dataset = 14, a = 0.14322320, b = 0.012167, v0 = 30.766320

33 34 35 36 37 38 39 40 41 42

v

F(v)

-0.5

-0.4

-0.3

-0.2

-0.1

0

FIG. 5 (color online). Binding-energy data P2 from Table I
(interpolated hexagons) and corresponding potential shape given
by the model (23).

0 1 2 3 4 5

r

-3

-2

-1

0

f(r)  

  dataset = 12, a = 0.02336039, b = -0.046011, v0 = 1.948014

2 3 4 5 6 7 8 9 10 11 12 13
v

-0.5

-0.4

-0.3

-0.2

-0.1

0

F(v)

FIG. 3 (color online). Binding-energy data S2 from Table I
(interpolated hexagons) and corresponding potential shape given
by the model (23).

0 1 2 3 4 5
r

-3

-2

-1

0

f(r)  

  dataset = 13, a = 0.15892677, b = 0.000000, v0 = 16.841319

17 18 19 20 21 22 23 24 25 26

v

-0.5

-0.4

-0.3

-0.2

-0.1

0

F(v)

FIG. 4 (color online). Binding-energy data P1 from Table I
(interpolated hexagons) and corresponding potential shape given
by the model (23).

0 1 2 3 4 5
r

-3

-2

-1

0

f(r)  

  dataset = 15, a = 0.37733240, b = -0.086117, v0 = 0.181089

0 1 2 3

v

F(v)

-0.5

-0.4

-0.3

-0.2

-0.1

0

FIG. 6 (color online). Binding-energy data V from Table I
(interpolated hexagons) and corresponding potential shape given
by the model (23).
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is removed, and on (understandable) grounds of familiarity
in the use of coupling, one might prefer the Hulthén option.
In any case, both models are always available and for the
ground-state energy they may be considered to be
equivalent.

VI. CONCLUSION

Numerical solutions [5–7] to the Bethe-Salpeter equation
describing bound states of two fermions yield data for the
binding energy E ¼ FðvÞ as a function of the coupling
parameter v > 0. The form of the data suggests that they
may be generated (approximately) by a suitable nonrela-
tivistic model. Meanwhile, we have at our disposal a
geometric spectral inversion theory [4,8–14] which, if
E ¼ FðvÞ is the lowest eigenvalue of the Schrödinger
HamiltonianH ≡ −Δþ vfðrÞ, reconstructs from the given
spectral curve FðvÞ the underlying potential shape fðrÞ.
By first analyzing the fermion data expressed in this
manner, as we had done earlier [4] for interacting bosons,
we eventually made an elementary discovery: namely,

when there exists a nonzero critical value v0 of the coupling
v and the model Hamiltonian is written in the form
H ¼ −Δþ ðv − v0ÞfðrÞ, then the spectral data FðvÞ found
for the Bethe-Salpeter two-fermion problem are accurately
represented as the eigenvalues of that Hamiltonian H for
which the potential shape has, for a > 0, the elementary
form fðrÞ ¼ −a=rþ b. As more eigenvalue data become
available, we expect to be able to translate the essential
features of such relativistic two-particle problems into
values for the parameters fa; b; v0g of this minimal non-
relativistic model.
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