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A generalization of the action principle of classical mechanics, motivated by the closed time path scheme
of quantum field theory, is presented to deal with initial condition problems and dissipative forces. The
similarities of the classical and the quantum cases are underlined. In particular, effective interactions that
describe classical dissipative forces represent the system-environment entanglement. The relation between
the traditional effective theories and their closed time path extension is briefly discussed, and a few
qualitative examples are mentioned.
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I. INTRODUCTION

An elementary theory is supposed to describe funda-
mental degrees of freedom. It is always assumed that the
dynamics is closed, the classical equations of motions can
be derived from an action, and the quantum states are
represented by vectors in a linear space with unitary time
evolution. In constructing an effective theory for some
observed dynamical variables, called the system, we admit
that their dynamics is open and their interactions with the
unobserved rest of the Universe, the environment, render
the effective interactions highly involved. In fact, effective
theories are supposed to encompass dissipative forces and
mixed states. Some of the analytical tools that have been
developed for elementary theories, namely the classical
action principle and the use of transition amplitudes
between pure states in the quantum case, are therefore
insufficient for effective theories.
Effective theories are discussed first on the classical level

in this paper. A generalization of the elementary, holonomic
forces acting in closed systems, called semiholonomic
forces, is given. The extension is, on the one hand,
restricted enough still to find an action principle to deal
with them and, on the other hand, sufficiently general to
cover effective forces that can be induced by holonomic
system-environment forces. It turns out that these effective
forces can always be given account of by creating a copy of
the system and letting it interact with the original system
with holonomic forces. The method to deal with effective,
open quantum systems is motivated by the extension of the
naive quantization rules and the density matrix as a general
framework to represent probability. The result is the already
well known closed time path (CTP) formalism of quantum
theory.
The possibility of mapping the system-environment

interactions into the interactions of two copies of the system
is implicitly present in quantum theory, in the perturbation
expansion for the Heisenberg representation [1]. The ensuing

CTP formalism has already been used extensively in con-
densed matter physics [2–5] and quantum field theory [6–8],
and has recently been mentioned in the context of classical
mechanics [9,10]. The CTP formalism is presented here as a
natural, simple extension of the classical action principle to
deal with effective theories in both classical and quantum
mechanics.
The discussion of the quantum case is to underline the

uniformity of the formalism and contains a few new details
only: A simple perturbative proof is given that CTP
effective theories extend the traditional effective field
theories [11,12] to cover processes that leave the
environment in an excited state, and this extension is
demonstrated by mentioning inclusive scattering probabil-
ities. Furthermore, it is shown that causality is not satisfied
automatically but follows if the time evolution is unitarity
in a discrete spectrum. Finally a few general remarks are
mentioned about the decoherence, entanglement, classical
and quantum fluctuations, and the classical limit.
The discussion of classical effective theories in Sec. II

starts with a brief description of two new features an
effective theory should possess. It should handle initial,
rather than boundary, condition problems because we do
not know the final state of an unobserved environment.
This is the subject of Sec. II A. Furthermore, it should
handle semiholonomic forces, which arise from holonomic
system-environment interactions. The extension of the
action principle by reduplicating the degrees of freedom
to cover such forces is presented in Sec. II B. A further
extension of this latter action principle for initial condition
problems, the classical CTP formalism, is presented in
Sec. II C by introducing a symplectic structure for the two
CTP copies and by joining their trajectories at the final
time. This scheme is the constructive proof that the class of
semiholonomic forces is closed with respect to generating
effective interactions. One of the main advantages of the
CTP action principle, the straightforward introduction of
the retarded Green function, is demonstrated in Sec. II D.
Section II E contains the discussion of the effective action.
The distinguishing piece of the effective action that*polonyi@iphc.cnrs.fr
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describes the coupling of the two CTP copies of the system,
the influence functional, is shown to be related to semi-
holonomic forces in Sec. II F.
The second part of this work, Sec. III, is devoted to

quantum dynamics. The simple quantization rules, the
path integral representation of expectation values rather
than transition amplitudes, and the Green functions of
open systems are mentioned briefly in Sec. III A. The
quantum effective theories are the subject of Sec. III B
where the effective action is given as a sum of one and
two CTP copies contributions. The former agrees with
the effective action of traditional quantum field theories
where the initial and final states are the vacuum. The latter,
the influence functional, arises from processes that leave
the environment in an excited state at the final time. Two
examples of using CTP effective theories follow after that.
It is shown in Sec. III C that inclusive scattering processes,
where certain final particles remain unobserved, are more
natural to be described by an effective CTP theory. The
causal structure of interactions is not a trivial result in
effective theories, and the realization of causality and its
possible violation are discussed in Sec. III D. The pos-
sibility to calculate the reduced density matrix by means
of path integration opens the way to address some out-
standing problems of the quantum-classical crossover. A
few qualitative remarks about decoherence, entanglement,
the relation of classical and quantum fluctuations, and the
classical limit are made in Sec. III E. Finally, Sec. IV
contains the summary.
Two Appendixes are added to make this work more

self-contained. The way semiholonomic forces violate the
usual conservation law is discussed in Appendix A by
checking the status of Noether’s theorem in effective
theories in some simple cases. The system-environment
entanglement leads to a mixed system state. This can be
followed in the clearest manner by using relative states,
defined in Appendix B.

II. CLASSICAL MECHANICS

The classical effective dynamics will be discussed within
a generic model where Ns system and Ne environment
coordinates, x and y, respectively, obey a closed dynamics
that is described by a Lagrangian, Lðx; y; _x; _yÞ. The
trajectories for the time interval ti < t < tf are the solutions
of the equations of motion, ẍ ¼ Fsðx; _x; y; _yÞ, and
ÿ ¼ Feðx; _x; y; _yÞ, subject of some auxiliary conditions,
csðxðtsÞ; _xðtsÞÞ ¼ 0, ceðyðteÞ; _yðteÞÞ ¼ 0, where ts, te ¼ ti
or tf. Since the environment is not observed, it is natural to
use te ¼ tf. The effective system equation of motion,
ẍ ¼ Fsðx; _x; y½x; ce�; _y½x; ce�Þ, can simply be found by
inserting the solution y ¼ y½x; ce� of the environment
equation for a general system trajectory into the system
equation. Our goal is to find the effective action that
generates the effective system equation as a variational
equation.

A. Initial conditions in effective theories

The first problem is related to auxiliary conditions. The
general solution of the equations of motion contains
2ðNs þ NeÞ free parameters; hence the effective equation
must be an integrodifferential equation of order
2ðNs þ NeÞ. But we cannot solve this equation if we
possess 2Ns auxiliary conditions only. One can recover
the manifold of all solutions by exploiting the 2ðNs þ NeÞ
free parameters of the solution of the effective equation, but
an effective theory should always be equipped with a
prescription or some additional information to select the
2Ns-dimensional submanifold to cover the physically
realizable system trajectories.
The attractive feature of the variation principle is its

efficiency to find constrained extrema by Legendre trans-
formation. This scheme offers a solution to our problem;
namely the system trajectory can formally be defined by
functional derivation rather than solving a higher order
differential equation. For this end we introduce a formal
source, jðtÞ, to diagnose the effective dynamics by using
the action S½x; y; j� ¼ S½x; y� þ jx, where S½x; y� denotes
the action of the full, closed system and the scalar
product of time dependent functions, fðtÞ, gðtÞ, is
fg ¼ R dtfðtÞgðtÞ. Furthermore, we define the functional
W½j� ¼ S½x; y; ; j�, where the trajectories x and y are
eliminated by solving the variational equation of motion
of W, considered as an action functional of the trajectories
for fixed j,

δS
δx

þ j ¼ 0;
δS
δy

¼ 0; ð1Þ

subject of the initial conditions, csðxðtiÞ; _xðtiÞÞ ¼ 0,
ceðyðtiÞ; _yðtiÞÞ ¼ 0. The functional derivative

δW½j�
δj

¼ δS
δx

δx
δj

þ δS
δy

δy
δj

þ δx
δj

jþ x ¼ x ð2Þ

shows that the knowledge of W½j� is sufficient to find the
desired trajectory.
This construction gives more than an algorithm to find

the system trajectory; it provides us with the effective
action, Seff ½x� ¼ W½j� − xj, where x is defined by Eq. (2).
In fact, its variational equation,

δSeff
δx

¼ δW
δj

δj
δx

− x
δj
δx

− j ¼ −j; ð3Þ

is satisfied by the system trajectory for vanishing j. This
way of obtaining the effective action yields

Seff ½x� ¼ S½x; y½x; ce�� ð4Þ

by construction. Another advantage of this construction is
that it is available even if the effective theory is needed for
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such a combination of the coordinates that is not present in
the original action.
The argument presented above is formal and hides a

problem, related to auxiliary conditions: Though one
usually possesses only the initial conditions for the unob-
served environment, the action principle cannot handle
initial value problems. In fact, let us discretize the time by
replacing the trajectory, xðtÞ, by a set of numbers,
xj ¼ xðti þ jΔtÞ, j ¼ 1;…; n ¼ ðtf − tiÞ=Δt and use
∂S=∂xk ¼ 0, 0 < k < n as the equation of motion. If we
set the value of the initial velocity, vi ¼ ðx1 − x0Þ=Δt
beside the initial coordinate, xi ¼ x0, then we have to
impose the equation of motion at the final time to have a
sufficient number of equations to determine the trajectory.
But it is well known that the variation of the action with
respect to the final point of the trajectory that solves the
equation of motion is the generalized momentum and its
vanishing is an unacceptable constraint. A modification of
the action principle is needed where the equation of motion
at the final time is trivial, 0 ¼ 0.

B. Semiholonomic forces

Another problem to solve in effective theories is that the
observed system is open and the Lagrangian description
does not apply. The traditional description of a closed
system starts with the d’Alembert principle, stating that the
virtual work during a variation, δx, of the external force, F,
acting on a particle plus the inertial force, −mẍ, is
vanishing,

ðF −mẍÞδx ¼ 0: ð5Þ
The main assumption, which renders the methods of
analytical mechanics powerful, is that the external force,
which depends on the coordinate and the velocity, is
holonomic; i.e., the virtual work of the external force
during the variation xðtÞ → xðtÞ þ δxðtÞ can be written at a
given time in terms of the derivatives of a scalar potential,
Uðx; _xÞ,

Fðx; _xÞδx ¼ −δx∂xUðx; _xÞ − δ_x∂ _xUðx; _xÞ: ð6Þ
This equation involves not only the variation of the
coordinate, δxðtÞ, but the variation of the velocity, δ_xðtÞ,
too. This is an important point, as it forces us to view the
dynamical problem globally, in terms of the trajectory xðtÞ,
rather than locally, at a given time. The relation

δ_x ¼ d
dt

δx ð7Þ

follows in this manner. This identity can be build into our
equations if, by following Hamilton, we integrate
d’Alembert’s principle in time,

0 ¼ −
Z

tf

ti

dt½δxðmẍþ ∂xUÞ þ δ_x∂ _xU�: ð8Þ

This equation can be written by the use of the identity (7) as
a variational equation,

0 ¼ δ

Z
tf

ti

dtL − δxðm_xþ ∂ _xUÞjtfti ; ð9Þ

involving the Lagrangian Lðx; _xÞ ¼ m_x2=2 −Uðx; _xÞ. Note
in passing that the last term in (9) cancels the boundary
contribution arising from the calculation of the first term,
contrary to a widespread presentation of the Lagrangian
formalism.
We generalize this procedure for semiholonomic forces,

defined by Eq. (6) with the modification that the derivatives
act on a subset of the coordinates only. For this end we use
two copies of the coordinate, x → x̂ ¼ ðxþ; x−Þ, where xþ
is called the active coordinate and x−, the passive coor-
dinate, represents the nonholonomic forces of the environ-
ment, and assume the form

Fðx; _xÞδx ¼ −½δx∂xþUðx̂; _̂xÞ þ δ_x∂ _xþUðx̂; _̂xÞ�jxþ¼x−¼x

ð10Þ
for the virtual work. Since x−ðtÞ describes the same motion
as xþðtÞ, it is reasonable to homogenize the formalism by
performing independent variation on xþ and x−. This gives
the idea to extend the redoubling of the coordinates in the
potential energy to the kinetic energy, as well, and to
rearrange things in such a manner that we arrive at two
equivalent variational equations. The on-shell condition,

xþðtÞ ¼ x−ðtÞ; ð11Þ
is automatically satisfied in this manner.
This plan can be realized by using a generalized

Lagrangian, Lðx̂; _̂xÞ, and by requiring that the equation
of motion be identical for xþ and x−. A sufficient condition
to meet this condition is to have a Lagrangian that is
multiplied by a sign only when the active and passive
coordinates are exchanged,

Lðτx̂; τ _̂xÞ ¼ �Lðx̂; _̂xÞ; ð12Þ
where τðxþ; x−Þ ¼ ðx−; xþÞ.
The symmetry under x̂ → τx̂ indicates a redundancy of

the formalism, and it is reminiscent of a gauge trans-
formation. The extension with the sign þ in Eq. (12)
gives nothing new, but it corresponds to a system where
every degree of freedom exists in two copies and they
interact with holonomic forces. The choice if the sign −
introduces a new, nontrivial symplectic structure, to be
exploited below.

C. CTP action principle

We have seen so far two problems that were posed by the
initial conditions and the nonholonomic forces. It will now
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be shown that the extended action principle, outlined
above, solves both of them if the sign − is used in
Eq. (12). A side product of the argument will be the proof
that effective forces, generated by holonomic forces are
semiholonomic forces.
We start with a simpler problem, the application of the

extended Lagrangian formalism of Sec. II B for the initial
conditions in the case of holonomic forces only. The
Lagrangian, Lðx; _xÞ, gives rise to Lðx̂; _̂xÞ ¼ Lðxþ; _xþÞ �
Lðx−; _x−Þ, and by imposing the same initial conditions we
satisfy Eq. (11). How do we render the equation of motion
trivial at the final time without losing the well-defined
nature of the trajectories? We might renounce the equation
of motion for x− altogether if we would impose Eq. (11),
the result of the symmetry (12). But it is better to keep the
treatment of the two copies of the coordinates on equal
footing and retain the redundant equations of motion except
at the final time where Eq. (11) is invoked,

xþðtfÞ ¼ x−ðtfÞ: ð13Þ

The variational principle is now defined within the space of
trajectory pairs that satisfy identical initial condition,
cðx�; _x�Þ ¼ 0, and the final condition (13). The variation
of the action, evaluated on the solution of the equations of
motion, with respect to the final coordinate within this
space of trajectories is vanishing by construction if the
sign − is chosen in Eq. (12). Therefore we define the action
as [9,10]

S½x̂� ¼ S½xþ� − S½x−�; ð14Þ

where S½x� denotes the traditional action of the
Lagrangian Lðx; _xÞ.
This reduplication of the degrees of freedom and the

resulting variational principle can be reached in another,
equivalent manner, where we replay the motion backward
in time. The original trajectory, xðtÞ, defined for ti < t < tf
and satisfying the initial condition cðx; _xÞ ¼ 0, is now
extended to

~xð~tÞ ¼
�
xð~tÞ ti < ~t < tf;

xð2tf − ~tÞ tf < ~t < 2tf − ti;
ð15Þ

and the system returns to its initial conditions after having
followed a closed path during time 2ðtf − tiÞ. The redu-
plication of the time is represented as a reduplication of
the degrees of freedom,

�
xþðtÞ
x−ðtÞ

�
¼
�

~xðtÞ
~xð2tf − tÞ

�
; ð16Þ

and the action is given by

S½x̂� ¼
Z

tf

ti

dtLðxþðtÞ; _xþðtÞÞ þ
Z

ti

tf

dtLðx−ðtÞ; _x−ðtÞÞ;

ð17Þ

where the limit of the integration in the second term on the
right hand side indicates that the motion is followed in that
section backward in time time. The second time inversion,
carried out implicitly on x−ðtÞ in Eq. (16), returns the same
direction of time for xþðtÞ and x−ðtÞ.
We want to bring a further modification of the action

because it is degenerate for xþðtÞ ¼ x−ðtÞ. To arrive at well
defined Green functions we split this degeneracy by
redefining the action,

S½x̂� ¼ S0½xþ� − S0½x−� þ Sspl½x̂�; ð18Þ

with a suitable chosen, infinitesimal Sspl½x̂�. The choice of
an imaginary splitting term, for instance,

Sspl½x̂� ¼ i
ϵ

2

Z
tf

ti

dt½ðxþðtÞÞ2 þ ðx−ðtÞÞ2�; ð19Þ

with ϵ ¼ 0þ, has the advantage that the condition (11) is
satisfied byℜx̂ðtÞ after solving the equation of motion. The
exchange of the two CTP copies, the CTP conjugation,
transforms the action as

S½x̂� ¼ −S�½τx̂�; ð20Þ

and the symmetry of the equation of motion with respect to
this transformation will be called CTP symmetry. Another
advantage of the splitting term (19), to be verified below, is
that the Green functions derived from this action corre-
spond to the generic initial condition xðtiÞ ¼ _xðtiÞ ¼ 0.
Note that the actual choice of the final time, tf, when the
motion is turned backward in time is arbitrary, the CTP
trajectory, x̂ðtÞ is independent of tf as long as tf > t.
The extension of the CTP scheme to the Hamiltonian

formalism is straightforward. The generalized momenta are
defined by

p� ¼ δLðx̂; _̂xÞ
δ_x�

¼ � δLðx�; _x�Þ
δ_x�

ð21Þ

and the Hamiltonian is

Hðx̂; p̂Þ ¼ _̂x p̂−Lðx̂; _̂xÞ ¼ Hðxþ; pþÞ −Hðx−; p−Þ; ð22Þ

where Hðx; pÞ ¼ _xp − Lðx; _xÞ.
The status of causality is not as trivial in the CTP

formalism as in the case of Newton’s equation. In fact, let
us couple an external source, j, to the coordinate linearly
by extending the Lagrangian, Lðx; _xÞ → Lðx; _xÞ þ jx. The
solution of initial value problems is always causal in a finite
system, and the influence of the source jðtÞ ¼ j0δðt − t0Þ is
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for t > t0. In the CTP formalism we have ĵ ¼
j0δðt − t0Þð1; 1Þ, which modifies the trajectory ~xð~tÞ in
the time interval t0 < ~t < 2tf − ti − t0 for a causal dynam-
ics. This feature can easily be proven by recalling that one
imposes time reverse auxiliary conditions at ~t ¼ ti, and
2tf − ti. But this argument is available only if we possess
all the information needed to render the equation of motion
unique, a nontrivial problem in effective theories in the case
of an infinite environment,Ne → ∞, according to Sec. II A.
We return to this question in Sec. III D.
Symmetries can be extended in a direct or a CTP

conjugated manner. In fact, if one considers a symmetry
transformation x → x0 that preserves the action, then its
CTP realization can be either x̂ → x̂0, ℜS → ℜS (direct) or
x̂ → τx̂0, ℜS → −ℜS (CTP conjugated). If the time is
changed as well, then the transformation acts on the
trajectories and the auxiliary conditions and the action
may pick up a boundary term, as usual. In particular, the
time reversal transformation, t → tT ¼ tf þ ti − t, xðtÞ →
xTðtÞ ¼ xðtTÞ, cTðz; _zÞ ¼ cðzT;−_zTÞ, is chosen to be rep-
resented with CTP conjugation because the action can be
preserved in this manner.

D. Green functions

The Green functions are defined with the help of an
external source, S½x̂� → S½x̂; ĵ� ¼ S½x̂� þ ĵ σ̂ x̂, where the
metric tensor of the CTP symplectic structure,

σ̂ ¼
�
1 0

0 −1

�
; ð23Þ

is introduced. The Legendre transform of the action,
W½ĵ� ¼ S½x̂; ĵ�, with the independent variable ĵ is defined
by substituting the solution of the variational equation of
S½x̂; ĵ�,

δS
δx̂

¼ −σ̂ ĵ; ð24Þ

and the auxiliary conditions into S½x̂; ĵ�. The Green func-
tions, D̂ðt1;…; tnÞ, are read off from the functional Taylor
expansion,

W½ĵ� ¼
X∞
n¼0

1

n!

X
σ1;…;σn

σ1 � � �σn
Z

dt1 � � �dtn

×Dσ1;…;σnðt1;…; tnÞjσ1ðt1Þ � � � jσnðtnÞ: ð25Þ

The identity

δW

δĵ
¼ σ̂ x̂ ð26Þ

shows that the nth order Green function,Dσ1;…;σnðt1;…;tnÞ,
represents the Oðĵn−1Þ contributions of the trajectory.

In particular, the only Green function of a harmonic
system,

S0½x̂� ¼
1

2
x̂K̂0x̂; ð27Þ

is a two-point function, D̂0 ¼ K̂−1
0 , and the solution of the

equation of motion (24) with a CTP symmetric external
source, j�ðtÞ ¼ jðtÞ, is

xðtÞ ¼ −
X
σ0

Z
dt0Dσσ0

0 ðt; t0Þσ0jðt0Þ: ð28Þ

This equation holds for arbitrary σ, and therefore the
relation

Dþþ þD−− ¼ Dþ− þD−þ ð29Þ

follows for two-point functions.
The CTP symmetry of the physical trajectory imposes

the block structure K̂ ¼ σ̂C4½Kn; Kf; Ki
1; K

i
2�σ̂, where

C4½Kn; Kf; Ki
1; K

i
2� ¼

 
Kn þ iKi

1 −Kf þ iKi
2

Kf þ iKi
2 −Kn þ iKi

1

!
; ð30Þ

containing four real functions, Kn, Kf, Ki
l, and K

i
2. We can

safely assume that K̂ is symmetric, thus Kitr
j ¼ Ki

j,
Kntr ¼ Kn, and Kftr ¼ −Kf. The inversion of K̂, together
with the condition (29), yields Ki

1 ¼ Ki
2, and the form

D̂ ¼ C3½Dn;Df;Di� with

C3½Dn;Df;Di� ¼
�
Dn þ iDi −Df þ iDi

Df þ iDi −Dn þ iDi

�
ð31Þ

is found for the CTP Green function in terms of three real
functions, Ditr ¼ Di, Dntr ¼ Dn, and Dftr ¼ −Df. The
combinations Ka

r ¼ Kn � Kf andDa
r ¼ Dn �Df establish

the relation between K̂ and D̂,

Ka
r ¼ ðDa

r Þ−1;
Ki ¼ −ðDaÞ−1DiðDrÞ−1: ð32Þ

If the initial conditions xðtiÞ ¼ _xðtiÞ ¼ 0 are used in the
construction of the generator functional W½ĵ�, then Dr and
Da are indeed the retarded and advanced Green functions,
and hence Dn and Df will be called near and far Green
functions. Note that the imaginary part of the Green
function, induced by the piece (19) in the action, drops
out from the classical trajectory (28), and its detailed form
is not important.
The Green function of a harmonic oscillator,

L ¼ m
2
_x2 −

mΩ2

2
x2; ð33Þ
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with the initial conditions xðtiÞ ¼ _xðtiÞ ¼ 0,

D̂0ðt; t0Þ ¼
Z

dω
2π

e−iωðt−t0ÞD̂0ðωÞ; ð34Þ

is given by D̂0ðωÞ ¼ C3½Dn
0ðωÞ; Df

0ðωÞ; Di
0ðωÞ� with

Dn
0ðωÞ ¼

1

m
P

1

ω2 −Ω2
;

Df
0ðωÞ ¼ −

iπ
m
signðωÞδðω2 −Ω2Þ;

Di
0ðωÞ ¼ −

π

m
δðω2 −Ω2Þ; ð35Þ

in the limit ti → −∞, tf → ∞, carried out to recover
translation invariance in time [13]. The pole structure in
frequency space assures causality, Dr

0ðt; t0Þ ¼ 0 for t < t0
and Da

0ðt; t0Þ ¼ 0 for t > t0. The use of the representation
δϵðωÞ ¼ ϵ=πðω2 þ ϵ2Þ of the Dirac delta makes the inver-
sion trivial and yields

Kn
0 ¼ mðω2 −Ω2Þ; Kf

0 ¼ isignðωÞϵ; Ki
0 ¼ ϵ:

ð36Þ
The inverse of the Green function, K̂0, can be used in
Eq. (27), giving

S0½x̂� ¼ S0½xþ� − S0½x−� þ SBC½x̂�; ð37Þ
where SBC½x̂� ¼ Sspl½x̂� þ Sf½x̂� handles the boundary con-
ditions. The initial conditions are fixed by Sspl½x̂�, which is
given by Eq. (19) with ti ¼ −∞, tf ¼ ∞. The new part,

Sf½x̂� ¼ −i
ϵ

π

Z
dωΘðωÞx−�ðωÞxþðωÞ

¼ ϵ

π

Z
∞

−∞
dtdt0

xþðtÞx−ðt0Þ
t − t0 þ iϵ

; ð38Þ

represents the final condition (13) by a nonlocal, time
translation invariant, infinitesimal coupling between the
CTP copies. The first equation, where the frequency
integral is for −∞ < ω < ∞, shows that the positive
frequency components of xþ are coupled to the negative
frequency components of x− at tf ¼ ∞. In other words, the
actual form of Sspl½σ̂�, namely the initial conditions
xð−∞Þ ¼ _xð−∞Þ ¼ 0, allows positive frequency modes
at the final time only.
It is worthwhile noting the difference between the

schemes, obtained for harmonic oscillators in cases of
the two different signs in Eq. (12). The trajectories xþðtÞ
and x−ðtÞ are independent in the action (14), and they are
coupled by the final condition (13) only. In the limit
ti → −∞, tf → ∞ the influence of the final condition on
the trajectories becomes weak at finite t, and it may have a
finite impact only with the choice of the sign − in Eq. (12)

because the uncorrelated action (14) is vanishing as
xþðtÞ − x−ðtÞ → 0. In more precise terms, the denominator
on the right hand side of Eq. (A7) in Ref. [13] is OðΔtÞ. If
the sign þ is chosen in Eq. (12), then the action is finite in
the limit xþðtÞ − x−ðtÞ → 0, the denominator is OðΔt0Þ in
Eq. (A7), and the trajectories xþðtÞ and xþðtÞ decouple.
Therefore the sign − should be used in Eq. (12) to keep
the CTP copies coupled by the final condition (13) in the
limit ti → −∞, tf → ∞.
The generator functional, W½ĵ�, of an interacting system

can be found by solving the equation of motion by iteration,
which gives a formal functional power series in ĵ, and
each contribution can conveniently be represented by tree
graphs. Nontrivial initial conditions, xðtiÞ ¼ xi, _xðtiÞ ¼ vi,
can be taken into account by starting the Green functions,
corresponding to xi ¼ vi ¼ 0, carrying out the shift
x → xþ xi, and using the source jðtÞ → jðtÞ−
mviδðt − tiÞ. If the initial velocity follows a probability
distribution, then the Green functions are given by the
generator functional

W̄½ĵ� ¼
X∞
n¼0

1

n!

X
σ1;…;σn

σ1 � � �σn
Z

dt1 � � �dtnDσ1;…;σnðt1;…; tnÞ

× ½jσ1ðt1Þ−mviδðt1− tiÞ� � � � ½jσnðtnÞ−mviδðtn− tiÞ�;
ð39Þ

where the bar stands for the expectation value.

E. Effective action

The traditional action principle, based an holonomic
forces and boundary conditions in time, has been extended
for semiholonomic forces and boundary conditions in
Sec. II B, and for holonomic forces and initial conditions
in Sec. II C. We now complete the construction of the
action principle for effective theories by (i) showing that the
effective forces within a system, involving holonomic
forces are semiholonomic, and (ii) generalizing the scheme
of Sec. II C for semiholonomic forces.
The argument is followed within our simple model of

Sec. II A, whose action is written in the form
S½x; y� ¼ Ss½x� þ Se½x; y�. The effective action is easy to
find by applying the method of Sec. II A within the
formalism of Sec. II C, and the resulting effective action
is Seff ½x̂� ¼ S½x̂; ŷ½x̂��, where the environment trajectory,
ŷ ¼ ŷ½x̂�, is obtained by solving the environment equations
of motion for a general system trajectory, x̂. The environ-
ment initial conditions are by now built into the effective
action, and point (ii) is completed. The argument of point
(i) consists of simply noting that the CTP symmetry of the
action S½x̂; ŷ� assures us that Seff ½x̂� displays CTP symmetry,
as well, thereby describing semiholonomic forces. In other
words, the form of the CTP action with semiholonomic
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forces is stable against the elimination of degrees of
freedom.
Let us have a closer look on the way semiholonomic

forces appear in the effective theory. By writing the CTP
action as S½x̂; ŷ� ¼ S½xþ; yþ� − S½x−; y−� þ SBC½x̂; ŷ�, where
the last term is infinitesimal and complex, the form

Seff ½x̂� ¼ S½xþ; yþ½x̂�� − S½x−; y−½x̂�� þ SBC½x̂; ŷ½x̂�� ð40Þ

is found where ŷ ¼ ŷ½x̂� is the solution of the equation of
motion,

δS½x̂; ŷ�
δŷ

¼ 0; ð41Þ

and the environment initial conditions. The CTP symmetry
assures us that trajectory ŷ½x̂� is given in terms of a
single functional, y2½xþ; x−�, as y� ¼ y2½x�; x∓�. We write
Eq. (40) as

Seff ½x̂� ¼ Ss½xþ� − Ss½x−� þ Sinfl½x̂� þ SBC½x̂�; ð42Þ

where the impact of the environment on the system is
summarized by the classical analogue of the influence
functional [14],

Sinfl½x̂� ¼ Se½xþ; y2½x̂�� − Se½x−; y2½τx̂��; ð43Þ

which transforms according to Eq. (20) under CTP con-
jugation. Note that the imaginary part of the classical CTP
action always remains infinitesimal, and it only encodes the
initial conditions for the Green functions.
The finite, real part of the equation of motion,

δSs½x��
δx�

� δSinfl½x̂; ŷ½x̂��
δx�

¼ 0; ð44Þ

shows that the nonconservative, open features of the
effective dynamics come from the influence functional.
It is advantageous to introduce the Keldysh parametrization
[2], x� ¼ x� xd=2, at this point. The on-shell condition,
xd ¼ 0, is automatically satisfied by the solution and makes
it sufficient to keep the OðxdÞ part of the real part of
effective action,

ℜSeff ½x; xd� ¼ xd
�
δSs½x�
δx

þ δSinfl½x̂�
δxþ jxþ¼x−¼x

�
þOðxd2Þ:

ð45Þ

This form of the action indicates that the equation of
motion, arising from the variation of x and xd, yields a
trivial equation, OðϵÞ ¼ 0, and

δSs½x�
δx

þ δSinfl½x̂�
δxþ jxþ¼x−¼x

¼ 0; ð46Þ

respectively. The influence functional indeed describes
semiholonomic forces, as mentioned in point (i) above.
Consider the effective Lagrangian

L ¼ m
2
ð_xþÞ2 −UðxþÞ −m

2
ð_x−Þ2 þUðx−Þ

þ k
2
ðx− _xþ − xþ _x−Þ; ð47Þ

as a simple example. The equation of motion [15],

mẍ� ¼ −k_x∓ −U0ðx�Þ; ð48Þ

shows clearly that the semiholonomic force is represented
by the passive CTP copy.

F. Coupling of CTP copies

The arbitrary system trajectory is not necessarily on-shell
and the trajectory y2½x̂�, obtained by solving Eq. (41),
contains more information than the true “conditional”
environment trajectory, y1½x� ¼ y2½x; x�, realized by a
physical, on-shell system trajectory. To understand the role
of this extra information that seems difficult to fit into
Newton’s mechanics, we separate the single and double
CTP copy contributions by writing Sinfl½x̂� ¼ S1i½xþ�−
S1i½x−� þ S2½x̂�. The comparison with Eq. (43) suggests
the definitions S1i½x� ¼ Se½x; y1½x�� and S2½x̂� ¼ ΔSe½x̂�−
ΔSe½τx̂�, with

ΔSe½x̂� ¼ Se½xþ; y2½x̂�� − Se½xþ; y1½xþ��: ð49Þ

The building up of the effective interactions can be
understood as a two step process: First the system acts on
its environment, and after that the modified environment
acts back on the system. The first step, the modification of
the environment dynamics by a fixed system trajectory, can
generate holonomic forces only. The second step produces
both holonomic and nonholonomic forces. The action
S1i½x� contains the holonomic contributions of an environ-
ment, whose dynamics is based on initial conditions and the
effective action of (4), Seff ½x� ¼ Ss½x� þ S1i½x�. The prob-
lem with this effective action is that it cannot give account
of nonholonomic forces. They are left to be represented by
the coupling of the two CTP copies, collected in S2½x̂�.
Their impact on the conservation laws is discussed briefly
in Appendix A.
It is interesting to check the separation of the effective

interactions, mentioned above in a simple soluble harmonic
system, defined by the action [16–20]

S½x̂; ŷ; ĵ� ¼ 1

2
x̂D̂−1

s x̂þ 1

2
ŷD̂−1

e ŷ − x̂ σ̂ðgŷþ ĵÞ; ð50Þ

ĵ ¼ ðj; jÞ being an external, physical source. The environ-
ment trajectory,
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ŷðtÞ ¼
Z

dt0D̂eðt; t0Þσ̂ x̂ðt0Þ; ð51Þ

is found by solving the environment equation of motion,
and the effective action turns out to be

Seff ½x̂� ¼
1

2
x̂ðD̂−1

s − σ̂D̂eσ̂Þx̂: ð52Þ

The semiholonomic forces acting on the environment are
described by

y2ðtÞ ¼ g
Z

dt0½Dn
eðt; t0Þxþðt0Þ þDf

eðt; t0Þx−ðt0Þ�; ð53Þ

and the holonomic forces give

y1ðtÞ ¼ g
Z

dt0Dr
eðt; t0Þxðt0Þ: ð54Þ

Finally, one finds S1i½x� ¼ −g2xDn
ex=2 and S2½x̂� ¼

−g2xþDfx−.
An important realization of this model is where x

describes a point charge and its environment, y, is the
electromagnetic field [13]. The effective theory is an
action-at-a-distance model where the holonomic forces
are mediated by the near field and are taken into account
by S1i½x� [21–24]. The novelty of the CTP scheme is the
incorporation of the semiholonomic far field interactions in
the action principle.

III. QUANTUM DYNAMICS

There is an obvious difference between classical and
quantum mechanics from the point of view of the auxiliary
conditions: We need two data for each degree of freedom in
Newtonian mechanics, but it is enough to provide the initial
wave function in quantum mechanics, and the initial
conditions of classical mechanics are recovered in quantum
mechanics at the level of averages only.
We note in passing that the other kind of classical

auxiliary condition, the specification of the initial and final
coordinates, can be made in an exact manner in quantum
mechanics; this is what happens when transition amplitudes
are used in quantum mechanics. The projection of the
current state of the system on a prescribed vector is made
possible by the linear superposition principle. This is what
happens when experimentalists choose certain kinematical
cuts to detect particles with restricted energy momentum.
In the usual presentation of scattering processes in classical
physics one assumes an incoming, homogeneous particle
flux, a classical realization of the linear superposition.
The first order nature of the Schrödinger equation

renders the initial condition problem trivial in quantum
mechanics, and one simply considers the expectation value
hAðtÞi ¼ hΨðtÞjAjΨðtÞi. Do we really need the extension

of the well known formalism of quantum mechanics to
semiholonomic forces if there is no difficulty in letting the
environment follow an unconstrained time evolution? It is
remarkable that though we do not need the reduplication of
the degrees of freedom to calculate expectation values,
nevertheless we have already got it, in the form of using bra
and ket, both representing the same state.

A. Semiholonomic forces, the density matrix,
and the CTP formalism

The naive quantization of the system with Hamiltonian
(22), with Hðx; pÞ ¼ p2=2mþ UðxÞ, leads to the extended
Schrödinger equation,

iℏ∂tψðxþ; x−; tÞ ¼
�
−
ℏ2

2m
∂2
xþ þUðxþÞþ ℏ2

2m
∂2
x− −Uðx−Þ

�
× ψðxþ; x−; tÞ; ð55Þ

which looks like the equation of motion for the density
matrix, ψðx; x0; tÞ → ρðx; x0; tÞ. The reduplication of the
degrees of freedom to accommodate initial condition
problems and semiholonomic forces in classical mechanics
leads naturally to mixed states and their representation by
the density matrix, shedding some new light on the Gleason
theorem [25].
The transformation under local Uð1Þ gauge

transformation,

ψðxþ; x−; tÞ → ei½αðxþÞ−αðx−Þ�ψðxþ; x−; tÞ; ð56Þ

which is compatible with a possible external electromag-
netic field, shows that xþ and x− correspond to a bra and a
ket, ρðxþ; x−; tÞ ¼ hxþjρðtÞjx−i. One may introduce at this
point two Hilbert spaces, H�, where the canonical oper-
ators, x� and p�, act [6], and the “wave function,” alias
density matrix, becomes an element of the Louville space
[26], Hþ ⊗ H−, and the expectation values become linear
in the CTP “wave function”, ρðxþ; x−; tÞ, underlying the
difference of the scalar product in the Hilbert space H� of
pure states and in the Liouville space of operators.
Rather than following this way of thinking we return to

the equivalent, standard scheme of quantum mechanics and
define the generator functional of connected Green func-
tions of the coordinate [1],

e
i
ℏW½ĵ� ¼ Tr½Uðtf; ti; jþÞρðtiÞU†ðtf; ti; j−Þ�; ð57Þ

to facilitate the perturbation expansion of x-dependent
observables, where the reduplication of the degrees of
freedom comes from the double appearance of the time
evolution operator. This equation is written in the
Heisenberg representation, where
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Uðtf; ti; jÞ ¼ T
h
e
− i
ℏ

R
tf
ti

dt0½HðtÞ−xðtÞjðtÞ�i ð58Þ

and T denotes the time ordering. It is advantageous to
introduce an extended time ordering, T̄, which is the usual

or the antitime ordering for factors acting on Hþ or H−,
respectively, and places the operators of H− left of
those of Hþ. This allows us to write the generator
functional (57) as

e
i
ℏW½ĵ� ¼ Tr

�
T̄

�
e

i
ℏ

R
tf
ti

dt½H−ðtÞ−x−ðtÞj−ðtÞ�
e
− i
ℏ

R
tf
ti

dt½HþðtÞ−xþðtÞjþðtÞ�
�
ρðtiÞ

�
; ð59Þ

where the Hamiltonian, H�, is constructed of the operators
x� and p�. The achievement of this formalism is that the
Wick theorem applies for this extended time ordered
product and Feynman rules can be derived.
Note that the unitarity ofUðtf; ti; jÞ is relevant within the

subspace that is spanned by states, visited by the system in
the presence of the source jðtÞ. It is expressed by the
conservation of the norm, W½j; j� ¼ 0, and the tf inde-
pendence of expectation values, calculated at t < tf; cf. the
remark made after Eq. (20).
The path integral representation of the generator func-

tional (57) is

e
i
ℏW½ĵ� ¼

Z
xþðtfÞ¼x−ðtfÞ

D½x̂�ei
ℏS½x̂�þ i

ℏĵ σ̂ x̂ρðxþðtiÞ; x−ðtiÞ; tiÞ;

ð60Þ

where the final condition (13) is imposed by the trace in
Eq. (57), evaluated in coordinate representation. The
connected Green functions are defined by Eq. (25); in
particular the harmonic oscillator of the Lagrangian (33)
yields W0½ĵ� ¼ ĵD̂0ĵ=2, where the propagator,

iℏD̂ðt; t0Þ ¼
 
h0jT½xðtÞxðt0Þ�j0i h0jxðt0ÞxðtÞj0i
h0jxðtÞxðt0Þj0i h0jT½xðt0ÞxðtÞ�j0i�

!
;

ð61Þ

is given by Eq. (35). We note finally that the contact of our
harmonic oscillator with a heat bath modifies the free
propagator in an additive manner [27],

D̂thðωÞ ¼ D̂ðωÞ − i
m
2πδðω2 −Ω2ÞnðΩÞ

�
1 1

1 1

�
; ð62Þ

where nðωÞ ¼ 1=ðeβℏω − 1Þ.
Large systems are handled within the framework of

quantum field theory. The generator functional for the
connected system Green function can be found by extend-
ing the expression (60) to quantum fields with the pertur-
bative vacuum as the initial condition, ρðtiÞ ¼ j0pih0pj,

e
i
ℏW½ĵ� ¼

D
0p

���T̄hei
ℏ

R
dtH−ðtÞ− i

ℏϕ
−j−�e−

i
ℏ

R
dxHþðtÞþ i

ℏϕ
þjþ
i���0pE;

ð63Þ

where H�ðtÞ is the energy, constructed by the fields �, and
the scalar product of functions over the space-time stands
for fg ¼ R dxfðxÞgðxÞ. The usefulness of this functional
hinges on the assumption that the true vacuum develops
from the perturbative one during the time evolution and all
physically relevant initial states can be reached at t ¼ 0 by
guiding the system adiabatically with a physical external
source, ĵ ¼ ðjph; jphÞ, by starting at ti ¼ −∞. The path
integral expression of this functional is

e
i
ℏW½ĵ� ¼

Z
D½ϕ̂�ei

ℏS½ϕþ�− i
ℏS½ϕ−�þ i

ℏSBC½ϕ̂�þ i
ℏϕ̂ σ̂ ĵ; ð64Þ

where the integration is over the CTP copies, ϕ̂ ¼
ðϕþ;ϕ−Þ, satisfying the final condition (13), ϕþðtf; xÞ ¼
ϕ−ðtf; xÞ, and the initial density matrix is suppressed in the
condensed notation. We take the limit ti → −∞, tf → ∞,
and use

SBC½ϕ̂� ¼
iϵ
2

Z
dx½ðϕþðxÞÞ2 þ ðϕ−ðxÞÞ2�

þ ϵ

π

Z
dxdx0

ϕþðxÞϕ−ðx0Þ
x0 − x00 þ iϵ

; ð65Þ

cf. (37).
For a free field, S0½ϕ� ¼ ϕK0ϕ=2, one finds the CTP

action

S0½ϕ̂� ¼
1

2
ϕþK0ϕ

þ −
1

2
ϕ−K0ϕ

− þ SBC½ϕ̂�

¼ 1

2
ϕ̂K̂0ϕ̂; ð66Þ

which leads to the free generator functional,

e
i
ℏW0½k̂� ¼

Z
D½ϕ̂�ei

ℏS0½ϕ̂�þ i
ℏk̂ σ̂ ϕ̂ ¼ e−

i
2ℏk̂D̂0k̂: ð67Þ

The free CTP propagator,
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iℏD̂0ðx; yÞ ¼
 
h0jT½ϕðxÞϕðyÞ�j0i h0jϕðyÞϕðxÞj0i
h0jϕðxÞϕðyÞj0i h0jT½ϕðyÞϕðxÞ�j0i�

!
;

ð68Þ

is easiest to calculate in the operator formalism. In the case
of a free field with mass m we have K0 ¼ −□ −m2, and
the standard steps lead to the Fourier transform

D̂0ðkÞ ¼
Z

dxeikxD̂0ðxÞ;

¼ C3½Dn
0ðkÞ; Df

0ðkÞ; Di
0ðkÞ�; ð69Þ

where

Dn
0ðkÞ ¼ P

1

k2 −m2
;

Df
0ðkÞ ¼ −iπsignðk0Þδðk2 −m2Þ;

Di
0ðkÞ ¼ −πδðk2 −m2Þ;

ð70Þ

in the limit ti → −∞, tf → ∞ [cf. Eq. (35)], after having
set ℏ ¼ c ¼ 1. It is easy to verify by inversion that K̂0 ¼
σ̂C3½Kn

0; K
f
0 ; K

i
0�σ̂ with

Kn
0ðkÞ ¼ k2 −m2; Kf

0ðkÞ ¼ isignðk0Þϵ;
Ki

0ðkÞ ¼ ϵ
ð71Þ

[cf. Eq. (36)].
There might be a heat or particle reservoir that can be

taken into account perturbatively by the modification

D̂resðkÞ ¼ D̂0ðkÞ − i2πδðk2 −m2ÞnðkÞ
�
1 1

1 1

�
ð72Þ

of the propagator where the occupation number,

nðkÞ ¼ Θð−k0Þ
eβðϵðkÞþμÞ − 1

þ Θðk0Þ
eβðϵðkÞ−μÞ − 1

; ð73Þ

may have μ ≠ 0 for the conserved particle number. The
inverse can easily be calculated, and one finds

K̂resðkÞ ¼ K̂0ðkÞ þ 2inϵ

�
1 −1
−1 1

�
; ð74Þ

which can be written as K̂res ¼ K̂0 þ C3½0; 0; 2nϵ�, and
the OðϵÞ part modifies the occupation number in the
initial state.

Finally we mention a few properties of the two-point
function that remain valid for any bosonic local operator.
(i) The identity

T½ϕðxÞϕðyÞ� þ T�½ϕðxÞϕðyÞ� ¼ ϕðxÞϕðyÞ þ ϕðyÞϕðxÞ
ð75Þ

[cf. Eq. (29)], where T� denotes the antitime ordering,
implies the block structure D̂ ¼ C3½Dn;Df;Di�. (ii) The
states, contributing to the spectral function,

iD−þðkÞ ¼
X
n

h0jϕð−kÞjnihnjϕðkÞj0i; ð76Þ

have positive energy; therefore D−þðkÞ ¼ 0 for k0 ≤ 0
[cf. the remark made after Eq. (38)] The resulting
relation,

iDiðkÞ ¼ signðk0ÞDfðkÞ; ð77Þ
reduces the number of independent functions of the
propagator to two, D̂ðkÞ ¼ C2½DnðkÞ; DfðkÞ�, where

C2½DnðkÞ;DfðkÞ�

¼
 
DnðkÞþ signðk0ÞDfðkÞ −2Θð−k0ÞDfðkÞ

2Θðk0ÞDfðkÞ −DnðkÞþ signðk0ÞDfðkÞ

!
;

ð78Þ

and K̂ðkÞ ¼ D̂−1ðkÞ ¼ σ̂C2½KnðkÞ; KfðkÞ�σ̂. (iii) Assuming
that the norm of the states that contribute to the spectral sum
(76) is positive, we arrive at the bound

DiðkÞ ≤ 0: ð79Þ
(iv) The diagonal blocks are given by the Feynman
propagator, ℑDþþðx; yÞ ¼ Diðx; yÞ is on shell, but
ℜDþþðx; yÞ ¼ Dnðx; yÞ is off shell due to the time
ordering in the Feynman propagator. The off-diagonal
blocks, D�∓, are given by the Wightmann function and
are on shell.

B. Effective theories

We now split the full system into an observed system
and its environment, described by the fields ϕðxÞ and
ψðxÞ, respectively, which are supposed to obey the
dynamics of the action S½ϕ;ψ � ¼ Ss½ϕ� þ Se½ϕ;ψ �. The
generator functional for the connected system Green
functions,

e
i
ℏW½ĵ� ¼

Z
D½ϕ̂�D½ψ̂ �ei

ℏSs½ϕþ�− i
ℏSs½ϕ−�þ i

ℏSe½ϕþ;ψþ�− i
ℏSe½ϕ−;ψ−�þ i

ℏSBC½ϕ̂�þ i
ℏSBC½ψ̂ �þ i

ℏϕ̂ σ̂ ĵ; ð80Þ

can be simplified by integrating over the environment variables,
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e
i
ℏW½ĵ� ¼

Z
D½ϕ̂�ei

ℏSeff ½ϕ̂�þ i
ℏSBC½ϕ̂�þ i

ℏϕ̂ σ̂ ĵ; ð81Þ

where the effective action,

Seff ½ϕ̂� ¼ Ss½ϕþ� − Ss½ϕ−� þ Sinfl½ϕ̂�; ð82Þ

contains the influence functional [14],

e
i
ℏSinfl½ϕ̂� ¼

Z
D½ψ̂ �ei

ℏSe½ϕþ;ψþ�− i
ℏSe½ϕþ;ψ−�þ i

ℏSBC½ψ̂ �: ð83Þ

The perturbation expansion provides a general scheme to
calculate the effective action for weakly coupled theories
where Se½ϕ;ψ � ¼ Se0½ψ � þ Sei½ϕ;ψ �, Se0½ψ � being the free
action. The perturbation series is defined by expanding the
exponential function in the interactions in the equation

e
i
ℏSinfl½ϕ̂� ¼ e

i
ℏSei½ϕþ;ℏi

δ
δkþ�− i

ℏSei½ϕ−;ℏi
δ

δk−�ei
ℏW0½k̂�; ð84Þ

where W0½k̂� is the free environment generator functional
(67), constructed with the help of the free action, Se0½ψ �.
The coefficients of the powers of ϕ̂ are given as the sum of
environment Feynman graphs where the external legs are
represented by the factors of ϕ̂, the ψ dependence of the
terms in Sei½ϕ;ψ � define the vertices, and the lines stand for
the environment propagator.
We continue the discussion with a generic model,

defined by the Lagrangian

L ¼ 1

2
∂μϕ∂μϕ −

m2

2
ϕ2 −

g1
4!

ϕ4 þ 1

2
∂μψ∂μψ

−
M2

2
ψ2 −

g2
4!

ψ4 −
λ

4
ϕ2ψ2: ð85Þ

A CTP Feynman graph, e.g., the one shown in Fig. 1, has
two parts that are separated by the circle, representing the
initial density matrix. We place the two CTP copies on two
different sides of the circles: Left and right are the lines and
vertices that belong to U and U† in (57), respectively. The
lines D�� represent the propagation of an excitation,
controlled by ψþ or ψ−, and are positioned at one side
of the circle. The new feature of a CTP graph, the lineD�∓,
connects the two sides of the circle. To find its physical

interpretation let us write the trace of the generator
functional (57) as a sum over a basis at the final time,

e
i
ℏW½ĵ� ¼

X
n

hnjUðtf; ti; jþÞρðtiÞU†ðtf; ti; j−Þjni: ð86Þ

Such a representation of the trace has been used in the
spectral function (76), too, and it shows that the line G�∓
always represents a ψ excitation in the final state.
It is useful to separate the CTP graphs into three classes:

A graph is called homogeneous if all external legs and
vertices belong to the same CTP copy. The inhomogeneous
graphs have all external legs in the same CTP copy, but
their vertices can be found in both copies. Finally, if both
CTP copies can be found among the external legs, then we
talk genuine CTP graphs. The characterization of the first
and the third classes is easy: A homogeneous graph is
obviously the same as in the traditional, non-CTP quantum
field theory, based on transition amplitudes, and a genuine
CTP graph describes a process where the final state
contains ψ particles.
The second class, the inhomogeneous graphs are vanish-

ing if the initial state is the vacuum. In fact, consider those
internal lines of a connected component of the graph that
connect two different CTP copies (cf. Fig. 1). Let us count
the frequency of these lines in the same direction, say
þ → −, where we find a multiplicative factor D−þðpÞ for
each line. These lines represent the positive energy final
state, contributing to the trace in the generator functional
(63), e.g., four ψ particles in the case of the graph of Fig. 1.
They are on shell and the Heaviside function in the free
propagator (70) assures their positive energy in the final
states. Since all external legs belong to the same CTP copy,
the sum of the frequencies of the internal lines in between
the CTP copies is zero. Hence there is at least one negative
frequency and the corresponding free propagator is vanish-
ing. In other words, there are no on-shell excitations with
vanishing energy. If there are states in the Fock space with
lower energy than the initial state, then the inhomogeneous
graphs may be nonvanishing. This happens when the
system is attached to a heat or particle reservoir and the
second term in the right hand side of Eq. (72) contains no
Heaviside function.
It is instructive to see how the exact interacting propa-

gator is obtained by the Schwinger-Dyson resummation
method when the system is attached to a reservoir. We write
the inverse propagator as K̂ ¼ K̂0 − σ̂ Π̂ σ̂, where both the
free inverse propagator, K̂0 ¼ C2½Kn

0; K
f
0 � þ C3½0; 0;ΔKi�,

and the self energy, Π̂ ¼ C2½Πn;Πf� þ C3½0; 0;ΔΠi�, can be
written as the sum of the vacuum contribution, which
satisfies the constraint (77), and the rest. The inversion is
carried out by the help of Eqs. (32), and the exact Feynman
propagator,

FIG. 1. An Oðg21λ4Þ graph contributing to h0jT½ϕðxÞϕðyÞ�j0i.
The circle represents the initial density matrix, ρðtiÞ ¼ j0pih0pj,
the continuous and the dashed lines stand for the ϕ and the ψ
propagators, respectively. The part left (right) from the circle
belong to U (U†). One has t ¼ tf at the left and right ends of the
graph where the lines reaching this time from U and U† are
joined.
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Dþþ ¼ DaðKn − iKiÞDr

¼ 1

Kn
0 þ iKi

0 − Πn − iΠi

þ iðΔΠi − ΔKiÞ
ðKn

0 þ iKi
0 − Πn − iΠiÞðKn

0 − iKi
0 − Πn þ iΠiÞ ;

ð87Þ

is found where Ki
0 and Πi are given by Eq. (77). In the

absence of the reservoir ΔKi ¼ ΔΠi ¼ 0 and Πþþ, being
the sum of homogeneous graphs, agrees with the self-
energy of the traditional quantum field theory formalism
andDþþ is identical to the traditional Feynman propagator.
In the presence of the reservoir the second line of (87) gives
the Feynman propagator in a form where the positive
energy intermediate state contributions are collected in the
first term. The second, imaginary term is well defined and
finite in the kinematical regime Πi ≠ 0 where there are on-
shell, positive energy asymptotic collective excitations with
the same quantum number as ϕðxÞ.
The pinching singularities [28], generated by poles with

infinitesimal imaginary parts on both sides of the real
frequency axis, make the second term ill defined for
Πi ¼ 0. If there are no on-shell, negative energy states
of the environment available that can contribute to the self-
energy and both Πi and ΔΠi are vanishing, then the second
term is well defined and finite, ϵ=ϵ [29–33]. The imaginary
part of the propagator diverges for Πi ¼ 0 and ΔΠi ≠ 0.
But the perturbation expansion is not a reliable tool in this
case. In fact, let us check the clusterization property of the
propagator,

h0jT½ϕðxÞϕðyÞ�j0i → h0jϕðxÞj0ih0jϕðyÞj0i; ð88Þ
for x0 → y0 and jx − yj → ∞ by carrying out a Fourier
transformation of both sides in x − y. The right hand side,
being given by the expectation value of Hermitian oper-
ators, is real. The left hand side is symmetric with respect to
the exchange x ↔ y; hence its real and imaginary parts in
space-time belong to their real and imaginary parts in
Fourier space. The limit (88) is violated because the left
hand side has a diverging imaginary part.
We collect the contributions of all homogeneous and

inhomogeneous graphs to the effective action into Sh½ϕ�
and Sih½ϕ�, respectively. The single CTP copy contribution
to the influence functional is therefore Si1½ϕ� ¼ Sh½ϕ�þ
Sih½ϕ�. We do not attach anymore a reservoir to the system;
hence Sih½ϕ� ¼ 0 and Si1½ϕ� agrees with the Wilsonian
effective action of traditional quantum field theories. The
full influence functional is of the form

Sinfl½ϕ̂� ¼ Si1½ϕþ� − S�i1½ϕ−� þ S2½ϕ̂�; ð89Þ

where S2½ϕ̂� contains genuine CTP graphs only, represent-
ing the coupling between the CTP copies of the system and

describing processes with ψ particles in the final state.
Therefore a part of the CTP effective action, Si1½ϕ�,
includes the effective vertices of the traditional effective
quantum field theories since their final state is the vacuum,
but there are in addition effective interactions in S2½ϕ̂� that
leave the environment in an excited state.
It is sometimes useful to express the effective action in

the Keldysh parametrization, ϕ� ¼ ϕ� ϕd=2,

Seff ½ϕ;ϕd� ¼ S1

�
ϕþ ϕd

2

�
− S�1

�
ϕ −

ϕd

2

�

þ S2

�
ϕþ ϕd

2
;ϕ −

ϕd

2

�
; ð90Þ

where S1½ϕ� ¼ Ss½ϕ� þ Si1½ϕ�. The expansion is carried
out around the expectation values, h0jϕj0i ¼ ϕ̄ and
h0jϕdj0i ¼ 0, up to quadratic order,

Seff ½ϕ;ϕd� ¼ iℑð2S1 þ S2Þ þ 2iδϕ

�
δℑS1
δϕ

þ δℑS2
δϕþ

�

þ δϕd

�
δℜS1
δϕ

þ δℜS2
δϕþ

�
þ δϕd δ2ℜS2

δϕþδϕ− δϕ

þ iδϕ

�
δ2ℑS1
δϕδϕ

þ δ2ℑS2
δϕþδϕþ þ δ2ℑS2

δϕþδϕ−

�
δϕ

þ i
4
δϕd

�
δ2ℑS1
δϕδϕ

þ δ2ℑS2
δϕþδϕþ −

δ2ℑS2
δϕþδϕ−

�
δϕd;

ð91Þ

where S1 and S2 are evaluated at ϕ� ¼ ϕ̄. The invariance of
the path integral (81) under the shift of the integral variable,
ϕ̂ → ϕ̂þ δϕ̂, yields the equation of motion,

δS1
δϕ

þ δS2
δϕþ ¼ 0; ð92Þ

satisfied on the level of matrix expectation value.
A harmonic toy model is defined by the action

S½ϕ̂; ψ̂ � ¼ 1

2
ϕ̂K̂sϕ̂þ 1

2
ψ̂K̂eψ̂ − ϕ̂ σ̂ðgψ̂ þ ĵÞ ð93Þ

[cf. Eq. (50)]. The elimination of the environment gives

S1½ϕ� ¼
1

2
ϕðKn

eff þ iKi
effÞϕ;

S2½ϕ̂� ¼ ϕþðKf
eff − iKi

effÞϕ−; ð94Þ

with K̂eff ¼ K̂s − g2σ̂D̂eσ̂. The effective action assumes the
form
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Seff ½ϕ̂� ¼
1

2
½ϕKa

effϕ
d − ϕdKr

effϕþ ϕdiKi
effϕ

d� ð95Þ

in the Keldysh parametrization.

C. Scattering

After outlining the general structure of effective CTP
theories, we mention two applications briefly, the first
being inclusive scattering processes. Consider, for instance,
a two ϕ particle scattering, pi1 þ pi2 → pf1 þ pf2, in the
model (85), and write the transition probability as the
expectation value

P ¼ Tr½aðti; pi2Þaðti; pi1Þa†ðtf; pf2Þa†ðtf; pi1Þaðtf; pf1Þ
× aðtf; pf2Þa†ðti; pi1Þa†ðti; pi2Þj0ih0j�: ð96Þ

The scattering process in an unobserved environment is
always inclusive, and it leaves the environment in an
unknown state. The calculation of (96) starts with the
application of the reduction formulas, applied to the
generator functional (63) in the limit tf → −∞, tf → ∞.
If all asymptotic particles are extracted from the same time
axis, then the stability of the vacuum, j0i ¼ Uðtf; ti; 0Þj0i,
makes the resulting probability exclusive and equivalent to
the result, found in traditional quantum field theory. To get
the probability of the inclusive scattering process, we have
to extract the first and the second chains of four operators in
Eq. (96) from U† and U, respectively [34]. In fact, if the
trace in the generator functional (63) is calculated by
summing over a basis as in Eq. (86), then we obtain an
inclusive scattering probability by summing over exclusive
scattering processes with different ψ particle content in the
final state.
The Fock-space vector, representing the scattered state,

is of the form

jΨi ¼
X∞
n¼0

Z
d3p1d3p2d3q1 � � � d3qn

ð2πÞ3ð2þnÞ Ψnðp1; p2; q1;…; qnÞ

× a†ðp1Þa†ðp2Þb†ðq1Þ � � �b†ðqnÞj0i; ð97Þ

where a†ðqÞ and b†ðqÞ stand for the creation operator of a ϕ
and a ψ particle, respectively. The system-environment
entanglement will be followed by means of the relative
state [35], defined in Appendix B. The relative state
represents the conditional system state, assuming that the
state of the environment particles is known,

jRðq1;…; qnÞi ¼ Nðq1;…; qnÞ
Z

d3p1d3p2

ð2πÞ6
×Ψnðp1; p2; q1;…; qnÞa†ðp1Þa†ðp2Þj0i;

ð98Þ

where the normalization factor is defined by the equation

1

N2ðq1;…; qnÞ
¼
Z

d3p1d3p2

ð2πÞ6 jΨnðp1; p2; q1;…; qnÞj2

¼ Pðq1;…; qnÞ: ð99Þ

The corresponding reduced density matrix of the scattered
system is

ρ ¼
X∞
n¼0

Z
d3q1 � � � d3qn

ð2πÞ3n

× jRðq1;…; qnÞiPðq1;…; qnÞhRðq1;…; qnÞj: ð100Þ

Figure 2 shows a few graphs that contribute to the transition
probability. The inclusive scattering processes, depicted in
Figs. 2(b)–2(f) correspond to nontrivial relative states. The
summation over the momenta of ψ particles in the final
states, possible environment excitations, in Eq. (100) gives
account of the system-environment entanglement.
It is an advantageous feature of the CTP scheme when

applied to the calculation of scattering probability that it
produces observable transition probabilities rather than

FIG. 2. Oðλ4Þ graphs that contribute to the two ϕ particle
nonforward scattering probability with nr real and nv virtual ψ
particles with ðnr; nvÞ given by (a) (0, 2); (b), (c) (2, 1); (d), (e), (f)
(4, 0). (a) Exclusive scattering; (b), (c) inclusive scattering; and
(d), (e), (f) represent the contributions of relative states (98) with
n ¼ 2 and n ¼ 4, respectively.
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amplitudes. In fact, the probability, being bounded by
unitarity, includes automatically all contributions needed
for the cancellation of collinear divergences between the
virtual and real particles [36].

D. Causality

Another phenomenon where the CTP formalism offers a
new insight is causality that we considered here within the
model (85) by inspecting the expectation value of the
composite operator ρðxÞ ¼ ϕ2ðxÞ in the presence of an
external classical potential, uðxÞ, coupled linearly to ρðxÞ.
In the traditional formalism one uses the generator

functional

e
i
ℏWρ½u� ¼ h0jUðtf; ti; uÞj0i

¼
Z

D½ϕ�D½ψ �ei
ℏS½ϕ;ψ �þ i

ℏuρ; ð101Þ

to calculate

h0jT½Uðtf; ti; uÞρðxÞ�j0i ¼
δWρ½u�
δuðxÞ : ð102Þ

Note that this is an expectation value only if the vacuum is
stable, h0jUðtf; x0; uÞ ¼ h0j, which is usually satisfied if
uðyÞ ¼ 0 for y0 > x0. The leading order expression in u,

h0jT½Uðtf; ti; uÞρðxÞ�j0i ¼ −
Z

dyDρðx; yÞuðyÞ; ð103Þ

involves the composite operator Feynman propagator,

Dρðx; yÞ ¼
δ2Wρ½u�

δuðxÞδuðyÞju¼0

¼ h0jT½ρðxÞρðyÞ�j0i: ð104Þ

Being symmetric under the exchange x ↔ y the external
potential acts forward and backward in time. This is a
general feature of the Feynman propagator, the vacuum
expectation value of a time ordered product: The relativistic
quantum fields contain positive and negative frequency
components that act forward (creation) or backward
(annihilation) in time. The forward action in time results
from the fixed initial condition, j0i, and the backward
action owes its existence to the final condition, h0j.
If the final state is unknown, e.g., uðyÞ ≠ 0 for y0 > x0 in

the example above, then we need the CTP formalism to find
expectation values. The generator functional

e
i
ℏWρ½û� ¼ Tr½Uðtf; ti; uþÞj0ih0jU†ðtf; ti;−u−Þ�

¼
Z

D½ϕ̂�D½ψ̂ �ei
ℏS½ϕþ;ψþ�− i

ℏS
�½ϕ−;ψ−�þ i

ℏû σ̂ ρ̂ ð105Þ

gives two equivalent expressions for the expectation value,

h0jρðxÞj0i¼ δWρ½û�
δuþðxÞjuþ¼u−¼u

¼−
δWρ½û�
δu−ðxÞjuþ¼u−¼u

: ð106Þ

The possibility to insert the observable in either time axis is
due to the unitarity of the time evolution, the independence
of Wd½û� from tf,

Tr½Uðt0f;ti;uÞj0ih0jU†ðt0f;ti;uÞ�
¼Tr½Uðt0f;tf;uÞUðtf;ti;uÞj0ih0jU†ðtf;ti;uÞU†ðt0f;tf;uÞ�
¼Tr½Uðt0f;ti;uÞj0ih0jU†ðt0f;ti;uÞ�: ð107Þ

We can use this invariance to set tf ¼ x0 in the definition of
the generator function to make the second equation in (106)
obvious. The leading order expression in u,

h0jρðxÞj0i ¼ −
X
σ0
σ0
Z

dyDσσ0
ρ ðx; yÞuσ0 ðyÞ; ð108Þ

where

Dσσ0
ρ ðx; yÞ ¼ δ2Wd½û�

δuσðxÞδuσ0 ðyÞjû¼0

ð109Þ

[cf. Eq. (28)] holds for both σ0 ¼ þ and σ0 ¼ −
and Eq. (108) is identical with Kubo’s linear response
formulas [37].
It is instructive to identify the physical origin of the

causal structure of the propagator (109) in perturbation
expansion. The leading Oðg21Þ contributions to the expect-
ation value (108) with σ0 ¼ þ are given by the graphs of
Fig. 3. The destructive interference between the factoriz-
able state transition amplitude of Fig. 3(a) and the entan-
glement contribution, depicted in Fig. 3(b), leads to the
causal structure in the leading, linear response order. It is
easy to see that similar cancellations between virtual
excitations (pure state amplitudes) and real excitations
(entanglement) are responsible for causality in the higher
order of the perturbation series, too.
Unitarity gives the identities

iDþþ
ρ ðx; yÞ ¼ h0jT½ρðxÞρðyÞ�j0i

¼
� h0jρðxÞρðyÞ�j0i ¼ iD−þ

ρ ðx; yÞ x0 > y0

h0jρðyÞρðxÞ�j0i ¼ iDþ−
ρ ðx; yÞ y0 > x0

ð110Þ

FIG. 3. Leading order graphs, contributing to the expectation
value (108) with σ0 ¼ þ. (a) Factorizable state; (b) entangled
state contributions.
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for the propagator of any local operator, ρðxÞ, which can be
used together with the form D̂ ¼ C3½Dn;Df;Di� to prove
directly causality. Causality always follows from a destruc-
tive interference between the two time axes for unitary time
evolution. Another, stronger result of unitarity, the inde-
pendence of Wρ½u;−u� from tf, can be used to prove
causality in general, the impossibility that the local poten-
tial uðxÞ influences the expectation value of ρðxÞ backward
in time: The proof goes by simply setting tf ¼ x0 in
(106) [27].
Despite this general causality argument the CTP for-

malism lays bare that causality, the cause preceding the
effect, is not always automatic. In fact, let us make a
perturbation on our classical system at time tp: The
trajectory ~xð~tÞ, introduced in Sec. II C, is perturbed twice,
at ~t1 ¼ tp and ~t2 ¼ 2tf − ti − tp, and it is not obvious that
no effect is left for ~t < ~t1 or ~t > ~t2, as expected for a causal
system. Nevertheless, the simple numerical integration of
the Newton or the Schrödinger equation proves causality
for the initial condition problem of a finite classical system
beyond any possible doubt because the values of an
external source can influence the solution only after having
been used in the integration. How could this argument
become invalid for an infinite system? The answer comes
from a better defined, regulated setting of this problem,
where the numerical integration is performed as a succes-
sive, t → tþ Δt, solution of a finite difference equation
with Δt > 0. We are faced here with two limits, the
continuum limit, Δt → 0, and the thermodynamical
limit, where the number of degrees of freedom tends to
infinity. The dynamics of an infinite system is realized by
carrying out the thermodynamical limit first. But the
causality is assured by the numerical integration only if
the limits are carried out in the opposite order and a
possible noncommutativity of the limits opens the way to
acausality [13,38], in a manner reminiscent of phase
transitions.
There is still another issue to settle for acausal theories.

Since unitarity was used to prove that the dynamics is
causal, one suspects nonunitary time evolution in acausal
theories. But the unitarity of the time evolution is essential
in the CTP formalism to carry out the limit tf → ∞. In fact,
the tf dependence in the generator functional renders the
CTP dynamics trivial for tf ¼ ∞ for nonunitary time
evolution. How can a nontrivial quantum theory be
acausal? The answer is given by a simple harmonic model
[38], with a condensation point in its spectrum. This
spectrum requires infinitely long observations to resolve
the dynamics of each degree of freedom. The observations,
carried out in an arbitrary long but finite amount of
time, miss infinitely many degrees of freedom and cannot
give account of their dynamics; in particular, the unitarity
cannot be verified in the manner, mentioned above, for
tf − ti < ∞. It is worthwhile mentioning that irreversibility
appears in a similar manner.

E. Quantum-classical transition

We close with a few qualitative remarks about the
quantum-classical transition.
Decoherence: The first point concerns decoherence, the

suppression of the off-diagonal matrix elements of the
reduced density matrix, which is a necessary condition of
the classical limit [39,40]. The reduced density matrix,
being Hermitian, is always diagonalizable but the
decoherence in a given basis is a well-defined, nontrivial
problem: It addresses the classical limit of observables that
are diagonal in the basis in question.
A slight generalization of the CTP method, the open time

path scheme gives access to the reduced density matrix.
This scheme is based on the generator functional,

e
i
ℏW½ĵ;ϕþ

f ;ϕ
−
f � ¼ hϕþ

f jTrψ
h
T½e− i

ℏ

R
dx½HþðxÞ−ϕþðxÞjþðxÞ�

i
j0pi

× h0pjT�
h
e

i
ℏ

R
dx½H−ðxÞ−ϕ−ðxÞj−ðxÞ��

i
jϕ−

f i; ð111Þ

where ϕ�ðxÞ label the reduced density matrix elements
and the trace is taken over the Fock space of the ψ field.
In the path integral formula,

e
i
ℏW½ĵ;ϕ̂f �

¼
Z

D½ϕ̂�D½ψ̂ �ei
ℏS½ϕþ;ψþ�− i

ℏS½ϕ−;ψ−�þ i
ℏSBC½ϕ̂�þ i

ℏSBC½ψ̂ �þ i
ℏϕ̂ σ̂ ĵ;

ð112Þ

we integrate over system field configurations that follow an
open path, ϕ̂ðtf; xÞ ¼ ϕ̂fðxÞ, while the environment paths
remain closed, ψþðtf; xÞ ¼ ψ−ðtf; xÞ. One can define the
effective theory for the reduced density matrix, as well, by
the help of Eqs. (82) and (83),

e
i
ℏW½ĵ;ϕ̂f � ¼

Z
D½ϕ̂�ei

ℏSeff ½ϕ̂�þ i
ℏϕ̂ σ̂ ĵ: ð113Þ

It is an important simplification that the finite part of the
effective action is independent of the matrix elements, ϕ�

f ,
and it agrees with the effective action, obtained in the CTP
formalism. The only difference between the generator
functionals (81) and (113) is the final conditions on the
field configuration in the integration at tf < ∞ or the

presence or absence of Sf½ϕ̂� in the action for tf ¼ ∞.
The density matrix characterizes the state of the system

at a given time; hence decoherence refers to a given,
instantaneous state, too. The way it emerges dynamically
during the time evolution can be traced by inspecting ℑSeff ,
the part of the effective action that controls the magnitude
of the density matrix element: The decoherence of the
system field, ϕðxÞ, is described by the growth of
ℑSeff ½ϕ;ϕd� as jϕdj is increased [41–44]. There are two
types of contributions in the Oðϕd2Þ part of the effective
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action (91): The contributions of functional derivatives,
acting on ℑS2, describe the environment induced
decoherence since S2 represents the system-environment
entanglement. The term with the functional derivatives of
ℑS1 shows irreversibility induced decoherence because the
imaginary part of the action indicates a finite lifetime of the
excitations, the leakage of the system into the environment.
In the harmonic toy model, (93), the structure D̂ ¼
C2½Dn;Df� of the propagators makes these two contribu-
tions to decoherence equivalent, ℑKþþ

eff ¼ ℑK−þ
eff ,

underlying the identical dynamical origin of irreversibility
(ℑKþþ

eff ) and decoherence (ℑK−þ
eff ). It is important to check

the sign of ℑK−þ
eff . The quadratic form of the Oðϕd2Þ part

of the effective action (95) is −ig2Di
e, ignoring OðϵÞ terms.

The inequality (79) shows that ℑSeff ½ϕ̂� indeed suppresses,
rather than enhances, the contributions of separated CTP
pair trajectories in this toy model.
Entanglement: The system-environment entanglement in

a pure system plus environment state makes the system
state mixed. Assuming a pure initial state for the system
and the environment, the reduced density matrix, given by
Eq. (113), describes a mixed state if and only if S2½ϕ̂� ≠ 0.
Therefore, the couplings between the two CTP copies, or
nonholonomic forces, represent the system-environment
entanglement.
We are now in the position to state the strengths of the

CTP formalism: Its strategy of constructing open, effective
dynamics runs parallel in the classical and quantum
domains. In classical mechanics one starts with the system
and environment coordinates ðx; yÞ, introduced for a closed
system with holonomic forces, and the elimination of the
environment leaves behind two copies of the system,
described by the coordinates ðxþ; x−Þ. A pure system-
environment state of quantum mechanics is identified by a
wave function Ψðx; yÞ, and after the elimination of the
environment one is left with mixed system states, described
by a density matrix ρðxþ; x−Þ. The reduplication of the
degrees of freedom is rather unusual, because it corre-
sponds to nondefinite kinetic energy in classical physics
and the modification of the expression of probability in the
quantum case.
Another advantage of the CTP formalism becomes clear

when the perturbation series of the expectation values is
visualized by means of Feynman graphs. This scheme
reproduces the complexity of the system-environment
entanglement with the simplicity of Feynman’s view of
elementary processes in space-time.
Fluctuations: The classical and the quantum fluctuations

have different origins: the former signals a lack of infor-
mation, and the latter is the manifestation of quantum
uncertainties, imposed by the canonical commutation
relations. The fluctuations are introduced in the determin-
istic classical mechanics by some probability distribution of
the initial conditions, the identical modification of the

initial conditions for the two CTP copies. Thus completely
decohered, classical fluctuations appear in ϕ ¼
ðϕþ þ ϕ−Þ=2 and leave ϕd ¼ ϕþ − ϕ− unchanged.
The quantum fluctuations at ti in the generator functional

(60), assumed to contain a factorizable density matrix, are
introduced by the independent integration over the initial
values of the pair of CTP trajectories. Hence the quantum
fluctuations in a pure state are represented by the inde-
pendent, uncorrelated fluctuations of the two CTP copies. If
there is an environment to interact with, then the resulting
decoherence gradually correlates the fluctuations of the two
CTP copies and in the limit of strong decoherence, ϕd → 0,
the fluctuations are indistinguishable from the classical
one. Though there is a weak decoherence even in the
absence of environment, generated by Ki

0 of Eq. (70) that
represents the closing of the two CTP trajectories at the
distant future, such an infinitesimal effect alone supports no
correlations between the CTP copies at finite time.
It is easy to find the origin of classical fluctuations in a

strongly decohered system. The quantum initial condition,
set by a pure initial state, determines the initial coordinate
and velocity on the level of averages only. The fluctuations
of the coordinate (momentum) are encoded in the diagonal
(off-diagonal) elements of the density matrix, given in
coordinate representation, and the decoherence of the
coordinate influences them in a different manner. When
strong decoherence sets xd ∼ 0, then information about the
momentum is lost but the coordinate fluctuations, arising
from the initial state, are not suppressed. Thus the classi-
cally looking fluctuations of the strongly decohered system
originate from the quantum fluctuations in the initial
pure state.
Quantum-classical transition: The classical limit is

usually presented as the dominance of the path integral
expression of the matrix elements of the time evolution
operator (58) by paths in the vicinity of the classical
trajectory, an approximation that can be justified in the
limit ℏ → 0. This picture suggests that the classical limit is
“rigid”when the observables receive contributions from the
vicinity of the classical trajectory. Though being a correct
mathematical limit to approximate integrals, it cannot be
the true classical limit, and the latter is unobservable in a
single transition amplitude between pure states, without
taking into account decoherence, which is a necessary
condition of the classical limit.
One expects to recover classical physics from quantum

mechanics when the energy levels are very close to each
other and the system averages itself quickly over a large
number of stationary states during the time evolution. Since
the stationary states are orthogonal to each other, the
system needs very small energy to orthogonalize itself in
this limit, which therefore should rather be qualified
as “soft.”
The strong decoherence limit of the CTP path integrals is

nontrivial, the action (18) is prevented from being
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vanishing identically for xd ¼ 0 by the infinitesimal split-
ting term, Sspl½x̂�, only. Such an almost degeneracy, the
choice of the minus sign in the right hand side of Eq. (12),
is crucial in establishing the desired correlation between the
CTP copies, as was pointed out in Sec. II D. Therefore the
approach of classical physics cannot be followed in a
simple, formal manner.
Nevertheless, one can make a small, qualitative step

toward the strong decoherence limit for weak system-
environment coupling. The ϕ-dependent part of the action
(90) is OðϕdÞ (ℜS1), and OðgÞ (ℑS1, S2), where g stands
for a generic system-environment coupling constant.
Therefore the ϕ dependence of the integrand of the path
integral is weak. Hence the “restoring force to equilibrium”
is weak during the time evolution, and the fluctuations of
ϕðxÞ are large for a strongly decohered system, in other
words the classical limit is indeed soft.

IV. SUMMARY

The well known CTP formalism is extended to classical
mechanics in this work. A unified description of an open
system, considered as a subset of a closed dynamical
system, is discussed in the classical and quantum domains
where the nonholonomic effective classical forces and the
system-environment entanglement of the quantum state are
handled by a reduplication of the degrees of freedom. The
two copies (i) are placed into a symplectic structure or into
complex conjugate representations in the classical and
quantum cases, respectively, (ii) obey the same initial
conditions, and (iii) are constrained to assume the same
position, to be determined by the dynamics, at the final
time. This scheme reveals a rather surprising possibility, the
mapping of the system-environment interactions into the
interactions of two copies of the system. One would have
thought that the system-environment interactions reflect the
richness of the usually large environment. The fact that
this is not the case and the complexity of the system-
environment interactions is limited by the system alone
might be accepted by noting that the reaction of a simple
system to a complex environment should remain simple.
The reduplication of the degrees of freedom allows us to

establish an action principle for initial condition problems
and for dissipative forces in classical mechanics and to
preserve the path integral formalism and the intuitive
appeal of Feynman graphs in representing the perturbation
series of expectation values for an open quantum system. It
is shown that this scheme goes beyond the traditional
effective theories, used in quantum field theory, by includ-
ing processes that leave the environment in an excited state.
The distinguishing feature of this scheme, without

analogy in the traditional action formalism, is the inter-
action between the CTP copies. It stands for the unre-
stricted, open ended time evolution of the environment
within the action principle and makes the dynamics open.
In case of the effective theory of charges in classical

electrodynamics the coupling between the CTP copies is
the interaction of the charges by the far radiation field.
The very same coupling between the copies represents the
system-environment entanglement in the quantum case.
Since the entanglement contribution to observables is
Oðℏ0Þ, it is natural to find a remnant of entanglement in
the classical domain.
Effective quantum field theories are widely used from

condensed matter physics to high energy physics because
we have no realistic hope to discover and test experimen-
tally fundamental, elementary theories. The extension of
the current technique of effective theories by means of the
CTP formalism is necessary to cover diffusion, irrevers-
ibility, acausality, decoherence, and other phenomena that
rely on soft collective excitations of the environment. We
repeat that the quantum CTP formalism has already been
well established, and the only new elements of this work
are its relation to classical mechanics and the necessity of
its application in effective theories.
The transmutation of quantum fluctuations into a

classical one can be followed qualitatively in strongly
decohered systems. The quantum fluctuations in a pure
initial state appear as independent fluctuations of the CTP
copies. If strong decoherence builds up during the time
evolution, then the fluctuations of the CTP copies become
identical and indistinguishable from classical fluctuations.
This scenario is in agreement with the well known
peculiarity of the density matrix, namely that the very
same density matrix can be obtained in two different
manners: On the one hand, to reproduce the expectation
values of a system that is entangled with another one, we
have to use (reduced) density matrices. On the other hand,
incomplete knowledge of the quantum state can be taken
into account by using density matrices. The transfer of the
unsuppressed part of the quantum fluctuations of a strongly
decohered system into the form of classical fluctuations
underlines indeed such a dual role of classical uncertainties.
The trajectories of strongly decohered systems occupy a

rather singular region in the space of trajectories: The
trajectories of the two CTP copies are almost identical
and the dependence of the action on the remaining common
trajectory is weak. This situation is reminiscent of the strong
coupling regime of quantum field theory andmay render the
comparison of the classical and quantum domains highly
nontrivial. For instance, the correspondence principle is
based on the assumption that the degrees of freedom are
identical in the quantum and the classical regimes. The
phenomenon of quark confinement demonstrates that a
strong coupling regime may separate regimes, governed
by significantly different degrees of freedom. A nonpertur-
bative treatment of the CTP formalism is needed to derive
classical physics from quantum theory and to establish the
correspondence principle in a systematic manner.
Beyond these qualitative remarks one expects other

issues, as well, where a CTP effective theory might be a
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useful tool. The systematic treatment of open systems,
blended with the renormalization group method should lead
us to a theory of open critical systems and an extension of
the traditional classification of operators around the critical
points. Furthermore, the resolution dependence of an
effective CTP theory should expose a new crossover in
any system without a gap in its excitation spectrum, where
the quantum physics turns into a classical one. A family of
problems might be addressed in this manner, for instance, a
more realistic treatment of particle detection in a cloud or
wire chamber in the laboratory, or on a cosmological scale,
the formation and decoherence of density and gravitational
fluctuations in inflation. The CTP formalism of general
relativity contains two space-times and should place the
analytic extension of the Schwarzschild metrics, discovered
in the Kruskal-Szekeres coordinate system, in a wider
context. Finally, the more efficient treatment of time
reversal odd interactions may lead us to a better under-
standing of the origin of the CP-violating sector of the
Standard Model and its the impact on low energy and
classical phenomena.

APPENDIX A: NOETHER THEOREM

The conservation of momentum and energy is discussed
here briefly in case the semiholonomic forces are acting.
The definition of infinitesimal symmetry transformation is
the same in CTP as in the usual case; namely the action is
allowed to be changed at most by a total time derivative, a
boundary term. The effective action is usually nonlocal in
time, but a useful approximation scheme is the gradient
expansion where one assumes the existence of a local
effective Lagrangian with possible higher order derivatives;
the simple form L ¼ L1ðxþ; _xþÞ − L1ðx−; _x−Þ þ L2ðx̂; _̂xÞ
will be used below.
To check the momentum conservation we perform the

infinitesimal translation x̂ → x̂þ ϵâ with time independent
ϵ and â. This transformation applies to the system only, and
the translation invariance of the effective dynamics may be
broken by the environment initial conditions. To test such a
symmetry breaking ϵ is made time dependent and its
Lagrangian,

Lðϵ; _ϵÞ ¼ Lðx̂þ ϵâ; _̂xþ _ϵ âÞ

¼ ϵâ
δL
δx̂

þ _ϵ â
δL

δ _̂x
þOðϵ2Þ; ðA1Þ

can be used to arrive at the equation of motion,

0 ¼ â

�
δL
δx̂

−
d
dt

δL

δ _̂x

�
; ðA2Þ

which is satisfied if x̂ðtÞ is a solution of the equation of
motion of the effective Lagrangian. The holonomic forces

are included in L1, and thus it is natural to define the
momentum by the equation

P ¼
X
σ

σaσ
δL1ðxσ; _xσÞ

δ_xσ
ðA3Þ

and Eq. (A2) leads to the balance equation,

_P ¼ â

�
δL
δx̂

−
d
dt

δL2

δ _̂x

�
: ðA4Þ

The simplest choice is aþ ¼ a− ¼ 1, but the correspond-
ing momenta are vanishing for the solution of the equation
of motion. It is more useful to perform the translation on
one copy of the system only, and use aþ ¼ 1, a− ¼ 0,
which does not correspond to a symmetry transformation,
but

P ¼ δL1

δ_x
ðA5Þ

is the usual momentum. The rate of its change is

_P ¼ δL1

δx
−

d
dt

δL2

δ_xþjxþ¼x−¼x
; ðA6Þ

according to Eq. (A4). The first term in the right hand side
stands for the lack of translation invariance of the holo-
nomic forces, and the remaining terms represent the
semiholonomic forces that make the momentum time
dependent and system dynamics open. In the case of the
Lagrangian (47) the balance equation for momentum,
P ¼ m_x, is _P ¼ −k_x − U0ðxÞ.
To test energy conservation we make a variation of the

trajectory xþðtÞ, which is induced by a time dependent
translation in time, δxþðtÞ ¼ −ϵ_xðtÞ, δx−ðtÞ ¼ 0, and find
the OðϵÞ part of the Lagrangian for ϵ,

Lðϵ; _ϵÞ ¼ −ϵ_xþ
δL
δxþ

− ϵẍþ
δL
δ_xþ

− ϵ
∂L
∂t − _ϵ_xþ

δL
δ_xþ

þ ϵ
∂L
∂t ;
ðA7Þ

where the time dependence, detected by ∂=∂t, comes
through x−ðtÞ. The sum of the first three terms gives a
total derivative,

Lðϵ; _ϵÞ ¼ −ϵ
�
dL
dt

−
d
dt

�
δL
δ_xþ

_xþ
��

−
d
dt

�
δL
δ_xþ

ϵ_xþ
�
þ ϵ

∂L
∂t :
ðA8Þ

The rate of change of the energy,

H ¼ ∂L1

∂ _x _x − L1; ðA9Þ
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can be written in the form

d
dt

Hðxþ; _xþÞ ¼ −
∂L
∂t þ

d
dt

�
L2 −

δL2

δ_xþ
_xþ
�

¼
�
δL2

δxþ
−

δ2L2

δ_xþδxþ
_xþ −

δ2L2

δ_xþδ_xþ
ẍþ
�
_xþ

ðA10Þ

with the help of the equation of motion of the Lagrangian
(A8). In case of the Lagrangian L1 ¼ m_x2=2, L2 ¼
gðx−Þ_xþ − gðxþÞ_x−, where the stability of the equilibrium
position requires g0ðxÞ ≥ 0, one finds

d
dt

H ¼ −g0ðxÞ_x2 ≤ 0: ðA11Þ

The nontrivial point here is that the Noether theorem can be
used to describe energy nonconservation even though the
Lagrangian is invariant under translation in time.

APPENDIX B: RELATIVE STATE

The mixed nature of the system state is the easiest to
follow WITH the help of the relative state, introduced by
Everett [35]. The space of states of our full system is a
direct product, H ¼ Hs ⊗ He, where Hs and He denote
the system and environment state spaces, and we shall use
the basis sets jpi∈Hs, jqi∈He, and jpi⊗jqi¼jp;qi∈H.
We assume furthermore that the system is in a pure state,
jΨi, and define its relative state, corresponding to an
environment state jψi ∈ Hs, as

jRðχÞi ¼ NðχÞ
X
p

jpihpj ⊗ hχjΨi; ðB1Þ

where NðχÞ > 0 is chosen for normalization. It is easy to
see that this definition is unique; i.e., it is actually
independent of the choice of the system basis.
The relative state encodes the conditional system expect-

ation values. In fact, let us write the full system state by
using our basis as

jΨi ¼
X
pq

jp; qihp; qjΨi ðB2Þ

and introduce the relative state for each environment basis
element,

jRðqÞi ¼ NðqÞ
X
p

jpihp; qjΨi; ðB3Þ

where NðqÞ is given by the equation

1

N2ðqÞ ¼
X
p

jhp; qjΨij2 ¼ PðqÞ; ðB4Þ

PðqÞ being the probability of finding the environment basis
vector q in our state. The decomposition of the full system
state,

jΨi ¼
X
q

ffiffiffiffiffiffiffiffiffiffi
PðqÞ

p
jRðqÞ; qi; ðB5Þ

indicates that each environment state forms its own
counterpart, a relative system state. A more detailed picture
is found by defining the conditional probability, PðpjqÞ ¼
jhp; qjΨij2=PðqÞ, and considering a system observable that
is diagonal in the basis, Ajpi ¼ λðpÞjpi. The expectation
values in a relative state,

hRðqÞjAjRðqÞi ¼
X
p

λpPðpjqÞ; ðB6Þ

and in the full system state,

hΨjAjΨi ¼
X
q

PðqÞhRðqÞjAjRðqÞi; ðB7Þ

confirm the interpretation of relative states as conditional
pure system states.
Since the system-environment interactions make the

system, depending on the environment there should be
several linearly independent relative system states and
system-environment entanglement appears. There are no
conditional states anymore, and the expectation value (B7)
cannot be reproduced for an arbitrary observable A by any
fixed system state vector in that case. In fact, let us suppose
the contrary, that there exists a state vector, jϕi, and
consider the measurement of the projection operator,
A ¼ jϕihϕj. The result must be 1 but Eq. (B7) gives less
than 1 unless there is a single relative state only. Hence one
needs density matrix

ρ ¼
X
q

jRðqÞiPðqÞhRðqÞj ðB8Þ

to represent the averages, hAi ¼ Tr½Aρ�, for an interacting
system and environment.
Note that the system-environment entanglement is

encoded in the spread of the distribution of the environment
quantum numbers. Hence, symmetries and the following
selection rules may restrict seriously the amount of entan-
glement. For instance, if the sum pþ q ¼ P is conserved,
then there is a single relative state only.
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