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Using functional renormalization methods, we study the one-loop renormalization group evolution
of theories with four scalars, at second order in the derivative expansion, in which electroweak symmetry
is nonlinearly realized. In this framework we study the stability of Oð4Þ symmetry and find the
Oð4Þ-violating eigenperturbations and their corresponding eigenspectrum around three different
geometries of the target space, namely those of the flat space, cylinder, and sphere.
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I. INTRODUCTION

Nonlinear realizations of symmetries play a central role
in providing low-energy effective descriptions of theories
with spontaneous symmetry breaking. Construction of
these effective theories can be achieved in practice by
the CCWZ prescription [1]. The chiral Lagrangian of
strong interactions is an example of such an effective
theory which describes pions arising as a result of the
breakdown of chiral symmetry SUð3ÞL × SUð3ÞR of QCD
to its vector subgroup by quark condensates. As another
well-known example, applying the CCWZ formalism to
electroweak interactions leads to the so-called electroweak
chiral perturbation theory. This gives, in terms of the
Standard Model degrees of freedom, the most general
effective theory based on electroweak symmetry breaking,
SUð2ÞL ×Uð1ÞY → Uð1Þem. Its scalar sector consists of
three Goldstone bosons, which are treated in the same way
as pions, along with an extra scalar degree of freedom, the
Higgs singlet. Due to the presence of this “radial” Higgs
mode, it is possible, at least locally, by making a field
redefinition, to rewrite the theory in such a way that the
symmetry is actually realized linearly. The linearly trans-
forming field is in fact given by the conventional para-
metrization of the Higgs field as an SUð2ÞL doublet H, in
terms of which the scalar sector of the Standard Model
effective Lagrangian with at most two derivatives reads

L ¼ ZðρÞ∂μH†∂μH þ VðρÞ þ YðρÞ∂μðH†HÞ∂μðH†HÞ
þ TðρÞjH†∂↔μHj2;

ρ2 ¼ 2H†H; ð1Þ

where the four functions Z; V; Y, and T include terms with
arbitrary powers of H†H. However, this is not always
possible in a global manner. In this case we still say that the

symmetry is nonlinearly realized [2]. This happens when
the target space has a nontrivial topology. An example of
this is provided by the minimal version of composite Higgs
models with custodial symmetry [3], which is based on the
SOð5Þ=SOð4Þ ¼ S4 symmetry-breaking pattern, so that the
target space has the topology of a four-sphere.
In the absence of gauge fields and fermions, the

electroweak chiral Lagrangian will lead to a theory of four
scalars with electroweak symmetry, namely h, a singlet of
SUð2ÞL × SUð2ÞR, and the unitary nonlinear sigma model
field U, parametrized by the three Goldstone bosons χα,
which transforms as U → gLUg†R under SUð2ÞL × SUð2ÞR.
This effective Lagrangian, at second order in the derivative
expansion, is

L ¼ 1

2
∂μh∂μhþ VðhÞ þ 1

4
KðhÞTrð∂μU†∂μUÞ

þ 1

8
PðhÞjTrðU†∂μUσ3Þj2; ð2Þ

where VðhÞ is the Higgs potential, and the two functions
KðhÞ and PðhÞ include all the couplings of the Higgs
singlet to Goldstones. The couplings in VðhÞ and KðhÞ
preserve SUð2ÞL × SUð2ÞR, while those of the PðhÞ
function break it explicitly to SUð2ÞL ×Uð1ÞY .
In this work we are interested in the renormalization of

such theories in the nonlinear parametrization and at second
order in the derivative expansion. The gauged Higgs-less
version has been studied in Ref. [4]. Here instead, the
presence of the singlet h allows for an infinite number of
couplings, collected into three independent functions VðhÞ,
KðhÞ, and PðhÞ. Inclusion of the Oð4Þ-violating couplings
PðhÞ also generalizes, at N ¼ 4, theOðNÞmodel studied in
Ref. [2]. The quantity whose running we are interested in is
the so-called effective average action (EAA). This is the
same as the standard effective action, which is the generator
of 1PI correlation functions, except that a cutoff term,
bilinear in the fluctuating fields ϕ,*msafari@ipm.ir
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ΔSk ¼
1

2

Z
ddp
ð2πÞd ϕð−pÞRkðp2ÞϕðpÞ; ð3Þ

is included in the path integral, which effectively cuts the
integrated momenta at an IR scale k. The cutoff kernel Rk is
required to be a decreasing function of p2 which vanishes
in the large p2=k2 limit and tends to infinity for large values
of the scale k. This is much in the spirit of Wilson’s idea of
renormalization [5]. The cutoff term (3) is finally subtracted
from the effective action in order for it to reproduce the
correct UV behavior. The one-loop EAA is thus given by

Γ1−loop
k ¼ Sþ 1

2
Tr log

�
δ2S
δϕδϕ

þ Rk

�
; ð4Þ

where S is the tree-level action. This is similar in structure
to the familiar one-loop expression, except for the appear-
ance of the cutoff kernel Rk, which was introduced to
suppress the low momentum fluctuations. The properties of
the cutoff kernel guarantee that the scale-dependent effec-
tive action (4) interpolates between the tree-level action in
the UV and the one-loop effective action with complete
integration of momenta in the IR. Deriving Eq. (4) with
respect to t ¼ log k gives the one-loop beta functional of
the EAA

∂tΓ
1−loop
k ¼ 1

2
Tr

��
δ2S
δϕδϕ

þ Rk

�−1
∂tRk

�
: ð5Þ

One can also do slightly better and promote the couplings
on the rhs to scale-dependent ones to find a renormalization
group improved flow. This is the approximation we will be
content with in the present work. An interesting property of
the flow equation (5) is that promoting the actions on both
sides to the full EAAwill lead to an exact equation for this
quantity [6,7] (see also Ref. [8] and references therein,
especially Ref. [9]). However, solving it requires resorting
to suitable truncation schemes.
The renormalization method adopted here can in prin-

ciple be translated into more standard methods such as
dimensional regularization and MS [10]. However, Eq. (5)
has the advantage of incorporating, in a straightforward
way, the running of infinitely many couplings, which
would otherwise require a resummation of an infinite
number of diagrams. This is reflected in the fact that the
beta functionals contain couplings in their denominators, as
seen explicitly in Eqs. (23)–(26).
Being just a matter of parametrization, the difference

between linear and nonlinear models might sound irrel-
evant, given the general fact of quantum field theory that
field redefinitions do not affect scattering amplitudes.
However, beta functions are not physical quantities and
are expected to depend on the choice of coordinates on the
target space. One advantage of using the nonlinear para-
metrization is that the redundant couplings are all collected

into a single function which is finally eliminated by a
simple field redefinition. Apart from this, an important
aspect of the approach taken here is the way the fluctuating
fields are defined. In the standard linear theory it is
customary, though not necessary, to adopt a linear splitting
of the total field into background and fluctuations (includ-
ing the possibility of a vanishing background field). In this
work, instead, the fluctuations are parametrized nonlinearly
via the exponential map. Although both of these choices for
splitting the total field can be made regardless of the target
space parametrization, and the two are physically equiv-
alent [11], they lead to inequivalent cutoff actions. In a
theory with a linearly split field the cutoff action, while
respecting the imposed symmetries, does not necessarily
allow for possible enhanced symmetries in certain regions
of the parameter space. In this sense the cutoff is not general
enough. This is related to the fact that the cutoff term breaks
general covariance. Instead, the background field method,
when accompanied by the exponential parametrization of
fluctuations, allows for the most general choice of cutoff
which respects all possible enhanced symmetries, as it is
invariant under general coordinate transformations. These
points will become more clear in the subsequent sections.

II. SETUP OF THE MODEL

We will consider a theory of four scalars in d-
dimensional Euclidean space which respects electroweak
symmetry. A suitable way to parametrize the field space is
to use χα, α ¼ 1; 2; 3, to assign an arbitrary parametrization
to the three-dimensional orbits of the symmetry group,
which are homogeneous spaces isomorphic to SUð2ÞL×
Uð1ÞY=Uð1Þem ¼ SUð2Þ, and use the fourth field ρ to label
different orbits. In order to find the general form of the
SUð2ÞL ×Uð1ÞY—invariant induced metric on the orbits,
we make use of the Maurer-Cartan forms LI

α which provide
a dual basis for the left-invariant vector fields Lα

I of SUð2Þ.
These are the generators of SUð2ÞR and therefore commute
with SUð2ÞL. In particular, Lα

3 generates Uð1ÞY and
commutes with SUð2ÞL. The induced metric on the orbits
then takes the general form

KðρÞgαβ þ PðρÞL3
αL3

β; ð6Þ

where gαβ is the metric invariant under Oð4Þ ⊃ SUð2ÞL×
SUð2ÞR. With these considerations, at the second order of
the derivative expansion, the dynamics is governed by the
following Lagrangian:

L ¼ 1

2
JðρÞ∂μρ∂μρþ VðρÞ þ 1

2
KðρÞ∂μχ

α∂μχβgαβ

þ 1

2
PðρÞ∂μχ

α∂μχβL3
αL3

β: ð7Þ

This is in fact the Lagrangian in (2) rewritten in terms of the
fields ρ and χα, except that the redundant function JðρÞ is
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also included, as it is generated under the renormalization
group flow. Notice that, with abuse of notation, the same
symbol has been used for the functions K and P despite the
fact that they are now written in terms of ρ, which is related
to the canonically normalized field h through

hðρÞ ¼
Z

ρ

0

dσ
ffiffiffiffiffiffiffiffiffi
JðσÞ

p
: ð8Þ

The metric gαβ and the one-forms LI
α can be expressed in

terms of the nonlinear sigma model field U through the
following relations:

gαβ ¼
1

2
Trð∂αU†∂βUÞ;

LI
α ¼

i
2
TrðU†∂αUσIÞ; ð9Þ

where σI are the Pauli sigma matrices. Notice that we do
not specify the parametrization of U by χα. The first three
terms in (7) are invariant under SUð2ÞL × SUð2ÞR, so after
electroweak symmetry breaking—that is, picking a point in
χα space and expanding fields around this and the location
of the minimum of the potential hρi—the symmetry is
broken to the vector subgroup SUð2Þc known as custodial
symmetry. The last term in (7) breaks SUð2ÞL × SUð2ÞR
explicitly to SUð2ÞL × Uð1ÞY and hence violates SUð2Þc
after electroweak symmetry is broken. In the Standard
Model effective Lagrangian, custodial symmetry is broken
starting from the dimension-6 (in d ¼ 4) operator

jH†∂↔μHj2 (gauge fields neglected). This operator is
included inside the last term in (2),

h4jTrðU†∂μUσ3Þj2 ¼ 4jH†∂↔μHj2; ð10Þ

where the explicit relation between the two complex fields
ϕþ and ϕ0 in the Higgs doublet H and the four fields h and
χα is given by the following equation:

hU ¼
ffiffiffi
2

p
ðHcHÞ; Hc ¼ iσ2H�; HT ¼ 1ffiffiffi

2
p ðϕþϕ0 Þ:

ð11Þ

In fact, the function PðhÞ of (2) evaluated at hhi, where the
potential takes its minimum, is related to the ϵ1 parameter
[12], used in precision electroweak tests, through
PðhhiÞ ¼ −v2ϵ1, where v is the weak scale. Recall that,
by definition, the weak scale is also given by v2 ¼ KðhhiÞ.
One can, of course, write the whole Lagrangian (7) in terms
of the Higgs doublet H, related to ρ; χα through
ρU ¼ ffiffiffi

2
p ðHcHÞ, which differs from (11) in that ϕþ and

ϕ0 are not normalized canonically. This will give precisely
the Lagrangian (1) if we make the identifications

JðρÞ ¼ ZðρÞ þ 2ρ2YðρÞ; KðρÞ ¼ ρ2ZðρÞ;
PðρÞ ¼ 2ρ4TðρÞ: ð12Þ

In the next section, we find the one-loop flow equations for
the functions in (7).

III. FLOW EQUATIONS

We find it convenient to collect the fields ρ and χα into a
four-component multiplet ϕi ¼ ðρ; χαÞ, with i running over
0,1,2,3, and rewrite the kinetic part of the theory in a
manifestly reparametrization-invariant way:

S ¼
Z

ddx

�
1

2
~Gij∂μϕ

i∂μϕj þ VðρÞ
�
; ð13Þ

where the metric ~Gij is equal to the Oð4Þ-invariant metric
Gij introduced in Ref. [2] plus a term proportional to PðρÞ
that breaks Oð4Þ explicitly to electroweak symmetry:

~Gij ¼
�
JðρÞ

KðρÞgαβ þ PðρÞL3
αL3

β

�
: ð14Þ

This allows for a straightforward application of the meth-
ods developed in Refs. [13–16], already employed for the
renormalization group study of nonlinear sigma models in
Refs. [2,4,17–21]. This is despite the fact that we have
already restricted to specific coordinate systems so that
only reparametrizations that do not mix ρ with χα are
allowed. In order to quantize the theory, it proves conven-
ient to use the background field method and parametrize the
fluctuations ξðxÞ around the background φðxÞ using the
exponential map ϕðxÞ ¼ ExpφðxÞξðxÞ. In this way of split-
ting the total field, the fluctuations are vectors of the target
manifold and transform linearly under any diffeomorphism.
The symmetries are therefore preserved under quantization
[18]. In order to write down the flow equation, we need the
piece in the EAA which is of second order in the
fluctuations. This is given by the following expression:

Sð2Þ ¼1

2

Z
ddxξið− ~∇2 ~GijþV 00δ0i δ

0
j −V 0 ~Γ0

ij− ~MijÞξj; ð15Þ

where ~∇μξ
i ¼ ∂μξ

i þ ∂μφ
k ~Γi

kjξ
j, ~Mij ¼ ∂μφ

m∂μφn ~Rimjn,
and the nonzero components of ~Γ0

ij are (see Appendix A)

~Γ0
00 ¼

J0

2J
; ~Γ0

αβ ¼ −
K0

2J
gαβ −

P0

2J
L3
αL3

β: ð16Þ

The cutoff action being bilinear in the fluctuations takes the
general form

ΔSk ¼
1

2

Z
ddxξiðRkÞijξj; ð17Þ

where the cutoff function Rk can depend on the back-
ground field. Here it is chosen to be proportional to the
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metric (14), with the optimized cutoff [22] used as the
proportionality function

ðRkÞij¼ ~GijRk; RkðzÞ¼ðk2−zÞθðk2−zÞ; z≡− ~∇2:

ð18Þ
As pointed out in the Introduction, the cutoff (17) intro-
duces a crucial difference between the covariant approach
adopted here and the noncovariant approach, where the
fluctuating fields are defined as the difference between the
total and background fields. To clarify this, let us recall that
a symmetry that is imposed on the theory is the least
amount of symmetry that we require; in general this can be
enhanced at some regions of the parameter space. For
instance, a model of four scalars with Oð4Þ symmetry can
also become Oð5Þ symmetric, if the couplings are chosen
appropriately. This extra symmetry, however, is not
respected by the choice of cutoff in the noncovariant
formulation. On the other hand, Eq. (17), along with the
leftmost relation in (18), because of its covariant nature,
guarantees that any isometry of ~Gij will automatically be a
symmetry of ΔSk, where the symmetry transformations act
on the fluctuating fields only. We write the sum of the
second variation (15) and the cutoff action (17) in the
following way:

Sð2Þ þ ΔSk ¼
1

2

Z
ddxξiðPij − ~MijÞξj; ð19Þ

where the Laplacian and the terms coming from the
potential are collected into Pij, defined by

Pij ¼ ~GijPkðzÞ þ V 00δ0i δ
0
j − V 0 ~Γ0

ij;

PkðzÞ ¼ zþ RkðzÞ: ð20Þ

We now have all the ingredients to find the one-loop
flow equations. Using (19) in the rhs of (5) and
expanding in ~Mij leads to

1

2
Tr½ðP − ~MÞ−1 _Rk�

¼ 1

2
Tr½P−1 _Rk� þ

1

2
Tr½P−1 ~MP−1 _Rk� þ � � � ; ð21Þ

where an overdot means derivation with respect to t.
Notice that, being interested in the one-loop beta
functions, the metric ~Gij, appearing implicitly inside
the trace through Rk, is considered to be scale inde-
pendent, so that ð _RkÞij ¼ ~Gij

_Rk. The trace (21), when
expanded in ~Mij, gives, at zero order, the flow of the
potential, and at first order, the flow of the functions J,
K, and P. Appendix B gives the details of this
computation. Let us define at this stage the relative
t-derivatives of the functions J, K, P, and V, found by
dividing the beta functionals by the corresponding
functions

ζJ ¼
d
dt

log J; ζK ¼ d
dt

logK;

ζP ¼ d
dt

logP; ζV ¼ d
dt

logV: ð22Þ

These dimensionless zeta quantities are themselves
functions of JðρÞ, KðρÞ, PðρÞ, VðρÞ and their deriva-
tives. At this point we perform the field redefinition (8)
and write the zeta functions in terms of the dimension-
less version ~h of the canonically normalized field
h defined by h ¼ k

d−2
2 ~h. For this purpose we define

the dimensionless functions denoted by a tilde,
KðρÞ ¼ kd−2 ~Kð ~hÞ, PðρÞ ¼ kd−2 ~Pð ~hÞ, and VðρÞ ¼
kd ~Vð ~hÞ, and rewrite the zeta quantities in terms of
these new functions. Doing this, all the dependence on
JðρÞ is absorbed into these new functions so that the
zeta quantities will then depend on ~Kð ~hÞ, ~Pð ~hÞ, and
~Vð ~hÞ only, with no explicit J dependence. The result of
the computation is

ζV ¼ cd

�
1

~Vð1þ ~V 00Þ þ
2

~Vð1þ ~V 0 ~K0=2 ~KÞ þ
1

~Vð1þ ~V 0ð ~K þ ~PÞ0=2ð ~K þ ~PÞÞ

�
; ð23Þ

ζJ ¼ cd

�
~K02 − 2 ~K ~K00

~K2ð1þ ~V 0 ~K0=2 ~KÞ2 þ
ð ~K þ ~PÞ02 − 2ð ~K þ ~PÞð ~K þ ~PÞ00

2ð ~K þ ~PÞ2ð1þ ~V 0ð ~K þ ~PÞ0=2ð ~K þ ~PÞÞ2
�
; ð24Þ

ζK ¼ cd

�
~K02 − 2 ~K ~K00

2 ~K2ð1þ ~V 00Þ2 þ
4 ~K − 12 ~P − ~K02

2 ~K2ð1þ ~V 0 ~K0=2 ~KÞ2 þ
4ð ~K þ ~PÞ2 − ~K ~K0ð ~K þ ~PÞ0

2 ~K2ð ~K þ ~PÞð1þ ~V 0ð ~K þ ~PÞ0=2ð ~K þ ~PÞÞ2
�
; ð25Þ

ζP ¼ cd

�
~K ~P02 þ 2 ~K ~K0 ~P0 − 2 ~Kð ~K þ ~PÞ ~P00 − ~P ~K02

2 ~K ~Pð ~K þ ~PÞð1þ ~V 00Þ2 þ 28 ~K ~Pþ4 ~K2 þ 8 ~P2 − 2 ~K ~K0 ~P0 − ~K ~K02

2 ~K2 ~Pð1þ ~V 0 ~K0=2 ~KÞ2

þ
~K ~K0ð ~K þ ~PÞ0 − 4ð ~K þ ~PÞ2

2 ~K ~Pð ~K þ ~PÞð1þ ~V 0ð ~K þ ~PÞ0=2ð ~K þ ~PÞÞ2
�
; ð26Þ
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where 1=cd ¼ ð4πÞd=2Γðd=2þ 1Þ. The derivatives on the
tilde functions ~V and ~P are taken with respect to ~h. The rhs
expressions are written in terms of the tilde functions, and
therefore there is no J appearing explicitly on the rhs. In
fact, from the definitions of the tilde functions and (8), it
can be shown that ~V 0 ¼ V 0=

ffiffiffi
J

p
and ~V 00 ¼ V 00=J−

V 0J0=2J2, with similar relations for ~K and ~P. This gives
the relations through which the J function implicitly
appears. In the special case where the potential takes a
constant value, the first equation (23) above gives the flow
of this constant dV=dt ¼ 4cd, and the last three equa-
tions (24)–(26) reduce to a Ricci flow [17,23]:

d ~Gij

dt
¼ 2cdkd−2 ~Rij: ð27Þ

This can be checked using the expressions for the Ricci
tensor (A12) and (A13) given in Appendix A. The
redundant function J still has a flow of its own, but this
is not of interest to us, because it is absorbed into the
functions ~Kð ~hÞ, ~Pð ~hÞ, and ~Vð ~hÞ. The flow of these three
functions can be written using the zeta quantities as

∂ ~V
∂t ¼ ðζV − dÞ ~V þ d − 2

2
~h ~V 0 −

1

2
~V 0
Z ~h

0

dσζJðσÞ; ð28Þ

∂ ~K
∂t ¼ðζK−dþ2Þ ~Kþd−2

2
~h ~K0−

1

2
~K0
Z ~h

0

dσζJðσÞ; ð29Þ

∂ ~P
∂t ¼ðζP−dþ2Þ ~Pþd−2

2
~h ~P0−

1

2
~P0
Z ~h

0

dσζJðσÞ; ð30Þ

where the t-derivatives of ~Kð ~hÞ, ~Pð ~hÞ, and ~Vð ~hÞ are taken
keeping the field ~h fixed. These are found using Eq. (22)
and the scale dependence of ~h (8), which leads to

d ~h
dt

¼ 2 − d
2

~hþ 1

2

Z ~h

0

dσζJðσÞ: ð31Þ

In the following sections, we analyze three solutions of the
above flow equations (28)–(30) with geometries of flat
space R4, cylinder R × S3, and sphere S4, and allow for
electroweak-preserving fluctuations around these solutions.
We concentrate on the fluctuations that do not respectOð4Þ
symmetry, and find the eigenperturbations and their cor-
responding eigenspectrum.

IV. THE GAUSSIAN FIXED POINT
(FLAT GEOMETRY)

The flat metric is given by the choices ~K ¼ ~h2 and
~P ¼ 0. In this case, there will be no running in the two

functions ~K and ~P, i.e. ∂ ~K=∂t ¼ 0 and ∂ ~P=∂t ¼ 0, and the
potential ~V will have a flow of the following form:

∂ ~V
∂t ¼ cd

�
1

1þ ~V 00 þ
3h

hþ ~V 0

�
− d ~V: ð32Þ

If we further restrict to constant values of the potential, this
will lead to a free theory whose structure is preserved under
the renormalization group with only a running constant
potential. In other words, for this choice of couplings, the
symmetry is enhanced to rotation and translation in the
four-dimensional field space. The constant ~V� ¼ 4cd=d is
clearly a fixed point of the flow (32), which together with
~K� ¼ ~h2 and ~P� ¼ 0 specifies the Gaussian fixed point.
The next information we can easily extract from the flow
equations is the eigenperturbations around the fixed point
and their corresponding eigenvalues. These are found using
the linearized form of the flow equations (28)–(30) around
the Gaussian fixed point

λδ ~V ¼ δζV ~V� þ
d − 2

2
~hδ ~V 0; ð33Þ

λδ ~K ¼ δζK ~K� − ðd − 2Þδ ~K þ d − 2

2
~hδ ~K0

−
1

2
~K0
�

Z ~h

0

dσδζJðσÞ; ð34Þ

λδ ~P ¼ δðζP ~PÞ − ðd − 2Þδ ~Pþ d − 2

2
~hδ ~P0; ð35Þ

where δζK , δζJ, δζV , and δðζP ~PÞ are, respectively, the first-
order values of ζK , ζJ, ζV , and ζP ~P in the variations δ ~K, δ ~V,
and δ ~P in an expansion around the fixed point. These are
given explicitly by the following expressions:

δζV ¼ −
dðd ~hδ ~V þ 3cdδ ~V

0 þ cd ~hδ ~V
00Þ

4~hcd
; ð36Þ

δζJ¼cd
−6δ ~Kþ6~hδ ~K0−3~h2δ ~K00−2δ ~Pþ2~hδ ~P0− ~h2δ ~P00

~h4
;

ð37Þ

δζK ¼ cd
2δ ~K − 2~hδ ~K0 − ~h2δ ~K00 − 2δ ~P − ~hδ ~P0

~h4
; ð38Þ

δðζP ~PÞ ¼ cd
8δ ~Pþ ~hδ ~P0 − ~h2δ ~P00

~h2
: ð39Þ

The first equation (34) is of integro-differential type. In
order to bring it into pure differential form, one can divide it
by ~K�,
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λΔ ~K ¼
~h
2
δζK −

d − 2

2
Δ ~K þ d − 2

2
~hΔ ~K0

−
1

2

Z ~h

0

dσδζJðσÞ;

Δ ~K ≡ δ ~K
~K0
�
; ð40Þ

and then differentiate with respect to ~h to get

λK ¼ 1

2

dð ~hδζKÞ
d ~h

þ d − 2

2
~hK0 −

1

2
δζJ; K≡ Δ ~K0:

ð41Þ

Of course, δζK and δζJ should now be written in terms of
K. It is easily seen that on substituting δ ~K in terms ofΔ ~K in
the expression (38), Δ ~K does not appear undifferentiated,
so equation (41) together with (35) gives rise to a set of two
coupled second-order differential equations. Now, having
found K, the function δK is specified, up to an integration
constant times 2~h, by

δ ~Kð ~hÞ ¼ 2~h
Z ~h

0

dσKðσÞ: ð42Þ

This integration constant vanishes by the requirement that
δ ~Kð ~hÞ satisfy (40). This is because Eq. (40), when differ-
entiated, is satisfied by the solution (42), so the undiffer-
entiated version (40) is satisfied up to a constant. On the
other hand, from the following analysis, the solutions K
and δ ~P will turn out to be even functions. This, together
with the solution (42) implies that all the terms in (40) are
odd, so the constant must vanish. Using the expressions
(36)–(39), the explicit form of the linearized equations (33),
(35), and (41) is

0 ¼ δ ~V 00 þ
�ð2 − dÞh

2cd
þ 3

h

�
δ ~V 0 þ dþ λ

cd
δ ~V; ð43Þ

0 ¼ K00 þ
�ð2 − dÞh

2cd
þ 1

h

�
K0 þ

�
λ

cd
−

4

h2

�
K

þ 1

h3
δ ~P0 −

4

h4
δ ~P; ð44Þ

0 ¼ δ ~P00 þ
�ð2 − dÞh

2cd
−
1

h

�
δ ~P0 þ

�
dþ λ − 2

cd
−

8

h2

�
δ ~P:

ð45Þ

For δ ~P ¼ 0, these equations reproduce the results of
Ref. [2] at N ¼ 4, where the solutions to the two decoupled
equations were found to be

δ ~Vi ¼ 1F1ð−i; 2; h̄2Þ; λVi ¼ −dþ ðd − 2Þi;

i ¼ 0; 1; 2;…; h̄≡
ffiffiffiffiffiffiffiffiffiffiffi
d − 2

4cd

s
~h; ð46Þ

Khom
i ¼ h̄21F1ð−i; 3; h̄2Þ; λKi ¼ ðd − 2Þðiþ 1Þ;

i ¼ 0; 1; 2;…: ð47Þ

Here instead, we are interested in the solutions with
nonzero δ ~P, and therefore Khom

i is the solution to the
homogeneous part of (44) only. So we first have to solve
Eq. (45). The solution is

δ ~Pi ¼ h̄41F1ð−i; 4; h̄2Þ; λPi ¼ ðd − 2Þðiþ 1Þ;
i ¼ 0; 1; 2;…: ð48Þ

In this case, we can also have nonzero δ ~V if for some i; jwe
have λPi ¼ λVj . This happens, for example, in d ¼ 3; 4,
where λPi ¼ λViþ4 and λPi ¼ λViþ3, respectively. Now, let us
come to Eq. (44). The solution to its homogeneous version
is given by (47), and it has the same eigenvalue as (48). So
the general solution to (44) is given by an arbitrary
coefficient of (47) plus any function that solves (44). To
find this specific solution, we write equations (45) and (44)
in the following compact form:

LKKKþ LKPδ ~P ¼ λK; ð49Þ

LPPδ ~P ¼ λδ ~P: ð50Þ

In order to treat the functions δP and δK on the same
footing, we define the operator D as

D≡ d

dh̄

1

2h̄
; ð51Þ

and using K ¼ Dδ ~K, we rewrite Eq. (49) in terms of δ ~K,
and take δ ~P ¼ δ ~Pi and λ ¼ λPi to make sure Eq. (50) is
satisfied:

LKKDδ ~K þ LKPδ ~Pi ¼ λPi Dδ ~K: ð52Þ

It can be verified that the following relation holds between
the differential operators LKK , LPP, LKP, and D:

LKKD −DLPP ¼ 3LKP: ð53Þ

Using this identity, we can write Eq. (52) in the following
way:

DðLPP − λPi Þδ ~K þ LKPð3δ ~K þ δ ~PiÞ ¼ 0: ð54Þ

Choosing δ ~K to be a solution to (50) with λ ¼ λPi makes the
first term vanish. The second term suggests the
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proportionality factor. So, from Eq. (54) it is clear that
δ ~K ¼ −δ ~Pi=3 solves the equation. The general eigensolu-
tion of Eqs. (43)–(45) with δ ~P ≠ 0 will then be

δ ~Pi ¼ h̄41F1ð−i; 4; h̄2Þ; δ ~Ki ¼ Cδ ~Khom
i −

1

3
δ ~Pi;

λi ¼ ðd − 2Þðiþ 1Þ; i ¼ 0; 1; 2;…; ð55Þ

where δ ~Khom
i is given by the same expression as (42) with

K replaced by Khom
i . More explicitly,

δ ~Ki¼Cih̄21F1ð−i;3;h̄2Þ−
1

3
h̄41F1ð−i;4;h̄2Þ

δ ~Pi¼ h̄41F1ð−i;4; h̄2Þ λi¼ðd−2Þðiþ1Þ; i¼0;1;2;…

ð56Þ

As mentioned before, in d ¼ 3; 4 we can also have a
nonvanishing eigenperturbation in the potential, propor-
tional to δ ~Viþ4 and δ ~Viþ3, respectively. There is no such
possibility in higher dimensions. In fact, the eigensolutions
(56) fulfil our expectations regarding the Oð4Þ-violating
perturbations around a Gaussian fixed point. The spectrum
gives simply the dimensions of the couplings of the higher-

dimensional operators ðH†HÞijH†∂↔μHj2 which violate
custodial symmetry, and i is the highest power of H†H

multiplying jH†∂↔μHj2 in the eigenperturbation δ ~Pi.

V. CYLINDRICAL GEOMETRY

Choosing the functions ~K and ~P to be constant, the
Goldstone sector decouples from the Higgs, and it will
consequently remain so under the renormalization group
flow. We parametrize the constants ~K and ~P by the two
dimensionless parameters ~f and a as ~K ¼ 1= ~f2 and
~P ¼ −a= ~f2, and find the following expressions for the
zeta quantities: ζJ ¼ 0, ζK ¼ 4cdð1þ aÞ ~f2 and
ζP ¼ 4cdð3 − aÞ ~f2. Inserting these expressions into the
flow equations (29) and (30) gives

d
dt

�
1

~f2

�
¼ 2 − d

~f2
þ 4cdðaþ 1Þ; ð57Þ

−
d
dt

�
a
~f2

�
¼ aðd − 2Þ

~f2
þ 4cdaða − 3Þ; ð58Þ

from which the flow equations for ~f2 and a follow:

d ~f2

dt
¼ ðd − 2Þ ~f2 − 4cdð1þ aÞ ~f4;

da
dt

¼ 8cdað1 − aÞ ~f2: ð59Þ

In fact, the first terms in (57) and (58) come from the
canonical dimensions, and the second terms come from the
term 2cdRαβ, proportional to the Ricci tensor, which
reduces in this case to the simple form [see Eq. (A13)]

~Rαβ ¼ 2ð1þ aÞgαβ þ 2aða − 3ÞL3
αL3

β: ð60Þ

This is because we are working in the one-loop approxi-
mation and because the flow of the potential has decoupled
from that of ~f and a. The flow of the potential ~V, which is
independent of ~f2 and a, is

∂ ~V
∂t ¼ cd

�
1

1þ ~V 00 þ 3

�
− d ~V: ð61Þ

A constant potential therefore remains constant, with the
flow ∂t

~V ¼ 4cd − d ~V. The constant value ~V� ¼ 4cd=d is a
fixed point of the flow equation (61) in any space-time
dimension, although in principle other fixed points like the
Wilson-Fisher in d ¼ 3 exist. When all three functions are
constant (not necessarily at the fixed point), the symmetry
is enhanced from electroweak to electroweak plus a shift
invariance of h. For the two quantities ~f and a, three fixed
points can be identified from (59). The first one, at which ~f
vanishes and a is left arbitrary, gives the trivial fixed point.
At the second fixed point, a vanishes and ~f takes the value
~f2 ¼ ðd − 2Þ=4cd. This is the fixed point with cylindrical
geometry where the symmetry is enhanced to rotations and
translations along the cylinder axis, and the one we will be
finally dealing with in this section. A third fixed point,
given by a ¼ 1 and ~f2 ¼ ðd − 2Þ=8cd, can be identified
from (59), but this is not a fixed point of the full flow
equations (29) and (30) because ~K� þ ~P� ¼ 0, and so terms
like ð ~K0 þ ~P0Þ=ð ~K þ ~PÞ, which appear inside the zetas
(23)–(26), will not be well defined anymore. Let us now
discuss the linearized equations around a generic solution
to the flows of the three constants ~V, ~K, ~P. Linearization of
Eqs. (28)–(30) in this case leads to

λδ ~V ¼ δζV ~V þ d − 2

2
~hδV 0; ð62Þ

λδ ~K ¼ δζK ~K þ d − 2

2
~hδ ~K0; ð63Þ

λδ ~P ¼ δðζP ~PÞ − ðd − 2Þδ ~Pþ d − 2

2
~hδP0; ð64Þ

where, parametrizing also the potential as ~V ¼ 4cd=b, for
which the fixed point occurs at b ¼ d, the quantities δζV ,
δζJ, δζK , and δð ~PζPÞ are expressed in terms of the linear
fluctuations as
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δζV ¼ −
bðbδ ~V þ cdδ ~V

00Þ
4cd

; ð65Þ

δζJ ¼ −
cd ~f

2ðð3 − 2aÞδ ~K00 þ δ ~P00Þ
1 − a

; ð66Þ

δζK ¼ −cd ~f
2ð4ð1þ 2aÞ ~f2δ ~K þ δ ~K00 þ 4~f2δ ~PÞ; ð67Þ

δðζP ~PÞ ¼ −cdð4að2a − 3Þ ~f2δ ~K þ 4ð2a − 3Þ ~f2δ ~Pþ δ ~P00Þ:
ð68Þ

Inserting the above expressions into (62)–(64) gives the
explicit form of the linearized equations:

0 ¼ δ ~V 00 −
ðd − 2Þh

2cd
δ ~V 0 þ λþ b

cd
δ ~V; ð69Þ

0¼ δ ~K00 −
ðd− 2Þh
2cd

δ ~K0 þ λþ 4cd ~f
2ð1þ 2aÞ
cd

δ ~Kþ 4~f2δ ~P;

ð70Þ

0 ¼ δ ~P00 −
ðd − 2Þh

2cd
δ ~P0 þ λþ d − 2 − 4cd ~f

2ð3 − 2aÞ
cd

δ ~P

− 4að3 − 2aÞ ~f2δ ~K: ð71Þ

The first equation is decoupled from the last two and admits
the set of solutions

δ ~Vi ¼ 1F1ð−i; 1=2; h̄2Þ; λVi ¼ ðd − 2Þi − b;

i ¼ 0; 1; 2;…; h̄≡
ffiffiffiffiffiffiffiffiffiffiffi
d − 2

4cd

s
~h: ð72Þ

The two equations for δ ~K and δ ~P have to be solved
simultaneously. To solve them, we first find the solutions to
the homogeneous versions: δ ~P ¼ 0 in (70) and δ ~K ¼ 0 in
(71). These equations are the same as Eq. (69) with λ
shifted appropriately. So the solutions are

δ ~Phom
i ¼ 1F1ð−i;1=2; h̄2Þ;
λPi ¼ðd−2Þði−1Þþ4cd ~f

2ð3−2aÞ; i¼0;1;2;…

ð73Þ

δ ~Khom
i ¼ 1F1ð−i; 1=2; h̄2Þ;
λKi ¼ ðd − 2Þi − 4cd ~f

2ð1þ 2aÞ; i ¼ 0; 1; 2;…:

ð74Þ
Now, the coupled system of equations in (70) and (71) is
solved by plugging in the ansatz cKδ ~K

hom
i and cPδ ~P

hom
i ,

which leads to an algebraic eigenvalue problem for the
eigenvector ðcK; cPÞ and eigenvalue λ. This is easily solved
to give

δ ~K�
i ¼

λKi − λPi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλKi − λPi Þ2 − 64c2d ~f

4að3− 2aÞ
q

8cd ~f
2að3− 2aÞ δ ~Khom

i ;

δ ~P�
i ¼ δ ~Phom

i ; ð75Þ

λ�i ¼
λKi þ λPi �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλKi − λPi Þ2 − 64c2d ~f

4að3 − 2aÞ
q

2
;

i ¼ 0; 1; 2;…: ð76Þ

Up to now, we have tried to keep the analysis as general as
possible. The generic solution to the flow equations around
which we have linearized describes a cylinder with a
squashed sphere base whose shape is deforming through
“renormalization group time” t. From now on, we special-
ize to the case a ¼ 0, which corresponds to a cylinder (with
spherical base) which is expanding or contracting, say, as
we move towards the UV, depending on whether the radius
is smaller or bigger than the fixed point value, as can be
seen from the ~f beta function in (59). In this limit, one of
the eigenperturbations in (75) preserves Oð4Þ while the
other one, in which we are interested, simplifies to

δ ~Ki ¼ −
4cd ~f

2

16cd ~f
2 − dþ 2

δ ~Khom
i ; δ ~Pi ¼ δ ~Phom

i ;

λi ¼ ðd − 2Þði − 1Þ þ 12cd ~f
2; i ¼ 0; 1; 2;…: ð77Þ

From the expression for the eigenvalues (77), it is seen that
when the cylinder radius ~f−1 is small enough, or explicitly
when ~f2>ðd−2Þ=12cd, which also includes the fixed point
value, the eigenvalues are all positive, and therefore the
perturbations are IR irrelevant, while for ~f2<ðd−2Þ=12cd,
the lowest-order perturbation grows in the IR.
In this a ¼ 0 case, the last term in (71) vanishes, so the

above eigenfunction might not be the unique one, and one
can add to δ ~Ki any solution of the homogeneous version of
(71) with λ¼λi. Such a solution exists if λi¼λKj , for some j.

This happens, for example, at the fixed point ~f2�¼
ðd−2Þ=4cd for j¼iþ3, so that one can add δ ~Khom

iþ3 , with
arbitrary coefficient, to the solution (77). In summary, at
the fixed point the eigensolutions with nonzero δ ~P are
found to be

δ ~Ki¼Ci1F1ð−i−3;1=2;h̄2Þ−1

31F1ð−i;1=2;h̄2Þ
δ ~Pi¼ 1F1ð−i;1=2; h̄2Þ λi¼ðd−2Þðiþ2Þ; i¼0;1;2;…

ð78Þ

Finally, we would like to know if in the presence of nonzero
Oð4Þ-violating eigenperturbations δ ~P around the fixed
point we can also have nonzero eigenperturbations δ ~V in
the potential. To find out, we need to see if they can have
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the same eigenvalues, which means if there are i and j such
that λPi ¼ λVj . A simple analysis shows that λPi ¼ λViþ5 in
d ¼ 3 and λPi ¼ λViþ4 in d ¼ 4, so that one can also have an
eigenperturbation in the potential, proportional to δ ~Viþ5

and δ ~Viþ4, respectively.

VI. SPHERICAL GEOMETRY

Finally, let us restrict our two functions ~K and ~P to ~K ¼
~f2 sin2ð ~h= ~fÞ and ~P ¼ 0, where ~f is a dimensionless
parameter. This gives the spherical geometry for which
the symmetry is enhanced to Oð5Þ when also accompanied
by the choice of constant ~V. Because of this extra
symmetry, the structure of the Lagrangian will be
preserved, and there are only ~f and ~V that
run under the renormalization group flow: d ~f=dt ¼
ð6cd − ðd − 2Þ ~f2Þ=2~f, d ~V=dt ¼ 4cd − d ~V. The fixed point
value of the sphere radius and the potential is thus given by
~f2� ¼ 6cd=ðd − 2Þ, ~V� ¼ 4cd=d. We linearize the flow
equations (28)–(30) around this Oð5Þ symmetric geometry
with ~f and ~V ≡ 4cd=b ¼ const. satisfying the above flow
equations. Just like the cylindrical case, this solution
describes an expanding (when ~f < ~f�) or contracting
(when ~f > ~f�) four-sphere, as we move towards the UV,
ending up at the fixed point. The linearized equations are

λδ ~V ¼ δζV ~V; ð79Þ

λδ ~K ¼ δζK ~K −
1

2
~K0
Z ~h

0

dσδζJðσÞ; ð80Þ

λδ ~P ¼ δðζP ~PÞ − ðd − 2Þδ ~P: ð81Þ

For convenience we define h̄ by ~h≡ ~f h̄ and the barred
functions by δ ~Vð ~hÞ ¼ δV̄ðh̄Þ, δ ~Kð ~hÞ ¼ δK̄ðh̄Þ, and
δ ~Pð ~hÞ ¼ δP̄ðh̄Þ, and we rewrite the above equations in
terms of these new fields. A prime on a tilde function is
then meant to denote derivation with respect to ~h, while a
prime on a barred function means derivation with respect to
h̄. Similarly to the flat case, the first equation above is an
integro-differential equation, which we would like to bring
into a pure differential form. For this purpose, as before, we
divide the equation by ~K0 ¼ ~f sinð2h̄Þ and take the
derivative of the equation with respect to h̄ while multi-
plying it by ~f to find a differential equation in terms of
Kðh̄Þ≡ dð ~fδK̄= ~K0Þ=dh̄, V ≡ δV̄ 0, and δP̄:

λK ¼ d
dh̄

�
~fδζK

~K
~K0

�
−

~f2

2
δζJ

¼ d
dh̄

�
~f2δζK

tan h̄
2

�
−

~f2

2
δζJ: ð82Þ

The quantities δζV , δζJ, δζK, and δð ~PζPÞ are expressed in
terms of the fluctuations as follows:

~f2 ~VδζV ¼ −b ~f2δV̄ − 3cd cot h̄δV̄ 0 − 3cdδV̄ 00; ð83Þ

~f4c−1d δζJ ¼ −2csc4h̄ð3δK̄ þ δP̄Þ
þ 2 cos h̄csc3h̄ð3δK̄0 þ δP̄0Þ
− csc2h̄ð3δK̄00 þ δP̄00Þ − 12 cot h̄δ ~V 0; ð84Þ

~f4c−1d δζK ¼ 2csc4h̄ð2 cosð2h̄Þ − 1ÞδK̄ − 2 cos h̄csc3h̄δK̄0

− csc2h̄δK̄00 þ csc4h̄ðcosð2h̄Þ − 3ÞδP̄
− cos h̄csc3h̄δP̄0 − 8 cot h̄δV̄ 0 − 4δV̄ 00; ð85Þ

~f2c−1d δð ~PζPÞ ¼ 4ð1þ 2csc2h̄ÞδP̄þ cot h̄δP̄0 − δP̄00: ð86Þ

The explicit form of the linearized equations are found by
substituting the above functions δζV , δζJ, δζK , and δð ~PζPÞ
into (79), (81), and (82):

0 ¼ δV̄ 00 þ 3 cot h̄δV̄ 0 þ ðbþ λÞ ~f2c−1d δV̄; ð87Þ

0 ¼ K00 þ ðcot h̄ − 2 tan h̄ÞK0

þ ð6þ ~f2c−1d λ − 4csc2h̄ − 2sec2h̄ÞK
þ 2 tan h̄V 00 þ 2ðsec2h̄þ 2ÞV 0 − 6 cot h̄V

þ 2ðcsc2h̄þ 1Þ cscð2h̄ÞδP̄0 þ 2ðsec2h̄ − 2csc4h̄ÞδP̄;
ð88Þ

0 ¼ δP̄00 − cot h̄δP̄0

þ ððλþ d − 2Þ ~f2c−1d − 4ð1þ 2csc2h̄ÞÞδP̄: ð89Þ
In order to find the Oð4Þ-breaking solutions, we first need
to find the nontrivial solutions of (89). These are given by

δP̄i ¼ sin h̄P3
i ðcos h̄Þ;

λPi ¼ cdði2 þ iþ 4Þ= ~f2 − dþ 2; i ¼ 3; 4;…; ð90Þ
where the functions Pm

l are the associated Legendre
polynomials. Generically, these sets of solutions do not
have common eigenvalues with the solutions to (87):

δV̄i ¼ sin−1h̄P1
i ðcos h̄Þ;

λVi ¼ cdðiþ 2Þði − 1Þ= ~f2 − b; i ¼ 1; 2; 3…: ð91Þ
This is true in particular at the fixed point where
~f2 ¼ 6cd=ðd − 2Þ, b ¼ d. So when we turn on δPi, we
can no longer have an eigenperturbation in the potential.
We are therefore restricted to the two equations (88) and
(89) with δV ¼ 0. In order to find the solution for K, we
rewrite these two equations in the compact form
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LKKKþ LKPδP̄ ¼ λK; ð92Þ

LPPδP̄ ¼ λδP̄: ð93Þ

There are two set of solutions to the homogeneous equation
LKKK ¼ λK:

Khom
1;i ¼ cot h̄ csc h̄2F1

�
−i; iþ 1

2
;
5

2
; cos2h̄

�
;

λK1;i ¼ 2cdð2i2 þ i − 4Þ= ~f2; i ¼ 2; 3; 4;…; ð94Þ

Khom
2;i ¼ csc2ð2h̄Þ2F1

�
−i; i −

5

2
;−

1

2
; cos2h̄

�
;

λK2;i ¼ 2cdð2i2 − 5i − 1Þ= ~f2; i ¼ 2; 3; 4;…; ð95Þ

and the two functions δK1;i and δK2;i are given in terms of
these solutions by

δK̄1ð2Þ;iðh̄Þ ¼ sinð2h̄Þ
Z

h̄

0

dσKhom
1ð2Þ;iðσÞ: ð96Þ

The integral in δK2;i must be taken with the assumption
0 < h̄ < π=2 and extrapolated to the whole region 0 < h̄ <
π afterwards. The possible constants of integration can be
shown to vanish by the properties of the unintegrated
equation (80). In order to study the δP ≠ 0 case, we pick a
solution δPi; λPi to (93) given by (90) and insert it into (92):

LKKKþ LKPδP̄i ¼ λPi K: ð97Þ

The general solution to this equation consists of a solution
to the homogeneous version LKKK ¼ λPi δK plus any
specific solution. It can be seen generically, and in
particular at the fixed point, that there are no common
eigenvalues between the solutions (90) and (94), (95). So
any solution we find to Eq. (97) is the unique one. In order
to find this solution, we follow the same idea as that used in
the flat case and define the operator

D≡ d
dh̄

1

sinð2h̄Þ : ð98Þ

Using the fact that K ¼ DδK̄, Eq. (97) can be reexpressed
as

LKKDδK̄ þ LKPδP̄i ¼ λPi DδK̄: ð99Þ

The following operator identity can be easily verified:

LKKD −DLPP ¼ 3LKP − αD; α≡ 6cd= ~f
2 − dþ 2:

ð100Þ

Using this identity, we can rewrite Eq. (99) as

DðLPP − λPi − αÞδK̄ þ LKPð3δK̄ þ δP̄iÞ ¼ 0: ð101Þ

Let us first restrict ourselves to perturbations around the
fixed point where α ¼ 0. In this case, the above equation
suggests choosing δK̄ to be proportional to δP̄i to make the
first term vanish, and choosing the proportionality factor to
be −1=3 to make the second term vanish. So the unique
solution is δK̄i ¼ −δP̄i=3. In summary, at the fixed point,
the eigensolutions with δP̄ ≠ 0 are

δP̄i ¼ sin h̄P3
i ðcos h̄Þ; δK̄i ¼ −

1

3
sin h̄P3

i ðcos h̄Þ

λi ¼
1

6
ðd − 2Þði2 þ i − 2Þ; i ¼ 3; 4; 5;… ð102Þ

The eigenvalues are all found to be positive. This means
that the perturbations are all irrelevant in the IR. So
although these perturbations break the Oð5Þ symmetry
down to SUð2ÞL × Uð1ÞY , in the IR Oð5Þ symmetry is
restored. The Oð4Þ-violating deformations start with a
quartic term δP̄i ¼ Oðh̄4Þ, so they can be written as a

Taylor series inH†H times the operator jH†∂↔μHj2. It might
be worth mentioning that, as pointed out earlier, when
restricting to the spherical geometry, the fixed point is UV
attractive. The corresponding UV-irrelevant eigenfunction
around the fixed point is found by an infinitesimal
deformation of the sphere radius in ~f2 sin2ð ~h= ~fÞ. This
actually corresponds to the lowest-order deformation in the
Oð4Þ-preserving eigensolutions (94) and (95), namely
K ¼ Khom

2;2 and λ ¼ λK2;2 ¼ −6cd= ~f
2
� ¼ 2 − d, in agreement

with the result of Ref. [17]. Away from the fixed point
where α ≠ 0, we expect δK̄i to receive corrections propor-
tional to α. The eigenvalues are given by (90) which, when
written in terms of α and the eigenvalues in (102), are
expressed as λi þ αði2 þ iþ 4Þ=6. In order to construct the
eigenfunctions, we find it more convenient to go back to the
original equation (97) and expand LKPδP̄i in the basis of
the eigenfunctions (94) or (95) depending on whether i is
even or odd, and accordingly choose the appropriate ansatz
for K. The situation is summarized as follows:

LKKK2i þ LKPδP̄2i ¼ λP2iK2i;

LKPδP̄2i ¼
Xi

n¼2

γn2iK
hom
1;n ; K2i ¼

Xi

n¼2

βn2iK
hom
1;n ; ð103Þ

LKKK2iþ1 þ LKPδP̄2iþ1 ¼ λP2iþ1K2iþ1;

LKPδP̄2iþ1 ¼
Xiþ2

n¼2

γn2iþ1K
hom
2;n ; K2iþ1 ¼

Xiþ2

n¼2

βn2iþ1K
hom
2;n :

ð104Þ
We report here the γni coefficients for the first few lowest-
order perturbations:

MAHMOUD SAFARI PHYSICAL REVIEW D 90, 065009 (2014)

065009-10



~f2c−1d LKPδP̄3 ¼ 96Khom
2;2 þ 24Khom

2;3 ;

~f2c−1d LKPδP̄4 ¼ 315Khom
1;2 ;

~f2c−1d LKPδP̄5 ¼ 204Khom
2;2 − 504Khom

2;3 − 120Khom
2;4 ;

~f2c−1d LKPδP̄6 ¼ −4410Khom
1;2 − 3937.5Khom

1;3 ; � � � ð105Þ

Having computed the coefficients γn2i and γn2iþ1, equa-
tions (103) and (104) turn into algebraic equations to be
solved for βn2i or β

n
2iþ1. The solutions are βn2i ¼ γn2i=ðλP2i −

λK1;nÞ and βn2iþ1 ¼ γn2iþ1=ðλP2iþ1 − λK2;nÞ. Finally, one has to
use the equations in (96) to find the corresponding δK̄2i

and δK̄2iþ1.
The eigenvalue expressions (90) imply that if the sphere

radius ~f is small enough, ~f2 < 16cd=ðd − 2Þ, which
includes the fixed radius ~f2� ¼ 6cd=ðd − 2Þ as well, then
the Oð4Þ-violating deformations are IR stable, while for
larger values of the radius, the first few lowest-order modes
turn unstable. The larger the radius, the more the number of
eigenperturbations which turn unstable in the IR.

VII. SUMMARY

We have used a geometric approach to study the one-
loop renormalization group evolution of an electroweak
invariant four-scalar theory, where the symmetry is non-
linearly realized. Flow equations for three independent
functions were found which incorporate the renormaliza-
tion group running of infinitely many couplings para-
metrizing the theory. These flow equations were used to
study the stability of flat, cylindrical, and spherical geom-
etries under Oð4Þ-violating perturbations, and exact ana-
lytic expressions for the spectrum and the corresponding
eigenperturbations were found. The flat geometry is a fixed
point of the flow equations which is, as expected, IR stable
against electroweak invariant deformations which break
Oð4Þ symmetry. The cylindrical and spherical geometries
are preserved under the renormalization group flow with
only a running radius, which is attracted to a fixed point in
the UV. For small enough values of the radius, including the
fixed point value, the two geometries are IR stable under
Oð4Þ-violating deformations. In other words, if we start
with a cylindrical or spherical geometry and slightly
deform the geometry in a direction that breaks Oð4Þ
symmetry, the deformations will damp down as we move
towards the IR, the symmetries will be restored, and the
flow will continue with an evolving radius. Although the
analyses are performed at the one-loop level, the computa-
tional approach we have taken is adapted to the use of
functional renormalization group methods which might be
used to go beyond perturbation theory. This work therefore
lays the basis for future investigations regarding more
realistic versions with gauge and fermionic degrees of
freedom as well as their nonperturbative studies.
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APPENDIX A: DETAILS ON THE TARGET
SPACE GEOMETRY

The Christoffel symbols corresponding to the metric
Gij are

Γ0
00 ¼

J0

2J
; Γ0

αβ ¼ −
K0

2J
gαβ; Γα

0β ¼
K0

2K
δαβ;

Γ0
0α ¼ 0; Γα

00 ¼ 0; Γδ
αβ ¼ ðΓgÞδαβ; ðA1Þ

where Γg denotes the Christoffel symbol for the metric gαβ.

Also the quantities δΓk
ij ¼ ~Γk

ij − Γk
ij, defined as the differ-

ence between the Christoffel symbols for ~Gij and Gij, are
given by

δΓ0
ij ¼ −

P0

2J
L3
i L

3
j ; δΓγ

i0 ¼
KðPK−1Þ0
2ðK þ PÞ L

γ
3L

3
i ;

δΓγ
αβ ¼ −

P
K2

∇γðL3
αL3

βÞ; ðA2Þ

where ∇i is the covariant derivative compatible with the
metric Gij and by definition L0

I ¼ LI
0 ¼ 0. Recall that the

indices on Lα
I are raised and lowered with gαβ. We have also

defined

Li
I ≡ Li

I; LI
i ≡GijL

j
I; ðA3Þ

with I ¼ 1; 2; 3 denoting the label of the vector fields.
The quantities Lα

I , being left-invariant vector fields on
SUð2Þ, are Killing vectors of gαβ ¼ LI

αLI
β. At different

stages of the computations we have also made use of the
fact that Li

I are Killing vectors of Gij. This can be seen
perhaps most easily by direct computation as follows:
Using the Christoffel symbols (A1) and the definition
(A3), one obtains for the i; j ¼ α; β components of the
tensor ∇iLI

j

∇αLI
β ¼ Kð∂αLβ − ðΓgÞδαβLI

δÞ ¼ K∇g
αLI

β; ðA4Þ

where ∇g
α is the covariant derivative compatible with gαβ.

The antisymmetric property of ∇αLI
β then follows from

that of ∇g
αLI

β. Also the 0; α and α; 0 components of ∇iLI
j

become

∇0LI
α ¼

K0

2
LI
α; ∇αLI

0 ¼ −
K0

2
LI
α; ðA5Þ
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which sum up to zero. Finally, the ∇0LI
0 component

vanishes because Γα
00 ¼ 0. This proves the claim. The

expressions in (A2) are found using the formula

δΓk
ij ¼

1

2
~Gkmð∇iδGmj þ∇jδGmi −∇mδGijÞ;

~Gij ¼ Gij −
P

KðK þ PÞL
i
3L

j
3; ðA6Þ

and the Killing property of Lα
I , where ~Gij is the inverse

of ~Gij and δGij ¼ ~Gij −Gij. Another useful identity
which is used in the computations is

∇αL
ρ
3∇βL3

ρ ¼ Kðgαβ − L3
αL3

βÞ; ðA7Þ

where, again, in its derivation, the fact that Lα
I is a

Killing vector is used. Recall also that the index ρ runs
over 1,2, and 3. With the aid of the Riemann tensor for
the Oð4Þ-invariant metric, reported in Ref. [2]; and the
following formula for the difference between the
Riemann tensors of ~Gij and Gij,

δRij
k
l ¼ 2∇½iδΓk

j�l þ 2δΓk
½ijmjδΓ

m
j�l;

~Rij
k
l ¼ Rij

k
l þ δRij

k
l; ðA8Þ

and using the expressions for the Christoffel symbols
(A1) and (A2), the identity (A7), and the Killing proper-
ties of Lα

I ; one can obtain, with some patience, the
following relations regarding the Riemann tensor of (14):

~R0α0β ¼
�
K02

4K
−
K00

2
þ K0J0

4J

�
gαβ

þ
�ðK þ PÞ02
4ðK þ PÞ −

K02

4K
−
P00

2
þ P0J0

4J

�
L3
αL3

β; ðA9Þ

~RαγβδL
γ
3L

δ
3 ¼

�ðK þ PÞ2
K

−
ðK þ PÞ0K0

4J

�
ðgαβ − L3

αL3
βÞ;

ðA10Þ

~RαγβδðLγ
1L

δ
1 þ Lγ

2L
δ
2Þ

¼
�
4KJ − K02

4J
− 3P

�
gαβ

þ
�
4KJ − K02

4J
þ 7Pþ 2P2

K
−
K0P0

2J

�
L3
αL3

β; ðA11Þ

which are used to find the numerators in (B9). The
nonzero components of the Ricci tensor are then easily
obtained from the three identities above:

~R00 ¼
K02

2K2
−
K00

K
þ K0J0

2KJ
þ ðK þ PÞ02
4ðK þ PÞ2 −

ðK þ PÞ00
2ðK þ PÞ þ

ðK þ PÞ0J0
4ðK þ PÞJ ; ðA12Þ

~Rαβ ¼
�
2 −

2P
K

−
K00

2J
þ K0J0

4J2
−
K0ðK þ PÞ0
4JðK þ PÞ

�
gαβ þ

�
6P
K

þ 2P2

K2
−
P00

2J
þ P0J0

4J2
−
PK0ðK þ PÞ0
2KJðK þ PÞ þ

P0ðK þ PÞ0
4JðK þ PÞ

�
L3
αL3

β: ðA13Þ

APPENDIX B: CALCULATION OF BETA
FUNCTIONALS

In order to compute the terms in the expansion (21), we
use the general formula for the trace of a function WðΔÞ of
a Laplace-type operator Δ:

Tr½WðΔÞ� ¼ 1

ð4πÞd2
X∞
n¼0

B2nðΔÞQd
2
−nðWÞ: ðB1Þ

The factors B2n are the coefficients which appear in the heat
kernel expansion

Trðe−sΔÞ ¼ 1

ð4πÞd2
X∞
n¼0

B2nðΔÞs−d
2
þn; ðB2Þ

and the Q-functionals, for a non-negative integer n, are
given by the Mellin transform of W,

QnðWÞ ¼ 1

ΓðnÞ
Z

∞

0

dzzn−1WðzÞ: ðB3Þ

For convenience, the optimized cutoff RkðzÞ ¼
ðk2 − zÞθðk2 − zÞ of Ref. [22] has been used in the
computations, which results in the following simple
expression for the Q functionals:

Qn

�
_Rk

ðPk þ qÞl
�
¼ 2k2ðn−lþ1Þ

Γðnþ 1Þð1þ ~qÞl ; q ¼ k2 ~q;

ðB4Þ

where q is an arbitrary function and ~q its dimensionless
version. What we need is essentially the n ¼ 0 term in the
sum (B1)
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1

ð4πÞd=2 B0ðΔÞQd
2
ðWÞ ¼ 1

ð4πÞd=2
Z

ddxTrQd
2
ðWÞ; ðB5Þ

which we have denoted by Tr0½WðΔÞ� in Eqs. (B7) and
(B9) below. For more details on trace techniques refer to the

appendix of Ref. [24]. We now have all the ingredients to
compute the beta functionals of VðρÞ, JðρÞ, KðρÞ, and
PðρÞ. The contribution to the flow of the potential comes
from the zero-order term in the expansion (21), which is
(one half) the trace of the operator

ðP−1 _RkÞij ¼
_Rkδ

i
0δ

0
j

Pk þ V 00=J − V 0J0=2J2
þ

_RkðLi
1L

1
j þ Li

2L
2
jÞ

Pk þ V 0K0=2KJ
þ

_RkLi
3L

3
j

Pk þ V 0ðK þ PÞ0=2ðK þ PÞJ : ðB6Þ

In fact, it is the B0 term in the trace of the above expression which gives the beta functional of the potential

1

2
Tr0½P−1 _Rk� ¼ cdkd

Z
ddx

�
1

1þ ~V 00 þ
2

1þ ~V 0 ~K0=2 ~K
þ 1

1þ ~Vð ~K þ ~PÞ0=2ð ~K þ ~PÞ

�
; ðB7Þ

where the result is presented in terms of the tilde functions defined in Sec. III. The first-order term in the expansion (21)
contributes to the running of JðρÞ, KðρÞ, and PðρÞ. To find it, we need the operator

ð ~MP−1 _RkP−1Þji ¼
_Rk

~Mimδ
m
0 δ

j
0

JðPk þ V 00=J − V 0J0=2J2Þ2 þ
_Rk

~MimðLm
1 L

j
1 þ Lm

2 L
j
2Þ

KðPk þ V 0K0=2KJÞ2 þ
_Rk

~MimLm
3 L

j
3

ðK þ PÞðPk þ V 0ðK þ PÞ0=2ðK þ PÞJÞ2 :

ðB8Þ

Taking (one half the B0 term of) the trace, one obtains

1

2
Tr0½P−1 ~MP−1 _Rk� ¼ cdkd−2

Z
ddx

�
J−1 ~M00

ð1þ ~V″Þ2 þ
K−1 ~MijðLi

1L
j
1 þ Li

2L
j
2Þ

ð1þ ~V 0 ~K0=2 ~KÞ2 þ ðK þ PÞ−1 ~MijLi
3L

j
3

ð1þ ~V 0ð ~K þ ~PÞ0=2ð ~K þ ~PÞÞ2
�
: ðB9Þ

The three numerators in (B9) are found using the expressions (A9)–(A11) for the Riemann tensor

~M00 ¼
�
K02

4K
−
K00

2
þ K0J0

4J

�
∂μφα∂μφ

βgαβ −
�
K02

4K
−
ðK þ PÞ02
4ðK þ PÞ þ

P00

2
−
P0J0

4J

�
∂μφα∂μφ

βL3
αL3

β; ðB10Þ

~MαβLα
3L

β
3 ¼

�ðK þ PÞ2
K

−
ðK þ PÞ0K0

4J

�
∂μφ

ρ∂μφσðgσρ − L3
σL3

ρÞ þ
�ðK þ PÞ02
4ðK þ PÞ −

ðK þ PÞ00
2

þ ðK þ PÞ0J0
4J

�
∂μφ

0∂μφ0;

ðB11Þ

~MαβðLα
1L

β
1 þ Lα

2L
β
2Þ ¼

�
K02

2K
− K00 þ K0J0

2J

�
∂μφ

0∂μφ0 þ
�
4KJ − K02

4J
− 3P

�
∂μφ

ρ∂μφσgσρ

þ
�
4KJ − K02

4J
−
K0P0

2J
þ 7Pþ 2P2

K

�
∂μφ

ρ∂μφσL3
σL3

ρ: ðB12Þ

Extracting the coefficients of ∂μφ
0∂μφ0, ∂μφ

α∂μφβgαβ, and ∂μφ
α∂μφβL3

αL3
β in (B9), we find the beta functionals of JðρÞ,

KðρÞ, and PðρÞ, respectively. The corresponding zeta functionals are reported in Sec. III.
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