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Based on the features of chiral susceptibility and thermal susceptibility at finite temperature, the
nature of chiral phase transition around the critical number of fermion flavors (Nc) and the critical
temperature (Tc) at a fixed fermion flavors number in massless QED3 is investigated. It is showed that, at
finite temperature, the system exhibits a second-order phase transition atNc or Tc and each of the estimated
critical exponents is less than 1, while it reveals a higher-order continuous phase transition around Nc at
zero temperature.

DOI: 10.1103/PhysRevD.90.065005 PACS numbers: 11.10.Kk, 11.15.Ex, 11.15.Tk, 11.30.Rd

I. INTRODUCTION

The study of chiral phase transition (CPT) in (2þ 1)-
dimensional quantum electrodynamics (QED3) has been
an active subject for 30 years since Appelquist et al. found
that CPT occurs when the flavor of massless fermions
reaches a critical number Nc [1]. They arrived at this
conclusion by analytically and numerically solving the
Dyson-Schwinger equation (DSE) for the fermion self-
energy in the lowest-order approximation where the
involved one-loop boson polarization is obtained by the
free form of the fermion propagator. To indicate the value
of Nc, Nash adopted an improved scheme and gave a
larger Nc [2]. Later, several groups investigated the
dependence of chiral symmetry breaking on N and some
groups doubted the existence of Nc [3,4]. This question
was answered by Maris and co-workers [5,6] and Bashir
et al. [7], who used the coupled DSEs for the photon and
fermion propagator to investigate the influence of the full
vacuum polarization and vertex function on the fermion
propagator, and they found that the critical number of
fermion flavors for dynamical mass generation of mass-
less QED3 lies between 3 and 4.
Nevertheless, the order of CPT around Nc might be an

interesting question. To reveal that, the authors of [1]
studied the light scalar degrees of freedom and the order
parameter of CPT near Nc and found that the phase
transition is not second order and is also unlike the
conventional first-order transition [8]. In addition, the
results from the Cornwall-Jackiw-Tomboulis effective
potential also gave the same conclusion [9]. Although
the above reveals the characteristic CPT, it is interesting to

adopt an alternative method to reanalyze the nature of this
phase transition and see whether it is consistent with those
results.
At finite temperature, the value of Nc should also vary

and chiral symmetry is restored as the temperature
increases at a fixed Nð< NcÞ. In this case, the fermion
propagator at finite temperature T can be written as

S−1ðT; PÞ ¼ i~γ · ~PA∥ðP2Þ þ iϖnγ3A3ðP2Þ þ BðP2Þ; ð1Þ

where ϖn ¼ ð2nþ 1ÞπT and A, B are the fermion wave-
renormalization factor and self-energy, respectively.
Adopting the lowest-order approximation of DSE and
using Eq. (1), Dorey investigated the CPT of QED3 at
finite temperature and showed that QED3 with dynamical
chiral symmetry breaking (DCSB) undergoes CPT into the
chiral symmetric phase when the temperature reaches a
critical value Tc and the corresponding Nc decreases with
the increasing temperature [10].
The above conclusion holds in massless QED3. Then,

another natural question may be raised: How does one chart
the phase diagram of thermal QED3 around Tc? Also, is the
nature of CPT around Nc at finite temperature the same as
that at zero temperature? At the involved temperature, since
the external fields are screened by thermal excitations and
the boson gains a nonzero mass, the feature of CPT at Nc
might be changed. However, as far as we know, the nature
of CPT at Nc in thermal QED3 has not been reported in the
existing literature. Therefore, it is very interesting to study
this problem.
In recent years, some works in lattice QCD [11–13]

showed that the peak of chiral susceptibility should be an
essential characteristic of CPT. Later, based on techniques
of continuum field theory, several groups [14–19] also
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reached the same conclusion. Thus, chiral susceptibility is
competent for studying the feature of phase transition in
this nonperturbative system. Meanwhile, the thermal sus-
ceptibility gives other ideal parameters to investigate the
characteristics of CPT at finite temperature [20]. In this
paper, we shall adopt the chiral and thermal susceptibilities
to study the nature of chiral phase transition of QED3 at
finite temperature.

II. FORMALISM FOR CHIRAL SUSCEPTIBILITY

The Lagrangian of QED3 involving N fermion flavors of
4 × 1 spinor reads

L ¼
XN
j¼0

ψ̄ jð∂ þ ieA −mÞψ j þ
1

4
F2
σν þ

1

2ξ
ð∂ρAρÞ2: ð2Þ

In the absence of the mass term mψ̄ψ , QED3 has chiral
symmetry. There are several equivalent choices of the order
parameter for chiral symmetry breaking; here we use the
fermion chiral condensate

hψ̄ψim ¼
Z

d3p
ð2πÞ3 Tr½Sðm;pÞ�; ð3Þ

where S is the dressed fermion propagator and Tr denotes
trace operation over Dirac indices of the fermion propa-
gator. Based on Lorentz structure analysis, the involved
massive/massless fermion propagator can be written as

S−1ðm;pÞ ¼ iγ · pEðp2Þ þ Fðp2Þ; ð4Þ

S−1ðpÞ≡ S−1ð0; pÞ ¼ iγ · pAðp2Þ þ Bðp2Þ: ð5Þ

In the high energy limit, the fermion propagator reduces to
the free one, i.e., S−10 ðpÞ ¼ iγ · p in the chiral limit and
S−10 ðm;pÞ ¼ iγ · pþm beyond the chiral limit. From this
it can be seen that, with a small fermion mass m, the
integral in Eq. (3) is divergent. In this case we should
employ a renormalization procedure to deal with this
divergence. A natural approach is to subtract the conden-
sate of the free fermion field from the above value.
That is to say, we define the renormalized fermion chiral
condensate by

hψ̄ψi≡ hψ̄ψim − hψ̄ψimf; ð6Þ

where hψ̄ψimf is the condensate of the free fermion gas.
Below, we shall determine the transition point via the

maximum of chiral susceptibility ∂hψ̄ψi
∂m (see, e.g.,

Refs. [11,21]), which is defined as [14]

χc ¼ ∂hψ̄ψi
∂m

����
m→0

: ð7Þ

This equation indicates that the chiral susceptibility mea-
sures the response of the chiral condensate (the order
parameter) to an infinitesimal change of the fermion mass
responsible for explicit breaking of chiral symmetry. Note
here that we evaluate the chiral susceptibility and fermion
chiral condensate in the chiral limit.
From Eqs. (3)–(5), we immediately arrive at the chiral

susceptibility of QED3 in the chiral limit,

χc ¼ 4N
Z

d3p
ð2πÞ3

�
p2A2D − 2p2ABC − B2D

½p2A2 þ B2�2 −
1

p2

�
;

ð8Þ

where

Cðp2Þ ¼ ∂Eðp2Þ
∂m

����
m→0

; Dðp2Þ ¼ ∂Fðp2Þ
∂m

����
m→0

: ð9Þ

III. ZERO TEMPERATURE

The next task is to obtain the four functions A;B; C;D.
These functions can be obtained by solving the DSE for the
massive fermion propagator,

S−1ðm;pÞ ¼ S−10 ðm;pÞ

þ
Z

d3k
ð2πÞ3 ½γσSðm; kÞΓνðm;p; kÞDσνðm; qÞ�;

ð10Þ

where Γνðm;p; kÞ is the full fermion-photon vertex and
q ¼ p − k. The coupling constant α ¼ e2 has dimension 1
and provides us with a mass scale. For simplicity, in this
paper, temperature, mass, and momentum are all measured
in units of α; namely, we choose a kind of natural units in
which α ¼ 1. From Eqs. (5) and (18), we obtain the
equations satisfied by Eðp2Þ and Fðp2Þ:

Eðp2Þ ¼ 1 −
1

4p2

Z
d3k
ð2πÞ3

× Tr½iðγpÞγσSðm; kÞΓνðm;p; kÞDσνðm; qÞ�;
ð11Þ

Fðp2Þ ¼ 1

4

Z
d3k
ð2πÞ3 Tr½γσSðm; kÞΓνðm;p; kÞDσνðm; qÞ�:

ð12Þ

Another involved function DσνðqÞ is the full gauge boson
propagator which is given by [17]

Dσνðm; qÞ ¼ δσν − qσqν=q2

q2½1þ Πðm; q2Þ� þ ξ
qσqν
q4

; ð13Þ
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where ξ is the gauge parameter and Πðq2Þ is the vacuum
polarization for the gauge boson which is satisfied by the
polarization tensor for the gauge boson and reads

Πσνðm; q2Þ

¼ −
Z

d3k
ð2πÞ3 Tr½Sðm; kÞγσSðm; qþ kÞΓνðm;p; kÞ�:

ð14Þ

Using the relation between the vacuum polarizations
Πðm; q2Þ and Πσνðq2Þ,

Πσνðm; q2Þ ¼ ðq2δσν − qσqνÞΠðm; q2Þ; ð15Þ

we can obtain an equation for Πðq2Þ which has ultraviolet
divergence. Fortunately, it is present only in the longi-
tudinal part and is proportional to δσν. We can remove the
divergence by the projection operator

Pσν ¼ δσν − 3
qσqν
q2

; ð16Þ

and obtain a finite vacuum polarization [18].
Finally, we choose to work in the Landau gauge, since

the Landau gauge is the most convenient and commonly
used one. Once the fermion-boson vertex is known, we
immediately obtain truncated DSEs for the propagators of
the fermion and the gauge boson and then the chiral
susceptibility near Nc is obtained. Of course, just as
mentioned in Ref. [22], Nc occurs only in a homogeneous
system; i.e., all the involved functions in this issue for the
fermion and boson propagators should satisfy homogeneity
degrees.

A. Rainbow approximation

The simplest and most commonly used truncated scheme
for the DSEs is the rainbow approximation,

Γν → γν; ð17Þ

since it gives us rainbow diagrams in the fermion DSE and
ladder diagrams in the Bethe-Salpeter equation for the
fermion-antifermion bound state amplitude. In the frame-
work of this approximation, the coupled equation for the
massive fermion propagator reduces to

S−1ðm;pÞ ¼ S−10 ðm;pÞ þ
Z

d3k
ð2πÞ3 γσSðm; kÞγνDσνðm; qÞ:

ð18Þ

From Eqs. (5) and (18), we obtain the equations satisfied by
Eðp2Þ and Fðp2Þ:

Eðp2Þ ¼ 1 −
1

4p2

Z
d3k
ð2πÞ3 Tr½iðγpÞγσSðm; kÞγνDσνðm; qÞ�;

ð19Þ

Fðp2Þ ¼ 1

4

Z
d3k
ð2πÞ3 Tr½γσSðm; kÞγνDσνðm; qÞ�: ð20Þ

In order to obtain these two functions, we start from the
propagators with the massive fermion. From the above
two equations and some tricks proposed in Ref. [23], we
obtain the three coupled equations for Eðp2Þ, Fðp2Þ, and
Πðm; q2Þ:

Eðp2Þ ¼ 1þ 2

p2

Z
d3k
ð2πÞ3

Eðk2ÞðpqÞðkqÞ=ðq2Þ2
Gðk2Þ½1þ Πðm; q2Þ� ; ð21Þ

Fðp2Þ ¼ mþ 2

Z
d3k
ð2πÞ3

Fðk2Þ=q2
Gðk2Þ½1þ Πðm; q2Þ� ; ð22Þ

Πðm; q2Þ ¼ 2N
q2

Z
d3k
ð2πÞ3

Eðk2ÞEðp2Þ
Gðk2ÞGðp2Þ

× ½2k2 − 4ðk · qÞ − 6ðk · qÞ2=q2�; ð23Þ

with Gðk2Þ ¼ E2ðk2Þk2 þ F2ðk2Þ.
Adopting Eqs. (9) and (21)–(23) and setting Π0ðq2Þ ¼

∂Πðm;q2Þ
∂m jm→0, we get the coupled equations for Cðp2Þ,

Dðp2Þ, and Π0ðq2Þ,

Cðp2Þ ¼ 2

p2

Z
d3k
ð2πÞ3

ðp · qÞðk · qÞC1=ðq2Þ2
H2ðk2Þ½1þ Πðq2Þ�2 ; ð24Þ

Dðp2Þ ¼ 1þ 2

Z
d3k
ð2πÞ3

D1=q2

H2ðk2Þ½1þ Πðq2Þ�2 ; ð25Þ

Π0ðq2Þ ¼ 2N
q2

Z
d3k
ð2πÞ3

½2k2 − 4ðk · qÞ − 6ðk · qÞ2=q2�Π0
1

H2ðk2ÞH2ðp2Þ ;

ð26Þ

with Hðk2Þ ¼ A2ðk2Þk2 þ B2ðk2Þ and

C1≡ ½B2ðk2ÞCðk2Þ−A2ðk2ÞCðk2Þk2−2Aðk2ÞBðk2ÞDðk2Þ�
× ½1þΠðq2Þ�−Aðk2ÞHðk2ÞΠ0ðq2Þ;

D1≡ ½Aðk2ÞDðk2Þk2−B2ðk2ÞDðk2Þ−2Aðk2ÞBðk2ÞCðk2Þk2�
× ½1þΠðq2Þ�−Bðk2ÞHðk2ÞΠ0ðq2Þ;

Π0
1≡ ½Aðp2ÞCðk2ÞþAðk2ÞCðp2Þ�Hðk2ÞHðp2Þ

−2Aðk2ÞAðp2Þ½Aðk2ÞCðk2Þk2þBðk2ÞDðk2Þ�Hðp2Þ
−2Aðk2ÞAðp2Þ½Aðp2ÞCðp2Þp2þBðp2ÞDðp2Þ�Hðk2Þ;
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where A;B;Π are obtained by Eqs. (21)–(23) at m ¼ 0. By
application of iterative methods, we can obtain A;B;Π, and
the above functions for the scalar vertex.

B. Improved scheme for DSE

To improve the truncated scheme for DSE, there are
several attempts to determine the functional form for the
full fermion-gauge-boson vertex [24–27], but none of
them completely resolves the problem. However, the
Ward-Takahashi identity (WTI),

ðp − kÞνΓνðm;p; kÞ ¼ S−1ðm;pÞ − S−1ðm; kÞ; ð27Þ

provides us with an effectual tool to obtain a reasonable
ansatz for the full vertex [24]. The portion of the dressed
vertex which is free of kinematic singularities, i.e., the BC
vertex, can be written as

Γνðm;p; kÞ ¼ Eðp2Þ þ Eðk2Þ
2

γν þ
Fðp2Þ − Fðk2Þ

p2 − k2
ðpþ kÞν

þ ðpþ kÞEðp
2Þ− Eðk2Þ

2ðp2 − k2Þ ðpþ kÞν: ð28Þ

Since the numerical results obtained using the first
part of the vertex coincide very well with earlier

investigations [6,16], we choose this one as a reasonable
ansatz,

ΓBC1
ν ðm;p; kÞ≐ 1

2
½Eðp2Þ þ Eðk2Þ�γν; ð29Þ

to be used in our calculation. Following the procedure in
rainbow approximation, we also obtain the three coupled
equations for Eðp2Þ,Fðp2Þ, and Πðm; q2Þ in the improved
truncated scheme for DSEs,

Eðp2Þ¼1þ
Z

d3k
ð2πÞ3

Eðk2Þ½Eðp2ÞþEðk2Þ�ðpqÞðkqÞ=ðq2Þ2
p2Gðk2Þ½1þΠðm;q2Þ� ;

ð30Þ

Fðp2Þ ¼ mþ
Z

d3k
ð2πÞ3

½Eðp2Þ þ Eðk2Þ�Fðk2Þ=q2
Gðk2Þ½1þ Πðm; q2Þ� ; ð31Þ

Πðm; q2Þ ¼ N
q2

Z
d3k
ð2πÞ3

Eðk2ÞEðp2Þ½Eðp2Þ þ Eðk2Þ�
Gðk2ÞGðp2Þ

× ½2k2 − 4ðk · qÞ − 6ðk · qÞ2=q2�; ð32Þ

and the corresponding unknown functions for Cðp2Þ,
Dðp2Þ, Π0ðq2Þ are

Cðp2Þ ¼ 1

p2

Z
d3k
ð2πÞ3

ðpqÞðkqÞ=q2
½1þ Πðq2Þ�2

�½C1 − C2�½1þ Πðq2Þ�
H2ðk2Þ −

Aðk2Þ½Aðp2Þ þ Aðk2Þ�Π0ðq2Þ
Hðk2Þ

�
;

Dðp2Þ ¼ 1þ
Z

d3k
ð2πÞ3

1

½1þ Πðq2Þ�2
�½D1 −D2�½1þ Πðq2Þ�

H2ðk2Þ −
Bðk2Þ½Aðp2Þ þ Aðk2Þ�Π0ðq2Þ

Hðk2Þ
�
;

Π0ðq2Þ ¼ N
q2

Z
d3k
ð2πÞ3

Π0
1Π0

2 − 2Π0
3Π0

4

H2ðk2ÞH2ðp2Þ ½2k
2 − 4ðk · qÞ − 6ðk · qÞ2=q2�;

with

C1 ≡ ½2Aðk2ÞCðk2Þ þ Aðp2ÞCðk2Þ þ Aðk2ÞCðp2Þ�Hðk2Þ;
C2 ≡ 2Aðk2Þ½Aðp2Þ þ Aðk2Þ�½Aðk2ÞCðk2Þk2 þ Bðk2ÞDðk2Þ�;
D1 ≡ fDðk2Þ½Aðk2Þ þ Aðp2Þ� þ Bðk2Þ½Cðk2Þ þ Cðp2Þ�gHðk2Þ;
D2 ≡ 2Bðk2Þ½Aðp2Þ þ Aðk2Þ�½Aðk2ÞCðk2Þk2 þ Bðk2ÞDðk2Þ�;
Π0

1 ≡ ½Aðk2ÞCðp2Þ þ Aðp2ÞCðk2Þ�½Aðk2Þ þ Aðp2Þ� þ Aðk2ÞAðp2Þ½Cðk2Þ þ Cðp2Þ�;
Π0

2 ≡Hðk2ÞHðp2Þ; Π0
3 ≡ Aðk2ÞAðp2Þ½Aðp2Þ þ Aðk2Þ�;

Π0
4 ≡ ½Aðk2ÞCðk2Þk2 þ Bðk2ÞDðk2Þ�Hðp2Þ þ ½Aðp2ÞCðp2Þp2 þ Bðp2ÞDðp2Þ�Hðk2Þ;

where A, B, Π are obtained by Eqs. (30)–(32) in the chiral
limit.

C. Chiral susceptibility around Nc

By application of numerical methods, A, B, Π, and the
functions for the scalar vertex can be obtained. The typical

behaviors for the six functions Aðp2Þ; Bðp2Þ; Cðp2Þ;
Dðp2Þ, Πðq2Þ, and Π0ðq2Þ are shown in Fig. 1. From
Fig. 1 it can be seen that, excepting that Aðp2Þ and Dðp2Þ
approach 1, the other functions vanish in the large
momentum limit and all six functions are almost constant
in the infrared region.
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Substituting the above functions into Eq. (8), we
immediately obtain the value of chiral susceptibility and
fermion chiral condensate with a range of fermion flavors.
The results are plotted in Fig. 2. From this figure, we see
that, with N increasing, the chiral susceptibility shows an
obvious peak in the rainbow approximation and the BC1

vertex approximation, while hψ̄ψi diminishes and vanishes
at a critical number of fermion flavors where CPT occurs.
Since each ansatz keeps a different symmetry of the system,
Nc depends a little on the choice of the ansatz for the
dressed vertex. In addition, we also see that the suscep-
tibility around Nc is apparently different from that at high
temperature and high density [17]. The peak shows neither
a divergent nor a discontinuous behavior, which illustrates
that CPT at Nc is neither of first order nor of second order
and thus is a higher-order continuous phase transition,
which is consistent with the previous works [8,9].

IV. FINITE TEMPERATURE

With the involved temperature, Oð3Þ symmetry of the
system reduces to Oð2Þ and the gauge boson acquires a
nonzero mass. The mass of the photon implies that external
electric fields are screened by thermal excitations [10] and
so we expect that the feature of CPT may be changed by the
excitations.

A. Truncated DSE

To give an insight into CPT, we shall adopt DSE for the
fermion propagator and the techniques of temperature field
theory to calculate the chiral and thermal susceptibility at
finite temperature with the increasing N, analyze the
transition of QED3 near NTc, and also reveal the nature
of CPT at the critical temperature TNc with a fixed N.
Now, let us give a short review of some studies on the

effect of the wave function renormalization factors A∥ and
A3. Just as mentioned in Sec. I, the CPT in QED3 was first
studied in Ref. [1], where it is found that CPT occurs at
Nc ≈ 3.24. They arrived at this conclusion by solving the
lowest-order DSE for the fermion self-energy. Later, some
groups adopted improved schemes for DSE to study this
problem and obtained qualitatively similar results with
Nc ≈ 3.3 [5,6]. This suggests that the lowest-order DSE for
the fermion propagator is a suitable approximation to study
CPT at finite temperature.
At finite temperature, to obtain a qualitative picture of

chiral susceptibility, we employ a familiar framework to
obtain the scalar part of the inverse fermion propagator
where the zero frequency approximation of boson polari-
zation is widely adopted [10,17,28,29]. In addition, the
conclusions in Ref. [30] illustrated that, by summing over
the frequency modes and taking suitable simplifications,
the qualitative aspects of the result obtained under the zero
frequency approximation for the wave function renormal-
izations A, E and the fermion mass functions B, F do not

χ
Δ

FIG. 2. The dependence of chiral susceptibility and fermion
chiral condensate at zero temperature on N in the rainbow
approximation (upper panel) and BC1 vertex approximation
(lower panel), where Δ ¼ − lg hψ̄ψiN

hψ̄ψiN¼0
.

Π

−Π
(

)

FIG. 1. The behavior of Aðp2Þ; Bðp2Þ; Cðp2Þ; Dðp2Þ;Πðq2Þ,
and −Π0ðq2Þ in the BC1 vertex approximation at N ¼ 1, 2.
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undergo significant changes. From this, we also ignore the
frequency dependence of fermion self-energy B and then
the corresponding DSE for the scalar part of the inverse
fermion propagator reads [17]

FðP2Þ ¼ mþ 2T
Z

d2K
ð2πÞ2

X∞
n¼−∞

FðK2Þ=½Q2 þ ΠðQÞ�
ϖ2

n þ K2 þ F2ðK2Þ

¼
Z

d2K
ð2πÞ2

FðK2Þ tanh Ek
2T

Ek½Q2 þ ΠðQÞ� ; ð33Þ

where Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ F2ðK2Þ

p
and the zero frequency boson

polarization is

ΠðQÞ ¼ NT
π

Z
1

0

dx

(
ln

�
4cosh2

MðxÞ
2T

�
−
m2 tanhMðxÞ

2T

TMðxÞ

)
;

ð34Þ

with M2ðxÞ ¼ m2 þ xð1 − xÞQ2.
With the general equation for the chiral susceptibility (8),

we can obtain the chiral susceptibility at finite temperature:

χc ¼ 4NT
X
n

Z
d2P
ð2πÞ2

×

�½ϖ2
n þ P2 − B2ðP2Þ�DðP2Þ
½ϖ2

n þ P2 þ B2ðP2Þ�2 −
1

ϖ2
n þ P2

�

¼ 2N
Z

d2P
ð2πÞ2

�
DðP2Þ
Ep

"
P2

E2
p
tanh

Ep

2T
þB2ðP2Þsech2 Ep

2T

2TEp

#

−
1

Ep0

�
P2

E2
p0
tanh

Ep0

2T

	�
; ð35Þ

where Ep0 ¼
ffiffiffiffiffiffi
P2

p
. The unknown function in the above

equation, DðP2Þ, is obtained by FðP2Þ:

DðP2Þ ¼ lim
m→0

∂FðP2Þ
∂m

¼ 1þ
Z

d2K
ð2πÞ2

1

Ek½Q2 þ ΠðQÞ�

×

��
DðK2ÞK2

E2
k

−
BðK2ÞΠ0ðQÞ
Q2 þ ΠðQÞ

	
tanh

Ek

2T

þDðK2ÞB2ðK2Þ
2TEk

sech2
Ek

2T

�
; ð36Þ

with Π0ðQÞ ¼ limm→0
∂ΠðQÞ
∂m . From Eq. (34), we easily find

that Π0ðQÞ ¼ 0.
Similarly, thermal susceptibility measures the response

of the chiral condensate to an infinitesimal change of
temperature:

χT ¼ ∂hψ̄ψi
∂T

¼
Z

d2P
ð2πÞ2Ep

"
B0ðP2Þ tanh Ep

2T
−
B2ðPÞB0ðPÞ tanh Ep

2T

E2
p

þ BðP2Þsech2 Ep

2T

�
B0ðP2ÞBðP2Þ

2TEp
−

Ep

2T2

�#
; ð37Þ

with B0 ¼ ∂B
∂T.

B. Numerical results

After solving the above coupled DSEs by means of the
iteration method, we can now calculate the chiral fermion
condensate and the above two susceptibilities, which can be
regarded as a function of N given by Eqs. (35) and (37)
with a range of temperature. The typical behaviors of the
susceptibilities and condensate are shown in Figs. 3 and 4.

χ

χ

ΨΨ

FIG. 3. The behaviors of chiral susceptibility and thermal
susceptibility around the critical fermion flavors with several
T (where χcR ¼ χc

N , χTR ¼ −χT , from left to right denote
T ¼ 2.5 × 10−2, 10−2, 10−3).

χ

χ

ΨΨ

FIG. 4. The behaviors of chiral and thermal susceptibilities
around the critical temperature with several N (lines from left to
right denote N ¼ 3, 2, 1).
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The upper lines of Fig. 3 give the behavior of chiral
susceptibility and the lower lines in this figure show the
fermion chiral condensate, while the other lines between
the two groups denote those of thermal susceptibility. As is
shown in Fig. 3, for any given temperature, χc almost keeps
a constant for small and large N, while it shows an apparent
peak at some critical number of fermion flavors. This
number depends on the temperature and diminishes as the
temperature increases. When N reaches a critical value
NTc, the appearance of vanishing fermion chiral condensate
and divergence peak of χT occur at the same point. This
critical fermion flavor also decreases with the increase of T,
which is similar to the results in the previous works
[10,28,29]. By all appearances, at any temperature the
peak of each susceptibility lies at NTc. Moreover, near Nc,
the chiral susceptibility at finite temperature shows a
different behavior from that at zero temperature. From
Fig. 3, we also see that the chiral and thermal susceptibil-
ities exhibit a very narrow, pronounced, and in fact
divergent peak at NTc, which is a typical characteristic
of second-order phase transition driven by the restoration of
chiral symmetry at finite temperature.
For a fixed N, with the increasing temperature, chiral

symmetry is restored at a temperature TNc and each
susceptibility exhibits the same behavior around the
critical point. From Fig. 4, we see that the chiral and
thermal susceptibilities reveal their infinite value at TNc,
which also illustrates the typical second-order phase
transition.

C. Critical exponents

Just as shown above, the chiral phase transition at finite
temperature is second order. A natural question follows:
What are the critical exponents? Now, let us try to answer
this question. Around the critical points, the phase tran-
sitions are characterized by the corresponding critical
exponents which are an important contemporary goal to
exhibit the feature of CPT. We find that the fermion chiral
condensate near the critical point reveals

hψ̄ψi ∼ tα; N ¼ const;

hψ̄ψi ∼ nβ; T ¼ const; ð38Þ

with the reduced temperature t ¼ 1 − T=Tc and the
reduced fermion flavors number n ¼ 1 − N=Nc. The
typical behavior of the condensate near the point of CPT
can be seen in Fig. 5, and we find that, in each figure, the
slope of the line of infrared fermion self-energy Bð0Þ is the
same as that of hψ̄ψi, which indicates that Bð0Þ and hψ̄ψi
illustrate the same value of the critical exponent in
massless QED3.
Numerically, for a fixed N, the estimated α at t → 0þ

and also the estimated β at n → 0þ with several T are
given as

N α T β

1 0.507 10−3 0.487
2 0.538 10−2 0.401
3 0.416 0.025 0.423

In addition, near the point of phase transition, each of
the two susceptibilities at t, n → 0þ reveals its critical
feature as

χc ∼ t−γ
c
; N ¼ const; ð39Þ

χT ∼ t−γ
T
; N ¼ const; ð40Þ

χc ∼ n−δ
c
; T ¼ const; ð41Þ

χT ∼ n−δ
T
; T ¼ const; ð42Þ

and their critical behaviors can be found in Fig. 6.
From the numerical results, we estimate the critical

exponents of the susceptibility with several N or T and
give γ, δ in the following table:

ψψ

ψψ

FIG. 5. The critical behavior of hψ̄ψi and Bð0Þ near the point
of CPT with a range of t at N ¼ 1 (top) and a range of n at
T ¼ 0.025 (bottom).

NATURE OF CHIRAL PHASE TRANSITION IN QED3 … PHYSICAL REVIEW D 90, 065005 (2014)

065005-7



N γc γT T δc δT

1 0.679 0.350 10−3 0.769 0.622
2 0.769 0.354 10−2 0.813 0.712
3 0.476 0.274 0.025 0.931 0.455

It is shown that each of the critical exponents is less than
1 and, in the same boundary condition, the critical exponent
of χc is larger than that of χT .

V. CONCLUSIONS

The primary goal of this paper is to investigate the nature
of chiral phase transition of QED3 near the critical value,
including the critical number of fermion flavors and critical
temperature, through a continuum study of the chiral and
thermal susceptibilities. Based on the suitable approxima-
tion of truncated DSEs for the fermion propagator and
numerical model calculations, we study the behavior of the
two susceptibilities near the critical point of CPT in QED3.
It is found that, with the rise of the number of fermion
flavors, the appearance of the peak of chiral susceptibility
and CPT occur at the same critical point, but the peak
reveals apparently different behavior at zero and finite
temperature.
At zero temperature the chiral susceptibility near the

critical number of fermion flavors reveals a finite and
continuous peak, which exhibits that CPT is neither of
first order nor of second order, and thus it should be a
continuous phase transition of higher order. However, apart
from zero temperature, both chiral and thermal suscep-
tibilities at either critical fermion flavors or chiral temper-
ature show large and in fact divergent peaks, which
illustrates a typical characteristic of second-order phase
transition driven by chiral symmetry restoration in ther-
mal QED3.
Finally, through the analysis for the critical exponents, it

is found that the critical exponents of chiral/thermal
susceptibility which characterize the chiral phase transition
are between 0.2 and 1, and, in the same boundary
condition, the critical exponent of thermal susceptibility
is less than that of chiral susceptibility.
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