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We study Yang Mills theory in 2 + 1 dimensions, as an array of coupled (1 4 1)-dimensional principal
chiral sigma models. This can be understood as an anisotropic limit where one of the space-time
dimensions is discrete and the others are continuous. The SU(N) x SU(N) principal chiral sigma model in
1 4+ 1 dimensions is integrable, asymptotically free and has massive excitations. New exact form factors
and correlation functions of the sigma model have recently been found by the author and P. Orland. In this
paper, we use these new results to calculate physical quantities in (2 4 1)-dimensional Yang-Mills theory,
generalizing previous SU(2) results by Orland, which include the string tensions and the low-lying glueball
spectrum. We also present a new approach to calculate two-point correlation functions of operators using
the light glueball states. The anisotropy of the theory yields different correlation functions for operators

separated in the x! and x? directions.
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I. INTRODUCTION

In this paper, we study an anisotropic version of (2 + 1)-
dimensional Yang-Mills theory. The anisotropy is given
by a longitudinal rescaling of coordinates of the form
%1 = x%1 and x*> — x%. The gauge fields transform as
Ap1 = (1/2)Ag1, Ay = A,. The strength of the inter-
actions is different in different directions. We explore the
highly anisotropic regime, where 4 — 0.

We realize this rescaling by starting with the Kogut-
Susskind Hamiltonian formulation of lattice gauge theory,
with lattice spacing a. The rescaling of coordinates
amounts to taking the continuum limit in the x° and x'
directions, with the lattice spacing rescaling as Aa.

We view the anisotropic model as an array of two-
dimensional field theories, coupled together to form a
higher-dimensional theory. The strength of the coupling
between these two-dimensional models depends on the
rescaling parameter A. The two-dimensional theory is the
principal chiral sigma model (PCSM) [1]. The PCSM is
known to be integrable, and this property has been
exploited to find exact results [2,3]. The main goal of
our program is to use exact results from the PCSM to
calculate physical quantities in anisotropic QCD, finding
corrections for small A.

This anisotropic regime of Yang-Mills theory has been
studied extensively by Orland. In Ref. [1] it was established
that the anisotropic theory is equivalent to an array of
coupled PCSM’s, and it was shown that the model confines
quarks and has a mass gap. In Refs. [4] and [5] the string
tensions for quark-antiquark pairs was found for the SU(2)
gauge group. In Ref. [6] the low-lying glueball spectrum
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was found for SU(2). In this paper we generalize all these
results to all N. This is done using new form factors of
the PCSM that were found in Ref. [7]. We also use the
light glueball states to calculate long-distance correlation
functions of gauge-invariant operators.

The longitudinal rescaling of coordinates is inspired by
a similar investigation in 3 + 1 dimensions by Verlinde
and Verlinde [8], in the context of heavy ion collisions.
A similar anisotropic limit was used by McLerran and
Venugopalan in their derivation of the color glass con-
densate picture [9]. An anisotropic theory has been
explored in Ref. [10], where the anisotropy is produced
by an external magnetic field.

This approach is especially interesting for (2 + 1)-
dimensional QCD, since there are two different coupling
constants for the gluon field, but they are both small
compared to the cutoff. This makes our approach funda-
mentally different from other analytic studies of (2 + 1)-
dimensional QCD (which are generally at large dimension-
less coupling) [11,12]. Recently, Karabali, Nair, and
Yelnikov [13] computed corrections to the results in [11],
in powers of the coupling constant. Their approach could
eventually be used to study confinement at weak coupling.

Physical quantities in the anisotropic gauge theory can
be evaluated in the context of form-factor perturbation
theory [14-16]. The gauge theory with 4 = 0 is integrable.
The S-matrix, some form factors, and correlation functions
of the PCSM are known. We perform a perturbative
expansion in powers of A, rather than the Yang-Mills
coupling constant. The perturbation theory starts from an
integrable, rather than a free theory.

A very similar approach has been used by Konik and
Adamov [17], and James and Konik [ 18] to examine the three-
dimensional Ising model as an array of two-dimensional
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chains. Here they have successfully computed critical expo-
nents and the entanglement entropy and spectra using an im-
proved version of the truncated conformal spectrum approach.

In the next section, we present a discussion of the
longitudinally rescaled Yang-Mills theory. We show how
the rescaled theory is equivalent to an array of integrable
models. This equivalence is shown in the axial gauge on the
Kogut-Susskind Hamiltonian.

In Sec. III, we compute the string tension for a static
quark-antiquark pair separated in the x' direction only. In
Sec. IV, we calculate the string tension of a quark-antiquark
pair separated in the x? direction. These string tensions are
different because the theory is anisotropic. In Sec. V we
compute the mass spectrum of the lightest glueball states.
These results generalize Orland’s SU(2) results to SU(N).

In Sec. VI, we calculate the long-distance two-point
correlation function of two gauge-invariant operators sep-
arated in the x! direction. This calculation is inspired by a
similar calculation for the two-dimensional Ising model in
an external magnetic field, by Bhaseen and Tsvelik [19].

In Sec. VII, we propose a method for calculating corre-
lation functions in the x? direction. This is done by defining
a transfer matrix that describes the evolution of the system
along the x? direction. The partition function and correla-
tion functions can be found, in principle, by diagonalizing
the transfer matrix in the basis of physical states. We are
only able to find an expression for the transfer matrix using
the light glueball states from Sec. V. However, this matrix is
very difficult to diagonalize. The problem is reduced to an
integral eigenvalue equation, which we leave unsolved.

We present our conclusions in the last section. A short
summary of the S-matrix and form factors of the PCSM is
given in the Appendix.

II. LONGITUDINALLY RESCALED YANG-MILLS
HAMILTONIAN IN THE AXTAL GAUGE

In the Kogut-Susskind lattice Hamiltonian formulation
[20], there are SU(N)-valued gauge fields U(x);, and
electric-field operators l(x)j? in the adjoint representation
of SU(N), at every space link (x,j), for j=1,2 and b =

1,2,...,N*> — 1. These satisfy the commutation relations

[1(x)7. 1)) = i85 f P 1(x) ja.
[[(x)7. U] = —0,,0t" U ().
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The gauge fields in the x° direction are fixed by the temporal
gauge condition U, = 1. The Hamiltonian is obtained by
taking the continuum limit of the Wilson action in the time
direction. The Kogut-Susskind Hamiltonian, inside a box of
size a’Ly x L,, is
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where L, L, are even integers.
In temporal gauge, physical states, ¥, are those which
satisfy Gauss’s law:

[D;1;(x)],¥ =0,
1

2 (2.2)

J

where

[,Djlj(x)}b = lj(x) - Rj<x - ja)bclj(x _}a)c’

where R ;(x),t. is the adjoint representation of the gauge
field,

Rj(x),t. = Uj(x)th;(x).

We find the electric field component /; by solving
Gauss’s law (2.2); and then impose the axial gauge
U,(x) =1, yielding

)Cl

L(x'x?), = Z Dyl (y", %%,

b
y ="

(2.3)

There is a global invariance left after the axial gauge fixing:

ol

[Dyl,(x', x*)],¥ = 0. (2.4)

xl=—

ol

The lattice Hamiltonian in axial gauge is found by
substituting the new nonlocal expression for the electric
field (2.3) into (2.1):

2 2 2 2 > 1 .
H= 11, ()2 - S [T (' 2) Vs (x! + a.%) + cecl
Pt nd b a1 2904
- 2 - 2 - 2 - 2
, 4 4 %
90

(2.5)
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The Hamiltonian (2.5) is nonlocal in x', and depends only on the transverse degrees of freedom U,, I,.

We now explore anisotropic Yang-Mills theory by longitudinally rescaling the coordinates. This is a summary of the
calculation done in [1,4]. The longitudinally rescaled lattice has spacing Aa in the x*! directions and spacing a in the x>
direction. In the 2 — 0 limit, it is sensible to treat x° and x! as continuous directions, and x? discrete.

Longitudinally rescaling the lattice Hamiltonian ((2.5) gives H = H, + A*H, where

Ly Ly Ly Ly
2 2 92 2 2
_ 0 2
Hy= 5oL -
L L 2a L
w=tip- by =l
L L L
/1292 2 2 2
— 0 1 1
H, = a4 E |x! =y
Ao lyi— Ll

Henceforth we drop the Lorentz index 2 from U,, I,.

We treat H; as a perturbation. In the interaction
representation, U satisfies the Heisenberg equation of
motion, dyU = i[Hy, U]. The solution of this equation of
motion is

h= ;—621 TrtbaOU(xl7x2)U(xl’x2)T’
0

ia
= — Trt, U(x', x?

R(x!, x2),c1(x!, x?),
9o

Y OU (x', x2).
(2.6)

Substituting (2.6) into Hy, and taking the continuum limit
in the x! direction, we find

Hy = ZHO(x2
—Z/w s UL 2 + [ 2, )

- Z/dx 2 {8 (e x2), )2 + R (' x2), ]2

where
JjE(x), = iTrt,0,U(x)U(x)",
j,’f(x)b = iTrt, U(x)"'aﬂU(x), (2.7)
where ¢ =0, 1.
We now note that H(x?) is the Hamiltonian of a (1 + 1)-

dimensional PCSM located at x2. The PCSM has the action
1
‘CPCSM = d )C ””Tr(? U 8 U. (28)
90

This model has a global SU(N)x SU(N) symmetry
given by the transformation U(x) — VLU(x)VR, where

[TrUz(xl,xz)"'Uz(x1 +a,x?) +c.cl,

—Ry(y' x* —a)L(y', x* — a)].

[
VLR € SU(N). The Noether currents corresponding to
these global symmetries are jL® given in (2.7). The
Hamiltonian corresponding to the action (2.8) of a
single PCSM at fixed x> is Hy(x?). The unperturbed
Hamiltonian, H, is an array of PCSM’s, one at each value
of x2,

Hy = ZHO(XZ) = ZHPCSM(X
.XZ Xz

It is important to note that the PCSM is known to be
integrable and to have a mass gap. We call m the mass of
the elementary particles of the sigma model.

The residual Gauss’s law, (2.4), becomes

‘/mwaﬂﬁn—ﬁww%wmw=a 2.9)

for each value of x2, when x! is continuous.

Using (2.6), we write the interaction Hamiltonian H in
the continuous x' limit:

H, = Z/dx/y

—j§(x 2 = a)][iE (%) — jE (' = a)].
(2.10)

2 & =g ()

The Hamiltonian (2.10) couples adjacent sigma models,
which allows particles to propagate in the x> direction. The
coupling is suppressed in the A — O limit.

There are several important points to mention about
the Hamiltonian H = H, + A>H,. It has been shown that
this anisotropic model confines quarks. The string
tensions are different if there is a quark-antiquark pair
separated in the x' or the x? direction. We call these the
horizontal string tension, ¢ and the vertical string
tension 6", respectively. To lowest order in A, these
are given by [4,5]
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m
H:ﬁ%c,v, o =" (2.11)

where Cy is the smallest eigenvalue of the Casimir
operator of SU(N). In Secs. III and IV we compute
quantum corrections to the string tensions (2.11) using
the exact form factors of the sigma model (shown in the
Appendix). This calculation is a generalization of the
results computed by Orland in Refs. [4] and [5] for
the gauge group SU(2). Orland’s results were computed
using the form factors of the O(4)-symmetric nonlinear
sigma model [21], by virtue of SU(2) x SU(2) = O(4).
Recently some form factors of the PCSM for general
N > 2 have been found [7], which allow us to general-
ize Orland’s result to the gauge group SU(N).

The anisotropic Hamiltonian has a mass gap. The lightest
gauge invariant excitation is a glueball composed of a
sigma-model particle-antiparticle pair. The light gluon
mass spectrum was calculated by Orland for the gauge
group SU(2) in Ref. [6]. The glueball masses are of the
form

M,=2m+E,,

where E, is the binding energy of the particle-antiparticle
pair. The determination of the spectrum of energies, E,,,
involved knowledge of the exact S-matrix of the O(4)
sigma model [22]. We generalize this calculation for N > 2
in Sec. V, using the exact S-matrix of the PCSM found by
Wiegmann [3].

III. THE HORIZONTAL STRING TENSION

In this section we compute quantum corrections to the
string tension ¢*. This calculation has been done before, in
Ref. [4], for N =2 using the form factors of the O(4)
sigma model. In this section we generalize these results
for N > 2.

It is convenient to rewrite the Hamiltonian (2.10) by
reintroducing the auxiliary field & = —A,, such that

[ 964 1.2 1,2
H, = P P
| Exz /dx { 1 01D (x, x%)0, DP(xh, x%)

— BB %) — (6 2) D (a2 + a>}.
(3.1)

By integrating out the auxiliary field, ®, we see the
Hamiltonians (3.1) and (2.10) are equivalent.

We can easily introduce static quarks into the
Hamiltonian (3.1) by coupling them to the auxiliary field,
®. Our goal is to find the potential energy of a quark-
antiquark pair separated only in the x' direction. By
integrating out the sigma model degrees of freedom, we
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can find the quantum corrections to the string tension
o'!. The Hamiltonian with a static quark of charge ¢ at the
space point (u!,u?), and an antiquark of charge ¢’ at the
space-time point (v!, v?), is

g2a2
H = Z/ e {”Tal@u%x%al«b(x',x%
.X2
— P B ) — () D + a)

- Rad (i) — BB, >} (3:2)

With these static quarks, the residual Gauss law on physical
states is modified to

/ A [ (x22), — RG22 — @), + gpb(x! — ul)6 e

—q,5(x" —v")8,2,2]¥ = 0. (3.3)

To find the string tension, ¢/, we set u?> = v?, and
integrate out the sigma model field, U. We obtain an
effective action, S.q(®), by

eiSal® — (0| ¢! | 441 ), (3.4)
where 7 stands for time ordering. The field ® in (3.4) is

treated as a background classical field. Expanding (3.4) in
powers of A, up to quartic order, we find

Seir(Ag)~ 122 / d?x 90 q>az<1>+u14 (@) + O(2°)
—AZZ / Px[ g (x) B, u', u?)
— R ()R (0, o 2)], (3.5)
where
= — Z/Jszznyxyyx)acef
x ®(x0, x!, x2),, 20, !, x )ef"
where

D(, x', 30, !, xz)acef

= (0176 (x°. x'.x%) e f5 (07, ¥, ¥%)410). (3.6)

We compute the correlation function (3.6) by introducing
a complete set of intermediate states between the two
operators. The non-time-ordered correlation function is
given by
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- 1 d91d92M —i(x—y)| M il
(017 (3) e (3110} = / o
01 acl0 el MZZI NMY)2 ) (2n)M
X (015 (0)4ye,
% [(017(0).yy,
The correlation function (3.6) can be found exactly at large N using the form factors from Ref. [23]. For general N < o0, we
can only calculate a large-distance approximation, using the two-particle form factor (shown in the Appendix). At large

distances, it is sufficient to compute only the first intermediate state, with one particle and one antiparticle.
The sigma-model form factor with one particle and one antiparticle is (see the Appendix)

by ay;...; A, Op, byay; PoOyiys Gyrrs bagirs -5 Py Oy, aapg bowg)

by.ay;...; A0y, byay P Oyyy. aysy byrs .. POy, agpg, boy)]™

. 1 i 2rxi
<0|];1; ('x)ac b17 al;P7 927 a, b2> = (pl - pZ)ﬂ (5a0a25coa15b1b2 - N‘Saocoéalazéblbz)e (Prtp2) S (0 + ﬂ'l)
© d¢ [2sinh(%)  de~$(eX/N — 1 —0)/2
0o €& sinh & 1 —e 2 smh.»:
Inserting (3.7) into (3.6) and time ordering, we find
df,do 1 1
D(x’ y)acef = /(217)227”2(00511 91 — cosh 62)2 (5aaz6ca1 - N5a65a1a2) <5ea25fa1 - N56f5a1a2>
x exp {—imsgn(x" — y°)[(x® — y°)(cosh @, + cosh@,) — (x! — y!)(sinh @, + sinh )]}
2ri o dé [—2sinh(%)  4e£(e%/N — 1 27)) *
8 i . exp/ 3 §1n (N)+ e (e - )] sin?[&(xi — 6) /2x] ' (3.8)
(0 + i) 0o & sinh & l—e % sinh &
The color factor in (3.8) is
1 1 1
<6au25ca| - Néacéu]@) (5eu25fa| - Néeféaluz) = 5&66€f Néacéef (39)

The term in the right-hand side of (3.9) proportional to % does not contribute when we substitute (3.8) back into (3.5),
because the field & is traceless, so we will ignore this term from now on.

We evaluate iS5 (®) using coordinates X*, r#, defined by x# = X* + % r#, and y* = X* — % r*. We then use the derivative
expansion for X > r:

B(x) = B(X) + ﬁaﬂq>(x) + ﬂaﬂa@(x) T
B(y) = B(X) — a B(X) + 7 0,0,8(X) - (3.10)

where 0, denotes 9/9X*. This derivative expansion is valid at large distances. The quadratic contribution to the effective
action is

g0 _ L 2x2D(X fx—f> o(x f) @x—f) . 11
is 2/d #rD (X + 2, 2mf(+2ac( 2)., (3.11)

We substitute (3.10) into (3.11) and find

is — _%/JZXJZr/d(ZI; m?(cosh 6, — cosh 6,)?5,,6,¢

x exp {—imsgn(r°)[(r°)(cosh @, + cosh &,) — (r!)(sinh @, + sinh §,)]}

27i o de [-2sinh(¥)  4e~4(e%/N —1)] sin2[&(xi — 0) /2] >
X{(ﬁ—i—ni)eXpA ?{ snhe | 1_o & sinh & }

< (B0 + 50,800, + " 0,0,8(X),0(B(X),, ~ 5 0,8(X), + L 0,0,8(x),).  (3.12)
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We keep only terms quadratic in r in (3.12) and then integrate out the r variable. Only the terms proportional to (r')? give a
nonvanishing contribution in (3.12). Integration yields the effective action:

Ser (@ / Px~ <I>62<I>{1—/12 évm)

1201400 i 12 (010,
/d 1 9251nh2( %r )sinh? (%522)

cosh(% 5

b2) cosh(‘g‘;ez)

x & [2m cosh(

91 + 92 . 91 — 92 477,'2
sinh
2 2 (0, — 6,)* + n*

 dé [—2sinh(%)  4e—
xepo/ —é{ o (N>+ ¢
0

& sinh &
_)“ZZ/d2 qu

We read off the renormalized string tension ¢!

2 Nm
H_ 290l |2 /d9d6
ar N 2(27)> e

£(e2/N — 1)} sin?[&(zi —

1 —e %

O(x, u', u?) —

sinh2 (91 +6,

(0, — 92))/2ﬂ]}
sinh &

94 ()2 (x%, w1, 0?)].

, after integrating out the auxiliary field ®:

)sinh?(45%)

2

cosh(e';gz) cosh(% ;92)

61 + 92 . 91 — 92 47[2
x5”(2mcosh( > )smh( 5 O =0 7

& sinh &

After the integration over #; and 6,, the string tension is

w d¢ [—2sinh(3
xexp2/ —é{ o (N)—l—
0

de~5(e*/N —1)] sin?[é(xi — (6,
1 —e% }

ey

(3.13)

4e~E(eX/N — 1)] sin? (%))~
1—e% sinh &

2 N w d& [—2sinh(3%)
H— 2B di—2—— —ep2 [ = N
2N 322 P ), E | sinne |

The string tension (3.13) generalizes the result from Ref. [4]
from N = 2, to general N > 2.

In the next section we compute the string tension for a
quark-antiquark pair separated in the x> direction, rather
than the x! direction.

IV. THE VERTICAL STRING TENSION

In this section we calculate the string tension, 6", for a
quark-antiquark pair separated only in the x? direction. This
calculation has been done before in Ref. [5] for the SU(2)
gauge group. We show here how to generalize this result for
N > 2 using the form factors from Ref. [7].

If we place a static quark at the space point u', u?, and an
antiquark at u', v?, with u> > v?, The residual Gauss’s law
(3.3) requires that there be at least one sigma-model particle
in each x? layer, for > > x> > v2. The left-handed color
index of a particle at x” is contracted with the right-handed
color of the particle at x> + a. The left-handed color index
of the particle at u?> — a and the right-handed color of the
particle at v> + a are contracted with the color indices of
the quark at u?, and the antiquark at v?, respectively. The
physical state is a color-singlet string of sigma-model
particles, whose endpoints are the quarks. The vertical

|
string tension is obtained by calculating the energy of this
string,

E

STIm

V= lim 4‘%2
|u‘—v2\—>oo|l/t —v |

The first approximation is to assume the energy of the
string is the total mass of the sigma-model particles, such
that Egying = 2 |u? — v*], s0 6V = m/a.

Corrections to the vertical string tension are found by
calculating the contributions to the energy of the string
from the Hamiltonian A>H,. As in Ref. [5], we will use a
nonrelativistic approximation, where the sigma-model
particles have momenta much smaller than their masses.
We ignore any creation or annihilation of particles.

The projection of the Hamiltonian onto the nonrelativ-
istic string state is

e

where 2}, (p),,» and €p(p),, are the sigma-model particle
creation and annihilation operators, respectively, and

2[}3(P Jar2p(P)g }+/12H1,
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X []6 (xl x2) jg(x17x2 - (l) + qbé('xl )5x2L12 q?}é(xl - u1>5x2112]
X [ig (' x?) = JE O = a) + qp8 (v — u')bp,e — g8 (v — u')d e 0], (4.1)

where we have again eliminated the auxiliary field, A.
We now need to find the expectation value

(string|H |string), (4.2)

where the state |string) has a sigma-model particle for every x?, whose center of mass is located at x' = z(x?). To evaluate
(4.2), we need the matrix elements of the form

_ [dp: dpz 1
anba) = [ S50 \/—2E V2E,

x TPty ’Z‘X)<P 01, ay. b1]j§ (X) e |P. 0. az. by), (4.3)

<P’ Z17a17b1|jg(x)ac

where the matrix element on the right-hand side of (4.3) is the two particle form factor found in the Appendix (with the
incoming antiparticle crossed to an outgoing particle), and C = L, R. By applying crossing symmetry on the form factor
(A2), we find

<P’011 ap, bl|jg(x)ac|P762’a2’ b2>

i o dé [—2sinh(%)  4e~¢(e¥ — 1)] sin2[£0)2x]
= C e “s N
(pl + pZ)O acaya, b by 0+ 2ri eXpA 5 |: sinh§ + 1— 6725 sinh§
where

1

gacalazb by — 5uazﬁca16b|bz - Néucéalaﬂéblbza
R 1

@acalazb by — 5ah260h]6a|a2 - N5a66ala25h,h2-

Taking the nonrelativistic limit, we find

11
V2E, 2E,

_[dE ¢ . (2% 2%/N L ) P m(l_1 m(l 1
AN_/O 4ﬂzsinh§{smh<N> 2e D=1 > =% n) v 3tn))

for N > 2, where y(")(x) = d"*' InT'(x)/dx"*" is the nth polygamma function.
The matrix element (4.3) is then

. Ay
(P01, a1, b1j5 (X) e P, 03y a2, bo) = Dy oo, exp—ﬁ(m -2,

where

m2

2 2
m +z
P,zi,a,,b,|jS P.zy,ay,b,) = [ =—DC “ 2 o(z1 — 22)- 4.4
< <1, a4y l‘JO(x)ac| » %2, A 2> 27[AN acayarbyby Xp|: 4AN( 2 y (Zl ZQ) ( )

This means that the color density of a particle is a Gaussian distribution in the nonrelativistic limit. In this sense, particles are
not pointlike, but the color is smeared over space.

We now use (4.4) to write the effective Hamiltonian of the nonrelativistic string. This is given by the projection of the
Hamiltonian (4.1) onto the state |string), which has a sigma-model particle at each x? layer, located at the point z' (x?), for

u?> > x* > 12, a static quark at u', u?, and an antiquark at u', v?. The string Hamiltonian is
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_m. s 2 <& 2 2
H g1ing _E(U —u?) o ;ZWJF/l Viuik + 4 Vengs
where
m M —da
Viuk = / dxldy |x |
SﬂANg(z) oS
X {eiﬁkl(x 7X] :;)L(xz)acmazhbz —e AAN[Z o 7X] @R( )aca|a2b|b2}
() ' Py L2 L a0 Py
2 {6 AN i $L<x )acazalhzb] - 4AN D ( )acazalhzb } (45)
and

Vo = 1 di' dv!|x! 1 m’ —JXZ[Z‘(DZ)—XI]ZQDR 2 5(x2 V' 476 &
ends __W X-ay |)C -y | me N (U )aca1a2b1b2 + ()C —v )qac 70q,a,9p,b,

m2 R,
x { ZT[ANe 4AN[Z v sjR(UQ)actllazblbz + 5()’1 - Ml)q;c‘l'ﬂ(salazéblbz

1 m>
_ d 1dl 1 _ 1
4g%a2/ iyl -y |{ \/ 2nAN ¢

m2 _mz[ l(uz —a) ]
X { 27[AN€ aay 1% @L( )acalazb b, + 5(}7 —Uu )qac4ﬂ5a1a25b by (46)

ad QL( )acalazblbz + 5(}62 - u1>qgc4ﬂ-6ala25blbz}

Imposing the residual Gauss’s law (3.3) on (4.5) and (4.6), implies

m2 2 1(2)—x 2 m? H(2—a)—x 2
/dxl{_ /27zANe diyle () —x'] gL(xz)aca]a2b1b2+ 2;rANe iy (F—a)—x] DR (x2 _a)acalazblbz}\y =0, (4.7

for u? > x2 > 2, and

/dx V ZHAN{e 4AN - gR( )acalazb]bz - qilcﬁ(xl - u1)4”5a,a26b]h2}m =0,
dx! 4A
/ oy ZﬂAN{e

respectively. The constraint (4.7) is satisfied by identifying D" (x*) yq 0,5,5, = DX(X* = @) 4eq,a,,,- The constraint (4.8) is

satisfied by identifying D (v?) .0 0515, = Tac84,0,0p,5,> Ad DE(U = @) 4en ap b, = Gac478a,a,00,1,- Using this, we
can eliminate the color degrees of freedom from (4.5) and (4.6).
Next we integrate out the variables x! and y' from Egs. (4.5) and (4.6). The integrals involved are

5= 43/2
/dxldy1|x —ye 2P0t _ 4V27AY T

m3

4\/ A3/2
/dxldy xl = yl|e™ 4AN B I (S P(r).

m 212 2A
/dxl x! — ulle” 4AN[x =) _ —évP[\/Ezl(uz) _ \/Eul],
m

Yu?—a)—x! @L( )aca1a2b1b2 _ qaca(xl _ ul)4ﬂ'5g]a25b1bz}\ll =0, (48)

’
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where P(r) is a function for which we do not have an exact analytic expression, but its behavior for small and large r is

1+ Z’i;z . or<t,
P(r) = (4.9)
ﬁmh ,or>L
After integrating out x' and y', the string Hamiltonian is
2 2
120 2 ANV =) [Ay ¢
H.. — 22y _ L _ AN 1= Pl (x2) — 21 (2 —
e = 0 ) 3 s 3 3 (PR )
A.ZJV(]V2 — 1) AN 1/.2 1 1(,,2 1
— a5+ P{V2[ (v) — ']} + P{V2[2' (u? — @) — u']}), (4.10)

mg%a2 2n

where we have used

(D) = N(N>—1).

The potential energy between a static quark-antiquark pair is then determined by finding the ground state of the

Hamiltonian (4.10).

We further simplify the Hamiltonian (4.10) using the small-gradient approximation. That is, in the nonrelativistic limit
(when the sigma model mass gap is taken to be very large), we expect that the sigma-model particles in two adjacent x?
layers are close to each other in the x! direction. Specifically, we assume |z (x?) — z!(x? — a)| < m~!. At the endpoints of

the string, we also assume |z!(2?) —u'| < m™!, and |z'(u® —

approximation gives the Hamiltonian

a) —u'| <m™'. Using Eq. (4.9), the small-gradient

PAN(N2=1) [Ay m 1= 2
H.. A ) AN e oy
string mg(Z)QZ o + a (u v ) om z:; 821 (X2)2

NN —1) Ui, 172 1(,2 112
* 2mgia* 27rANI[Z () =] + [z (" —a) —u']"}.

The first term in the Hamiltonian (4.11) is just a con-
stant with no physical significance, so we will ignore it
from now on. The Hamiltonian (4.11) is equivalent to Q =
(u* — v?)/a coupled harmonic oscillators. The ground-
state energy is then given by

V/N(N? =1 1 i
Ey = mo — YN )< )Zsin”—q. (4.12)
Joa 2nAy = 20

Using the Euler summation formula, for large Q,

ij(g) =0 [ axra) = 5 F(1) - FO)

q=0

+%[F’(l) _F(0) + o(é),

and the ground-state energy (4.12) becomes (dropping any
constants that do not depend on Q)

ANNI 1) [0
+ dmgia® ZﬂANxz;+a[Z () 2 —a)

(4.11)
[
m 20/N(N>—1)( 1 \i
Ey=|—— - L
a Goa 2nAy
I/N(N? -1 1 \i1 1
EEAVAL ) o). 413)
24 9% 27Ay) L L

where the distance between the quark and antiquark
is L = Qa.
We can easily read the vertical string tension off (4.13),

7 }
gy =m_2 N(N2 DL
a ngoa 2nAy

There is also a Coulomb-like term in the quark-antiquark
potential, which is proportional to 1/L.

V. THE LOW-LYING GLUEBALL
MASS SPECTRUM

The constraint (2.9) requires that in the absence of
quarks, there be an equal number of sigma-model particles
and antiparticles in each x? layer. Furthermore, it requires
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that the excitations form left- and right-color singlets. If the
sigma model at x? has a particle with a left color index, a,,
this index has to be contracted with either the left-color
index of an antiparticle in the x> layer, or the right color
index of a particle in the (x> + a) layer. A glueball in this
theory consists of several sigma-model excitations, forming
a color-singlet bound state.

The simplest and lightest glueball is one composed of
only one particle and one antiparticle, at the same value of
x%. The Gauss law constraint requires that their left- and
right-handed color indices be contracted. The interaction
Hamiltonian (2.10) provides a confining linear potential,
with string tension

o= 20", (5.1)
The factor of 2 comes from the fact that both the left and
right color charges are confined.

The problem is now essentially (1 + 1) dimensional. The
low-lying gluon spectrum has been found before by P.
Orland in Ref. [6] for the SU(2) gauge group. A similar
analysis was used to find the massive spectrum of (1 + 1)-
dimensional massive Yang-Mills theory for all N, in
Ref. [24]. This method is in turn inspired by the determi-
nation of the spectrum of the two-dimensional Ising model
in an external magnetic field [19,25].

The low-lying glueball masses are

M,=2m+E,,

where m is the mass of a sigma model excitation, and E,, is the
binding energy. The goal of this section is to compute the
binding energies E,, for N > 2. Thisis done by finding the wave
function of an unbound sigma-model particle-antiparticle
pair. There is a possibility of these two excitations scatter-
ing which is accounted by the exact particle-antiparticle
S-matrix. We later find the wave function of a particle-
antiparticle pair, confined by a linear potential. We obtain a
quantization condition for the binding energy by requiring
that the two wave functions agree when the particles are
close to each other. We are able to do this calculation only
in the nonrelativistic limit, where we take the momenta of
the excitations to be much smaller than their masses.

The particle-antiparticle S-matrix is found in the
Appendix. The S-matrix has an incoming antiparticle with
rapidity 6; and color indices a;, b; and a particle with
rapidity 6, and color indices a,, b,. There is an outgoing
antiparticle with color indices c;, d; and a particle with
indices c¢,d,. The S-matrix is

2ri

S(0 dycyserdy S(0) 6565 —

aby;byas

501075C162:|

d) od
X |:6b15b§ —méb]hz

PHYSICAL REVIEW D 90, 065002 (2014)

where
) d .
S(0) = exp?2 /0 thg (/N — 1) — sinh(2¢/N))]
X sinhé—é, (5.2)
7
for N > 2.

The constraint (2.9) requires that the particle-antiparticle
pair form a left-and right-handed color singlet. The
S-matrix of this pair, S(0), is obtained by contracting
the color indices of the excitations:

1 dycoseqd,
S<9) = m501Hz5’71h26€|Czédldzs(e)aszl;bzaz
0+ xi\?
= S(0).
(9 — m') (©)

In the nonrelativistic limit (f << m) the color-singlet
S-matrix becomes

ih
S(0) = exp <——N p1 — P2|>’
Tm
where

o .
hy =2 A & (/N — 1) — sinh(2¢/N)]

1 1 1 1

and y is the Euler-Mascheroni constant, and w(x) =
dInT'(x)/dx is the digamma function.

We find the wave function of an antiparticle at x!, and
a particle at y', with momenta p,, p,, respectively, in the
nonrelativistic limit. It is convenient to switch to center-
of-mass coordinates, X, x and their respective momenta
P, p. These are defined by X =ux!+y', y' —x!,
P = p, + p,, and p = p, — p,;. The nonrelativistic wave
function is

cos(px + w), for x > 0,

Uy (%) singler = { cos[—px + o — x(p)].

for x < O,
(5.4)

h
where y(p) = =% |pl-
We now calculate the nonrelativistic wave function for a

linearly bound particle-antiparticle pair. In center-of-mass
coordinates, the wave function satisfies the Schroedinger
equation

1 4 + ol|0(x) = EO),

m dx? (5:3)
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where E is the binding energy [25], and ¢ = 24? Z—§ Cy is the
string tension. The solution of Eq. (5.5) is

T(x) = CAi [(ma).% <|x| - 9] , (5.6)

C 1

<x+é>%

\I/(x)blbz =

<x+§>

By comparing (5.4) and (5.7) as x| 0, we fix

E\i 2 (E\: =«

Comparing (5.4) and (5.7) as x10, gives the quantization
condition,

g(mg)% <§)% + I - <n + %) 2 =0, (58)

with n =0,1,2, ...
The solution to (5.8) is

E, = {le, + (& + B + e — (E+ BV, (5.9)

where

37 (o\} 1 ]’lNO'%
6"‘?(%) <”+1>’ PN = am

VI. HORIZONTAL CORRELATION
FUNCTIONS

(5.10)

In this section we compute the long-distance correlation
function of two gauge-invariant operators separated in the
x! direction only. This is

DA(x") = (0] A(x", x?).A(0, x?)|0). (6.1)
The correlation function (6.1) can be evaluated by inserting

a complete set of physical states between the two operators:
|

(OJA(x!

cos 2 (mo)}(—x +£)7 — 14, , .

C——cos[-3 (mo)2(x + E)z

PHYSICAL REVIEW D 90, 065002 (2014)

where Ai(x) is the Airy function of the first kind, and Cis a
normalization constant.

We require that the wave functions (5.4) and (5.6) agree
as |x| » 0. We identify |p| = (mE)2. For small |x|, the
function (5.6) is approximated by

for x > 0,

+ %A, for x <O.

= (0] A(x", x?)[0)(T|A(0. x7)[0).

The physical, gauge invariant excitations of the theory
are glueball bound states of sigma-model particles. At large
separations (x' — o), the function D(x!) can be approxi-
mated by inserting only one-glueball state. The lightest
glue balls are those composed of a sigma-model particle
and antiparticle, whose masses where calculated in the
previous section.

We denote the state with one glueball with rapidity ¢,
and rest energy M,, by |B,¢,n). The long-distance
correlation function is

i) =3 [ 4L 0GB, )
n=1

x (B, ¢, n|A(0,x?)|0),

where n; is the energy level of the heaviest stable glueball,
defined by M, <2m <M, .,

We need a way to compute the one-glueball form factor of
the operator .4. One approach was proposed by Fonseca and
Zamolodchikov [26] in the Ising model perturbed by a weak
external magnetic field. In the nonrelativistic limit, the glue-
ball state is given by the so-called two-quark approximation:

=

where W, (0) is the Fourier transform of the glueball wave
function calculated in the last section:

w0 = [ dzemsmhf’(f ) A [(mo >%<|z| —f—)}

If the operator .4 has spin s, the one-glueball form
factor is

|A9alabl’P 9611,b>,

e o . ., 1 (E\: i E,
’n> :es¢ezx1Mn51nh¢/dZ/Eetzmsmheﬁ<6_I;;)4Ai|:(mo_H)§<|Z|_G_H):|

X <O|A(O,x2)|A,9,al, b;P,—0,ay, b]>-

For the rest of this section we will assume s = 0.
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The two-point correlation function is then

PHYSICAL REVIEW D 90, 065002 (2014)

DA = <0|A(x1,x2)|0> (01A(0, x)[0)
d¢ 'M, sinh ¢ / / zm sinh @ E, i : 1 E, ?
lX o SI lml A H\3 __n F(20
/ = (58 ) i oy (11— 25 ) | 7 C20)
where
o dg [—2sinh(%)  4e¢(e%/N — 1)] sin2[E(xi — ) /2]
F(0) = C4N? - N :
(©) A (6’+ﬂi)eXpA E { sinh & + l—e % sinh &
and C 4 is a normalization constant for the form factor of 1 Ty
the operator A. Ko(Myx') ~ 2Mnx'€ o

The integral over ¢ gives

b ing sy | |
ix' M, sinh ¢ Kn(M 2
/ 4 ¢ 2z o(M,: ), (6.2)

where K, (x) is the modified Bessel function of the second
kind. For x! — oo, this modified Bessel function is
approximated by

n.’(

1 —M,x __
E : 1€ =
n:l Mnx

n

- 1

E 3 - 3 le—2mx e
| mx' + E,x

_Enx ~

In the anisotropic limit where 4 — 0, the glueball masses
become similar to each other (M,, # M, ;). Following [19],
we assume that the form factors for any n give approx-
imately the same contribution. All the n dependence is
contained in the Bessel function (6.2). In this limit, the sum
over n is approximated by a continuous integral, so we
evaluate

672mxl 0

7t ),

dne B =

(6.3)

The integral Z(x!, 6", m) from Eq. (6.3) is in general quite complicated. One particularly simple case is when N — oo,

0 A\ 7%
I(xl,O'H,m):/ dnexp{ F—ﬂ <G—)2nr}:%-
0 4 m %(%)E_Xﬁ

The horizontal correlation function at large distances and small 4 is

where

DA(x!) = = (0] A(x", x?)|0)(0[.4(0, x*)|0)

)
S ICONTE

VII. VERTICAL CORRELATION FUNCTIONS

+

In this section we present a method to evaluate corre-
lation functions of two gauge-invariant operators separated
in the x? direction only. This problem is significantly harder
than calculating horizontal correlation functions, and we
are able to make progress only in the large-N limit. For
large separation in x?, the problem is reduced to solving an
integral eigenvalue equation.

We want to calculate the correlator

DA(aR?) = (0] A(x!, x*) A(x', x> + aR?)[0).  (7.1)

lzm%lnhﬁAl {(mo— )%(|Z| —E—)]}"(ZH) ’

|
Our strategy is to define a transfer matrix operator,
T, that describes the evolution of the system in
the x? direction. We impose periodic boundary con-
ditions in the x? direction. We call the size of the x?
dimension L,. The partition function and correlation
functions can be computed by diagonalizing this trans-
fer matrix.
The transfer matrix is defined by

T:> > =e H,\zx2+a

xX“.x“+a

where
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1 1
Hppopy= EHPCSM(XQ) + = Hpesm (x> + a) + 22H, (x*. x* + a)

2

and

Hi(2 4a) = [ axdy! ol i)

cOta?) + g (!

2)ji (2]

+ [ axay! gu S + @)L 4+ @) + (L + a)jR R + a)]

1 . . . .
- / dx'dy' iia et = VMG (% @) (0 %) + (6 7+ a) i (6 )]
0

We can now compute the matrix elements in of 7 24
between the particle states of the sigma models at x*> and
x2 + a. We label a state with a two-particle bound state, of
rapidity ¢ and energy level n on the sigma model at x> by
|B, ¢, n, x*). For large separations in x2, it is sufficient to
compute the matrix elements with just one bound state in
each x’-layer.

We define the functions

T = (0T 2 2.4,/0).
T,(¢) = (B.¢.n.xX*|T 2 o|B.¢.n.x%),
T (b, ¢') = (B, p,n,x*;B,¢',n, x*
+a|T e e X2+ a).
(7.3)

In the basis of one-glueball states, the transfer matrix is

Tnn! (¢a d)l) =

The partition function and correlation functions can be
found, in principle, by finding the eigenvalues of the matrix
T, (¢, @"). This means one has to solve the integral equation

T+T,(9)+Tw(@)+Tw(d.¢).  (74)

/ W e b W) =100, (15)

If the eigenvalues A and eigenfunctions wﬁ,)((b) are
known, the transfer matrix may be diagonalized as
|

Tnn! (¢7 ¢/> -
where the eigenfunctions are normalized by

>/

The partition function is then given by

7 = Z[,W) N?
!

0 (4) = 5.

where

=t
-

In the thermodynamic limit, N? = oo, the partition func-
tion is

Z = A0,

where 1) is the largest eigenvalue of the transfer matrix.

The operators in the correlation function (7.1) are
expressed in the one-glueball basis as the functions
A, (¢, ¢'). We assume that the functions A and 7
are not simultaneously diagonalizable. The two-point
correlation function is

1
DA(aR?) = W Z

Ll nyngngs g |

< i (1) Ay (1, )2 () A1)

In the limit of large separation R?, Eq. (7.7) becomes

FIONLS
DA(aR?) = C + <—> .

/ d¢1d¢2d¢R2 d¢R2+1

0 () A (Db Wl ()} (17)

R2+41

100)
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where A(!) is the second largest eigenvalue, and

-y %

A 12 My 2 Mg

X {l//’ll

We define the inverse correlation length M as

DA(aRZ) ~ g~ MaR*

From Eq. (7.8), the inverse correlation length is

1. /a0

The rest of this section is dedicated to finding an
expression for 7,,(¢,¢’), though we are never able to
solve the integral eigenvalue equation (7.5). This is left as
an open problem.

M:

/ d¢1d¢zd¢de¢R +1

] (¢1)An1n2 (¢1’ ¢2)l//'l2 <¢2)l//ﬂRz (¢R2)

PHYSICAL REVIEW D 90, 065002 (2014)

(¢R27 Dr241 )llfszl,iz)ﬂ (¢R2+1 )}

MR2Mg2 1y

I

The contribution to T,/ (¢, ¢") which couples two adja-
cent x? layers involves the two-bound state form factor of the
current operator. This means that we need the four-excitation
form factors of the PCSM. The functions 7, T,(¢),
T, (¢, ¢") involve two-point functions of current operators.
These correlation functions will be computed keeping only
terms proportional to the two- and four-particle form factors.
Form factors of more than two excitations are only known in
’t Hooft’s large-/V limit. For the rest of this section we work
exclusively in the large-N limit. The form factors of the
sigma model at large N were found in Refs. [7,23,27], and
are reviewed in the Appendix.

We first calculate the constant

T = <() | e—%HPCSM (x2)—3Hpesm (X2 +a)+A2 Hy (¥ x*+a) |()>

1 1
R exp {<0| - EHPCSM(xz) - EHPCSM<x2 +a) = PH (%% + a)|0>}-

(7.9)

The constant T only has a contribution from H,(x?, x> + a). This contribution is

(0|H | (x%,x* 4+ a)|0) = /dxldy1|x \

+ / dx'dy'|x" — \

{<0|Jo(x LX) jE(h x%)[0) +

(017§ (. x2) 5 (v'. x%)|0)}

{<0|Jo(x X +a)j5(v'. x>+ a)l0)

+ (0l (. 2 +a)Jo(y x* +a)|0)}.

(7.10)

We now examine the correlation functions on the right-hand side of Eq. (7.10) using up to two glueball form factors. This

is, for the left-handed current,

O 210 210 = 3 [ T ol )
degd
+Z/¢1¢2

ny,ny

X <B,¢17”17x2§37¢2’”27

(xl,x2>|Ba ¢l7nl7x2;B7 ¢2’ I’lz,x2>

x2[jg (v x2)[0)].

Using the large-N, two-excitation form factors of the sigma model (found in the Appendix), we find

d
B B R LA

— Z/ ¢M smhque_i M, smhg[)( ”) NZ

/ / Ail( 1 | 2nitanh 6|2
(mo)3 T ="
o) c 20 + i
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The contribution to 7 from the one-glueball form factor is

E l
T = exp —4/12/€1Jclcz’y1|x1 - > Z/ gl usinh?gpe(x' =M, sinh NAFC) (7.11)
4 Joa

where
2

do | E 2ritanh @ . .
— d — Al 3 _n s Y Jizmsinh @ )
‘/ Z/47: 1{("10)3('2" a)] 20+ ¢

Using the large-N, four-excitation form factors of the sigma model, we find

3 d¢p d(l) .

/ : 2 x ’xz)‘B7¢]’n1’x2;B’¢27nZ’x2><B’¢lvnl’xz;B’qﬁZ’n25x2|f(l)‘(yl’x2)|0>
ny,ny

1

Z /d¢ld¢2 < )7 Ml - ( s1nh¢1 +M,12 smh¢2) —i(x'—y )(M,11 sinh ¢ +M,,, sinh ¢, ) sz

ny =y

ny,ny

where

2

/ d9d6’/ tanh Hf (0,0
[(0+6)? + 7% (20 + i)

/d&d@’ tanh(9+9 Vf(0.,0)
0+ 0 + 7i)(20' + 7i)(20 + i)

/ d9d9' tanh(£2) £(0,0')
(20 + 7i)(0' + 0 — 7i) (20" + ni)
/ dodo' tanh ¢/ f(6' )
(47)? (0 + 0') + =%](20 + i)

2

and

f(0,0) —/dzldz28ﬂie”1’”smh9+”2SmheA1 [( )%<|zl|—;)]A1[(m0) <|Zz|—;>:|.

The contribution to 7 from the two-glueball form factor is

de d¢2 5
T :exp{—4/12/dxldyl xl— / ! ( >
| 490 nzn:

1
Xi
M, M,

2

(Mn] sinh ¢, + an sinh ¢2)267i(x17y1>(Mn1 sinh ¢, +M,, sinh ¢2)N2f(4>}, (7.12)

such that
T=TAT®, (7.13)

We now calculate the function 7', (¢)) from Eq. (7.3). The contribution to 7', (¢b) from the sigma model in the x> + a layer
is just VT . There is a contribution to the function 7',(¢) from the unperturbed Hamiltonian, given by

- o (515 o (- 5)]

% /4_2m coshgei(zz—z])msinhaei(zl—zz)M,,coshgb' (7'14)
T

(B, . n, x*|Hpcsy (x?)
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There are contributions to 7, (¢) from the current correlation function

(B.p.n. |5 (x5 () B .. x2)
= (B.g.n. 2|5 ) 0) 0§ (" 2) B. . . %)

—|—i %(Bg{)nxﬂi('
47[ k) ’ ) J()

Using the two-excitation form factors of the sigma model, we find

L x2) (B, @ 0! X (v, x?)|B, ¢, n, xP) +

1

3

; M si E,
<B, b, n,x2|j6(x1, x2)|0> <0|j6(y1’ x2) 2> =M, sinh? ¢e—,(xl_y )M, sinh ¢ <_) }“(2)_
c
The contribution to T,(¢) from the one-glueball form factors of the sigma model at x? is
(2) 1 YR 1 . E 41—‘
Ty (¢p) = exp {—212 / dx'dy'|x" — y'| 4g—2aMnsinh2¢e*’(x —v)M, sinh ¢ (;> f<2>}. (7.15)
0

Using the form factor of the sigma model with two incoming and two outgoing excitations (also found in the Appendix),
we find the contribution 7', (¢) from the two-glueball form factor

4) 2 11,1 1 d¢ (E,E, 1 2
T, = -2 —yH— —
() CXP{ ﬂ/dxdylx y|4g(2)a§n//4ﬂ<o_z N

1 : : e
x W (M” sinh¢ + Mn’ sinh ¢/)2871(x17y1)(7M" sinh ¢p4-M,/ sinh ¢ )F/(4>}, (716)
where
/ d9d9/ tanh 0f(0,6") / d9d0/ Coth(9+€/)f’((9 &) 2
(040 +27i) (0 + 0 —2mi) (20" + m) (20 + 7i)(0' + 0 — 27i) (20’ + i)
/ deQ’ Coth(‘g*y) 7(0,0) / de@’ tanh & (60, 0") 2
4n)? 0+ 0 + 27i)(20 + #i) (20’ + xi) 0+ 0 +27i)(20 + #i) (0 + 0 —2xi)|
and

E, o E, R B
f’(9, 9') — 87 / dzlAi |:( )%<|Z1| _ _>:| etzlmsmha{/ deAi [( )% <|Zz| _ _>:| elz;msmhe } .
o o
We can combine the results from Eqgs. (7.13), (7.14), (7.15), and (7.16) to write
Tu(@) = VIT (T2 (H)TL (9). (7.17)

We now evaluate the function T, (¢, ¢'). This function has only one new contribution, which couples between the x>
and x?> + a layers. This is

1 .
Ko, @) = exp {—/12 / dx'dy'|x! _y1|2g—2a<B,¢,n,x2|]§(x1,x2)|B,¢,n,x2>
0

X <B,¢’,n’,x2+aj(L)(y1,x2+a)|B,¢’,n’,x2+a>}

E,E,\: :
:exp{ /dxldy |x —y |2g2 < n > N2 XM M /Slnh2¢SIHh2¢/ —ix' M, sinh ¢p+iy' M, sinh ¢ f’ }
od

(7.18)
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With Eq. (7.18) and Egs. (7.13), (7.14), (7.15), and (7.16),
we write

T (0.0) = T(OT ()T ()T (9) T ()

< T () K (. 4). (7.19)

The transfer matrix 7, (¢, ¢) is given in Eq. (7.4), by
combining Egs. (7.13), (7.17), (7.19). The problem of
finding the vertical correlation functions is now reduced to
diagonalizing the function 7,,, (¢, ¢), and expressing it in
the form of Eq. (7.6).

VIII. CONCLUSION

We have used new exact results from the principal chiral
sigma model to compute physical quantities in anisotropic
Yang-Mills theory. The two-particle form factors of the
sigma model are now known for general N > 2. This
allowed us to generalize Orland’s results for the SU(2)
gauge group, to SU(N). These results include the string
tensions for quarks separated in the x' and x? directions,
and the spectrum of the lightest glueball masses.

Once we found the glueball states, we used them to
calculate correlation functions of gauge-invariant operators.
For two operators separated in the x' direction only, the
correlation function is calculated at long distances by
summing over a complete set of intermediate one-glueball
states.

The correlation functions of operators separated in the x?
direction are much more difficult to calculate. We proposed
a method for how these correlation functions may be
calculated, though we did not solve the problem com-
pletely. We compute the elements of a transfer matrix which
evolves the system in the x? direction. These elements are
computed in the basis of one-glueball states. The problem
of calculating correlation functions is reduced to solving an
integral eigenvalue equation for the transfer matrix.

An obvious problem for the future is to find a solution to
the eigenvalue equation , Eq. (7.5). This would allow us to
calculate explicitly the partition function and correlation
functions in the x? direction. The rapidities of the glueballs,
¢, ¢’ can be discretized by placing the sigma models in a
finite box of size L;. One can impose an energy cutoff by
discarding glueball states above some maximum rapidity.
The transfer matrix then becomes discrete and finite, and
can thus be diagonalized numerically on a computer. This
computation would be similar to that done for the Ising
model by Konik and Adamov [17]. We would like to point
out that the methods of Ref. [17] can, in principle, be used
to find results applicable to the fully isotropic (2 + 1)-
dimensional theory. In this reference, the authors studied
the three-dimensional Ising model as an array of two-
dimensional chains, for different values of the interchain
coupling (corresponding to our parameter 1), up to the fully
isotropic value. Their transfer matrix was obtained by an
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improved version of the truncated spectrum approach [28].
One difficulty for the Yang-Mills theory case is that gauge
invariance needs to be imposed on the states of the
truncated spectrum, making the construction of the transfer
matrix nontrivial. This numerical diagonalization is the
most promising approach that we know with which we
could study the fully isotropic (2 + 1)-dimensional theory.

It would be interesting to extend our methods to
3 + 1 dimensions. It has been shown that longitudinally
rescaled (3 + 1)-dimensional Yang-Mills theory can also
be expressed as an array of sigma models [29]. There is
an additional interaction term given by the additional
components of the magnetic field. It would be interesting
to see what is the effect of this additional interaction on the
quantities calculated in this paper.
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APPENDIX: THE S-MATRIX AND FORM
FACTORS OF THE PRINCIPAL CHIRAL
SIGMA MODEL

For the purposes of this paper, we only need to know the
two- and four-particle form factors of the Noether current
operators of the sigma model. These were found in the 't
Hooft limit in Ref. [7]. For finite N, only the two-particle
form factor is found in the same paper. These results were
later generalized to form factors of an arbitrary number of
particles, at large N, if Ref. [23]. These form factors were
used to calculate two-point correlation functions. It is worth
mentioning that the form factors and correlation functions
of other operators have also been found in the 't Hooft limit.
The renormalized field operator was studied in Ref. [27],
and the energy-momentum tensor was studied in [23].

This appendix is not meant to be a review of form factors
of integrable theories. We merely present results without a
meticulous derivation. For a complete derivation of the
results in this appendix, see Ref. [7]. A modern review of
the integrable bootstrap program for calculating form
factors is found in Ref. [30].

The derivation of the form factors makes use of the
two-particle S-matrix of the sigma model. This S-matrix
has been found in Refs. [3] and [2]. The S-matrix

crdyiepd . . . . el
SPP(9>¢{1 bia,b, Of tWO incoming particles with rapidities
0, and 6, and left and right color indices a;, b, and a,, b,,
respectively, and two outgoing particles with rapidities €,
and 0, and left and right color indices ¢y, dy, and ¢, d,

respectively, is given by
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out (P01, c1.d;A, 05, dy, ¢ |P.0y,ay,b1;A,0,, by, a5),,
= Spp(0)2105 4nd(6) — 0,)4r5(0 — 6,),

aybyayby

where 0 = 0, — 6,. The result from [2,3] is
Spp(0)¢2 e, = 2(6) Scan (0) el Scan(0) 54

where Scgy 18 the S-matrix of two elementary excitations
of the SU(N) chiral Gross-Neveu model [31,32],

Sean(0)25k, = I'i0/2z + 1)I'(—i0/2zx — 1/N)
CONV @& = 1 (i0/2x + 1 — 1 /N)T(—i/2x)

2
<5;;5‘2 —ila‘us‘z),

NO
and
sinh (¢ — )
2(0) = —— 75
sinh (§ + %)
(0L (%) ayey
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The particle-antiparticle S-matrix is related to the par-
ticle-particle S-matrix by crossing symmetry, i.e. 0 — 0=

— 6. It was found in Ref. [7], that the particle-antiparticle
S-matrix can be written in the exponential form:

2ri
N(zi—6)

aiby:byay

SO, = 50|50 - o]

27l
X [521 5;2 - +5b1b2bdld2:| ’

N(zi—0)
where
S(0) = exp2 / w_de [2(e*/N — 1) —sinh(2¢/N)]
o &sinhé
. &0
X s1nhg, (A1)
for N > 2.

The two-particle form factor of the left-handed Noether
current was found using Eq. (Al). This is [7]

. 1
b17 al;P7 927 aj, b2>in = (pl - pZ)ﬂe_lX.(p]-HJZ) <5a0a2560a15b1b2 - Néaocoéalazéblbz) .

[ [
(0 + ﬂ'l) 0

—0)/21)

4o (e2/N — 1)] sin?[x(zi

X sinh x 1 —e2 sinh x

(A2)

The form factor with one incoming and one outgoing antiparticle can be found by crossing the particle in (A2) into an
outgoing particle, shifting the rapidity 8, — 6, — zi. The right-handed current has a very similar expression, but the color
indices of the operator are contracted with the right-handed color indices of the particle and antiparticle.

Next we show the four-excitation form factor at large N. The form factor is nonzero only if two of the excitations are

particles and two are antiparticles. The form factor is'

<O|jﬁ(0)a0¢'0 |A’91, by,a;;A,0,,by,a5; P,05,a3,b3; P, 04, a4, b4>

, 8n%i
—€,,(P1 + P2+ p3 + Pa) N
tanh(%”) 1
x (914 + ﬂ'l) (923 4 ﬂ'l) (924 + ﬂ'l) (50003511160602114617]b45b2b3 - ﬁ5a0005a1a35a2a45b1b45b2b3)
tanh(e“‘ 1
+ (913 + ﬂ'l)(923 + ﬂ'l) 924 + ﬂ'l (6a0a4 acy a2a35b b35b2b4 N5(10005(11a45a2a35b1b35b2b4>
tanh(g23 1
+ (9]4 + m)(ﬁ,; + ﬂl) 924 + ﬂl (6(1003 ajay azcoéb b35b2b4 N5aoco5a2ag5ala45b1b35b2b4)
+ tanh(%3) (5 PR APRLE S S S A ) (A3)
(914+ﬂl)(913+ﬂl 923+7Tl apay a]ag a7c0 b b, Ybyby T N agcoYarasYaia3;Yb by Pbybs )

Tt is important to mention that the four-particle form factor from Ref. [7] has been found to not be completely correct as written. The

momentum-vector prefactor chosen in [7] is (p; + pr — p3 —

Ppa), instead of —

€,(P1 + P2+ p3 + ps)¥, as we have written in

Eq. (A3). The results from Refs. [7] and [23] are not consistent w1th the fact that the Noether current is conserved. These corrections

have been published in [33].

065002-18



(2 + 1)-DIMENSIONAL YANG-MILLS THEORY AND ...

PHYSICAL REVIEW D 90, 065002 (2014)

where 0;; = 0; — 0;. The form factor with two incoming and two outgoing excitations can be found by using the S-matrix

and crossing symmetry:

<P’ 927 bZ’ aZ;A’€4’ ay, b4|.];e(0)

apCo

|A59]’bl’al;P793aa37b3>

) 87%i
= =€w(P1+P3—Pa—pa)' =5~
x tanh ) P YO S R RRRLE S P R Ay
{(914 I 2ﬂi)(923 _27”-)(924 +7Ti) ( agazYayco®aya,YbibyCbybsy N o aiasCaray biby bzh3>
+ COth(%) (5 0,4 .00 0.0p b0 — l 6,00, 40, ,0pp.0 )
(913 + ﬂ'l) (923 — 27”) (924 + JTl) agasYa;coYaraz;Yb1b3Ybyby N agcoParasYayaz; Vb b3 Ybyby
+ COth(e_?) 0,4 2:04 2.00,¢.0p .0 — l5 6,.4.04 4.0p 1.0
(914 +2ﬂ'i)(€13 +7ti)(924 —l—ﬂ'i) < apaz@ajasCayco@b b3 Cbyby N~ @ocoazasZaray bibs bzb4>
+ tanh(e—?) (5 6, 4.0, 00pp 0 — lé 6,40, 4.0p 1.0 ) } (A4)
(614 + 27”) (913 + 71'1) (623 — 27”) agasYajazYarco¥b1byYbybs N agcoParasYajaz; Vb by Ybyby .
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