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We study Yang Mills theory in 2þ 1 dimensions, as an array of coupled (1þ 1)-dimensional principal
chiral sigma models. This can be understood as an anisotropic limit where one of the space-time
dimensions is discrete and the others are continuous. The SUðNÞ × SUðNÞ principal chiral sigma model in
1þ 1 dimensions is integrable, asymptotically free and has massive excitations. New exact form factors
and correlation functions of the sigma model have recently been found by the author and P. Orland. In this
paper, we use these new results to calculate physical quantities in (2þ 1)-dimensional Yang-Mills theory,
generalizing previous SUð2Þ results by Orland, which include the string tensions and the low-lying glueball
spectrum. We also present a new approach to calculate two-point correlation functions of operators using
the light glueball states. The anisotropy of the theory yields different correlation functions for operators
separated in the x1 and x2 directions.

DOI: 10.1103/PhysRevD.90.065002 PACS numbers: 03.65.Ge, 11.10.Kk, 11.55.Bq

I. INTRODUCTION

In this paper, we study an anisotropic version of (2þ 1)-
dimensional Yang-Mills theory. The anisotropy is given
by a longitudinal rescaling of coordinates of the form
x0;1 → λx0;1, and x2 → x2. The gauge fields transform as
A0;1 → ð1=λÞA0;1, A2 → A2. The strength of the inter-
actions is different in different directions. We explore the
highly anisotropic regime, where λ → 0.
We realize this rescaling by starting with the Kogut-

Susskind Hamiltonian formulation of lattice gauge theory,
with lattice spacing a. The rescaling of coordinates
amounts to taking the continuum limit in the x0 and x1

directions, with the lattice spacing rescaling as λa.
We view the anisotropic model as an array of two-

dimensional field theories, coupled together to form a
higher-dimensional theory. The strength of the coupling
between these two-dimensional models depends on the
rescaling parameter λ. The two-dimensional theory is the
principal chiral sigma model (PCSM) [1]. The PCSM is
known to be integrable, and this property has been
exploited to find exact results [2,3]. The main goal of
our program is to use exact results from the PCSM to
calculate physical quantities in anisotropic QCD, finding
corrections for small λ.
This anisotropic regime of Yang-Mills theory has been

studied extensively by Orland. In Ref. [1] it was established
that the anisotropic theory is equivalent to an array of
coupled PCSM’s, and it was shown that the model confines
quarks and has a mass gap. In Refs. [4] and [5] the string
tensions for quark-antiquark pairs was found for the SUð2Þ
gauge group. In Ref. [6] the low-lying glueball spectrum

was found for SUð2Þ. In this paper we generalize all these
results to all N. This is done using new form factors of
the PCSM that were found in Ref. [7]. We also use the
light glueball states to calculate long-distance correlation
functions of gauge-invariant operators.
The longitudinal rescaling of coordinates is inspired by

a similar investigation in 3þ 1 dimensions by Verlinde
and Verlinde [8], in the context of heavy ion collisions.
A similar anisotropic limit was used by McLerran and
Venugopalan in their derivation of the color glass con-
densate picture [9]. An anisotropic theory has been
explored in Ref. [10], where the anisotropy is produced
by an external magnetic field.
This approach is especially interesting for (2þ 1)-

dimensional QCD, since there are two different coupling
constants for the gluon field, but they are both small
compared to the cutoff. This makes our approach funda-
mentally different from other analytic studies of (2þ 1)-
dimensional QCD (which are generally at large dimension-
less coupling) [11,12]. Recently, Karabali, Nair, and
Yelnikov [13] computed corrections to the results in [11],
in powers of the coupling constant. Their approach could
eventually be used to study confinement at weak coupling.
Physical quantities in the anisotropic gauge theory can

be evaluated in the context of form-factor perturbation
theory [14–16]. The gauge theory with λ ¼ 0 is integrable.
The S-matrix, some form factors, and correlation functions
of the PCSM are known. We perform a perturbative
expansion in powers of λ, rather than the Yang-Mills
coupling constant. The perturbation theory starts from an
integrable, rather than a free theory.
A very similar approach has been used by Konik and

Adamov [17], and James andKonik [18] to examine the three-
dimensional Ising model as an array of two-dimensional*acortes_cubero@gc.cuny.edu
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chains. Here they have successfully computed critical expo-
nents and the entanglement entropy and spectra using an im-
provedversionof the truncatedconformal spectrumapproach.
In the next section, we present a discussion of the

longitudinally rescaled Yang-Mills theory. We show how
the rescaled theory is equivalent to an array of integrable
models. This equivalence is shown in the axial gauge on the
Kogut-Susskind Hamiltonian.
In Sec. III, we compute the string tension for a static

quark-antiquark pair separated in the x1 direction only. In
Sec. IV, we calculate the string tension of a quark-antiquark
pair separated in the x2 direction. These string tensions are
different because the theory is anisotropic. In Sec. V we
compute the mass spectrum of the lightest glueball states.
These results generalize Orland’s SUð2Þ results to SUðNÞ.
In Sec. VI, we calculate the long-distance two-point

correlation function of two gauge-invariant operators sep-
arated in the x1 direction. This calculation is inspired by a
similar calculation for the two-dimensional Ising model in
an external magnetic field, by Bhaseen and Tsvelik [19].
In Sec. VII, we propose a method for calculating corre-

lation functions in the x2 direction. This is done by defining
a transfer matrix that describes the evolution of the system
along the x2 direction. The partition function and correla-
tion functions can be found, in principle, by diagonalizing
the transfer matrix in the basis of physical states. We are
only able to find an expression for the transfer matrix using
the light glueball states from Sec. V. However, this matrix is
very difficult to diagonalize. The problem is reduced to an
integral eigenvalue equation, which we leave unsolved.
We present our conclusions in the last section. A short

summary of the S-matrix and form factors of the PCSM is
given in the Appendix.

II. LONGITUDINALLY RESCALED YANG-MILLS
HAMILTONIAN IN THE AXIAL GAUGE

In the Kogut-Susskind lattice Hamiltonian formulation
[20], there are SUðNÞ-valued gauge fields UðxÞj, and
electric-field operators lðxÞbj in the adjoint representation
of SUðNÞ, at every space link ðx;jÞ, for j¼1, 2 and b ¼
1; 2;…; N2 − 1. These satisfy the commutation relations

½lðxÞbj ; lðyÞck� ¼ iδxyδjkfdbclðxÞjd;
½lðxÞbj ; UðyÞk� ¼ −δxyδjktbUðxÞj:

The gauge fields in the x0 direction are fixed by the temporal
gauge condition U0 ¼ 1. The Hamiltonian is obtained by
taking the continuum limit of the Wilson action in the time
direction. The Kogut-Susskind Hamiltonian, inside a box of
size a2L1 × L2, is

H ¼
XL12 ;L22

x1;x2¼−L1
2
;
L2
2

X2
j¼1

XN2−1

b¼1

g20
2a

½lðxÞbj �2

− XL12 ;L22
x1;x2¼−L1

2
;
L2
2

1

4g20a
Tr½UðxÞ1Uðxþ 1̂Þ2

×U†ðxþ a2̂Þ1U†ðxÞ2 þ C:C:�; ð2:1Þ
where L1, L2 are even integers.
In temporal gauge, physical states, Ψ, are those which

satisfy Gauss’s law:

X2
j¼1

½DjljðxÞ�bΨ ¼ 0; ð2:2Þ

where

½DjljðxÞ�b ¼ ljðxÞ −Rjðx − ĵaÞbcljðx − ĵaÞc;

where RjðxÞbctc is the adjoint representation of the gauge
field,

RjðxÞbctc ¼ UjðxÞtbU†
jðxÞ:

We find the electric field component l1 by solving
Gauss’s law (2.2); and then impose the axial gauge
U1ðxÞ ¼ 1, yielding

l1ðx1; x2Þb ¼
Xx1

y1¼−L1
2

½D2l2ðy1; x2Þ�b: ð2:3Þ

There is a global invariance left after the axial gauge fixing:

XL12
x1¼−L1

2

½D2l2ðx1; x2Þ�bΨ ¼ 0: ð2:4Þ

The lattice Hamiltonian in axial gauge is found by
substituting the new nonlocal expression for the electric
field (2.3) into (2.1):

H ¼
XL12

x1¼−L1
2

XL22
x2¼−L2

2

g20
2a

½l2ðxÞ�2 −
XL12

x1¼−L1
2

XL22
x2¼−L2

2

1

2g20a
½TrU2ðx1; x2Þ†U2ðx1 þ a; x2Þ þ c:c:�

−
g20
2a

XL12
x1¼−L1

2

XL12
y1¼−L1

2

XL22
x2¼−L2

2

jx1 − y1j½l2ðx1; x2Þ −R2ðx1; x2 − aÞl2ðx1; x2 − aÞ�

× ½l2ðy1; x2Þ −R2ðy1; x2 − aÞl2ðy1; x2 − aÞ�: ð2:5Þ
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The Hamiltonian (2.5) is nonlocal in x1, and depends only on the transverse degrees of freedom U2, l2.
We now explore anisotropic Yang-Mills theory by longitudinally rescaling the coordinates. This is a summary of the

calculation done in [1,4]. The longitudinally rescaled lattice has spacing λa in the x0;1 directions and spacing a in the x2

direction. In the λ → 0 limit, it is sensible to treat x0 and x1 as continuous directions, and x2 discrete.
Longitudinally rescaling the lattice Hamiltonian ((2.5) gives H ¼ H0 þ λ2H1, where

H0 ¼
XL12

x1¼−L1
2

XL22
x2¼−L2

2

g20
2a

½l2ðxÞ�2 −
XL12

x1¼−L1
2

XL22
x2¼−L2

2

1

2g20a
½TrU2ðx1; x2Þ†U2ðx1 þ a; x2Þ þ c:c:�;

H1 ¼ −
λ2g20
2a

XL12
x1¼−L1

2

XL12
y1¼−L1

2

XL22
x2¼−L2

2

jx1 − y1j

× ½l2ðx1; x2Þ −R2ðx1; x2 − aÞl2ðx1; x2 − aÞ�½l2ðy1; x2Þ −R2ðy1; x2 − aÞl2ðy1; x2 − aÞ�:

Henceforth we drop the Lorentz index 2 from U2, l2.
We treat H1 as a perturbation. In the interaction

representation, U satisfies the Heisenberg equation of
motion, ∂0U ¼ i½H0; U�. The solution of this equation of
motion is

lðx1; x2Þb ¼
ia
g20

Trtb∂0Uðx1; x2ÞUðx1; x2Þ†;

Rðx1; x2Þbclðx1; x2Þc ¼
ia
g20

TrtbUðx1; x2Þ†∂0Uðx1; x2Þ:

ð2:6Þ

Substituting (2.6) into H0, and taking the continuum limit
in the x1 direction, we find

H0 ¼
X
x2

H0ðx2Þ

¼
X
x2

Z
dx1

1

2g20
f½jL0 ðx1; x2Þb�2 þ ½jL1 ðx1; x2Þb�2g

¼
X
x2

Z
dx1

1

2g20
f½jR0 ðx1; x2Þb�2 þ ½jR1 ðx1; x2Þb�2g;

where

jLμ ðxÞb ¼ iTrtb∂μUðxÞUðxÞ†;
jRμ ðxÞb ¼ iTrtbUðxÞ†∂μUðxÞ; ð2:7Þ

where μ ¼ 0, 1.
We now note thatH0ðx2Þ is the Hamiltonian of a (1þ 1)-

dimensional PCSM located at x2. The PCSM has the action

LPCSM ¼
Z

d2x
1

2g20
ημνTr∂μU†∂νU: ð2:8Þ

This model has a global SUðNÞ × SUðNÞ symmetry
given by the transformation UðxÞ → VLUðxÞVR, where

VL;R ∈ SUðNÞ. The Noether currents corresponding to
these global symmetries are jL;R given in (2.7). The
Hamiltonian corresponding to the action (2.8) of a
single PCSM at fixed x2 is H0ðx2Þ. The unperturbed
Hamiltonian, H0, is an array of PCSM’s, one at each value
of x2,

H0 ¼
X
x2

H0ðx2Þ ¼
X
x2

HPCSMðx2Þ:

It is important to note that the PCSM is known to be
integrable and to have a mass gap. We call m the mass of
the elementary particles of the sigma model.
The residual Gauss’s law, (2.4), becomesZ

dx1½jL0 ðx1; x2Þb − jR0 ðx1; x2 − aÞb�Ψ ¼ 0; ð2:9Þ

for each value of x2, when x1 is continuous.
Using (2.6), we write the interaction Hamiltonian H1 in

the continuous x1 limit:

H1 ¼
X
x2

Z
dx1

Z
dy1

1

4g20a
jx1 − y1j½jL0 ðx1; x2Þ

− jR0 ðx1; x2 − aÞ�½jL0 ðy1; x2Þ − jR0 ðy1; x2 − aÞ�:
ð2:10Þ

The Hamiltonian (2.10) couples adjacent sigma models,
which allows particles to propagate in the x2 direction. The
coupling is suppressed in the λ → 0 limit.
There are several important points to mention about

the Hamiltonian H ¼ H0 þ λ2H1. It has been shown that
this anisotropic model confines quarks. The string
tensions are different if there is a quark-antiquark pair
separated in the x1 or the x2 direction. We call these the
horizontal string tension, σH and the vertical string
tension σV , respectively. To lowest order in λ, these
are given by [4,5]
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σH ¼ λ2
g20
a2

CN; σV ¼ m
a
; ð2:11Þ

where CN is the smallest eigenvalue of the Casimir
operator of SUðNÞ. In Secs. III and IV we compute
quantum corrections to the string tensions (2.11) using
the exact form factors of the sigma model (shown in the
Appendix). This calculation is a generalization of the
results computed by Orland in Refs. [4] and [5] for
the gauge group SUð2Þ. Orland’s results were computed
using the form factors of the Oð4Þ-symmetric nonlinear
sigma model [21], by virtue of SUð2Þ × SUð2Þ≃Oð4Þ.
Recently some form factors of the PCSM for general
N > 2 have been found [7], which allow us to general-
ize Orland’s result to the gauge group SUðNÞ.
The anisotropic Hamiltonian has a mass gap. The lightest

gauge invariant excitation is a glueball composed of a
sigma-model particle-antiparticle pair. The light gluon
mass spectrum was calculated by Orland for the gauge
group SU(2) in Ref. [6]. The glueball masses are of the
form

Mn ¼ 2mþ En;

where En is the binding energy of the particle-antiparticle
pair. The determination of the spectrum of energies, En,
involved knowledge of the exact S-matrix of the O(4)
sigma model [22]. We generalize this calculation for N > 2
in Sec. V, using the exact S-matrix of the PCSM found by
Wiegmann [3].

III. THE HORIZONTAL STRING TENSION

In this section we compute quantum corrections to the
string tension σH. This calculation has been done before, in
Ref. [4], for N ¼ 2 using the form factors of the Oð4Þ
sigma model. In this section we generalize these results
for N > 2.
It is convenient to rewrite the Hamiltonian (2.10) by

reintroducing the auxiliary field Φ ¼ −A0, such that

H1 ¼
X
x2

Z
dx1

�
g20a

2

4
∂1Φðx1; x2Þ∂1Φðx1; x2Þ

− jL0 ðx1; x2ÞΦðx1; x2Þ − jR0 ðx1; x2ÞΦðx1; x2 þ aÞ
�
:

ð3:1Þ

By integrating out the auxiliary field, Φ, we see the
Hamiltonians (3.1) and (2.10) are equivalent.
We can easily introduce static quarks into the

Hamiltonian (3.1) by coupling them to the auxiliary field,
Φ. Our goal is to find the potential energy of a quark-
antiquark pair separated only in the x1 direction. By
integrating out the sigma model degrees of freedom, we

can find the quantum corrections to the string tension
σH. The Hamiltonian with a static quark of charge q at the
space point ðu1; u2Þ, and an antiquark of charge q0 at the
space-time point ðv1; v2Þ, is

H1 ¼
X
x2

Z
dx1

�
g20a

2

4
∂1Φðx1; x2Þ∂1Φðx1; x2Þ

− jL0 ðx1; x2ÞΦðx1; x2Þ − jR0 ðx1; x2ÞΦðx1; x2 þ aÞ

þg20qΦðu1; u2Þ − g20q
0Φðv1; v2Þ

�
: ð3:2Þ

With these static quarks, the residual Gauss law on physical
states is modified toZ

dx1½jL0 ðx1; x2Þb − jR0 ðx1; x2 − aÞb þ qbδðx1 − u1Þδx2u2

− q0bδðx1 − v1Þδx2v2 �Ψ ¼ 0: ð3:3Þ

To find the string tension, σH, we set u2 ¼ v2, and
integrate out the sigma model field, U. We obtain an
effective action, SeffðΦÞ, by

eiSeffðΦÞ ¼ h0jT ei
R

dx0λ2H1 j0i; ð3:4Þ

where T stands for time ordering. The field Φ in (3.4) is
treated as a background classical field. Expanding (3.4) in
powers of λ, up to quartic order, we find

SeffðA0Þ≈ − iλ2
X
x2

Z
d2x

g20a
2

4
Φ∂2

1Φþ iλ4Sð2ÞðΦÞ þOðλ6Þ

− λ2
X
x2

Z
d2x½g20qðx0ÞΦðx0; u1; u2Þ

− g20q
0ðx0ÞΦðx0; v1; v2Þ�; ð3:5Þ

where

iSð2Þ ≡− 1

2

X
x2

Z
d2xd2yDðx0; x1; y0; y1; x2Þacef

× Φðx0; x1; x2ÞacΦðy0; y1; x2Þef;

where

Dðx0; x1; y0; y1; x2Þacef
≡ h0jT jL0 ðx0; x1; x2ÞacjL0 ðy0; y1; x2Þefj0i: ð3:6Þ

We compute the correlation function (3.6) by introducing
a complete set of intermediate states between the two
operators. The non–time-ordered correlation function is
given by
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h0jjL0 ðxÞacjL0 ðyÞefj0i ¼
X∞
M¼1

1

NðM!Þ2
Z

dθ1…dθ2M
ð2πÞ2M e−iðx−yÞ·½

P
2M
j¼1

pj�

× h0jjLμ ð0Þa0c0 jA; θ1; b1; a1;…;A; θM; bMaM;P; θMþ1; aMþ1; bMþ1;…;P; θ2M; a2M; b2Mi
× ½h0jjLν ð0Þe0f0 jA; θ1; b1; a1;…;A; θM; bMaM;P; θMþ1; aMþ1; bMþ1;…;P; θ2M; a2M; b2Mi��:

The correlation function (3.6) can be found exactly at large N using the form factors from Ref. [23]. For generalN < ∞, we
can only calculate a large-distance approximation, using the two-particle form factor (shown in the Appendix). At large
distances, it is sufficient to compute only the first intermediate state, with one particle and one antiparticle.
The sigma-model form factor with one particle and one antiparticle is (see the Appendix)

h0jjLμ ðxÞacjA; θ1; b1; a1;P; θ2; a2; b2i ¼ ðp1 − p2Þμ
�
δa0a2δc0a1δb1b2 −

1

N
δa0c0δa1a2δb1b2

�
e−ix·ðp1þp2Þ ×

2πi
ðθ þ πiÞ

× exp
Z

∞

0

dξ
ξ

�−2 sinhð2ξNÞ
sinh ξ

þ 4e−ξðe2ξ=N − 1Þ
1 − e−2ξ

�
sin2½ξðπi − θÞ=2π�

sinh ξ
: ð3:7Þ

Inserting (3.7) into (3.6) and time ordering, we find

Dðx; yÞacef ¼
Z

dθ1dθ2
ð2πÞ2 m2ðcosh θ1 − cosh θ2Þ2

�
δaa2δca1 −

1

N
δacδa1a2

��
δea2δfa1 −

1

N
δefδa1a2

�
× exp f−imsgnðx0 − y0Þ½ðx0 − y0Þðcosh θ1 þ cosh θ2Þ − ðx1 − y1Þðsinh θ1 þ sinh θ2Þ�g

×

�
2πi

ðθ þ πiÞ exp
Z

∞

0

dξ
ξ

�−2 sinhð2ξNÞ
sinh ξ

þ 4e−ξðe2ξ=N − 1Þ
1 − e−2ξ

�
sin2½ξðπi − θÞ=2π�

sinh ξ

�2

: ð3:8Þ

The color factor in (3.8) is

�
δaa2δca1 −

1

N
δacδa1a2

��
δea2δfa1 −

1

N
δefδa1a2

�
¼ δaeδef − 1

N
δacδef: ð3:9Þ

The term in the right-hand side of (3.9) proportional to 1
N does not contribute when we substitute (3.8) back into (3.5),

because the field Φ is traceless, so we will ignore this term from now on.
We evaluate iSð2ÞðΦÞ using coordinates Xμ, rμ, defined by xμ ¼ Xμ þ 1

2
rμ, and yμ ¼ Xμ − 1

2
rμ. We then use the derivative

expansion for X ≫ r:

ΦðxÞ ¼ ΦðXÞ þ rμ

2
∂μΦðXÞ þ

rμrν

8
∂μ∂νΦðXÞ þ � � � ;

ΦðyÞ ¼ ΦðXÞ − rμ

2
∂μΦðXÞ þ

rμrν

8
∂μ∂νΦðXÞ � � � � ; ð3:10Þ

where ∂μ denotes ∂=∂Xμ. This derivative expansion is valid at large distances. The quadratic contribution to the effective
action is

iSð2Þ ¼ − i
2

Z
d2Xd2rD

�
X þ r

2
; X − r

2

�
acef

Φ
�
X þ r

2

�
ac
Φ
�
X − r

2

�
ef
: ð3:11Þ

We substitute (3.10) into (3.11) and find

iSð2Þ ¼ − i
2

Z
d2Xd2r

Z
dθ1dθ2
ð2πÞ2 m2ðcosh θ1 − cosh θ2Þ2δaeδcf

× exp f−imsgnðr0Þ½ðr0Þðcosh θ1 þ cosh θ2Þ − ðr1Þðsinh θ1 þ sinh θ2Þ�g

×

�
2πi

ðθ þ πiÞ exp
Z

∞

0

dξ
ξ

�−2 sinhð2ξNÞ
sinh ξ

þ 4e−ξðe2ξ=N − 1Þ
1 − e−2ξ

�
sin2½ξðπi − θÞ=2π�

sinh ξ

�2

×
�
ΦðXÞac þ

rμ

2
∂μΦðXÞac þ

rμrν

8
∂μ∂νΦðXÞacÞðΦðXÞef − rμ

2
∂μΦðXÞef þ

rμrν

8
∂μ∂νΦðXÞef

�
: ð3:12Þ
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We keep only terms quadratic in r in (3.12) and then integrate out the r variable. Only the terms proportional to ðr1Þ2 give a
nonvanishing contribution in (3.12). Integration yields the effective action:

SeffðΦÞ ¼
Z

d2x
1

2
Φ∂2

1Φ

�
1 − λ2

Nm
2ð2πÞ2

Z
dθ1dθ2

sinh2ðθ1þθ2
2

Þsinh2ðθ1−θ2
2

Þ
coshðθ1þθ2

2
Þ coshðθ1−θ2

2
Þ

× δ00
�
2m cosh

�
θ1 þ θ2

2

	
sinh

�
θ1 − θ2

2

	�
4π2

ðθ1 − θ2Þ2 þ π2

×exp 2
Z

∞

0

dξ
ξ

�−2 sinhð2ξNÞ
sinh ξ

þ 4e−ξðe2ξ=N − 1Þ
1 − e−2ξ

�
sin2½ξðπi − ðθ1 − θ2ÞÞ=2π�

sinh ξ

�

− λ2
X
x2

Z
d2x½g20qðx0ÞΦðx0; u1; u2Þ − g20q

0ðx0ÞΦðx0; v1; v2Þ�:

We read off the renormalized string tension σH, after integrating out the auxiliary field Φ:

σH ¼ λ2
g20
a2

CN

�
1 −

�
λ2

Nm
2ð2πÞ2

Z
dθ1dθ2

sinh2ðθ1þθ2
2

Þsinh2ðθ1−θ2
2

Þ
coshðθ1þθ2

2
Þ coshðθ1−θ2

2
Þ

×δ00
�
2m cosh

�
θ1 þ θ2

2

	
sinh

�
θ1 − θ2

2

		
4π2

ðθ1 − θ2Þ2 þ π2

×exp 2
Z

∞

0

dξ
ξ

�−2 sinhð2ξNÞ
sinh ξ

þ 4e−ξðe2ξ=N − 1Þ
1 − e−2ξ

�
sin2½ξðπi − ðθ1 − θ2ÞÞ=2π�

sinh ξ

��−1
:

After the integration over θ1 and θ2, the string tension is

σH ¼ λ2
g20
a2

CN

�
1 − λ2

N
3m3ð2πÞ2 exp 2

Z
∞

0

dξ
ξ

�−2 sinhð2ξNÞ
sinh ξ

þ 4e−ξðe2ξ=N − 1Þ
1 − e−2ξ

�
sin2ðiξ

2
Þ

sinh ξ

�−1
: ð3:13Þ

The string tension (3.13) generalizes the result from Ref. [4]
from N ¼ 2, to general N > 2.
In the next section we compute the string tension for a

quark-antiquark pair separated in the x2 direction, rather
than the x1 direction.

IV. THE VERTICAL STRING TENSION

In this section we calculate the string tension, σV , for a
quark-antiquark pair separated only in the x2 direction. This
calculation has been done before in Ref. [5] for the SUð2Þ
gauge group. We show here how to generalize this result for
N > 2 using the form factors from Ref. [7].
If we place a static quark at the space point u1, u2, and an

antiquark at u1, v2, with u2 > v2, The residual Gauss’s law
(3.3) requires that there be at least one sigma-model particle
in each x2 layer, for u2 > x2 > v2. The left-handed color
index of a particle at x2 is contracted with the right-handed
color of the particle at x2 þ a. The left-handed color index
of the particle at u2 − a and the right-handed color of the
particle at v2 þ a are contracted with the color indices of
the quark at u2, and the antiquark at v2, respectively. The
physical state is a color-singlet string of sigma-model
particles, whose endpoints are the quarks. The vertical

string tension is obtained by calculating the energy of this
string,

σV ¼ lim
ju2−v2j→∞

Estring

ju2 − v2j :

The first approximation is to assume the energy of the
string is the total mass of the sigma-model particles, such
that Estring ¼ m

a ju2 − v2j, so σV ¼ m=a.
Corrections to the vertical string tension are found by

calculating the contributions to the energy of the string
from the Hamiltonian λ2H1. As in Ref. [5], we will use a
nonrelativistic approximation, where the sigma-model
particles have momenta much smaller than their masses.
We ignore any creation or annihilation of particles.
The projection of the Hamiltonian onto the nonrelativ-

istic string state is

H ¼
Xu2
x2¼v2

�
mþ

Z
dp
2π

p2

2m
A†

PðpÞabAPðpÞab
�
þ λ2H1;

where A†
PðpÞab, and APðpÞab are the sigma-model particle

creation and annihilation operators, respectively, and
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H1 ¼
X
x2

Z
dx1

Z
dy1

1

4g20a
jx1 − y1j

× ½jL0 ðx1; x2Þ − jR0 ðx1; x2 − aÞ þ qbδðx1 − u1Þδx2u2 − q0bδðx1 − u1Þδx2v2 �
× ½jL0 ðy1; x2Þ − jR0 ðy1; x2 − aÞ þ qbδðy1 − u1Þδx2u2 − q0bδðy1 − u1Þδx2v2 �; ð4:1Þ

where we have again eliminated the auxiliary field, A0.
We now need to find the expectation value

hstringjH1jstringi; ð4:2Þ

where the state jstringi has a sigma-model particle for every x2, whose center of mass is located at x1 ¼ zðx2Þ. To evaluate
(4.2), we need the matrix elements of the form

hP; z1; a1; b1jjC0 ðxÞacjP; z2; a2; b2i ¼
Z

dp1

2π

1ffiffiffiffiffiffiffiffi
2E1

p
Z

dp2

2π

1ffiffiffiffiffiffiffiffi
2E2

p

× e−ip1·ðz1−xÞþip2·ðz2−xÞhP; θ1; a1; b1jjC0 ðxÞacjP; θ2; a2; b2i; ð4:3Þ

where the matrix element on the right-hand side of (4.3) is the two particle form factor found in the Appendix (with the
incoming antiparticle crossed to an outgoing particle), and C ¼ L, R. By applying crossing symmetry on the form factor
(A2), we find

hP; θ1; a1; b1jjC0 ðxÞacjP; θ2; a2; b2i

¼ ðp1 þ p2Þ0DC
aca1a2b1b2

2πi
θ þ 2πi

exp
Z

∞

0

dξ
ξ

�−2 sinhð2ξNÞ
sinh ξ

þ 4e−ξðe2ξ
N − 1Þ

1 − e−2ξ

�
sin2½ξθ=2π�

sinh ξ
;

where

DL
aca1a2b1b2

¼ δaa2δca1δb1b2 −
1

N
δacδa1a2δb1b2 ;

DR
aca1a2b1b2

¼ δab2δcb1δa1a2 −
1

N
δacδa1a2δb1b2 :

Taking the nonrelativistic limit, we find

1ffiffiffiffiffiffiffiffi
2E1

p 1ffiffiffiffiffiffiffiffi
2E2

p hP; θ1; a1; b1jjC0 ðxÞacjP; θ2; a2; b2i ≈DC
aca1a2b1b2

exp−AN

m2
ðp1 − p2Þ2;

where

AN ¼
Z

∞

0

dξ
4π2

ξ

sinh ξ

�
sinh

�
2ξ

N

	
− 2ðe2ξ=N − 1Þ

�
¼ 1

16
π2
�
2π2 − 3ψ ð1Þ

�
1

2
− 1

N

	
− ψ ð1Þ

�
1

2
þ 1

N

	�
;

for N > 2, where ψ ðnÞðxÞ ¼ dnþ1 lnΓðxÞ=dxnþ1 is the nth polygamma function.
The matrix element (4.3) is then

hP; z1; a1; b1jjC0 ðxÞacjP; z2; a2; b2i ¼
ffiffiffiffiffiffiffiffiffiffiffi
m2

2πAN

s
DC

aca1a2b1b2
exp

�
− m2

4AN

�
z1 þ z2

2
− y

	
2
�
δðz1 − z2Þ: ð4:4Þ

This means that the color density of a particle is a Gaussian distribution in the nonrelativistic limit. In this sense, particles are
not pointlike, but the color is smeared over space.
We now use (4.4) to write the effective Hamiltonian of the nonrelativistic string. This is given by the projection of the

Hamiltonian (4.1) onto the state jstringi, which has a sigma-model particle at each x2 layer, located at the point z1ðx2Þ, for
u2 > x2 > v2, a static quark at u1, u2, and an antiquark at u1, v2. The string Hamiltonian is

(2þ 1)-DIMENSIONAL YANG-MILLS THEORY AND … PHYSICAL REVIEW D 90, 065002 (2014)

065002-7



Hstring ¼
m
a
ðv2 − u2Þ − 1

2m

Xu2−a
x2¼v2

∂2

∂z1ðx2Þ2 þ λ2Vbulk þ λ2Vends;

where

Vbulk ¼ − m2

8πAN

1

g20a
2

Xu2−a
x2¼v2þa

Z
dx1dy1jx1 − y1j

× fe− m2

4AN
½z1ðx2Þ−x1�2DLðx2Þaca1a2b1b2 − e−

m2

4AN
½z1ðx2−aÞ−x1�2DRðx2 − aÞaca1a2b1b2g

× fe− m2

4AN
½z1ðx2Þ−y1�2DLðx2Þaca2a1b2b1 − e−

m2

4AN
½z1ðx2−aÞ−y1�2DRðx2 − aÞaca2a1b2b1g; ð4:5Þ

and

Vends ¼ − 1

4g20a
2

Z
dx1dy1jx1 − y1j

( ffiffiffiffiffiffiffiffiffiffiffi
m2

2πAN

s
e−

m2

4AN
½z1ðv2Þ−x1�2DRðv2Þaca1a2b1b2 þ δðx2 − v1Þq0ac4πδa1a2δb1b2

)

×

( ffiffiffiffiffiffiffiffiffiffiffi
m2

2πAN

s
e−

m2

4AN
½z1ðv2Þ−y1�2DRðv2Þaca1a2b1b2 þ δðy1 − u1Þq0ac4πδa1a2δb1b2

)

−
1

4g20a
2

Z
dx1dy1jx1 − y1j

( ffiffiffiffiffiffiffiffiffiffiffi
m2

2πAN

s
e−

m2

4AN
½z1ðu2−aÞ−x1�2DLðu2 − aÞaca1a2b1b2 þ δðx2 − u1Þq0ac4πδa1a2δb1b2

)

×

( ffiffiffiffiffiffiffiffiffiffiffi
m2

2πAN

s
e−

m2

4AN
½z1ðu2−aÞ−y1�2DLðu2 − aÞaca1a2b1b2 þ δðy2 − u1Þq0ac4πδa1a2δb1b2

)
: ð4:6Þ

Imposing the residual Gauss’s law (3.3) on (4.5) and (4.6), implies

Z
dx1

(
−

ffiffiffiffiffiffiffiffiffiffiffi
m2

2πAN

s
e−

m2

4AN
½z1ðx2Þ−x1�2DLðx2Þaca1a2b1b2þ

ffiffiffiffiffiffiffiffiffiffiffi
m2

2πAN

s
e−

m2

4AN
½z1ðx2−aÞ−x1�2DRðx2 − aÞaca1a2b1b2

)
Ψ ¼ 0; ð4:7Þ

for u2 > x2 > v2, and

Z
dx1

ffiffiffiffiffiffiffiffiffiffiffi
m2

2πAN

s
fe− m2

4AN
½z1ðv2Þ−x1�2DRðv2Þaca1a2b1b2 − q0acδðx1 − u1Þ4πδa1a2δb1b2gΨ ¼ 0;

Z
dx1

ffiffiffiffiffiffiffiffiffiffiffi
m2

2πAN

s
fe− m2

4AN
½z1ðu2−aÞ−x1�2DLðu2 − aÞaca1a2b1b2 − qacδðx1 − u1Þ4πδa1a2δb1b2gΨ ¼ 0; ð4:8Þ

respectively. The constraint (4.7) is satisfied by identifyingDLðx2Þaca1a2b1b2 ¼ DRðx2 − aÞaca1a2b1b2 . The constraint (4.8) is
satisfied by identifying DRðv2Þaca1a2b1b2 ¼ q0ac4πδa1a2δb1b2 , and DLðu2 − aÞaca1a2b1b2 ¼ qac4πδa1a2δb1b2 . Using this, we
can eliminate the color degrees of freedom from (4.5) and (4.6).
Next we integrate out the variables x1 and y1 from Eqs. (4.5) and (4.6). The integrals involved are

Z
dx1dy1jx1 − y1je− m2

4AN
½ðx1Þ2þðy1Þ2� ¼ 4

ffiffiffiffiffiffi
2π

p
A3=2
N

m3
;

Z
dx1dy1jx1 − y1je− m2

4AN
½ðx1þrÞ2þðy1Þ2� ¼ 4

ffiffiffiffiffiffi
2π

p
A3=2
N

m3
PðrÞ;Z

dx1jx1 − u1je− m2

4AN
½x1−z1ðU2Þ�2 ¼ 2AN

m2
P½

ffiffiffi
2

p
z1ðu2Þ − ffiffiffi

2
p

u1�;
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where PðrÞ is a function for which we do not have an exact analytic expression, but its behavior for small and large r is

PðrÞ ¼
8<
:

1þ m2r2
4AN

; r ≪ 1
m ;ffiffiffiffiffiffi

π
2AN

q
mjrj; r ≫ 1

m :
ð4:9Þ

After integrating out x1 and y1, the string Hamiltonian is

Hstring ¼
m
a
ðu2 − v2Þ − 1

2m

Xu2−a
x2¼v2

∂2

∂z1ðx2Þ2 −
λ2NðN2 − 1Þ

mg20a
2

ffiffiffiffiffiffi
AN

2π

r Xu2
x2¼v2þa

f1 − P½z1ðx2Þ − z1ðx2 − aÞ�g

−
λ2NðN2 − 1Þ

mg20a
2

ffiffiffiffiffiffi
AN

2π

r
ð1þ Pf

ffiffiffi
2

p
½z1ðv2Þ − u1�g þ Pf

ffiffiffi
2

p
½z1ðu2 − aÞ − u1�gÞ; ð4:10Þ

where we have used

ðDCÞ2 ¼ NðN2 − 1Þ:

The potential energy between a static quark-antiquark pair is then determined by finding the ground state of the
Hamiltonian (4.10).
We further simplify the Hamiltonian (4.10) using the small-gradient approximation. That is, in the nonrelativistic limit

(when the sigma model mass gap is taken to be very large), we expect that the sigma-model particles in two adjacent x2

layers are close to each other in the x1 direction. Specifically, we assume jz1ðx2Þ − z1ðx2 − aÞj ≪ m−1. At the endpoints of
the string, we also assume jz1ðv2Þ − u1j ≪ m−1, and jz1ðu2 − aÞ − u1j ≪ m−1. Using Eq. (4.9), the small-gradient
approximation gives the Hamiltonian

Hstring ¼
λ2NðN2 − 1Þ

mg20a
2

ffiffiffiffiffiffi
AN

2π

r
þm

a
ðu2 − v2Þ − 1

2m

Xv2−a
x2¼v2

∂2

∂z1ðx2Þ2 þ
λ2NðN2 − 1Þ

4mg20a
2

ffiffiffiffiffiffiffiffiffiffiffi
1

2πAN

s Xu2−a
x2¼v2þa

½z1ðx2Þ − z1ðx2 − aÞ�2

þ λ2NðN2 − 1Þ
2mg20a

2

ffiffiffiffiffiffiffiffiffiffiffi
1

2πAN

s
f½z1ðv2Þ − u1�2 þ ½z1ðu2 − aÞ − u1�2g: ð4:11Þ

The first term in the Hamiltonian (4.11) is just a con-
stant with no physical significance, so we will ignore it
from now on. The Hamiltonian (4.11) is equivalent to Q ¼
ðu2 − v2Þ=a coupled harmonic oscillators. The ground-
state energy is then given by

E0 ¼ mQ − λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN2 − 1Þ

p
g0a

�
1

2πAN

	1
4 XQ
q¼0

sin
πq
2Q

: ð4:12Þ

Using the Euler summation formula, for large Q,

XQ
q¼0

F

�
q
Q

	
¼ Q

Z
1

0

dxFðxÞ − 1

2
½Fð1Þ − Fð0Þ�

þ 1

12Q
½F0ð1Þ − F0ð0Þ� þO

�
1

Q2

	
;

and the ground-state energy (4.12) becomes (dropping any
constants that do not depend on Q)

E0 ¼
�
m
a
− 2λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN2 − 1Þ

p
πg0a2

�
1

2πAN

	1
4

�
L

þ π

24

λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN2 − 1Þ

p
g0

�
1

2πAN

	1
4 1

L
þO

�
1

L2

	
; ð4:13Þ

where the distance between the quark and antiquark
is L ¼ Qa.
We can easily read the vertical string tension off (4.13),

σV ¼ m
a
− 2λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN2 − 1Þ

p
πg0a2

�
1

2πAN

	1
4

: ð4:14Þ

There is also a Coulomb-like term in the quark-antiquark
potential, which is proportional to 1=L.

V. THE LOW-LYING GLUEBALL
MASS SPECTRUM

The constraint (2.9) requires that in the absence of
quarks, there be an equal number of sigma-model particles
and antiparticles in each x2 layer. Furthermore, it requires
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that the excitations form left- and right-color singlets. If the
sigma model at x2 has a particle with a left color index, a1,
this index has to be contracted with either the left-color
index of an antiparticle in the x2 layer, or the right color
index of a particle in the (x2 þ a) layer. A glueball in this
theory consists of several sigma-model excitations, forming
a color-singlet bound state.
The simplest and lightest glueball is one composed of

only one particle and one antiparticle, at the same value of
x2. The Gauss law constraint requires that their left- and
right-handed color indices be contracted. The interaction
Hamiltonian (2.10) provides a confining linear potential,
with string tension

σ ¼ 2σH: ð5:1Þ

The factor of 2 comes from the fact that both the left and
right color charges are confined.
The problem is now essentially (1þ 1) dimensional. The

low-lying gluon spectrum has been found before by P.
Orland in Ref. [6] for the SUð2Þ gauge group. A similar
analysis was used to find the massive spectrum of (1þ 1)-
dimensional massive Yang-Mills theory for all N, in
Ref. [24]. This method is in turn inspired by the determi-
nation of the spectrum of the two-dimensional Ising model
in an external magnetic field [19,25].
The low-lying glueball masses are

Mn ¼ 2mþ En;

wherem is the mass of a sigmamodel excitation, andEn is the
binding energy. The goal of this section is to compute the
bindingenergiesEn forN > 2.This isdonebyfindingthewave
function of an unbound sigma-model particle-antiparticle
pair. There is a possibility of these two excitations scatter-
ing which is accounted by the exact particle-antiparticle
S-matrix. We later find the wave function of a particle-
antiparticle pair, confined by a linear potential. We obtain a
quantization condition for the binding energy by requiring
that the two wave functions agree when the particles are
close to each other. We are able to do this calculation only
in the nonrelativistic limit, where we take the momenta of
the excitations to be much smaller than their masses.
The particle-antiparticle S-matrix is found in the

Appendix. The S-matrix has an incoming antiparticle with
rapidity θ1 and color indices a1, b1 and a particle with
rapidity θ2 and color indices a2, b2. There is an outgoing
antiparticle with color indices c1, d1 and a particle with
indices c2d2. The S-matrix is

SðθÞd2c2;c1d1a1b1;b2a2
¼ SðθÞ

�
δc1a1δ

c2
a2 − 2πi

Nðπi − θÞ δa1a2δ
c1c2

�

×

�
δd1b1δ

d2
b2
− 2πi
Nðπi − θÞ δb1b2b

d1d2

�
;

where

SðθÞ ¼ exp 2
Z

∞

0

dξ
ξ sinh ξ

½2ðe2ξ=N − 1Þ − sinhð2ξ=NÞ�

× sinh
ξθ

πi
; ð5:2Þ

for N > 2.
The constraint (2.9) requires that the particle-antiparticle

pair form a left-and right-handed color singlet. The
S-matrix of this pair, SðθÞ, is obtained by contracting
the color indices of the excitations:

SðθÞ ¼ 1

N2
δa1a2δb1b2δc1c2δd1d2SðθÞd2c2;c1d1a1b1;b2a2

¼
�
θ þ πi
θ − πi

	
2

SðθÞ:

In the nonrelativistic limit (θ ≪ m) the color-singlet
S-matrix becomes

SðθÞ ¼ exp

�
− ihN
πm

jp1 − p2j
	
;

where

hN ¼ 2

Z
∞

0

dξ
sinh ξ

½2ðe2ξ=N − 1Þ − sinhð2ξ=NÞ�

¼ −4γ − ψ

�
1

2
þ 1

N

	
− 3ψ

�
1

2
− 1

N

	
− 4 ln 4; ð5:3Þ

and γ is the Euler-Mascheroni constant, and ψðxÞ ¼
d lnΓðxÞ=dx is the digamma function.
We find the wave function of an antiparticle at x1, and

a particle at y1, with momenta p1, p2, respectively, in the
nonrelativistic limit. It is convenient to switch to center-
of-mass coordinates, X, x and their respective momenta
P, p. These are defined by X ¼ x1 þ y1, y1 − x1,
P ¼ p1 þ p2, and p ¼ p2 − p1. The nonrelativistic wave
function is

ΨpðxÞsinglet ¼
�
cosðpxþ ωÞ; for x > 0;

cos½−pxþ ω − χðpÞ�; for x < 0;

ð5:4Þ

where χðpÞ ¼ − hN
πm jpj.

We now calculate the nonrelativistic wave function for a
linearly bound particle-antiparticle pair. In center-of-mass
coordinates, the wave function satisfies the Schroedinger
equation

− 1

m
d2

dx2
ΨðxÞ þ σjxjΨðxÞ ¼ EΨðxÞ; ð5:5Þ
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where E is the binding energy [25], and σ ¼ 2λ2
g2
0

a2 CN is the
string tension. The solution of Eq. (5.5) is

ΨðxÞ ¼ CAi

�
ðmσÞ13

�
jxj − E

σ

	�
; ð5:6Þ

where AiðxÞ is the Airy function of the first kind, and C is a
normalization constant.
We require that the wave functions (5.4) and (5.6) agree

as jxj → 0. We identify jpj ¼ ðmEÞ12. For small jxj, the
function (5.6) is approximated by

ΨðxÞb1b2 ¼

8>><
>>:

C 1

ðxþE
σÞ

1
4

cos ½2
3
ðmσÞ12ð−xþ E

σÞ
3
2 − π

4
�Ab1b2 ; for x > 0;

C 1

ðxþE
σÞ

1
4

cos ½− 2
3
ðmσÞ12ðxþ E

σÞ
3
2 þ π

4
�Ab1b2 ; for x < 0.

ð5:7Þ

By comparing (5.4) and (5.7) as x↓0, we fix

C ¼
�
E
σ

	1
4

; ω ¼ 2

3
ðmσÞ12

�
E
σ

	3
2 − π

4
:

Comparing (5.4) and (5.7) as x↑0, gives the quantization
condition,

4

3
ðmσÞ12

�
E
σ

	3
2 þ hN

πm
ðmEÞ12 −

�
nþ 1

4

	
2π ¼ 0; ð5:8Þ

with n ¼ 0; 1; 2; ::.
The solution to (5.8) is

En ¼ f½ϵn þ ðϵ2n þ β3NÞ
1
2�13 þ ½ϵn − ðϵ2n þ β3NÞ

1
2�13g1

2; ð5:9Þ

where

ϵn ¼
3π

4

�
σ

m

	1
2

�
nþ 1

4

	
; βN ¼ hNσ

1
2

4πm
: ð5:10Þ

VI. HORIZONTAL CORRELATION
FUNCTIONS

In this section we compute the long-distance correlation
function of two gauge-invariant operators separated in the
x1 direction only. This is

DAðx1Þ ¼ h0jAðx1; x2ÞAð0; x2Þj0i: ð6:1Þ

The correlation function (6.1) can be evaluated by inserting
a complete set of physical states between the two operators:

DAðx1Þ ¼
X
Ψ

h0jAðx1; x2ÞjΨihΨjAð0; x2Þj0i:

The physical, gauge invariant excitations of the theory
are glueball bound states of sigma-model particles. At large
separations (x1 → ∞), the functionDAðx1Þ can be approxi-
mated by inserting only one-glueball state. The lightest
glue balls are those composed of a sigma-model particle
and antiparticle, whose masses where calculated in the
previous section.
We denote the state with one glueball with rapidity ϕ,

and rest energy Mn, by jB;ϕ; ni. The long-distance
correlation function is

DAðx1Þ ¼
Xns
n¼1

Z
dϕ
4π

h0jAðx1; x2ÞjB;ϕ; ni

× hB;ϕ; njAð0; x2Þj0i;
where ns is the energy level of the heaviest stable glueball,
defined by Mns ≤ 2m ≤ Mnsþ1.
We need a way to compute the one-glueball form factor of

the operatorA. One approach was proposed by Fonseca and
Zamolodchikov [26] in the Ising model perturbed by a weak
external magnetic field. In the nonrelativistic limit, the glue-
ball state is given by the so-called two-quark approximation:

jB; 0; ni ¼ 1ffiffiffiffi
m

p
Z

∞

−∞
dθ
4π

ΨnðθÞjA; θ; a1; b1;P;−θ; a1; b1i;
where ΨnðθÞ is the Fourier transform of the glueball wave
function calculated in the last section:

ΨnðθÞ ¼
Z

dzeizm sinh θ

�
En

σH

	1
4

Ai

�
ðmσHÞ13

�
jzj − En

σH

	�
:

If the operator A has spin s, the one-glueball form
factor is

h0jAðx1; x2ÞjB;ϕ; ni ¼ esϕeix
1Mn sinhϕ

Z
dz

Z
dθ
4π

eizm sinh θ 1ffiffiffiffi
m

p
�
En

σH

	1
4

Ai

�
ðmσHÞ13

�
jzj − En

σH

	�
× h0jAð0; x2ÞjA; θ; a1; b1;P;−θ; a1; b1i:

For the rest of this section we will assume s ¼ 0.
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The two-point correlation function is then

DAðx1Þ ¼ h0jAðx1; x2Þj0ih0jAð0; x2Þj0i

þ
Xns
n¼1

Z
dϕ
4π

eix
1Mn sinhϕ

����
Z

dz
Z

dθ
4π

eizm sinh θ 1ffiffiffiffi
m

p
�
En

σH

	1
4

Ai

�
ðmσHÞ13

�
jzj − En

σH

	�
F ð2θÞ

����2;
where

F ðθÞ ¼ CAN2
1

ðθ þ πiÞ exp
Z

∞

0

dξ
ξ

�−2 sinhð2ξNÞ
sinh ξ

þ 4e−ξðe2ξ=N − 1Þ
1 − e−2ξ

�
sin2½ξðπi − θÞ=2π�

sinh ξ
;

and CA is a normalization constant for the form factor of
the operator A.
The integral over ϕ gives

Z
dϕ
4π

eix
1Mn sinhϕ ¼ 1

2π
K0ðMnx1Þ; ð6:2Þ

where KαðxÞ is the modified Bessel function of the second
kind. For x1 → ∞, this modified Bessel function is
approximated by

K0ðMnx1Þ →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π

2Mnx1

r
e−Mnx1 :

In the anisotropic limit where λ → 0, the glueball masses
become similar to each other (Mn ≈Mnþ1). Following [19],
we assume that the form factors for any n give approx-
imately the same contribution. All the n dependence is
contained in the Bessel function (6.2). In this limit, the sum
over n is approximated by a continuous integral, so we
evaluate

Xnx
n¼1

ffiffiffiffiffiffiffiffiffiffiffi
1

Mnx1

s
e−Mnx ¼

Xns
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2mx1 þ Enx1

s
e−2mx1e−Enx1 ≈

e−2mx1ffiffiffiffiffiffiffiffiffiffiffi
2mx1

p
Z

∞

0

dne−Enx1 ≡ e−2mx1ffiffiffiffiffiffiffiffiffiffiffi
2mx1

p Iðx1; σH;mÞ: ð6:3Þ

The integral Iðx1; σH;mÞ from Eq. (6.3) is in general quite complicated. One particularly simple case is when N → ∞,
where

Iðx1; σH;mÞ ¼
Z

∞

0

dn exp
��

3π

4

�
σH

m

	1
2

n
�1

6
�

¼ 720

3π
4
ðσHm Þ

1
2x6

:

The horizontal correlation function at large distances and small λ is

DAðx1Þ ¼ ¼ h0jAðx1; x2Þj0ih0jAð0; x2Þj0i

þ e−2mx1ffiffiffiffiffiffiffiffiffiffiffiffiffi
8m5x1

p Iðx1; σH;mÞ
�
E0

σH

	1
2

����
Z

dz
Z

dθ
4π

eizm sinh θAi

�
ðmσHÞ13

�
jzj − En

σH

	�
F ð2θÞ

����2:

VII. VERTICAL CORRELATION FUNCTIONS

In this section we present a method to evaluate corre-
lation functions of two gauge-invariant operators separated
in the x2 direction only. This problem is significantly harder
than calculating horizontal correlation functions, and we
are able to make progress only in the large-N limit. For
large separation in x2, the problem is reduced to solving an
integral eigenvalue equation.
We want to calculate the correlator

DAðaR2Þ ¼ h0jAðx1; x2ÞAðx1; x2 þ aR2Þj0i: ð7:1Þ

Our strategy is to define a transfer matrix operator,
Tx2;x2þa, that describes the evolution of the system in
the x2 direction. We impose periodic boundary con-
ditions in the x2 direction. We call the size of the x2

dimension L2. The partition function and correlation
functions can be computed by diagonalizing this trans-
fer matrix.
The transfer matrix is defined by

Tx2;x2þa ¼ e−Hx2 ;x2þa ;

where
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Hx2;x2þa ¼
1

2
HPCSMðx2Þ þ

1

2
HPCSMðx2 þ aÞ þ λ2H1ðx2; x2 þ aÞ

and

H1ðx2; x2 þ aÞ ¼
Z

dx1dy1
1

8g20a
jx1 − y1j½jL0 ðx1; x2ÞjL0 ðy1; x2Þ þ jR0 ðx1; x2ÞjR0 ðy1; x2Þ�

þ
Z

dx1dy1
1

8g20a
jx1 − y1j½jL0 ðx1; x2 þ aÞjL0 ðy1; x2 þ aÞ þ jR0 ðx1; x2 þ aÞjR0 ðy1; x2 þ aÞ�

−
Z

dx1dy1
1

4g20a
jx1 − y1j½jL0 ðx1; x2 þ aÞjR0 ðy1; x2Þ þ jL0 ðy1; x2 þ aÞjR0 ðx1; x2Þ�: ð7:2Þ

We can now compute the matrix elements in of Tx2;x2þa
between the particle states of the sigma models at x2 and
x2 þ a. We label a state with a two-particle bound state, of
rapidity ϕ and energy level n on the sigma model at x2 by
jB;ϕ; n; x2i. For large separations in x2, it is sufficient to
compute the matrix elements with just one bound state in
each x2-layer.
We define the functions

T ¼ h0jTx2;x2þaj0i;
TnðϕÞ ¼ hB;ϕ; n; x2jTx2;x2þajB;ϕ; n; x2i;

Tnn0 ðϕ;ϕ0Þ ¼ hB;ϕ; n; x2;B;ϕ0; n0; x2

þ ajTx2;x2þajB;ϕ; n; x2;B;ϕ0; n0; x2 þ ai:
ð7:3Þ

In the basis of one-glueball states, the transfer matrix is

τnn0 ðϕ;ϕ0Þ ¼ T þ TnðϕÞ þ Tn0 ðϕ0Þ þ Tnn0 ðϕ;ϕ0Þ: ð7:4Þ

The partition function and correlation functions can be
found, in principle, by finding the eigenvalues of the matrix
τnn0 ðϕ;ϕ0Þ. Thismeans one has to solve the integral equation

Xns
n0¼1

Z
dϕ0

4π
τnn0 ðϕ;ϕ0Þψ ðlÞ

n0 ðϕ0Þ ¼ λðlÞψ ðlÞ
n ðϕÞ: ð7:5Þ

If the eigenvalues λðlÞ and eigenfunctions ψ ðlÞ
n ðϕÞ are

known, the transfer matrix may be diagonalized as

τnn0 ðϕ;ϕ0Þ ¼
X
l

λðlÞψ ðlÞ
n ðϕÞψ ðlÞ

n0 ðϕ0Þ; ð7:6Þ

where the eigenfunctions are normalized by

X
n

Z
dϕ
4π

ψ ðlÞ
n ðϕÞψ ðmÞ

n ðϕÞ ¼ δlm:

The partition function is then given by

Z ¼
X
l

½λðlÞ�N2

;

where

N2 ¼ L2

a
:

In the thermodynamic limit, N2 → ∞, the partition func-
tion is

Z ¼ ½λð0Þ�N2

;

where λð0Þ is the largest eigenvalue of the transfer matrix.
The operators in the correlation function (7.1) are

expressed in the one-glueball basis as the functions
Ann0 ðϕ;ϕ0Þ. We assume that the functions A and τ
are not simultaneously diagonalizable. The two-point
correlation function is

DAðaR2Þ ¼ 1

½λð0Þ�N2

X
l;l1;l2

X
n1;n2;nR2 ;nR2þ1

Z
dϕ1dϕ2dϕR2dϕR2þ1

ð4πÞ4

× fψ ðl1Þ
n1 ðϕ1ÞAn1n2ðϕ1;ϕ2Þψ ðl2Þ

n2 ðϕ2Þ½λðlÞ�R2−3ψ ðl2Þ
nR2 ðϕR2ÞAnR2nR2þ1

ðϕR2 ;ϕR2þ1Þψ ðl1Þ
nR2þ1

ðϕR2þ1Þg: ð7:7Þ

In the limit of large separation R2, Eq. (7.7) becomes

DAðaR2Þ ¼ C þ
�
λð1Þ

λð0Þ

	R2

C; ð7:8Þ
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where λð1Þ is the second largest eigenvalue, and

C ¼
X
l1;l2

X
n1;n2;nR2 ;nR2þ1

Z
dϕ1dϕ2dϕR2dϕR2þ1

ð4πÞ4

× fψ ðl1Þ
n1 ðϕ1ÞAn1n2ðϕ1;ϕ2Þψ ðl2Þ

n2 ðϕ2Þψ ðl2Þ
nR2 ðϕR2ÞAnR2nR2þ1

ðϕR2 ;ϕR2þ1Þψ ðl1Þ
nR2þ1

ðϕR2þ1Þg:

We define the inverse correlation length M as

DAðaR2Þ ∼ e−MaR2

:

From Eq. (7.8), the inverse correlation length is

M ¼ − 1

a
ln

�
λð1Þ

λð0Þ

	
:

The rest of this section is dedicated to finding an
expression for τnn0 ðϕ;ϕ0Þ, though we are never able to
solve the integral eigenvalue equation (7.5). This is left as
an open problem.

The contribution to Tnn0 ðϕ;ϕ0Þ which couples two adja-
cent x2 layers involves the two-bound state form factor of the
current operator. This means that we need the four-excitation
form factors of the PCSM. The functions T, TnðϕÞ,
Tnn0 ðϕ;ϕ0Þ involve two-point functions of current operators.
These correlation functions will be computed keeping only
terms proportional to the two- and four-particle form factors.
Form factors of more than two excitations are only known in
’t Hooft’s large-N limit. For the rest of this section we work
exclusively in the large-N limit. The form factors of the
sigma model at large N were found in Refs. [7,23,27], and
are reviewed in the Appendix.
We first calculate the constant

T ¼ h0je−1
2
HPCSMðx2Þ−1

2
HPCSMðx2þaÞþλ2H1ðx2;x2þaÞj0i

≈ exp
nD

0j − 1

2
HPCSMðx2Þ − 1

2
HPCSMðx2 þ aÞ − λ2H1ðx2; x2 þ aÞj0

Eo
: ð7:9Þ

The constant T only has a contribution from H1ðx2; x2 þ aÞ. This contribution is

h0jH1ðx2; x2 þ aÞj0i ¼
Z

dx1dy1jx1 − y1j 1

4g20a
fh0jjL0 ðx1; x2ÞjL0 ðy1; x2Þj0i þ h0jjR0 ðx1; x2ÞjR0 ðy1; x2Þj0ig

þ
Z

dx1dy1jx1 − y1j 1

4g20a
fh0jjL0 ðx1; x2 þ aÞjL0 ðy1; x2 þ aÞj0i

þ h0jjR0 ðx1; x2 þ aÞjR0 ðy1; x2 þ aÞj0ig: ð7:10Þ

We now examine the correlation functions on the right-hand side of Eq. (7.10) using up to two glueball form factors. This
is, for the left-handed current,

h0jjL0 ðx1; x2ÞjL0 ðy1; x2Þj0i ¼
X
n

Z
dϕ
4π

h0jjL0 ðx1; x2ÞjB;ϕ; n; x2ihB;ϕ; n; x2jjL0 ðy1; x2Þj0i

þ
X
n1;n2

Z
dϕ1dϕ2

ð4πÞ2 ½h0jjL0 ðx1; x2ÞjB;ϕ1; n1; x2;B;ϕ2; n2; x2i

× hB;ϕ1; n1; x2;B;ϕ2; n2; x2jjL0 ðy1; x2Þj0i�:

Using the large-N, two-excitation form factors of the sigma model (found in the Appendix), we find

X
n

Z
dϕ
4π

h0jjL0 ðx1; x2ÞjB;ϕ; n; x2ihB;ϕ; n; x2jjL0 ðy1; x2Þj0i

¼
X
n

Z
dϕ
4π

Mnsinh2ϕe−iðx
1−y1ÞMn sinhϕ

�
En

σ

	1
4

N2

����
Z

dz
Z

dθ
4π

Ai

�
ðmσÞ13

�
jzj − En

σ

	�
2πi tanh θ
2θ þ πi

����2:
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The contribution to T from the one-glueball form factor is

Tð2Þ ¼ exp

�
−4λ2

Z
dx1dy1jx1 − y1j 1

4g20a

X
n

Z
dϕ
4π

Mnsinh2ϕe−iðx
1−y1ÞMn sinhϕ

�
En

σ

	1
4

N2F ð2Þ
�
; ð7:11Þ

where

F ð2Þ ¼
����
Z

dz
Z

dθ
4π

Ai

�
ðmσÞ13

�
jzj − En

σ

	�
2πi tanh θ
2θ þ πi

eizm sinh θ

����2:
Using the large-N, four-excitation form factors of the sigma model, we find

X
n1;n2

Z
dϕ1dϕ2

ð4πÞ2 h0jjL0 ðx1; x2ÞjB;ϕ1; n1; x2;B;ϕ2; n2; x2ihB;ϕ1; n1; x2;B;ϕ2; n2; x2jjL0 ðy1; x2Þj0i

¼
X
n1;n2

Z
dϕ1dϕ2

ð4πÞ2
�
En1En2

σ2

	1
2 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mn1Mn2

p ðMn1 sinhϕ1 þMn2 sinhϕ2Þ2e−iðx1−y1ÞðMn1
sinhϕ1þMn2

sinhϕ2ÞN2F ð4Þ;

where

F ð4Þ ¼
����
Z

dθdθ0

ð4πÞ2
tanh θfðθ; θ0Þ

½ðθ þ θ0Þ2 þ π2�ð2θ0 þ πiÞ
����2 þ

����
Z

dθdθ0

ð4πÞ2
tanhðθþθ0

2
Þfðθ; θ0Þ

ð2θ þ πiÞðθ0 þ θ − πiÞð2θ0 þ πiÞ
����2

þ
����
Z

dθdθ0

ð4πÞ2
tanhðθþθ0

2
Þfðθ; θ0Þ

ðθ þ θ0 þ πiÞð2θ0 þ πiÞð2θ þ πiÞ
����2 þ

����
Z

dθdθ0

ð4πÞ2
tanh θ0fðθ; θ0Þ

½ðθ þ θ0Þ2 þ π2�ð2θ þ πiÞ
����2;

and

fðθ; θ0Þ ¼
Z

dz1dz28πieiz1m sinh θþiz2 sinh θ0Ai

�
ðmσÞ13

�
jz1j − En

σ

	
�Ai½ðmσÞ13

�
jz2j − En

σ

	�
:

The contribution to T from the two-glueball form factor is

Tð4Þ ¼ exp

�
−4λ2

Z
dx1dy1jx1 − y1j 1

4g20a

X
n1;n2

Z
dϕ1dϕ2

ð4πÞ2
�
En1En2

σ2

	1
2

×
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mn1Mn2

p ðMn1 sinhϕ1 þMn2 sinhϕ2Þ2e−iðx1−y1ÞðMn1
sinhϕ1þMn2

sinhϕ2ÞN2F ð4Þ
�
; ð7:12Þ

such that

T ¼ Tð2ÞTð4Þ: ð7:13Þ

We now calculate the function TnðϕÞ from Eq. (7.3). The contribution to TnðϕÞ from the sigma model in the x2 þ a layer
is just

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tð2ÞTð4Þp

. There is a contribution to the function TnðϕÞ from the unperturbed Hamiltonian, given by

hB;ϕ; n; x2jHPCSMðx2ÞjB;ϕ; n; x2i≡ Tð0Þ
n ðϕÞ ¼ 1

Mn

Z
dz1dz2

�
EN

σ

	1
2

Ai

�
ðmσÞ13

�
jz1j − En

σ

	�
Ai

�
ðmσÞ13

�
jz2j − En

σ

	�

×
Z

dθ
4π

2m cosh θeiðz2−z1Þm sinh θeiðz1−z2ÞMn coshϕ: ð7:14Þ
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There are contributions to TnðϕÞ from the current correlation function

hB;ϕ; n; x2jjL0 ðx1; x2ÞjL0 ðy1; x2ÞjB;ϕ; n; x2i
¼ hB;ϕ; n; x2jjL0 ðx1; x2Þj0ih0jjL0 ðy1; x2ÞjB;ϕ; n; x2i

þ
X0

n

Z
dϕ0

4π
hB;ϕ; n; x2jjL0 ðx1; x2ÞjB;ϕ0; n0; x2ihB;ϕ0; n0; x2jjL0 ðy1; x2ÞjB;ϕ; n; x2i þ � � � :

Using the two-excitation form factors of the sigma model, we find

hB;ϕ; n; x2jjL0 ðx1; x2Þj0ih0jjL0 ðy1; x2ÞjB;ϕ; n; x2i ¼ Mn sinh2 ϕe−iðx
1−y1ÞMn sinhϕ

�
En

σ

	1
4

F ð2Þ:

The contribution to TnðϕÞ from the one-glueball form factors of the sigma model at x2 is

Tð2Þ
n ðϕÞ ¼ exp

�
−2λ2

Z
dx1dy1jx1 − y1j 1

4g20a
Mnsinh2ϕe−iðx

1−y1ÞMn sinhϕ

�
En

σ

	1
4

F ð2Þ
�
: ð7:15Þ

Using the form factor of the sigma model with two incoming and two outgoing excitations (also found in the Appendix),
we find the contribution TnðϕÞ from the two-glueball form factor

Tð4Þ
n ðϕÞ ¼ exp

�
−2λ2

Z
dx1dy1jx1 − y1j 1

4g20a

X
n0

Z
dϕ
4π

�
EnEn0

σ2

	1
2

N2

×
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MnMn0
p ðMn sinhϕþMn0 sinhϕ0Þ2e−iðx1−y1Þð−Mn sinhϕþMn0 sinhϕ

0ÞF 0ð4Þ
�
; ð7:16Þ

where

F 0ð4Þ ¼
����
Z

dθdθ0

ð4πÞ2
tanh θf0ðθ; θ0Þ

ðθ þ θ0 þ 2πiÞðθ0 þ θ − 2πiÞð2θ0 þ πiÞ
����2 þ

����
Z

dθdθ0

ð4πÞ2
cothðθþθ0

2
Þf0ðθ; θ0Þ

ð2θ þ πiÞðθ0 þ θ − 2πiÞð2θ0 þ πiÞ
����2

þ
����
Z

dθdθ0

ð4πÞ2
cothðθþθ0

2
Þf0ðθ; θ0Þ

θ þ θ0 þ 2πiÞð2θ þ πiÞð2θ0 þ πiÞ
����2 þ

����
Z

dθdθ0

ð4πÞ2
tanh θ0f0ðθ; θ0Þ

ðθ þ θ0 þ 2πiÞð2θ þ πiÞðθ þ θ0 − 2πiÞ
����2;

and

f0ðθ; θ0Þ ¼ 8πi
Z

dz1Ai

�
ðmσÞ13

�
jz1j − En

σ

	�
eiz1m sinh θ

�Z
dz2Ai

�
ðmσÞ13

�
jz2j − En

σ

	�
eiz2m sinh θ0

��
:

We can combine the results from Eqs. (7.13), (7.14), (7.15), and (7.16) to write

TnðϕÞ ¼
ffiffiffiffi
T

p
Tð0Þ
n ðϕÞTð2Þ

n ðϕÞTð4Þ
n ðϕÞ: ð7:17Þ

We now evaluate the function Tnn0 ðϕ;ϕ0Þ. This function has only one new contribution, which couples between the x2

and x2 þ a layers. This is

Knn0 ðϕ;ϕ0Þ ¼ exp

�
−λ2

Z
dx1dy1jx1 − y1j 1

2g20a
hB;ϕ; n; x2jjR0 ðx1; x2ÞjB;ϕ; n; x2i

× hB;ϕ0; n0; x2 þ ajjL0 ðy1; x2 þ aÞjB;ϕ0; n0; x2 þ ai
�

¼ exp

�
−λ2

Z
dx1dy1jx1 − y1j 1

2g20a

�
EnEn0

σ2

	1
2

N2 ×MnMn0sinh2ϕsinh2ϕ0e−ix1Mn sinhϕþiy1Mn0 sinhϕ
0
F 0ð4Þ

�
:

ð7:18Þ
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With Eq. (7.18) and Eqs. (7.13), (7.14), (7.15), and (7.16),
we write

Tnn0 ðθ; θ0Þ ¼ Tð0Þ
n ðϕÞTð2Þ

n ðϕÞTð4Þ
n ðϕÞTð0Þ

n0 ðϕ0ÞTð2Þ
n0 ðϕ0Þ

× Tð4Þ
n0 ðϕ0ÞKnn0 ðϕ;ϕ0Þ: ð7:19Þ

The transfer matrix τnn0 ðϕ;ϕÞ is given in Eq. (7.4), by
combining Eqs. (7.13), (7.17), (7.19). The problem of
finding the vertical correlation functions is now reduced to
diagonalizing the function τnn0 ðϕ;ϕÞ, and expressing it in
the form of Eq. (7.6).

VIII. CONCLUSION

We have used new exact results from the principal chiral
sigma model to compute physical quantities in anisotropic
Yang-Mills theory. The two-particle form factors of the
sigma model are now known for general N > 2. This
allowed us to generalize Orland’s results for the SUð2Þ
gauge group, to SUðNÞ. These results include the string
tensions for quarks separated in the x1 and x2 directions,
and the spectrum of the lightest glueball masses.
Once we found the glueball states, we used them to

calculate correlation functions of gauge-invariant operators.
For two operators separated in the x1 direction only, the
correlation function is calculated at long distances by
summing over a complete set of intermediate one-glueball
states.
The correlation functions of operators separated in the x2

direction are much more difficult to calculate. We proposed
a method for how these correlation functions may be
calculated, though we did not solve the problem com-
pletely. We compute the elements of a transfer matrix which
evolves the system in the x2 direction. These elements are
computed in the basis of one-glueball states. The problem
of calculating correlation functions is reduced to solving an
integral eigenvalue equation for the transfer matrix.
An obvious problem for the future is to find a solution to

the eigenvalue equation , Eq. (7.5). This would allow us to
calculate explicitly the partition function and correlation
functions in the x2 direction. The rapidities of the glueballs,
ϕ, ϕ0 can be discretized by placing the sigma models in a
finite box of size L1. One can impose an energy cutoff by
discarding glueball states above some maximum rapidity.
The transfer matrix then becomes discrete and finite, and
can thus be diagonalized numerically on a computer. This
computation would be similar to that done for the Ising
model by Konik and Adamov [17]. We would like to point
out that the methods of Ref. [17] can, in principle, be used
to find results applicable to the fully isotropic (2þ 1)-
dimensional theory. In this reference, the authors studied
the three-dimensional Ising model as an array of two-
dimensional chains, for different values of the interchain
coupling (corresponding to our parameter λ), up to the fully
isotropic value. Their transfer matrix was obtained by an

improved version of the truncated spectrum approach [28].
One difficulty for the Yang-Mills theory case is that gauge
invariance needs to be imposed on the states of the
truncated spectrum, making the construction of the transfer
matrix nontrivial. This numerical diagonalization is the
most promising approach that we know with which we
could study the fully isotropic (2þ 1)-dimensional theory.
It would be interesting to extend our methods to

3þ 1 dimensions. It has been shown that longitudinally
rescaled (3þ 1)-dimensional Yang-Mills theory can also
be expressed as an array of sigma models [29]. There is
an additional interaction term given by the additional
components of the magnetic field. It would be interesting
to see what is the effect of this additional interaction on the
quantities calculated in this paper.
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APPENDIX: THE S-MATRIX AND FORM
FACTORS OF THE PRINCIPAL CHIRAL

SIGMA MODEL

For the purposes of this paper, we only need to know the
two- and four-particle form factors of the Noether current
operators of the sigma model. These were found in the ’t
Hooft limit in Ref. [7]. For finite N, only the two-particle
form factor is found in the same paper. These results were
later generalized to form factors of an arbitrary number of
particles, at large N, if Ref. [23]. These form factors were
used to calculate two-point correlation functions. It is worth
mentioning that the form factors and correlation functions
of other operators have also been found in the ’t Hooft limit.
The renormalized field operator was studied in Ref. [27],
and the energy-momentum tensor was studied in [23].
This appendix is not meant to be a review of form factors

of integrable theories. We merely present results without a
meticulous derivation. For a complete derivation of the
results in this appendix, see Ref. [7]. A modern review of
the integrable bootstrap program for calculating form
factors is found in Ref. [30].
The derivation of the form factors makes use of the

two-particle S-matrix of the sigma model. This S-matrix
has been found in Refs. [3] and [2]. The S-matrix
SPPðθÞc2d2;c1d1a1b1a2b2

of two incoming particles with rapidities
θ1 and θ2 and left and right color indices a1, b1, and a2, b2,
respectively, and two outgoing particles with rapidities θ01
and θ02, and left and right color indices c1, d1, and c2, d2,
respectively, is given by
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outhP; θ01; c1; d1;A; θ02; d2; c2 jP; θ1; a1; b1;A; θ2; b2; a2iin
¼ SPPðθÞc2d2;c1d1a1b1;a2b2

4πδðθ01 − θ1Þ4πδðθ02 − θ2Þ;

where θ ¼ θ1 − θ2. The result from [2,3] is

SPPðθÞc2d2;c1d1a1b1;a2b2
¼ χðθÞSCGNðθÞc2;c1a1;a2SCGNðθÞd2d1b1;b2

;

where SCGN is the S-matrix of two elementary excitations
of the SUðNÞ chiral Gross-Neveu model [31,32],

SCGNðθÞc2c1a1a;a2 ¼
Γðiθ=2π þ 1ÞΓð−iθ=2π − 1=NÞ
Γðiθ=2π þ 1 − 1=NÞΓð−iθ=2πÞ
×

�
δc1a1δ

c2
a2 − 2πi

Nθ
δc1a2δ

c2
a1

	
;

and

χðθÞ ¼ sinh ðθ
2
− πi

NÞ
sinh ðθ

2
þ πi

NÞ
:

The particle-antiparticle S-matrix is related to the par-
ticle-particle S-matrix by crossing symmetry, i.e. θ → θ̂ ¼
πi − θ. It was found in Ref. [7], that the particle-antiparticle
S-matrix can be written in the exponential form:

SðθÞd2c2;c1d1a1b1;b2a2
¼ SðθÞ

�
δc1a1δ

c2
a2 − 2πi

Nðπi − θÞ δa1a2δ
c1c2

�

×

�
δd1b1δ

d2
b2
− 2πi
Nðπi − θÞ δb1b2b

d1d2

�
;

where

SðθÞ ¼ exp 2
Z

∞

0

dξ
ξ sinh ξ

½2ðe2ξ=N − 1Þ − sinhð2ξ=NÞ�

× sinh
ξθ

πi
; ðA1Þ

for N > 2.
The two-particle form factor of the left-handed Noether

current was found using Eq. (A1). This is [7]

h0jjLμ ðxÞa0c0 jA; θ1; b1; a1;P; θ2; a2; b2iin ¼ ðp1 − p2Þμe−ix·ðp1þp2Þ
�
δa0a2δc0a1δb1b2 −

1

N
δa0c0δa1a2δb1b2

	
:

×
2πi

ðθ þ πiÞ exp
Z

∞

0

dx
x

�−2 sinhð2xNÞ
sinh x

þ 4e−xðe2x=N − 1Þ
1 − e−2x

�
sin2½xðπi − θÞ=2π�

sinh x
:

ðA2Þ
The form factor with one incoming and one outgoing antiparticle can be found by crossing the particle in (A2) into an
outgoing particle, shifting the rapidity θ2 → θ2 − πi. The right-handed current has a very similar expression, but the color
indices of the operator are contracted with the right-handed color indices of the particle and antiparticle.
Next we show the four-excitation form factor at large N. The form factor is nonzero only if two of the excitations are

particles and two are antiparticles. The form factor is1

h0jjLμ ð0Þa0c0 jA; θ1; b1; a1;A; θ2; b2; a2;P; θ3; a3; b3;P; θ4; a4; b4i

¼ −ϵμνðp1 þ p2 þ p3 þ p4Þν
8π2i
N

×

�
tanhðθ13

2
Þ

ðθ14 þ πiÞðθ23 þ πiÞðθ24 þ πiÞ
�
δa0a3δa1c0δa2a4δb1b4δb2b3 −

1

N
δa0c0δa1a3δa2a4δb1b4δb2b3

�

þ tanhðθ14
2
Þ

ðθ13 þ πiÞðθ23 þ πiÞðθ24 þ πiÞ
�
δa0a4δa1c0δa2a3δb1b3δb2b4 −

1

N
δa0c0δa1a4δa2a3δb1b3δb2b4

�

þ tanhðθ23
2
Þ

ðθ14 þ πiÞðθ13 þ πiÞðθ24 þ πiÞ
�
δa0a3δa1a4δa2c0δb1b3δb2b4 −

1

N
δa0c0δa2a3δa1a4δb1b3δb2b4

�

þ tanhðθ24
2
Þ

ðθ14 þ πiÞðθ13 þ πiÞðθ23 þ πiÞ
�
δa0a4δa1a3δa2c0δb1b4δb2b3 −

1

N
δa0c0δa2a4δa1a3δb1b4δb2b3

��
; ðA3Þ

1It is important to mention that the four-particle form factor from Ref. [7] has been found to not be completely correct as written. The
momentum-vector prefactor chosen in [7] is ðp1 þ p2 − p3 − p4Þμ instead of −ϵμνðp1 þ p2 þ p3 þ p4Þν, as we have written in
Eq. (A3). The results from Refs. [7] and [23] are not consistent with the fact that the Noether current is conserved. These corrections
have been published in [33].
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where θij ¼ θi − θj. The form factor with two incoming and two outgoing excitations can be found by using the S-matrix
and crossing symmetry:

hP; θ2; b2; a2;A; θ4; a4; b4jjLμ ð0Þa0c0 jA; θ1; b1; a1;P; θ3; a3; b3i

¼ −ϵμνðp1 þ p3 − p2 − p4Þν
8π2i
N

×

�
tanhðθ13

2
Þ

ðθ14 þ 2πiÞðθ23 − 2πiÞðθ24 þ πiÞ
�
δa0a3δa1c0δa2a4δb1b4δb2b3 −

1

N
δa0c0δa1a3δa2a4δb1b4δb2b3

	

þ cothðθ14
2
Þ

ðθ13 þ πiÞðθ23 − 2πiÞðθ24 þ πiÞ
�
δa0a4δa1c0δa2a3δb1b3δb2b4 −

1

N
δa0c0δa1a4δa2a3δb1b3δb2b4

	

þ cothðθ23
2
Þ

ðθ14 þ 2πiÞðθ13 þ πiÞðθ24 þ πiÞ
�
δa0a3δa1a4δa2c0δb1b3δb2b4 −

1

N
δa0c0δa2a3δa1a4δb1b3δb2b4

	

þ tanhðθ24
2
Þ

ðθ14 þ 2πiÞðθ13 þ πiÞðθ23 − 2πiÞ
�
δa0a4δa1a3δa2c0δb1b4δb2b3 −

1

N
δa0c0δa2a4δa1a3δb1b4δb2b3

	�
: ðA4Þ
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