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We propose a nonlinear massive gravitational theory which includes FðRÞ modifications. This
construction inherits the benefits of the de Rham-Gabadadze-Tolley model and is free of the
Boulware-Deser ghost due to the existence of a Hamiltonian constraint accompanied by a nontrivial
secondary one. The scalar perturbations in a cosmological background can be stabilized at the linear level
for a wide class of the FðRÞ models. The linear scalar mode arisen from the FðRÞ sector can absorb the
nonlinear longitudinal graviton, and hence, our scenario demonstrates the possibility of a gravitational
Goldstone theorem. Finally, due to the combined contribution of the FðRÞ and graviton-mass sectors, the
proposed theory allows for a large class of cosmological evolutions, such as the simultaneous and unified
description of inflation and late-time acceleration.
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I. INTRODUCTION

The search for a consistent theory of massive gravity
has been open for decades. Its motivations arise from both
theoretical considerations, namely, to understand the con-
struction procedure of a massive spin-2 theory, as well as
(lately) from observational requirements, that is, to explain
the Universe’s acceleration through such an infrared (IR)
modification of general relativity. However, since the first,
linear approach [1], the subject remains a theoretically
intriguing problem.
In the instructive idea of Fierz and Pauli [1], general

relativity is extended by introducing a linear mass term,
and thus, the theory involves at least 5 degrees of freedom
(DOF), representing a massive spin-2 field in a Poincaré
invariant background. However, it turns out that the
graviton’s longitudinal DOF remains coupled to the trace
of the energy-momentum tensor regardless of the smallness
of the graviton mass. This leads to the famous van Dam-
Veltman-Zakharov discontinuity [2] and thus to a severe
challenge by experiments and observations. This disconti-
nuity can be alleviated at the nonlinear level through the
Vainshtein mechanism [3]; however, due to the constraints
on the dynamical variables, the same nonlinearities give
rise to a ghost instability, called the Boulware-Deser (BD)
ghost [4]. Using the effective field theory approach, one can
show that the BD ghost is related to the Goldstone boson
associated with the broken general covariance [5].

The above inconsistencies puzzled physicists for years.
Recently, de Rham, Gabadadze, and Tolley (dRGT)
showed that the BD ghost can be removed in a suitable
nonlinear massive gravitational theory [6]. In particular,
due to a delicate construction of the graviton potential, the
Hamiltonian constraint and the associated secondary one
are restored, and thus, this IR modified theory becomes free
from BD ghosts [7]. Apart from the theoretical interest,
dRGT construction has the additional advantage that its
application to a cosmological framework leads to late-time
cosmic acceleration, where a sufficiently small value of the
graviton mass mimics an effective cosmological constant
[8–10]. However, as was shown in Ref. [11], cosmological
perturbations of the dRGT massive gravity around back-
ground solutions exhibit instabilities.
On the other hand, after the 1960s, physicists realized

that although general relativity is not renormalizable,
possible high-energy corrections could improve renorma-
lizability and thus quantization [12,13]. Although these
ultraviolet (UV) corrections are expected to be of quantum
origin or to arise from an underlying fundamental theory
such as string theory (for example, see Refs. [14,15]), one
can describe them effectively, by investigating a classical,
modified, gravitational action. The simplest model of such
an UV modified gravity, that can sufficiently encapsulate
the basic properties of higher-order gravitational theories, is
the FðRÞ paradigm, in which the gravitational Lagrangian
is extended to an arbitrary function of the Ricci scalar
(see Ref. [16] for a review). The corresponding FðRÞ
cosmology is able to describe the inflationary epoch, and,
in particular, the well-known Starobinsky R2-inflation
scenario [17] proves to be the best-fitted scenario with
the recently released Planck data [18].
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Inspired by the above discussion, in this paper, we
propose a modification of general relativity both in the
UV and IR regimes that is the FðRÞ nonlinear massive
gravity. In this theory, the extra scalar DOF of the FðRÞ
sector, clearly seen through a conformal transformation, has
a positive-defined kinetic term as usual, and its interaction
with the massive sector can stabilize metric perturbation of
scalar type at linear order (this is a novel feature, not present
in Ref. [19]). In summary, the total theory is not only free
of BD ghosts at the fundamental level, but it is also free of
linear cosmological perturbative instabilities for the largest
part of its parameter space, even in homogeneous and
isotropic geometries. Finally, the increased freedom of both
FðRÞ and massive-graviton sectors can lead to a large class
of interesting cosmological behaviors at early and late times,
in agreement with observations.

II. THE SETUP

Imposing both the UV [FðRÞ sector] and IR (graviton-
mass sector) modifications, the total action becomes

S ¼ M2
p

2

Z
d4x

ffiffiffiffiffi
jgj

p
½FðRÞ þ 2m2

gUM�; ð1Þ

where Mp is the Planck mass, g is the physical metric, and
mg is the graviton mass. As usual in dRGT construction, to
build the dimensionless graviton potential UM, one needs to
define the matrix K≡ I −X, whereX≡ ffiffiffiffiffiffiffiffiffiffi

g−1f
p

involves a
nondynamical (fiducial) metric f.1 Then, the regular anti-
symmetrization in 4D space-time yields the following
polynomials

U2 ¼ Kμ
½μK

ν
ν�; U3 ¼Kμ

½μK
ν
νKσ

σ�; U4 ¼Kμ
½μK

ν
νKσ

σK
ρ
ρ�;

ð2Þ

and the graviton potential is given by UM ¼ U2 þ α3U3 þ
α4U4, containing two dimensionless parameters (α3, α4).
The UV sector inherits the remarkable properties of the

FðRÞ term. In particular, by performing the conformal

transformation gμν → ~gμν ¼ Ω2gμν with Ω ¼ exp
h

φffiffi
6

p
Mp

i
,

the FðRÞ part can be reformulated as the standard general
relativity minimally coupled to a canonical scalar field φ,
with effective potential

UðφÞ ¼ M2
pðRF;R − FÞ=2F2

;R; ð3Þ

where F;R ≡ ∂F=∂R. Additionally, the conformal trans-
formation acts on the IR sector, too, with the graviton
potentials transforming as

~UM ¼
X4
i¼0

Ωi−4βiEi; ð4Þ

where βi ¼ ð−1Þi½ð4 − iÞð3 − iÞ=2þ ð4 − iÞα3 þ α4�. In
this expression, based on the transformed matrix
~X≡ ffiffiffiffiffiffiffiffiffiffi

~g−1f
p

, we have introduced the elementary symmet-
ric polynomial Ei as

E0 ¼ 1; E1 ¼ ~Xμ
μ; E2 ¼ ~Xμ

½μ ~X
ν
ν�;

E3 ¼ ~Xμ
½μ ~X

ν
ν
~Xσ
σ�; E4 ¼ ~Xμ

½μ ~X
ν
ν
~Xσ
σ
~Xρ
ρ�: ð5Þ

Then, the resulting Lagrangian in the Einstein frame can be
written as

L ¼
ffiffiffiffiffi
j~gj

p �
M2

p

2
ð ~Rþ 2m2

g
~UMÞ −

1

2
∂μφ∂μφ −UðφÞ

�
: ð6Þ

At first sight, one might feel that our construction has a
relation with the quasidilaton massive gravity [20] and
the mass-varying massive gravity [21,22]. However, these
scenarios are radically different, straightaway from the
starting point of the model building, and moreover, they
obey completely different symmetries. In particular, in the
quasidilaton massive gravity, the coefficient in front of the
kinetic term of the scalar field is a free parameter, while in
our model, it results in being unity, and this feature has a
crucial effect on the perturbational analysis, reducing the
number of degrees of freedom, as we will see. Additionally,
while in mass-varying massive gravity the separate gravi-
tational terms acquire a common overall factor, in the
present construction, they result obtaining different scalar-
field dependencies, which make the two models radically
different.

III. HAMILTONIAN CONSTRAINT ANALYSIS

To examine the BD ghost issue, one must perform the
Hamiltonian constraint analysis [7]. For simplicity, we
work within the Einstein frame and expand the metrics
using the famous Arnowitt-Deser-Misner formalism:

~gμνdxμdxν ¼ −ðN0
gÞ2dt2 þ γijðdxi þNi

gdtÞðdxj þNj
gdtÞ;

fσρdxσdxρ ¼ −ðN0
fÞ2dt2 þωabðdxa þNa

fdtÞðdxb þNb
fdtÞ:
ð7Þ

The lapse N0
g and shift ~Ng (the three Ni

g’s expressed as
vectors) of the physical metric, as well as the corresponding
ones for the fiducial metric N0

f and ~Nf, respectively, are all
nondynamical. In massive gravity, γij allows for at most six
propagating modes, one of them being the origin of the BD
ghost. A potentially healthy theory must maintain a single
constraint on γ̄ (from now on, a bar denotes the matrix
form) and the conjugate momenta, along with an associated

1We use lower case f’s to denote the fiducial metric and upper
case F’s to denote the function FðRÞ.
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secondary constraint, which will lead to the elimination of
the ghost DOF. In the following, we briefly show the
existence of these constraints in FðRÞ massive gravity; one
can find additional details in Ref. [23].
In order to introduce the Lagrange multiplier explicitly,

we define a new shift ~η through ~Ng − ~Nf ¼ ðN0
fIþ N0

gDÞ~η,
where I is the 3 × 3 unit matrix and the 3 × 3 matrix D
satisfies λDD ¼ ½γ̄−1 − ðD~ηÞðD~ηÞT�ω̄ with λ ¼ 1 − ~ηTω̄ ~η.
The conjugate momenta are defined as π ≡ δSG

δ _φ and

Π̄≡ δSG
δ _̄γ
. Then, we can derive the Hamiltonian as

H ¼
Z

d3x½H − N0
gCðφ; π; γ̄; Π̄; ~ηÞ�; ð8Þ

where

H ¼ −ðN0
f~ηþ ~NfÞ ~R − N0

f

ffiffiffiffiffi
jγ̄j

p
FHm2

gM2
p; ð9Þ

C ¼ Rþ ~RTD~ηþ
ffiffiffiffiffi
jγ̄j

p
FCm2

gM2
p: ð10Þ

Here, we have introduced the coefficients

R ¼
ffiffiffiffiffijγ̄jp
2

½M2
pR3 − φ;iφ

;i −UðφÞ�

þ 1ffiffiffiffiffijγ̄jp
�ðTrΠ̄Þ2

M2
p

−
2Π̄2

M2
p
−
π2

2

�
; ð11Þ

and

Ri ¼ 2γijΠ
jk
;k − πφ;i; ð12Þ

while the coefficients appearing in the mass terms are

FH ¼ β1λ
1
2

Ω3
þ β2
Ω2

½λTrDþ ~ηTω̄D~η�

þ β3
Ω

h
2λ

1
2D½l

l η
i�ωijD

j
kη

k þ λ
3
2D½i

i D
j�
j

i
þ β4jω̄j12

jγ̄j12 ; ð13Þ

FC ¼ β0
Ω4

þ β1λ
1
2TrD
Ω3

þ β2λD
½i
i D

j�
j

Ω2
þ β3λ

3
2

Ω
D½i

i D
j
jD

k�
k : ð14Þ

Varying the Hamiltonian with respect to the new shift ~η
does not yield any constraints, but due to this new shift
vector, the variation with the lapse function N0

g does give a
constraint which reads

Cðφ; π; γ̄; Π̄; ~ηÞ ¼ 0: ð15Þ

In order for this constraint to hold at all times, we must also
demand that

Cð2Þ ¼ fC;Hg ¼ 0; ð16Þ

where the Poisson brackets of two quantities are defined as

fO1ðxÞ;O2ðyÞg ¼
X
i

Z
d3z

�
δO1ðxÞ
δqi

δO2ðyÞ
δpi

−
δO1ðxÞ
δpi

δO2ðyÞ
δqi

�
; ð17Þ

with the qi being the canonical variables ðγij;φÞ and pi

their conjugate momenta ðΠij; πÞ.
Equation (16) must generate a needed second constraint

on φ, γ̄, and their conjugate momenta; therefore, it must not
vanish identically and/or must not be an equation that
determines the lapse function N0

g. The latter condition will
not hold if fCðxÞ; CðyÞg does not vanish as it appears in Cð2Þ
with N0

g as its coefficient. Fortunately, one can show that
fCðxÞ; CðyÞg=0 identically [7,23]. The remaining term
Cð2Þ ¼ fC; R d3xHðxÞg becomes

Cð2Þ ¼ C∇iðNfη
i þ Ni

fÞ þm2
gM2

pðγmnΠk
k − 2ΠmnÞFmn

H

þm2
gM2

pNfDi
kη

k

�
2

ffiffiffi
γ

p ð∇mFmn
H Þγni −

∂FH

∂φ ∂iφ

�

þ∇iðNfη
i þ Ni

fÞðRjD
j
kη

k −m2
gM2

p
ffiffiffi
γ

p
γjkBkjÞ

−m2
gM2

pðNfη
i þ Ni

fÞ
ffiffiffi
γ

p ∂FC

∂φ ∂iφ; ð18Þ

with Fmn
H ¼ 1ffiffi

γ
p ∂ð ffiffi

γ
p

FHÞ
∂γmn

and

Bki ¼ γkm
�
β1
λ1=2

ωmaðD−1Þaj þ β2ðωmaðD−1ÞajDb
b − ωmjÞ

þ β3λ
1=2½ωmaðD−1Þaj − ωmjðD−1Þaa�

þ β3λ
1=2

2
ωmaðD−1Þaj ðDa

aDb
b − Da

bD
b
aÞ
�
γji: ð19Þ

From this expression, we see that Cð2Þ contains no mention
of N0

g and is not proportional to the original constraint
C; hence, it does not vanish identically when C ¼ 0.
Therefore, imposing

�
C;
Z

d3xHðxÞ
�

¼ 0 ð20Þ

gives a second nontrivial constraint. This result is not
too surprising, as the effect of considering FðRÞ gravity
amounts to (in the Einstein frame) multiplying each of the
graviton’s mass terms by a power of the conformal factorΩ.
Therefore, the structure of Eq. (2), which is responsible for
the elimination of the BD ghost, is still preserved, as seen
in Eq. (5).
Now, since Cð2Þ ¼ 0 must remain valid at all times,

one must make sure that the equation fCð2Þ; Hg ¼ 0 does
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not lead to additional constraints but instead give an
equation determining N0

g. This is the case only if
fCð2Þ; R d3xHðxÞg ≠ 0 and fCð2Þ; Cg ≠ 0. These two con-
ditions are satisfied by the Fierz-Pauli constraints for which
Cð2Þ and C reduce to lowest order in the γij; πij fields and
with φ ¼ 0. Therefore, as argued in Ref. [7], considering
the terms of higher order in the fields cannot change
fCð2Þ; R d3xHðxÞg and fCð2Þ; Cg in a way that makes them
vanish identically. Additionally, since φ ¼ 0 belongs to the
constraining surface, adding this new DOF will not change
the fact that no tertiary constraint exists. Hence, we see
that the effect of considering an FðRÞ modification does
not lead to a resurgence of the BD ghost.

IV. COSMOLOGY

When applied in cosmological frameworks, the scenario
of FðRÞ massive gravity exhibits a large class of phenom-
enological behaviors due to the combination of the FðRÞ
and graviton-mass sectors. Let us start with a Minkowski
fiducial metric fσρ ¼ ησρ. The model allows only for an
open Friedmann-Robertson-Walker universe, and thus, we
consider the physical metric in the Jordan frame as

ds2 ¼ −N2dt2 þ a2ðtÞγKijdxidxj; ð21Þ

with γKijdx
idxj ¼ δijdxidxj −

a2
0
ðδijxidxjÞ2

1−a2
0
δijxixj

, and a0 ¼
ffiffiffiffiffiffiffijKjp

is

associated with the spatial curvature. The Stückelberg

scalars are φ0 ¼ bðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a20δijx

ixj
q

, φi ¼ a0bðtÞxi.
Then, the polynomials defined in (2) take the forms of

U2 ¼ 3aða − a0bÞð2Na − b0a − Na0bÞ;
U3 ¼ ða − a0bÞ2ð4Na − 3ab0 − Na0bÞ;
U4 ¼ ða − a0bÞ3ðN − b0Þ; ð22Þ

where primes denote derivatives with respect to t. Finally,
for simplicity, we assume that the gravitational sector
couples minimally to the regular matter component.
Variation of the action with respect to b, N, and a gives,

respectively, the constraint and the two Friedmann equa-
tions, namely,

ð _a − a0ÞY1 ¼ 0; ð23Þ

3M2
pF;R

�
H2 −

a20
a2

�
¼ ρm þ ρIR þ ρUV; ð24Þ

M2
pF;R

�
−2 _H − 3H2 þ a20

a2

�
¼ pm þ pIR þ pUV; ð25Þ

with _a ¼ a0
N and H ¼ _a

a. In the above expressions, we have
defined the IR (massive-gravity) effective contribution

ρIR ¼ m2
gM2

pðB − 1ÞðY1 þ Y2Þ;
pIR ¼ −m2

gM2
pðB − 1ÞY2 −m2

gM2
pð _b − 1ÞY1; ð26Þ

as well as the UV [FðRÞ sector] effective contribution

ρUV ¼ M2
p

�
RF;R − F

2
− 3H _RF;RR

�
; ð27Þ

pUV ¼ M2
p

�
_R2F;RRR þ 2H _RF;RR þ R̈F;RR þ F − RF;R

2

�
;

ð28Þ

where the polynomials Y1;2 are given by Y1¼ð3−2BÞþ
α3ð3−BÞð1−BÞþα4ð1−BÞ2 and Y2¼ð3−BÞ þα3ð1−BÞ,
with B ¼ a0b

a .
Similar to all massive-gravity scenarios, Eq. (23) con-

strains the dynamics significantly. As in self-accelerating
backgrounds of dRGT [9], the nontrivial solutions corre-
spond to the case of Y1 ¼ 0 and yield

B� ¼ 1þ 2α3 þ α4 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α3 þ α23 − α4

p
α3 þ α4

: ð29Þ

This relation can be always fulfilled by choosing
bðtÞ ∝ aðtÞ, and therefore, it yields ρIR ¼ −pIR to be
constant, as it is expected similarly to standard nonlinear
massive gravity [24]. However, the crucial issue is that
in the present model, the remaining FðRÞ sector can be
taken at will, leading to a large class of cosmologies.
Among them, an interesting class is when the FðRÞ sector is
important at early times and thus responsible for inflation,
while the massive graviton is dominant at late times and can
drive the Universe’s acceleration as observed today.
In order to provide a representative example, we consider

the well-known Starobinsky model with FðRÞ ¼
Rþ ξ

M2
p
R2 in numerical estimates. In the left panel of

Fig. 1, we present the early-time inflationary solutions for
three parameter choices, while in the right panel, we depict
the late-time self-accelerating solutions. In this particular
choice, the Ricci scalar becomes very small at late times,
and thus, the FðRÞ’s contribution is dramatically sup-
pressed by the Planck scale. Therefore, only the mas-
sive-gravity part contributes to the late-time acceleration.
However, note that in the general case, the total effective
dark energy is constituted of both the massive gravity as
well as the FðRÞ-modification sectors; that is, ρDE ≡
ρIRþρUV. Therefore, our model is expected to be very
interesting phenomenologically [23].

V. PERTURBATION ANALYSIS

The scenario at hand is free of the BD ghost, and its
cosmological applications allow for a large class of
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behaviors. However, the last and necessary step is to
examine whether such cosmological applications remain
free of instabilities at the perturbative level, which is exactly
the weak and disastrous point of standard nonlinear massive
gravity pointed out in Ref. [11] (see also Refs. [25,26]). In
the rest of the paper, we briefly show that the scalar
perturbations in our model can be stable at the linear
perturbative level under certain parameter choices.
For simplicity, we work in the Einstein frame, using the

Lagrangian (6), and then consider perturbations around a
homogeneous and isotropic background. The scalar per-
turbations of our variables involve the metric part

δg00 ¼ −2 ~N2ϕ; δg0i ¼ ~N ~a ∂iB;

δgij ¼ ~a2
�
2γKijψ þ

�
∇i∇j −

1

3
γKij∇k∇k

��
E; ð30Þ

and the field fluctuation δφ. Using the Hamiltonian and
momentum constraints, as well as the background equa-
tions of motion, we can integrate out the nondynamical
modes, namely, ϕ, B, and E. Therefore, the would-be BD
ghost is eliminated in our model. Furthermore, since the
scalar DOF of the graviton is nondynamical at the linear
level on the self-accelerating solution, one can introduce
the usual Bardeen potential ψB and define a generalized
Mukhanov-Sasaki variable

Q≡ δφB þ _φψB

H
: ð31Þ

This allows us to obtain the perturbation equation of our
single propagating scalar DOF in the Fourier space as

Q̈k þ 3H _Qk þ
�
k2

a2
þ U;φφ −

1

M2
pa3

�
a3

H
_φ2

�
·
�
Qk

¼ 2m2
g
~YQ

3Ω4
Qk −

2K
a2H2

�
φ̈ −

_H _φ

H

�
ψB; ð32Þ

where ~YQ ≡ 4ð1 − ~BÞ ~Y2 is defined in the Einstein frame.
Note that Q is the only dynamical perturbation variable
since ψB can be determined by it as well.
From the above analysis, one can clearly see the

qualitative difference of the present construction, compar-
ing to other extended nonlinear massive-gravity models,
such as the quasidilaton massive gravity [20] and the mass-
varying massive gravity [21]. In particular, these extensions
involve 2 extra scalar DOF, as it can be verified by counting
the number of nonzero eigenvalues of the matrix for the
kinetic part of the perturbation action [27]. Applying the
method of Ref. [27] in the present scenario, by setting
the coefficient in front of the scalar-field kinetic term to
unity, we find that there exists only one nonzero eigenvalue,
and this implies only a single DOF. A detailed analysis of
this issue can be found in the accompanying paper [23].
The lhs of the perturbation equation (32) is exactly the

same as the usual one in general relativity (GR) plus a
scalar field, but the rhs involves a mass term due to the
graviton potential. Its positivity depends on the coefficient
~YQ and directly determines whether the model suffers from
a tachyonic instability or not. Obviously, a healthy model of
FðRÞ massive gravity requires ~YQ < 0, which provides the
corresponding allowed regime of the parameter space.
Additionally, the last term of (32) appears due to the
spatial curvature. Since this term would easily dilute out
along the cosmic expansion, it is harmless to the model
when applied into cosmology. Therefore, we conclude that
there exists enough parameter space for scalar perturbations
to be stable throughout the cosmological evolutions of
phenomenological interest.

VI. CONCLUSIONS

The study of massive gravity may be important in
understanding the observed acceleration of the present
cosmic expansion, which is one of the greatest mysteries
in modern physics. In this regard, the question of establish-
ing a theoretically healthy and observationally viable model
of nonlinear massive gravity has attracted the interest of the
literature.
The theory of FðRÞ nonlinear massive gravity, as a

possible GR modification both at the IR and UV regimes,
has significant advantages both at the theoretical as well as
at the cosmological levels. First, due to the usual dRGT-like
graviton potential, it inherits its benefits and is free of BD
ghosts. Furthermore, due to the freedom of the FðRÞ sector
combined with the graviton mass, it allows for a large class
of cosmological evolutions. For instance, a simple R2 form

FIG. 1 (color online). The left panel presents three inflationary
solutions corresponding to (a) mg ¼ 10−50, α3 ¼ 2, α4 ¼ −1,
a0 ¼ 5 × 10−41, and ξ ¼ 1010 (solid black line), (b) mg ¼ 10−50,
α3 ¼ 10, α4 ¼ 10, a0 ¼ 10−41, and ξ ¼ 109 (dashed red line),
and (c) mg ¼ 10−50, α3 ¼ 1, α4 ¼ 1, a0 ¼ 10−40, and ξ ¼ 1010

(dash-dotted blue line). The two horizontal lines mark theN ¼ 50
and N ¼ 60 e-folding regimes. All parameters are in Planck
units. The right panel depicts three late-time accelerating sol-
utions corresponding to (a) mg ¼ 3, α3 ¼ 3, α4 ¼ −5, a0 ¼ 0.05,
and ξ ¼ 0.5 (solid black line), (b) mg ¼ 1.5, α3 ¼ 1, α4 ¼ −2,
a0 ¼ 0.01, and ξ ¼ 0.5 (dashed red line), and (c) mg ¼ 3,
α3 ¼ 10, α4 ¼ 1, a0 ¼ 0.05, and ξ ¼ 0.5 (dash-dotted blue line).
All parameters are in units where the present Hubble parameter is
H0 ¼ 1, and we have imposed Ωm0 ≈ 0.31, ΩDE0 ≈ 0.69, and
Ωk0 ≈ 0.01 at the present scale factor a0 ¼ 1.
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is able to drive both early universe inflation and late-time
acceleration, determining the whole cosmic evolution in a
unified way.
Wewould like to end by highlighting the advantage of our

model that the perturbations around a cosmological back-
ground can be stabilized due to the FðRÞ term, which
introduces a scalar DOF at the linear level, and hence, it
constrains the scalar metric perturbations to be as in GR.
Usually, the nonlinear inclusion of the gravitational mass
gives rise to a scalar DOF, that is, the longitudinal graviton.
Although the inclusion of the FðRÞ sector at first introduces
another scalar mode, this mode nicely “eats” the nonlinear
mode due to the graviton mass, and moreover, it imposes the
constraint on the stability. This mechanism is very similar to
the process of the spontaneous symmetry breaking of particle
physics governed by the Goldstone theorem. In this respect,
the possible instabilities that could appear at a higher non-
linear regime do not appear unless the perturbation theory
itself breaks down. Additionally, we mention that once the
perturbations evolve into the nonlinear regime, higher cur-
vature terms would become important, accompanied by the
high energy scale, and thus completely change the dynamics
of the theory. The above features may reveal that the UVand
IR behaviors of gravitation may not be independent.
The possibility of a gravitational Goldstone theorem

deserves further investigation. In particular, since the FðRÞ
sector can be reformulated as a scalar field minimally
coupled to the Ricci scalar with an effective potential, and
since for a wide class of FðRÞ forms the effective potential

approaches an extremely flat plateau in the UV regime,
then from the viewpoint of symmetry, the corresponding
effective potential indicates an approximate shift symmetry
along the scalar field. When the scalar field evolves into the
IR regime, it is stabilized at the vacuum, and therefore, the
shift symmetry can be spontaneously broken. One may
make an analogue with the scalar field and the dilaton.
Thus, one at first expects the second propagating scalar
mode to appear in the IR regime; however, it was eaten by
the dilaton field through the process of the spontaneous
shift symmetry breaking. This interesting property is
perhaps an indication for the aforementioned possibility
of a gravitational Goldstone theorem.
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