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We suggest that the vacuum field equation in Finsler spacetime is equivalent to the vanishing of the Ricci
scalar. The Schwarzschild metric can be deduced from a solution of our field equation if the spacetime
preserves spherical symmetry. Supposing that the spacetime preserves the symmetry of the “Finslerian
sphere,” we find a non-Riemannian exact solution of the Finslerian vacuum field equation. The solution is
similar to the Schwarzschild metric. It reduces to the Schwarzschild metric as the Finslerian parameter ϵ
vanishes. It is proven that the Finslerian covariant derivative of the geometrical part of the gravitational field
equation is conserved. The interior solution is also given. We get solutions of the geodesic equation in such
a Schwarzschild-like spacetime, and show that the geodesic equation returns to its counterpart in
Newtonian gravity in the weak-field approximation. Celestial observations give a constraint on the
Finslerian parameter ϵ < 10−4, and the recent Michelson-Morley experiment requires ϵ < 10−16. A
counterpart of Birkhoff’s theorem exists in the Finslerian vacuum. This shows that the Finslerian
gravitational field with the symmetry of the “Finslerian sphere” in vacuum must be static.
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I. INTRODUCTION

In 1912, Einstein proposed his famous general relativity
which gives the connection between Riemannian geometry
and gravitation. In general relativity, the effects of gravi-
tation are ascribed to spacetime curvature instead of a force.
In four-dimensional spacetime, two solutions of the
Einstein vacuum field equation are well known [1].
These are the Schwarzschild solution, which preserves
spherical symmetry, and the Kerr solution, which preserves
axial symmetry. The Schwarzschild solution is of vital
importance for general relativity. The physics of the
Schwarzschild solution is quite different from Newtonian
gravity. The success of general relativity is attributed to
four classical tests [2]. The predictions of these four
classical tests directly come from the Schwarzschild
solution. Most celestial bodies can be approximately
treated as a sphere. Thus, the Schwarzschild solution is
widely used in investigating astronomical phenomena.
However, recent astronomical observations show that the
gravitational field of galaxy clusters is offset from its
baryonic matter content [3]. This implies that spherical
symmetry may not be preserved on the scale of galaxy
clusters.
Finsler geometry [4] is a new geometry which includes

Riemannian geometry as its special case. Chern pointed out
that Finsler geometry is just Riemannian geometry without
the quadratic restriction. The symmetry of spacetime is

described by the isometric group. The generators of the
isometric group are directly connected with the Killing
vectors. It is well known that the isometric group is a Lie
group on a Riemannian manifold. This fact also holds on a
Finslerian manifold [5]. Generally, Finsler spacetime
admits less Killing vectors than Riemannian spacetime
[6]. The number of independent Killing vectors of an n-
dimensional non-Riemannian Finsler spacetime should be
no more than nðn−1Þ

2
þ 1 [7]. The causal structure of Finsler

spacetime is determined by the vanishing of the Finslerian
length [8] and the speed of light is modified. It has been
shown that translation symmetry is preserved in flat Finsler
spacetime [6]. Thus, the energy and momentum are well
defined in Finsler spacetime. In flat Finsler spacetime,
inertial motion preserves the Finslerian length and admits a
modified dispersion relation.
Lorentz invariance (LI) is one of the foundations of the

standard model of particle physics. Of course, it is very
interesting to test the fate of LI in both experiments and
theories. The theoretical approach of investigating LI
violation is to study possible spacetime symmetries, and
to erect some counterparts of special relativity. Recently, a
few counterparts of special relativity have emerged. The
first one is doubly special relativity (DSR) [9–11]. In DSR,
Planck-scale effects are taken into account by introducing
an invariant Planckian parameter. Together with the speed
of light, DSR has two invariant parameters. The second
counterpart of special relativity is very special relativity
(VSR) [12]. Coleman and Glashow have set up a pertur-
bative framework for investigating possible departures of
local quantum field theory from LI. The symmetry group of
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VSR is some certain subgroups of the Poincare group,
which contains the spacetime translations and proper
subgroups of Lorentz transformations. Gibbons et al.
[13] have pointed out that Glashow’s VSR is Finsler
geometry. Generally, the flat Finsler spacetime breaks
the Lorentz symmetry. Thus, it is a possible mechanism
of Lorentz violation [14].
The standard cosmological model, i.e., the ΛCDM

model [15,16] has been well established. It is consistent
with several precise astronomical observations coming
from the Wilkinson Microwave Anisotropy Probe
(WMAP) [17], the Planck satellite [18], and Supernova
Cosmology Project [19]. One of the most important and
basic assumptions of the ΛCDM model states that the
Universe is homogeneous and isotropic on large scales.
However, such a principle faces challenges [20]. The
Union2 type Ia supernova data hint that the Universe
has a preferred direction, ðl; bÞ ¼ ð309°; 18°Þ in the galactic
coordinate system [21]. The Universe has a maximum
expansion velocity in this direction. Astronomical obser-
vations [22] found that the dipole moment of the peculiar
velocity field in the direction ðl;bÞ¼ ð287°�9°;8°�6°Þ at
a scale of 50h−1 Mpc has a magnitude of 407�81 kms−1.
This peculiar velocity is much larger than the value
110 km s−1 given by WMAP5 [23]. The recently released
data of the Planck Collaboration show deviations from
isotropy with a level of significance ∼3σ [24]. The Planck
Collaboration confirms the asymmetry of the power spectra
between two preferred opposite hemispheres. These facts
hint that the Universe may have a preferred direction.
Many models have been proposed to resolve the asym-

metric anomaly of the astronomical observations. An
incomplete and succinct list includes an imperfect fluid
dark energy [25], the local void scenario [26,27], a non-
commutative spacetime effect [28], anisotropic curvature in
cosmology [29], and the Finsler gravity scenario [30].
Instead of Minkowski spacetime, Finsler spacetime
involves a preferred direction. It is a natural candidate
for describing the cosmological anisotropy.
Both the ΛCDM model and the standard model require

no variation of fundamental physical constants in principle,
such as the fine-structure constant α ¼ e2=ℏc. Recently, the
observations of quasar absorption spectra show that the
fine-structure constant varies on cosmological scales [31].
Furthermore, in high-redshift regions (z > 1.6), it has been
shown that the variation of α is well represented by an
angular dipole model pointing in the direction ðl; bÞ ¼
ð330°;−15°Þ with a level of significance ∼4.2σ. Mariano
and Perivolaropoulos [32] have shown that the dipole of α
is anomalously aligned with the corresponding dark energy
dipole obtained through the Union2 sample. One direct
reason for the variation of α is the variation of the speed of
light. Finsler geometry, as a natural tool for investigating
both the cosmological preferred direction and Lorentz
violations, may also be considered as a natural framework

to describe the dipole structure of the fine-structure con-
stant. Models [33–35] based on Finsler spacetime have
been developed to study the cosmological preferred
direction.
The counterpart of special relativity has been established

in flat Finsler spacetime; however, Finslerian gravity is still
incomplete. There are various types of gravitational field
equations in Finsler spacetime [36–39]. Models have been
built to study the gravitational theories that are constructed
in Finsler spacetime. Stavrinos et al. [34,40] used the
method of an osculating Riemannian space to study the
cosmological anisotropy in Finsler spacetime. Vacaru et al.
studied high-dimensional gravity in Finsler spacetime [41].
Pfeifer et al. [42] have constructed gravitational dynamics
for Finsler spacetimes in terms of an action integral on
the unit tangent bundle. However, these equations (or
models) are not equivalent to one another for the following
reasons. It is well known that there is only a torsion-free
connection—the Christoffel connection—in Riemannian
geometry. However, there are many types of connections
in Finsler geometry. Therefore, the covariant derivatives
that depend on the connections are different. The Finslerian
length element F is constructed on a tangent bundle [4].
Thus, the gravitational field equation should be constructed
on the tangent bundle in principle. However, the corre-
sponding energy-momentum tensor, which should be con-
structed on the tangent bundle, is rather obscure.
The analogy between geodesic deviation equations in

Finsler spacetime and Riemannian spacetime gives the
vacuum field equation in Finsler gravity [43]. It is the
vanishing of the Ricci scalar. The vanishing of the Ricci
scalar implies that the geodesic rays are parallel to one
another. The fact that the Ricci scalar is geometry invariant
implies that the vacuum field equation is insensitive to the
connection, which is an essential physical requirement. In
this paper, we present an exact solution of the vacuum field
equation in Finsler spacetime. The interior solution is
also shown.
This paper is organized as follows. Section II is divided

into two subsections. In Sec. II A, we briefly introduce
some basic geometric objects in Finsler geometry and we
show the symmetry of flat Finsler spacetime. The spherical
symmetry can be represented by the metric of the Riemann
sphere. In Sec. II B, we introduce the “Finslerian sphere,”
which is a counterpart of the Riemann sphere. Section III is
divided into four subsections. In Sec. III Awe introduce the
vacuum field equation in Finsler spacetime by analogizing
the geodesic deviation equation in Finsler spacetime and
that in Riemannian spacetime; in Sec. III B we present an
exact solution of the vacuum field equation in Finsler
spacetime; in Sec. III C we investigate the Newtonian limit
of our solution; and in Sec. III D we show the boundary
conditions of the vacuum field equation. This will distin-
guish the Schwarzschild solution from our solution. In
Sec. IV, we propose a gravitational field equation with a
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source. We prove that the Finslerian covariant derivative of
the geometrical part of the gravitational field equation is
conserved. Then, an interior solution of the gravitational
field equation is shown. In Sec. V, we investigate the
experimental constraint on the Schwarzschild-like space-
time that is given in Sec. III. Particle motion is shown in
Sec. VA; we get three solutions of the geodesic equations.
Solar System constraints on our Finslerian parameter are
given in Sec. V B. In Sec. VI, we show the counterpart of
Birkhoff’s theorem. It states that the Finslerian gravitational
field with the symmetry of the “Finslerian sphere” in
vacuum must be static. Conclusions and remarks are given
in Sec. VII.

II. SYMMETRY OF FINSLER SPACETIME

A. Killing vectors

Instead of defining an inner product structure over the
tangent bundle, as in Riemannian geometry, Finsler geom-
etry is based on the so-called Finsler structure F with the
property Fðx; λyÞ ¼ λFðx; yÞ for all λ > 0, where x ∈ M
represents position and y≡ dx

dτ represents velocity. The
Finslerian metric is given as [4]

gμν ≡ ∂
∂yμ

∂
∂yν

�
1

2
F2

�
: ð1Þ

In physics, the Finsler structure F is not positive-definite at
every point of the Finsler manifold. We focus on inves-
tigating Finsler spacetime with a Lorentz signature. A
positive, zero, or negative F corresponds to time-like, null,
or space-like curves, respectively. For massless particles,
the stipulation is F ¼ 0. Two types of Finsler space should
be noted. One is the Riemannian space. A Finslerian metric
is said to be Riemannian if F2 is quadratic in y. Another is
Randers spacetime [44]. It is given as

Fðx; yÞ≡ αðx; yÞ þ βðx; yÞ; ð2Þ
where

αðx; yÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~aμνðxÞyμyν

q
; ð3Þ

βðx; yÞ≡ ~bμðxÞyμ; ð4Þ

and ~aij is the Riemannian metric. Throughout this paper,
the indices are lowered and raised by gμν and its inverse
matrix gμν, and the objects with a tilde are lowered and
raised by ~aμν and its inverse matrix ~aμν.
To investigate the Killing vectors, we should construct

the isometric transformations of the Finsler structure. It is
convenient to discuss the isometric transformations under
an infinitesimal coordinate transformation for x,

x̄μ ¼ xμ þ ϵ ~Vμ; ð5Þ

together with a corresponding transformation for y,

ȳμ ¼ yμ þ ϵ
∂ ~Vμ

∂xν y
ν; ð6Þ

where jϵj ≪ 1. Under the coordinate transformation (5) and
(6), to first order in jϵj, we obtain the expansion of the
Finsler structure,

F̄ðx̄; ȳÞ ¼ F̄ðx; yÞ þ ϵ ~Vμ ∂F
∂xμ þ ϵyν

∂ ~Vμ

∂xν
∂F
∂yμ ; ð7Þ

where F̄ðx̄; ȳÞ should be equal to Fðx; yÞ. Under the
transformation (5) and (6), a Finsler structure is called
an isometry if and only if

Fðx; yÞ ¼ F̄ðx; yÞ: ð8Þ

From Eq. (7) we obtain the Killing equation KVðFÞ in
Finsler space,

KVðFÞ≡ ~Vμ ∂F
∂xμ þ yν

∂ ~Vμ

∂xν
∂F
∂yμ ¼ 0: ð9Þ

Plugging the length element of Randers spacetime (2)
into the Killing equation (10), and noticing that the rational
and irrational parts of the Killing equation are independent,
we obtain that

~Vμjν þ ~Vνjμ ¼ 0; ð10Þ

~Vμ ∂ ~bν
∂xμ þ ~bμ

∂ ~Vμ

∂xν ¼ 0; ð11Þ

where “j” denotes the covariant derivative with respect to
the Riemannian metric α. Equations (10) and (11) are
equivalent to the statements LVα ¼ 0 and LVβ ¼ 0, respec-
tively, where α is the obvious Riemannian metric and β is
the 1-form. Here LV is the Lie derivative along V. It is
obvious that the Killing equation (10) is the same as the
Riemannian one, but the other Killing equation (11) con-
strains Eq. (10). Thus, the number of independent Killing
vectors in Randers-Finsler spacetime (2) is less than that in
Riemannian spacetime α [6].
The geodesic equation for the Finsler manifold is given

as

d2xμ

dτ2
þ 2Gμ ¼ 0; ð12Þ

where

Gμ ¼ 1

4
gμν

� ∂2F2

∂xλ∂yν y
λ −

∂F2

∂xν
�

ð13Þ

EXACT SOLUTION OF VACUUM FIELD EQUATION IN … PHYSICAL REVIEW D 90, 064049 (2014)

064049-3



are called geodesic spray coefficients. It can be proven from
the geodesic equation (12) that the Finslerian structure
Fðx; dxdτÞ is constant along the geodesic.
A Finsler metric is said to be locally Minkowskian if at

every point there is a local coordinate system, such that
F ¼ FðyÞ is independent of the position x [4]. It can be
proven that all types of curvature tensors vanish in locally
Minkowskian spacetime. Thus, a locally Minkowskian
spacetime is flat Finsler spacetime. The momenta in flat
Finsler spacetime are defined as pμ ≡mdxμ

dτ . Since the
Finsler structure F does not depend on x, it is clear from the
geodesic equation that dp

μ

dτ ¼ 0. Therefore, the momenta pμ

are conserved in flat Finsler spacetime. The dispersion
relation of flat Finsler spacetime is given as

ημνðpÞpμpν ¼ m2: ð14Þ

One should notice that ημνðpÞ is not a constant in flat
Finsler spacetime. For example, in flat Randers spacetime,
its dispersion relation is given as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~ημνpμpν

q
þ ~bρpρ ¼ m; ð15Þ

where ~ημν is the Minkowski metric. The flat Finsler
spacetime gives a modified dispersion relation that plays
the role of testing Lorentz invariance, and it is taken as a
boundary condition to solve the gravitational field equation
in Finsler spacetime.

B. Two-dimensional Finsler space with
constant flag curvature

In general relativity, the Schwarzschild metric preserves
spherical symmetry. In Riemannian geometry, at a fixed
radial coordinate r, if the metric is of the form

FRS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðyθÞ2 þ sin θðyφÞ2

q
ð16Þ

then we say it possesses spherical symmetry. It is clear that
the Riemannian space with the metric (16) has constant
curvature, which equals 1. By using the Killing equa-
tion (9), one can find that the metric (16) has three
independent Killing vectors. In this paper, we want to find
a Schwarzschild-like solution in Finsler spacetime. In
Finsler geometry, the counterpart of spherical symmetry
is the “Finslerian sphere.” In order to represent the features
of most celestial bodies, the “Finslerian sphere” should
look like a sphere. In mathematics, it should be topologi-
cally equivalent to a sphere. Also, the “Finslerian sphere”
should preserve as much symmetry as it can. The theorem
proven in Ref. [7] showed that the two-dimensional Finsler
space has only one independent Killing vector, as does the
“Finslerian sphere.” In Finsler geometry, the generalization
of the Riemannian sectional curvature is flag curvature. A

constant flag curvature is equivalent to a constant Ricci
scalar. Thus, the counterpart of the Riemann sphere, the
“Finslerian sphere,” should have constant flag curvature. In
the following, we present a specific example of the
“Finslerian sphere.”
Bao et al. [45] have given a complete classification of

Randers-Finsler space [44] with constant flag curvature. A
two-dimensional Randers-Finsler space with constant pos-
itive flag curvature λ ¼ 1 is given as

FFS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ϵ2sin2θÞyθyθ þ sin2θyφyφ

p
1 − ϵ2sin2θ

−
ϵsin2θyφ

1 − ϵ2sin2θ
;

ð17Þ

where 0 ≤ ϵ < 1. It is obvious that the metric (17) returns
to the Riemann sphere when ϵ ¼ 0, and that the metric (17)
is nonreversible for φ → −φ. The Randers-Finsler space
(17) has two geometrically distinct closed geodesics [46] if
ϵ is irrational: the two geodesics located at θ ¼ π

2
with

length L� ¼ 2πð1� ϵÞ−1. This fact can be proven by
plugging the metric (17) into the geodesic equation (12).
Then, one can find that θ ¼ π

2
and φ ¼ uτ þ v (u; v are

integral constants) are the solutions of the geodesic
equation. The Randers-Finsler space (17) is homotopy
equivalent to the two-dimensional sphere [46].
In terms of the Busemann-Hausdorff volume form,

the volume of a closed Randers-Finsler surface

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aijðxÞyiyj

q
þ biðxÞyi is given as [47]

VolF ¼
Z

ð1 − ðaijbibjÞÞ32
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðaijÞ

q
dx1∧dx2: ð18Þ

Plugging the Randers metric (17) into Eq. (18), we obtain
that its volume is 4π, which is the same as the unit Riemann
sphere.

III. THE EXACT SOLUTION OF THE
VACUUM FIELD EQUATION

A. Vacuum field equation

In this paper, we introduce the vacuum field equation in
the way first discussed by Pirani [48,49]. In Newton’s
theory of gravity, the equation of motion of a test particle is
given as

d2xi

dτ2
¼ −ηij

∂ϕ
∂xi ; ð19Þ

where ϕ ¼ ϕðxÞ is the gravitational potential and ηij ¼
diagðþ1;þ1;þ1Þ is the Euclidean metric. For an infini-
tesimal transformation xi → xi þ ϵξi(jϵj ≪ 1), Eq. (19)
becomes, to first order in ϵ,
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d2xi

dτ2
þ ϵ

d2ξi

dτ2
¼ −ηij

∂ϕ
∂xi − ϵηijξk

∂2ϕ

∂xj∂xk : ð20Þ

Combining Eqs. (19) and (20), we obtain

d2ξi

dτ2
¼ ηijξk

∂2ϕ

∂xj∂xk ≡ ξkHi
k: ð21Þ

For the vacuum field equation, one has Hi
i ¼ ▽2ϕ ¼ 0.

In general relativity, the geodesic deviation gives a
similar equation,

D2ξμ

Dτ2
¼ ξν ~Rμ

ν; ð22Þ

where ~Rμ
ν ¼ ~Rλ

μ
νρ

dxλ
dτ

dxρ
dτ . Here, ~Rλ

μ
νρ is the Riemannian

curvature tensor and D denotes the covariant derivative
along the curve xμðtÞ. The vacuum field equation in general
relativity gives ~Rμ

λ
λν ¼ 0 [2]. This implies that the tensor

~Rμ
ν is also traceless, ~R≡ ~Rμ

μ ¼ 0.
In Finsler spacetime, the geodesic deviation yields [4]

D2ξμ

Dτ2
¼ ξνRμ

ν; ð23Þ

where Rμ
ν ¼ Rλ

μ
νρ

dxλ
dτ

dxρ
dτ . Here, Rλ

μ
νρ is the Finsler curva-

ture tensor [4] and D denotes the covariant derivative
Dξμ

Dτ ¼ dξμ

dτ þ ξν dxλ
dτ Γ

μ
νλðx; dxdτÞ. Since the vacuum field equa-

tions of Newton’s gravity and general relativity are of
similar forms, we may assume that the vacuum field
equation in Finsler spacetime faces similar requirements
as those in the cases of Netwonian gravity and general
relativity. This implies that the tensor Rμ

ν in the Finsler
geodesic deviation equation should be traceless, Rμ

μ ¼ 0.
Since the Riemannian curvature tensor Rλ

μ
νρ does not

depend on dx
dτ, the vanishing of R

μ
μ is equal to the vanishing

of Rλ
μ
νρ, which is just the vacuum field equation in general

relativity.
We have proven that the analogy of the geodesic

deviation equation is valid at least in a Finsler spacetime
of Berwald type [50]. We assume that this analogy still
holds in a general Finsler spacetime. In Finsler geometry,
there is a geometrical invariant: the Ricci scalar Ric. It is of
the form [4]

Ric≡ Rμ
μ

¼ 1

F2

�
2
∂Gμ

∂xμ − yλ
∂2Gμ

∂xλ∂yμ þ 2Gλ ∂2Gμ

∂yλ∂yμ −
∂Gμ

∂yλ
∂Gλ

∂yμ
�
:

ð24Þ

The Ricci scalar depends only on the Finsler structure F
and is insensitive to the connection. For a tangent plane
Π ⊂ TxM and a nonzero vector y ∈ TxM, the flag curvature
is defined as

KðΠ; yÞ≡ gλμRμ
νuνuλ

F2gρθuρuθ − ðgσκyσuκÞ2
; ð25Þ

where u ∈ Π. The flag curvature is a geometrical invariant
and a generalization of the sectional curvature in
Riemannian geometry. The Ricci scalar Ric is the trace
of Rμ

ν, which is the predecessor of the flag curvature. Thus
the value of the Ricci scalar Ric is invariant under the
coordinate transformation.
Furthermore, the significance of the Ricci scalar Ric is

very clear. It plays an important role in the geodesic
deviation equation [4,51,52]. The vanishing of the Ricci
scalar Ric implies that the geodesic rays are parallel to one
another, which means that there is a vacuum outside the
gravitational source.
Therefore, it is reasonable to believe that the gravita-

tional vacuum field equation in Finsler geometry has its
essence in Ric ¼ 0. Pfeifer and Wohlfarth [42] have
constructed gravitational dynamics for Finsler spacetime
in terms of an action integral on the unit tangent bundle.
Their results show that the gravitational field equation in
Finsler spacetime is given as

S− 6Ricþ 2gμνð∇μSν þ SμSν þ ∂yμ∇SνÞ ¼ −4πGT: ð26Þ

The Sμ terms can be written as Sμ ¼ yνPν
λ
λμ=F, where

Pν
λ
λμ are the coefficients of the cross basis dx∧ δy

F [4].
Accordingly, the energy-momentum tensor can also be
divided into two parts in terms of the basis of dx∧dx and
dx∧ δy

F , respectively. Thus, the Sμ terms contribute to the
energy-momentum tensor that belongs to the basis dx∧ δy

F .
The vacuum field equation constructed by Pfeifer and
Wohlfarth implies that each coefficient of a different basis
should vanish. Thus, the stipulation Ric ¼ 0 here is
compatible with Pfeifer and Wohlfarth’s results for the
gravitational field equation.

B. Vacuum solution

Here, we propose an ansatz that the Finsler structure is of
the form

F2 ¼ BðrÞytyt − AðrÞyryr − r2F̄2ðθ;φ; yθ; yφÞ: ð27Þ

Then, the Finsler metric can be derived as

gμν ¼ diagðB;−A;−r2ḡijÞ; ð28Þ

gμν ¼ diagðB−1;−A−1;−r−2ḡijÞ; ð29Þ

where ḡij and its reverse are the metrics derived from F̄ and
the indices i; j run over the angular coordinates θ;φ.
Plugging the Finsler structure (27) into Eq. (13), we

obtain that
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Gt ¼ B0

2B
ytyr; ð30Þ

Gr ¼ A0

4A
yryr þ B0

4A
ytyt −

r
2A

F̄2; ð31Þ

Gθ ¼ 1

r
yθyr þ Ḡθ; ð32Þ

Gφ ¼ 1

r
yφyr þ Ḡφ; ð33Þ

where a prime denotes a derivative with respect to r, and Ḡ
are the geodesic spray coefficients derived from F̄.
Plugging the geodesic coefficients (30)–(33) into the
formula for the Ricci scalar [Eq. (24)], we obtain that

F2Ric ¼
�
B00

2A
−

B0

4A

�
A0

A
þ B0

B

�
þ B0

rA

�
ytyt

þ
�
−
B00

2B
þ B0

4B

�
A0

A
þ B0

B

�
þ A0

rA

�
yryr

þ
�
R̄ic −

1

A
þ r
2A

�
A0

A
−
B0

B

��
F̄2; ð34Þ

where R̄ic denotes the Ricci scalar of the Finsler structure
F̄. Since F̄ is independent of yt and yr, the vanishing of
Ricci scalar implies that the terms in each square bracket of
Eq. (34) should vanish as well. These equations are given as

0 ¼ B00

2A
−

B0

4A

�
A0

A
þ B0

B

�
þ B0

rA
; ð35Þ

0 ¼ −
B00

2B
þ B0

4B

�
A0

A
þ B0

B

�
þ A0

rA
; ð36Þ

0 ¼ R̄ic −
1

A
þ r
2A

�
A0

A
−
B0

B

�
: ð37Þ

Noticing that R̄ic is independent of r, and thus Eq. (37) is
satisfied if and only if R̄ic is constant. This means that
the two-dimensional Finsler space F̄ is a constant-flag-
curvature space. The flag curvature is a generalization of
the sectional curvature in Riemannian geometry. Here, we
label the constant flag curvature as λ. Therefore, R̄ic ¼ λ.
Equations (35)–(37) are similar to the Schwarzschild
vacuum field equation in general relativity. The solutions
of Eqs. (35)–(37) are given as

B ¼ aλþ b
r
; ð38Þ

A ¼
�
λþ b

ra

�
−1
; ð39Þ

where a and b are integral constants.

C. The Newtonian limit

In the above subsection we obtained the vacuum field
solution in Finsler spacetime. The integral constants of
Eqs. (38) and (39) should be determined by specific
boundary conditions, which are given by physical require-
ments. Here we require that the solutions should return
to Newtonian gravity in the weak-field approximation [2].
In order to compare with Newtonian gravity, we only
consider the radial motion of particles. Plugging the
solutions (38) and (39) into the geodesic coefficients
(30) and (31), and noticing that the velocity of a particle
dr
dt is small, we obtain the geodesic equations

d2t
dτ2

¼ 0; ð40Þ

d2r
dτ2

−
bλ
2r2

�
dt
dτ

�
2

¼ 0: ð41Þ

Combining the geodesic equations (40) and (41), we obtain
that

d2r
dt2

¼ bλ
2r2

: ð42Þ

Comparing Eq. (42) with Newtonian gravity, we conclude
that

bλ ¼ −2GM; ð43Þ
whereM denotes the total mass of the gravitational source.

D. Boundary conditions

The solution of the vacuum field equation Ric ¼ 0 gives
a specific form of the functions BðrÞ and AðrÞ, and requires
the two-dimensional subspace F̄ to be a constant-curvature
space. Two integral constants a and b and the specific form
of the subspace F̄ need to be determined by boundary
conditions. These boundary conditions are given by physi-
cal requirements. In Sec. III C, we obtained b ¼ −2GM=λ
using the Newtonian limit. In the following section, we will
show that the interior solution is consistent with the exterior
solution at the boundary of the gravitational source if
a ¼ 1=λ. The value of the constant curvature λ can be set to
1 by a redefinition of the curve parameter τ. Now one
boundary condition is left to determine the specific form of
the subspace F̄.
In general relativity, the Schwarzschild metric returns to

the Minkowski metric if r → ∞. This means that the
spacetime is Minkowski in the absence of gravity. The
Finsler spacetime (27) in the absence of gravity is another
physical boundary condition. If r → ∞ or M ¼ 0, the
Finsler spacetime (27) reduces to Minkowski spacetime,
and our solution for the vacuum field equation is simply the
Schwarzschild solution. This fact implies that Finsler
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geometry is a generation of Riemannian geometry, and
Finslerian gravity involves the physical contents of general
relativity. If r → ∞ or M ¼ 0, the Finsler spacetime (27)
violates Lorentz symmetry, and we get a Finslerian solution
of the vacuum field equation. For example, F̄ is of the form
FFS [Eq. (17)].

IV. INTERIOR SOLUTION

It is well known that Schwarzschild spacetime has an
interior solution, which can be used to deduce the famous
Oppenheimer-Volkoff equation. The interior behavior of
Finsler spacetime [Eq. (27)] is worth investigating.
However, as we mentioned in the Introduction, there are
obstructions to constructing a gravitational field equation in
Finsler spacetime. In this section, we will show that there is
a self-consistent gravitational field equation in Finsler
spacetime.
The notion of a Ricci tensor in Finsler geometry was first

introduced by Akbar-Zadeh [53],

Ricμν ¼
∂2ð1

2
F2RicÞ

∂yμ∂yν ; ð44Þ

and the scalar curvature in Finsler geometry is given as
S ¼ gμνRicμν. Here, we define the modified Einstein tensor
in Finsler spacetime

Gμν ≡ Ricμν −
1

2
gμνS: ð45Þ

Plugging the equation for the Ricci scalar (34) into
Eq. (45), and noticing that F̄ is a two-dimensional
Finsler spacetime with constant flag curvature λ, we obtain

Gt
t ¼

A0

rA2
−

1

r2A
þ λ

r2
; ð46Þ

Gr
r ¼ −

B0

rAB
−

1

r2A
þ λ

r2
; ð47Þ

Gθ
θ ¼ Gφ

φ ¼ −
B00

2AB
−

B0

2rAB
þ A0

2rA2
þ B0

4AB

�
A0

A
þ B0

B

�
:

ð48Þ

Next, we investigate the covariant conserved properties
of the tensor Gμ

ν. The covariant derivative of G
μ
ν in Finsler

spacetime is given as [4]

Gμ
ν jμ ¼

δ

δxμ
Gμ

ν þ Γμ
μρG

ρ
ν − Γρ

μνG
μ
ρ; ð49Þ

where

δ

δxμ
¼ ∂

∂xμ −
∂Gρ

∂yμ
∂
∂yρ ; ð50Þ

and Γμ
μρ is the Chern connection. Here, we have used “j” to

denote the covariant derivative. The forms of the covariant
derivative (49) and “δ” derivative (50) are well defined such
that they transform as tensors under a coordinate change in
Finsler spacetime [4]. The Chern connection can be
expressed in terms of the geodesic spray coefficients Gμ

and the Cartan connection Aλμν ≡ F
4

∂
∂yλ

∂
∂yμ

∂
∂yν ðF2Þ,

Γρ
μν ¼ ∂2Gρ

∂yμ∂yν − Aρ
μνjκ

yκ

F
: ð51Þ

By noticing that the modified Einstein tensor Gμ
ν only

depends on r and does not have any y dependence, and that
the Cartan tensor Aρ

μν ¼ Ai
jk (indices i; j; k run over θ;φ),

one can easily get that Gμ
t jμ ¼ Gμ

θ jμ ¼ Gμ
φjμ ¼ 0. The proof

of Gμ
r jμ ¼ 0 is somewhat subtle. By making use of

Eqs. (30), (32), and (33), we find from Eq. (51) and Aρ
μν ¼

Ai
jk that

Γt
rt ¼

B0

2B
; Γθ

rθ ¼ Γφ
rφ ¼ 1

r
: ð52Þ

Then, after a tedious calculation, one can check that the
equation Gμ

r jμ ¼ 0 is indeed satisfied. Following the spirit
of general relativity, we propose that the gravitational field
equation in the given Finsler spacetime [Eq. (27)] should be
of the form

Gμ
ν ¼ 8πFGT

μ
ν ; ð53Þ

where Tμ
ν is the energy-momentum tensor. The volume of

Finsler space [47] is generally different than that of
Riemannian geometry. We have used 4πF to denote the
volume of F̄ in Eq. (53). The boundary condition gives a
specific form of the subspace F̄. The volume of the surface
of the subspace F̄ can identify the value of πF. For example,
if we take F̄ to be of the form FFS [Eq. (17)], then πF ¼ π
according to the discussion in Sec. II B. The proposed form
of the field equation (53) given here is not inconsistent with
properties of the ansatz (27). The gravitational field
equation (53) is valid for a specific Finsler spacetime
(27). A general field equation that is valid for an arbitrary
Finsler spacetime was proposed by Pfeifer and Wohlfarth
[42], and Vacaru [39]. However, these field equations do
not satisfy the requirement of covariant conservation, and
they do not force the energy-momentum tensor to be
constructed on the tangent bundle.
For simplicity, we set the energy-momentum tensor to be

of the form

Tμ
ν ¼ diagðρðrÞ;−pðrÞ;−pðrÞ;−pðrÞÞ; ð54Þ

where ρðrÞ and pðrÞ are the energy density and pressure
of the gravitational source, respectively. Then, by making
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use of Eqs. (46)–(48), we reduce the gravitational field
equation to three independent equations,

2p0

ρþ p
¼ −

B0

B
; ð55Þ

A0

rA2
−

1

r2A
þ λ

r2
¼ 8πFGρ; ð56Þ

B0

rAB
þ 1

r2A
−

λ

r2
¼ 8πFGp: ð57Þ

The solution of Eq. (56) is given as

A−1 ¼ λ −
2GmðrÞ

r
; ð58Þ

wheremðrÞ≡ R
r
0 4πFx

2ρðxÞdx. By making use of Eq. (58),
and plugging Eq. (57) into Eq. (55), we obtain that

−r2p0 ¼ ðρþ pÞð4πFGpr3 þ GmÞ
�
λ −

2Gm
r

�
−1
: ð59Þ

Equation (59) reduces to the famous Oppenheimer-Volkoff
equation if the Finsler spacetime F̄ reduces to the two-
dimensional Riemann sphere. By combining the modified
Oppenheimer-Volkoff equation (59) with the equation of
state, one can obtain the interior structure of the gravita-
tional source.
The interior solution (58) should be consistent with the

exterior solution (39) at the boundary of the gravitational
source. Therefore, we get

aλ ¼ 1: ð60Þ
At last, combining the boundary condition (60) with the
requirement of the Newtonian limit [Eq. (43)], we get the
exterior solutions BðrÞ and AðrÞ as

BðrÞ ¼ 1 −
2GM
λr

; ð61Þ

AðrÞ ¼
�
λ −

2GM
r

�
−1
: ð62Þ

V. EXPERIMENTAL CONSTRAINTS ON
FINSLERIAN GRAVITY

A. The motion of particles

Plugging the equations for the geodesic spray coeffi-
cients [Eqs. (30)–(33)] into the geodesic equation (12),
we obtain the geodesic equation of Finsler spacetime
[Eq. (27)],

0 ¼ d2t
dτ2

þ B0

B
dr
dτ

dt
dτ

; ð63Þ

0¼ d2r
dτ2

þ B0

2A

�
dt
dτ

�
2

þ A0

2A

�
dr
dτ

�
2

−
r
A
F̄2

�
dθ
dτ

;
dφ
dτ

�
; ð64Þ

0 ¼ d2θ
dτ2

þ 2

r
dr
dτ

dθ
dτ

þ 2Ḡθ; ð65Þ

0 ¼ d2φ
dτ2

þ 2

r
dr
dτ

dφ
dτ

þ 2Ḡφ: ð66Þ

The solution of Eq. (63) is

B
dt
dτ

¼ 1; ð67Þ

where we have set the integral constant to be 1 by the
normalization of τ. Noticing that yμ is equal to dxμ

dτ along the
geodesic, and by making use of Eqs. (65) and (66), we find
that

dF̄
dτ

¼ ∂F̄
∂xi

dxi

dτ
þ ∂F̄
∂yi

dyi

dτ

¼ yi
�∂F̄
∂xi −

2Ḡi

F̄

�
− 2yrF̄ ¼ −F̄

d ln r2

dτ
; ð68Þ

where Ḡi ¼ ḡijḠj (i; j run over θ;φ), and we have used the
fact that F̄ is a homogenous function of y of degree 1 to
derive the third equation of Eq. (68). The solution of
Eq. (68) is given as

r2F̄ ¼ J; ð69Þ

where J is an integral constant. By making use of Eqs. (67)
and (69), we find from the geodesic equation (64) that

d
dτ

�
A

�
dr
dτ

�
2

þ J2

r2
−
1

B

�
¼ 0: ð70Þ

The solution of Eq. (70) is given as

A

�
dr
dτ

�
2

þ J2

r2
−
1

B
¼ A

�
dr
dτ

�
2

þ r2F̄2 − B

�
dt
dτ

�
2

¼ −F2;

ð71Þ

where we have used Eqs. (67) and (69) to derive the second
equation of Eq. (71). Equation (71) means that F is constant
along the geodesic.
Now, we have three solutions [Eqs. (67), (69), and (71)]

of the geodesic equations; the fourth one depends on the
explicit form of the two-dimensional Finsler space F̄.
However, we can still find some information about particle
motion from the obtained solutions. Consider a particle
move along the radial direction: by combining Eq. (67)
with Eq. (69), and by making use of the exterior solutions
(61) and (62) of BðrÞ and AðrÞ, we obtain that
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dr
dt

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ−1 − F2

�
1 −

2GM
λr

�s �
1 −

2GM
λr

�
: ð72Þ

It is obvious from Eq. (72) that drdt → 0 while r → 2GM=λ.
The modified Schwarzschild radius in Finsler spacetime is

rs ¼
2GM
λ

: ð73Þ

B. Classical tests

The predictions of general relativity have been proven by
four classical tests [2]. If our spacetime is Finslerian, then it
is necessary to test the validity of Finslerian gravity. In this
subsection, our discussion is based on the following Finsler
structure:

F2 ¼
�
1 −

2GM
r

�
ytyt −

�
1 −

2GM
r

�
−1
yryr − r2F2

FS;

ð74Þ

where the “Finslerian sphere” FFS is of the form of
Eq. (17). The difference between the Finslerian solution
(74) and the Schwarzschild solution lies on the “Finslerian
sphere” FFS. Two of the four classical tests—namely, radar
echo delay and gravitational redshift—are related to the
radial motion of a particle. One can also find from Eq. (72)
that dr

dt is the same as that in Schwarzschild spacetime
when λ ¼ 1.
It is expected that the motion of a particle in a bounded or

unbounded orbit in Finsler spacetime is different from that
in Schwarzschild spacetime. Since the “Finslerian sphere"
is nonreversible for φ → −φ, it implies that particle motion
along a given direction (φ) is different from its counterpart
(−φ) in orbital motion. It is convenient to consider the orbit
of a particle confined to the equatorial plane θ ¼ π=2.
Then, by making use of the metric of the “Finslerian
sphere” [Eq. (17)], Eq. (69) simplifies as

r2
dφ
dτ

¼ J�; ð75Þ

where J� ≡ ð1� ϵÞJ, Jþ corresponds to a given direction
and J− corresponds to its counterpart. Plugging Eq. (75)
into the solution of the geodesic equation (71), we get the
equation for orbital motion,

ð1� ϵÞ2
�
dr
dφ

�
2

¼ r4

J2
−
�
1 −

2GM
r

��
F2r4

J2
þ r2

�
: ð76Þ

One should notice that F is constant. By reparametrizing
the curve parameter τ, one can set F equal to 1 and 0 for
massive and massless particles, respectively. The solution
of the orbital equation (76) gives the deflection angle and

precession of the orbit per revolution for unbounded and
bounded orbits, respectively. Note that the orbital equation
is the same as that in Schwarzschild spacetime if we
transform ð1� ϵÞφ into φ; thus—recalling the results in
Schwarzschild spacetime—in Finsler spacetime [Eq. (74)]
we obtain the deflection angle for the gravitational deflec-
tion of light,

δα ¼ ð1� ϵÞ 4GM
ξ

; ð77Þ

where ξ is the distance of closest approach, and the
precession of the orbit per revolution is given as

δφ ¼ ð1� ϵÞ6πGM
L

; ð78Þ

where L is the semilatus rectum of the orbit.
The observations of very-long-baseline radio interfer-

ometry [54,55] give constraints on the gravitational
deflection of light in the Solar System. Its results yield a
constraint on the Finslerian parameter ϵ. It is given as
ϵ ∼ 2 × 10−4. The observations of the perihelion shift of
Mercury [55] also give a constraint on the Finslerian
parameter ϵ. Its result yields ϵ < 3 × 10−3. The recent
Michelson-Morley experiment carried out by Müller et al.
[56] gives a precise limit on Lorentz invariance violation.
Their experiment showed that the change of resonance
frequencies of the optical resonators is of the magnitude
j δωω j ∼ 10−16. This implies that the Finslerian parameter ϵ
should be less than 10−16.

VI. COUNTERPART OF BIRKHOFF’S THEOREM

In general relativity, Birkhoff’s theorem guarantees that
the solution of the vacuum field equation with spherical
symmetry must be static. This means that its exterior
solution must be the Schwarzschild metric regardless of
the evolution of the gravitational source. It is necessary to
investigate such an issue in Finsler spacetime. In
Riemannian geometry, the spherical symmetry can be
represented by a Riemann sphere. Its metric is of the form
of Eq. (16). The counterpart of the Riemann sphere in
Finsler geometry is the “Finslerian sphere” (17). In the
above discussion, we gave a static solution of the Finslerian
vacuum field equation with the symmetry of the “Finslerian
sphere.” Now, we turn to investigate the time-dependent
Finsler spacetime with the symmetry of the “Finslerian
sphere.” Its Finsler structure is given as

F2 ¼ Bðr; tÞytyt − Aðr; tÞyryr − r2F2
FS: ð79Þ

Plugging the Finsler structure (79) into Eq. (13), we obtain
that
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Gt ¼ B0

2B
ytyr þ

_B
4B

ytyt þ
_A
4B

yryr; ð80Þ

Gr ¼ A0

4A
yryr þ B0

4A
ytyt −

r
2A

F2
FS þ

_A
2A

ytyr; ð81Þ

Gθ ¼ 1

r
yθyr þ Gθ

FS; ð82Þ

Gφ ¼ 1

r
yφyr þ Gφ

FS; ð83Þ

where a dot denotes a derivative with respect to t, and Ḡ are
the geodesic spray coefficients derived from FFS. Plugging
the geodesic coefficients (80)–(83) into the formula for the
Ricci scalar [Eq. (24)], we obtain

F2Ric ¼
�
B00

2A
−

B0

4A

�
A0

A
þ B0

B

�
þ B0

rA
−

Ä
2A

þ
_A2

4A2
þ

_A _B
4AB

�
ytyt þ

�
−
B00

2B
þ B0

4B

�
A0

A
þ B0

B

�
þ A0

rA
þ Ä
2B

−
_A _B
4B2

−
_A2

4AB

�
yryr

þ 2 _A
rA

ytyr þ
�
1 −

1

A
þ r
2A

�
A0

A
−
B0

B

��
F2
FS: ð84Þ

The vacuum field equation Ric ¼ 0 means that 2 _A
rA ¼ 0.

This tells us that A is time independent. This fact shows that
all time derivatives drop out of Eq. (84), and it becomes
identical with that in the static case. Following the
discussion for the static case, we obtain that

B ¼ fðtÞ
�
1 −

2GM
r

�
; ð85Þ

A ¼
�
1 −

2GM
r

�
−1
: ð86Þ

The function fðtÞ can be made equal to 1 by defining a new
time coordinate,

t0 ¼
Z

t ffiffiffiffiffiffiffiffi
fðtÞ

p
dt: ð87Þ

Now, the Finsler structure (79) is entirely time independent
and is identical with the static solution (74). Thus, the
counterpart of Birkhoff’s theorem exists in Finslerian
gravity. Unlike the requirement of spherical symmetry in
general relativity, this shows that the Finslerian gravita-
tional field with the symmetry of the “Finslerian sphere" in
vacuum must be static, and its metric is of the form of
Eq. (74).

VII. CONCLUSIONS AND REMARKS

In view of the geodesic deviation equation, the vacuum
field equation Ric ¼ 0 in Finsler spacetime implies that the
geodesic rays are parallel to one another. The geometry-
invariant nature of the Ricci scalar implies that the vacuum
field equation is insensitive to the connection, which is an
essential physical requirement. Starting from the ansatz
(27), we have found an exact solution of the vacuum field
equation [Eqs. (38) and (39)].
A general gravitational field equation in Finsler space-

time is still to be completed. However, we have found that

the proposed form of the field equation (53) given here is
not inconsistent with the properties of the ansatz (27). We
have also proven that the Finslerian covariant derivative of
the geometrical part of the gravitational field equation is
conserved. It is obvious that the gravitational field equa-
tion (53) returns to the vacuum field equation when the
energy-momentum tensor vanishes. We have found an
interior solution of the gravitational field equation (53).
The interior solution (58) is consistent with the exterior
solution (39) at the boundary of the gravitational source,
and we required that the exterior solution should return to
Newtonian gravity. The two boundary conditions constrain
the exterior solution to be of the same form as Eqs. (61) and
(62). One should notice that the Schwarzschild metric is
also a solution of Ric ¼ 0. There is a boundary condition
which distinguishes the Finslerian solution from the
Schwarzschild solution, namely, the violation of Lorentz
symmetry when the Finsler spacetime (27) has no gravi-
tational source, M ¼ 0. For example, we make the sub-
space F̄ to be a “Finslerian sphere” FFS; then, the exterior
metric of the vacuum field solution is given as

F2 ¼
�
1−

2GM
r

�
ytyt −

�
1−

2GM
r

�
−1
yryr

− r2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1− ϵ2sin2θÞyθyθ þ sin2θyφyφ
p

− ϵsin2θyφ

1− ϵ2sin2θ

�2

:

ð88Þ

The metric (88) is none other than the Schwarzschild metric
except for the change from the Riemann sphere to the
“Finslerian sphere” (17). We have presented three solutions
[Eqs. (67), (69), and (71)] of the geodesic equations of the
metric (88). The fourth one depends on the geodesic
equation of the “Finslerian sphere” (17). The geometrical
properties of the “Finslerian sphere” (17) are as follows: it
is nonreversible for φ → −φ; it has two closed geodesics
located at θ ¼ π

2
with length L� ¼ 2πð1� ϵÞ−1; its volume
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is the surface volume of the unit “Finslerian sphere,” equal
to 4π; and it only has one independent Killing vector,
Vφ¼ constant.
We have investigated the motion of particles in Finsler

spacetime. The solution of the geodesic equations are
shown. Taking Finsler spacetime (74) as a example, we
have shown the experimental constraints on the Finslerian
parameter ϵ. In the Solar System, celestial observations
require ϵ < 10−4, and the recent Michelson-Morley experi-
ment requires ϵ < 10−16. It is expected that Finslerian
spacetime may have an unavoidable effect on cosmological
scales. In general relativity, as a special case of gravitational
lensing, an Einstein ring has a symmetric structure.
However, if the spacetime is Finslerian, one may observe
an Einstein ring with an asymmetric structure.
The counterpart of Birkhoff’s theorem exists in

Finslerian vacuum. This shows that the Finslerian gravita-
tional field with the symmetry of the “Finslerian sphere” in
vacuum must be static, and its metric is of the form
of Eq. (74).
The Schwarzschild spacetime will return to Minkowski

spacetime if there is no gravitational source. As for the
Finslerian vacuum spacetime (88), if there is no gravita-
tional source—namely, M ¼ 0—the metric reduces to

F2 ¼ ytyt − yryr

− r2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1− ϵ2sin2θÞyθyθ þ sin2θyφyφ
p

− ϵsin2θyφ

1− ϵ2sin2θ

�2

:

ð89Þ

According to Eq. (34), the Ricci scalar or Ricci tensor of the
metric (89) is equal to 0. This fact holds even for a three-
dimensional subspace of the metric (89). However, the
metric (89) or its spatial part is not a flat Finsler spacetime.

The Finsler spacetime is a flat one [4] if and only if Ric ¼ 0
and the geodesic spray coefficients Gμ are quadratic in y.
This fact is quite different than in the case of Riemannian
geometry. It is well known that three-dimensional
Riemannian space is flat, while its Ricci tensor equal to
0. Nevertheless, even the spacial part of the metric (89) is
not a flat Finsler space.
In Riemannian spacetime without torsion, at any fixed

point, one can erect a local coordinate system such that the
metric is Minkowskian. One necessary condition of this
statement is that the Riemannian metric is quadric.
However, this necessary condition does not hold in a
general Finsler metric. Therefore, Finsler spacetime is
not locally isometric to Minkowski spacetime. One result
of this is that the speed of light is not locally isotropic. The
propagation of light obeys F ¼ 0. One can find from the
local metric that the radial speed of light is equal to 1, and
the nonradial speed of light satisfies

c2θ þ ðcφ − ϵ sin θÞ2 ¼ 1; ð90Þ

where cθ ≡ dθ
dt and cφ ≡ dφ

dt sin θ.
The Schwarzschild radius forms an event horizon in

Schwarzschild spacetime. The Schwarzschild solution can
be maximally extended by Kruskal extension. The coor-
dinate transformation between the Schwarzschild metric
and the Kruskal metric is only related to r and t. Therefore,
one can also get a maximally extended Finslerian vacuum
solution [Eq. (88)] by Kruskal extension.
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