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In this work we investigate the thermodynamical properties and modified dynamics of black hole
solutions in the semiclassical regime of affine coherent state quantization. Using the weak correspondence
principle we build a semiclassical effective action that we use to study thermodynamics in the canonical
ensemble and to compare classical analytical solutions with the corresponding semiclassical ones. We
determine a strong compatibility of these affine black holes with the thermodynamical properties of the
classical counterparts, with only minor restrictions on the free parameters of the models. Furthermore we
obtain that black hole singularities are removed by quantum effects, resulting also in a modified extension
of the horizon, in agreement with the sign of entropy corrections.
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I. INTRODUCTION

Rightfully taking their place in popular culture as symbol
of mystery, black holes (BH) are one of the best conceptual
laboratories for quantum gravity. Unresolved questions in
BH physics have attracted efforts in virtually all approaches
to quantum gravity, providing also a sort of universal wish
list for any viable theory. Alongside the Bekenstein-
Hawking entropy/area relation, the removal of BH singu-
larities is perhaps one of the features most sought: it has
been obtained within a number of approaches and in a
number of different fashions [1–7], suggesting that some
level of convergence is present in the variegated world of
quantum gravity theories.
In this work we aim at investigating BH solutions in the

framework of affine quantization. This approach was first
investigated in the late 1960s [8–10] and it has been
recently proposed as a possible alternative in the quantiza-
tion of gravity [11–16], as it naturally enforces at the
quantum level properties of metric like variables. In
particular classical singularities, associated with positive
definite variables approaching zero, are removed system-
atically by (affine) quantum effects. For instance in [8],
for a toy model of gravity, the classical singularities
were regularized and in [11] it was shown that the affine
quantization of the one-dimensional hydrogen atom gen-
erates a potential barrier at the scale of the Bohr radius, thus
eliminating the Coulomb singularity.
In a recent paper [17] we have proved that in a

semiclassical limit affine quantization is able to eliminate
the initial cosmological singularity in FLRW cosmology,
leading to solutions in which the scale factor never
vanishes, as a consequence of the implementation of the
a > 0 condition at the quantum level.

In light of these results it is natural to look into applying
the affine quantization scheme to BH solutions, in particu-
lar to those simplified models that can provide us with
fundamental insight. In order to apply a procedure similar
to what developed in [17], our choice falls on two-
dimensional dilaton gravity [18], also known as 2d gen-
eralized dilaton theories (2dGDT): while providing us with
a simplified framework, they allow for a comprehensive
description of a large number of BH models, with an
extensive literature on BH solutions and their properties
[19–25]. In particular all classical solutions are known [18]
and a thorough description of BH thermodynamics is
presented in [26].
In the following we will apply affine coherent state

quantization to effective BH models derived from 2dGDT,
which we will then simply call affine black holes (ABH), in
order to obtain a semiclassical model including quantum
corrections. We will then proceed in the analysis of BH
solutions, discussing their thermodynamical properties and
comparing their behavior in the classical and semiclassical
regimes.
This paper is organized as follows: in Sec. II we will

develop an effective model for BH starting from the full
2dGDT action, while in Sec. III we will discuss the gener-
alities of affine coherent state quantization and calculate
quantum corrections for our specific case.
Section IV first reviews the canonical ensemble

approach to BH thermodynamics and then deals with its
adaptation to ABH. The general procedure for the com-
parison of classical and semiclassical (numerical) solutions
is also outlined. Section V discusses thermodynamical
properties, singularity removal and horizon corrections
for a number of dilaton gravity inspired ABH models.
Finally in Sec. VI we summarize the results and briefly
outline some possible developments.*sz@capstone‑itr.eu
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II. EFFECTIVE ONE-DIMENSIONAL MODEL
FOR BLACK HOLE SOLUTIONS

Let us start by considering the general two-dimensional
dilaton gravity action [18]:

Sdg ¼ −
1

2

Z
dx2

ffiffiffiffiffiffi
−g

p ðXR −UðXÞð∂XÞ2 − 2VðXÞÞ; ð1Þ

The dilaton X is defined by its coupling to the two-
dimensional Ricci scalar R and different models are
distinguished by different choices of the potentials U;V
(see [25] for a summary). Equations of motion are

δgμν∶ −
1

2
gμνUðXÞð∂XÞ2 − gμνVðXÞ

−UðXÞ∂μX∂νX þ ∂μ∂νX þ ∂2Xgμν ¼ 0; ð2aÞ

δX∶ Rþ U0ðXÞð∂XÞ2 − 2V 0ðXÞ þ 2U∂2X ¼ 0; ð2bÞ

where the prime denotes derivatives with respect to X.
Solutions to the associated equations always possess a
Killing vector ∂t, with orbits where X ¼ const. Using a
diagonal gauge:

ds2 ¼ − ξðrÞdt2 þ 1

ξðrÞ dr
2; ð3aÞ

X ¼ XðrÞ; ð3bÞ

we have solutions of the form:

Xr ¼ e−QðXÞ; ð4aÞ

ξ ¼ eQðXÞðwðXÞ − 2MÞ: ð4bÞ

Notice that the subscript r denotes derivation, i.e.,
Xr ¼ ∂rX ¼ X;r and r ∈ R. The Q and w functions are
defined in terms of the original potentials U;V as:

QðXÞ ¼ Q0 þ
Z

X
d ~XUð ~XÞ; ð5aÞ

wðXÞ ¼ w0 − 2

Z
X
d ~XVð ~XÞeQð ~XÞ: ð5bÞ

While three constants are present, Q0, w0, and M, w0 þM
represents a single parameter that can be chosen in a way
that we can restrict ourselves to M ≥ 0 for physical
solutions. It is clear that a zero in ξðXÞ corresponds to a
vanishing Killing norm

ffiffiffiffiffi∂t

p
, hence to a Killing horizon.

We can therefore consider as BH all physical solutions with
M > 0 that exhibit horizons and focus on this class of
solutions in the rest of this paper. For further details, please
refer to [26].

Let us now look at the two dynamical variables X and ξ.
While horizons are found at X ¼ Xh, so that wðXhÞ ¼ 2M
and ξðXhÞ ¼ 0, curvature singularities, when present, are
associated with X → 0, when UðXÞ is singular itself (see
[25]). Therefore physical nonsingular solutions would
naturally carry the condition X > 0. This positivity con-
dition, in the same way as the a > 0 condition in FLRW
cosmology, serves very well in the affine quantization
scheme. On the other hand the metric function ξðrÞ ¼ ξðXÞ
sees no restrictions to its sign and determines the classical
geometry of space-time in terms of the dilaton X. In
particular it is by enforcing (4b) at the classical level that
we look specifically at BH solutions.
If our purpose is indeed to compare classical and

semiclassical BH, it is reasonable to look at ξ ¼ ξðXÞ as
a purely classical quantity that constitutes a background to
our model and leave it out of the affine quantization
procedure, introducing quantum corrections only through
the dynamics of X. We are then looking at a classical
geometry ξ induced by the dynamics of a quantum field X.
While this is an arbitrary choice—we could have chosen
the dilaton to be classical and ξ to be quantized—we are
interested in looking at how the physical condition X > 0
can be implemented at the quantum level and how this
affects known classical BH.
To this end we can interpret our two-dimensional (static)

BH solutions in terms of an r-reparametrization invariant
effective model consisting of a single physical degree of
freedom XðrÞ whose dynamics is governed by the equa-
tions of motion (2), with the gauge conditions (3) and the
relation (4b). After a simple substitution we are left with
two independent equations:

Xrr þ e−2QQ0 ¼ 0; ð6aÞ

X2
r − e−2Q ¼ 0; ð6bÞ

which we can see as an equation of motion proper and a
constraint, as we would expect from the requirement of
r-reparametrization invariance. If we take a Lagrangian of
the form:

Leff ¼ NðrÞ−1gðrÞX2
r þ NðrÞe−2QðXÞ; ð7Þ

whereNðrÞ plays the role of a Lagrange multiplier and gðrÞ
is a background metric, it is straightforward to see that (6)
can be generated when we impose the gauge N ¼ g ¼ 1.
This Lagrangian is diff-invariant if we consider the trans-
formation laws Xr → ϵrXr, g → ϵ−2r g when r → ϵðrÞ.
We can therefore look at (7), supplied by (4b), as an

effective model that yields the same physical solutions
(with identical mass) as full 2dGDT (1) with the gauge
choice (3).
The corresponding Hamiltonian to (7), starting point for

affine quantization, is
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Heff ¼ N

�
P2
X

4g
− e−2Q

�
; ð8Þ

where the momentum for X is PX ¼ 2g
N Xr and one has the

constraints PN ¼ 0 and Heff ¼ 0, as expected.

III. AFFINE COHERENT STATE QUANTIZATION

While phase space is build with the canonical algebra
fX;PXg ¼ 1, the physical requirement X > 0 gives diffi-
culties in the definition of self-adjoint operators X̂; P̂ with
canonical commutation relations ½X̂; P̂X� ¼ iℏ [27]. A
possible solution to this issue is affine coherent state
quantization, built around the affine variables X;D, with
D ¼ XPX, where the positivity conditionX > 0 is naturally
implemented for quantum operators, which can be made
self-adjoint. Let us review the quantization procedure,
referring to [28] and references therein for further details.

A. The affine algebra

Let us consider the canonical classical variables
fq; pg ¼ 1, with the requirement q > 0. The correspond-
ing affine algebra will be fq; dg ¼ q, with d ¼ qp. The
main reason to pick d over p is that d acts dilating q, thus
preserving a lower bound q > 0, while p generates trans-
lations. Introducing the operators Q;P, satisfying the
commutation relation ½Q;P� ¼ iℏ, we obtain, multiplying
both sides by Q:

½Q;D� ¼ iℏQ D ¼ 1

2
ðPQþQPÞ: ð9Þ

This takes the name of affine commutation relation,
as it refers to the affine group of transformations
q → q0 ¼ aqþ b. To represent the operators on q-space
we can take:

DfðqÞ ¼ −iℏq1=2∂qðq1=2fðqÞÞ; ð10aÞ

QfðqÞ ¼ qfðqÞ; ð10bÞ

which clearly shows the dilating effect of theD operator. In
order to ensure that the operator D is self-adjoint, we will
have to require that the boundary term coming from:

hϕjDψi − hD†ϕjψi ¼ −iℏ
Z þ∞

0

dq∂q½ϕ�ðqÞqψðqÞ�
ð11Þ

vanishes, for square integrable functions ψðxÞ ∈ DomD
and ϕðxÞ ∈ DomD† defined on the half-line q > 0. In
particular these functions need to satisfy:

lim
q→0

x1=2ψðxÞ ¼ 0 ¼ lim
x→0

x1=2ϕðxÞ; ð12Þ

conditions ensuring that (11) vanishes, so that the domains
of D and D† coincide. The self-adjoint operators Q;D will
obey the algebra ½Q;D� ¼ iℏQ, which guarantees the
existence of a unitary irreducible representation of oper-
ators with a positive spectrum for Q [8].

B. Affine coherent states

Affine coherent states are defined by:

jp; qi ¼ eipQ=ℏe−i lnðq=μÞD=ℏjηi; ð13Þ

defined on R × Rþ, where μ is a scale with dimension of
length and jηi is some fiducial unit vector of choice. In
particular we can pick it to satisfy the polarization condition

�
Q
μ
− Iþ i

D
βℏ

�
jηi ¼ 0; ð14Þ

with β a free dimensionless parameter. The wave function
for the fiducial vector can be easily calculated and takes the
form:

hqjηi ¼ Nηðq=μÞβ−1=2 exp½ð−βq=μÞ�; ð15Þ

with the normalization factor Nη ¼ ð2−2ββ−2βΓ½2β�μÞ−1=2.
This implies also hηjQjηi ¼ μ and hηjDjηi ¼ 0. The func-
tional representation of affine coherent states is given by:

hxjp; qi ¼ Neipx=ℏ
�
x
q

�
β

x−
1
2 exp

�
−
βx
q

�
; ð16Þ

with N ¼ ð2−2ββ−2βΓ½2β�Þ−1=2. Notice that, remarkably, no
dependence from the scale μ is present. The average values
for Q;D are now readily calculated, giving:

hp; qjQjp; qi ¼ q; ð17aÞ

hp; qjDjp; qi ¼ pq; ð17bÞ

as we would expect. The wave function (16) can be used to
show that:

I ¼
Z

dpdq
2πℏ

jp; qihp; qj
μhηjQ−1jηi ; ð18Þ

is indeed a resolution of identity, for instance reproducing
hx0jxi ¼ δðx − x0Þ, with the constraint β > 1=2, which
ensure that we avoid the simple poles of the Γ function
located at negative integer values of the argument.
Let us take a closer look at the parameters μ and β which

appear in this construction by means of a comparison with
canonical coherent states. The analogue of (15) for
canonical coherent states takes the form:
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hqjΩi ¼
�
πℏ
λ0

�
−1=4

e−λ0q
2=2ℏ; ð19Þ

with a fiducial vector jΩi satisfying the polarization
condition

�
P
λp

− i
Q
λq

�
jΩi ¼ 0 ð20Þ

and λ0 ¼ λp=λq. In this case λq (respectively λp) is setting
the width of Gaussian in the functional representation of the
fiducial vector in terms of q (resp. p), and one usually
chooses the two scales in a way that λ0 ¼ 1. Similarly, μ
controls the width of the wave function (15) and the average
value of Q. Furthermore, by comparing the two polariza-
tion conditions, β, or equivalently βℏ, plays a role similar to
the dimensionless product λqλp, which contains informa-
tion about the relative weight of P andQ in the construction
of canonical coherent states. In view of this interpretation, β
can be seen as a free parameter labeling different repre-
sentations of the same physical states and can therefore be
chosen to our convenience.

C. The weak correspondence principle

Let us briefly review the basic definitions and statement
of the weak correspondence principle, as introduced by
Klauder in [9]: generally speaking we are looking for a
correspondence rule between a classical system and its
quantum counterpart that, through the use of (affine)
coherent states, incorporates quantum dynamics in a
classical Hamiltonian theory.
We consider a set of conjugate operators Q;P, with

canonical commutation relations ½Q;P� ¼ iℏ, and we build
a family of unitary Weyl operators [cf. (13)]:

U½p; q�≡ exp½iðpQ − PqÞ�; ð21Þ

determining a set of unit vectors:

jp; qi≡U½p; q�jηi; ð22Þ

where jηi is a unique state satisfying a specific polarization
condition [cf. (14)]. Generally speaking the states jp; qi,
referred to as the overcomplete family of states (OFS), are
not mutually orthogonal but, on the contrary, the overlap
between different states contains information about the
system and commutation relations. In addition, while jp; qi
do not necessarily span the full Hilbert space, the weak
correspondence principle is valid in whichever subspace
the OFS spans. Our interest is to consider the diagonal OFS
matrix elements:

hðp; qÞ ¼ hp; qjHjp; qi ð23Þ

for a quantum Hamiltonian operator H, to be related to the
classical Hamiltonian Hðpc; qcÞ, with classical canonical
variables fqc; pcg ¼ 1. This relation is usually taken to be:

H½P;Q� ¼ ∶HðP;QÞ∶; ð24Þ
where : denotes normal ordering. Using the unitary
operator U, which generate translation in both P and Q,
we can see that in fact:

hηjU½p; q�†∶HðP;QÞ∶U½p; q�jηi
¼ hηj∶HðPþ q;Qþ pÞ∶jηi ¼ hðp; qÞ: ð25Þ

Therefore a direct consequence of (24) is that diagonal
OFS matrix elements of a quantum operator yield to the
corresponding classical functional with the identification:

p ¼ pc q ¼ qc; ð26Þ
for all consistent choices of normal ordering. A funda-
mental feature of this construction is that the relation (23) is
valid disregarding whether (24) holds or not, for instance in
the case in which there is no irreducible representation for
P;Q and therefore H is not only a function of P;Q.
Moreover, if the overlap function of states hp0; q0jp; qi

never vanishes, any composite (polynomial) operator in the
domain of the OFS can be represented in terms of its
diagonal matrix elements as [28,29]:

A ¼
Z

dpdq
2πℏ

aðp; qÞjp; qihp; qj: ð27Þ

D. The extended Hamiltonian for affine coherent states

Let us look once again at a generic canonical quantum
theory described by a Hamiltonian HðP;QÞ. The associ-
ated Schrödinger equation, iℏ∂tjψðtÞi ¼ HjψðtÞi, can be
formally obtained from a quantum action functional:

SQ ¼
Z

T

0

dthψðtÞjðiℏ∂t −HÞjψðtÞi ð28Þ

by variation with respect to unit vectors hψ j and jψi,
considered as independent variables. In order to look at a
regime in which classical and quantum dynamics coexist,
rather than allowing an arbitrary set of quantum states
to enter the quantum action functional, we can adopt the
view point of the weak correspondence principle and we
restrict ourselves to those states that are accessible to a
macroscopic observer, namely coherent states: canonical
coherent states are those that translate a system or put it in
motion with constant velocity (since _q ¼ ∂Hc=∂p), while
for affine coherent states translation is replaced by (de)
magnification.
By limiting the set of quantum states jψi to affine

coherent states jpðtÞ; qðtÞi we can explicitly calculate (28),
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considering that, with the fiducial vector defined by (15),
the overlap function reads:

hp0; q0jp; qi ¼ 22βðqq0Þβ
�
ðqþ q0Þ − iðp − p0Þqq0

ℏ

�
−2β

;

ð29Þ

which is nonvanishing on all R ×Rþ.
For the first term, using (10a) on (16) we have:

hpðtÞ; qðtÞjiℏ∂tjpðtÞ; qðtÞi

¼ iℏ
Z

∞

0

dx∥hxjp; qi∥2
�
i _px
ℏ

þ β
_q
q

�
x
q
− 1

��
¼ − _pq; ð30Þ

while it is possible to check that for any composite operator
H we have the identity:

hðp; qÞ ≔ hp; qjHðD;QÞjp; qi

¼ hηjH
�
Dþ pq

μ
Q;

q
μ
Q

�
jηi; ð31Þ

that operatively defines the extended Hamiltonian hðp; qÞ,
with ordering chosen in a way that Q and D operators
alternate, for instance ∶Q−3D2 ≔ Q−1DQ−1DQ−1, consis-
tently with the so-called “anti-Wick quantization” rule. At
this point we can use the restricted quantum action
principle:

SQðRÞ ¼
Z

T

0

dtðp _q − hðp; qÞÞ ð32Þ

to determine the equations of motion as we would do with
any classical canonical system. Let us stress that the
quantum dynamics contained in h is not coming from a
series expansion in powers of ℏ, but rather from a
restriction to coherent states: this has the advantage of
allowing us to look at regimes in which quantum contri-
butions are expected to be large, e.g., close to gravitational
singularities, without contradicting our own construction.
Before going back to our effective BHmodel, let us point

out some general features for the extended Hamiltonian.
Let us look at a rather general classical Hamiltonian in the
form:

Hðp; qÞ ¼ Aq−nþ2p2 þ Bq−mþ1p −
X

Vkqk

¼ Aq−nd2 þ Bq−md −
X

Vkqk; ð33Þ

with constant A;B, and a classical restriction to q > 0. In
order to obtain hðp; qÞ we need to calculate matrix
elements:

μnhQ−ni ¼ δðnÞ; ð34aÞ

μnhQ−n=3DQ−n=3DQ−n=3i ¼ γðnÞ; ð34bÞ

μnhQ−n=2DQ−n=2i ¼ 0; ð34cÞ

hQ−n=3DQ−2n=3i ¼ −hQ−2n=3DQ−n=3i; ð34dÞ

where:

δðnÞ ¼ ð2βÞn Γð2β − nÞ
Γð2βÞ > 1; ð35aÞ

γðnÞ ¼ ℏ2ð2βÞn 18β þ nðn − 9Þ
36

Γð2β − nÞ
Γð2βÞ > 0; ð35bÞ

requiring β > n=2 in order to be finite and avoid the poles
of the Γ function at negative integers. Then for hðp; qÞ we
obtain:

hðp; qÞ ¼ AδðnÞq−nþ2p2 þ BδðmÞq−mp
−
X

Vkδð−kÞqk þ AγðnÞq−n; ð36Þ

where we see quantum corrections to the classical terms
(the δ’s) and the appearance of an additional dynamical
term generated from the kinetic term itself, enforced by the
coefficient γ > 0. This term can determine the avoidance of
singularities located at q → 0, as one can see from the
trivial example with n ¼ 0; A ¼ 1; B ¼ 0 and V−1¼1;
Vk≠−1¼0. The classical and extended Hamiltonians are

Hðp; qÞ ¼ p2 − q−1;

hðp; qÞ ¼ δð2Þp2 − δð1Þq−1 þ γð2Þq−2; ð37Þ

so that the classical singularity is avoided by the repulsive
potential γð2Þq−2, which is dominant at q ∼ 0. This effect is
clearly limited by the value of the exponent n in (36), which
can cure singularities up to order n in the potential V.
It is easy to check that in the classical limit (36)

reproduces (33) if we consider that:

lim
β→∞

δðnÞ ¼ 1 lim
β→∞;βℏ→0

γðnÞ ¼ 0

gives

lim
β→∞;βℏ→0

hðp; qÞ ¼ Hðp; qÞ: ð38Þ

Let us give a further look at the coefficients δ and γ in (35):
while the latter is a genuine quantum correction, ℏ-
dependent, the former is a function of β alone. We have
already mentioned that the role of β is to label different
representations of physical states; furthermore we have just
seen that a lower bound β > n=2 is introduced by finiteness
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requirements on the matrix elements (34), with n being the
largest negativepower of the coordinatevariable that appears
in the classical Hamiltonian. The bound is therefore model
specific: for instance in the case of the ab-family models
described below we have to allow for terms of the form q−a,
where a ∈ R, so that we need β > a=2. Schwarzschild-(A)
dS is an extreme example, since due to a potential eQ

−1=2
its

extended Hamiltonian is only defined in the β → ∞ limit.
Then, since β has no direct physical interpretation, we

can look at the case β → ∞ with no loss of generality:
considering that the δ’s reduce to unity, while γ is strictly
positive if we leave ℏ ≠ 0, taking this limit has the double
advantage of simplifying the semiclassical picture, leaving
ℏ-dependent corrections only, and ridding us of the need to
choose β in each case. Let us stress that all results in this
paper can be obtained for finite β with a few additional, but
minor, complications. A discussion about the case with
finite β is contained in the appendix.
Taking then β → ∞ and rescaling ℏ accordingly we can

bring the extended Hamiltonian (36) to be just the classical
Hamiltonian plus a quantum correction:

hðp; qÞ ¼ Aq−nþ2p2 þ Bq−mp −
X

Vkqk þ AγðnÞq−n
¼ Hðp; qÞ þ AγðnÞq−n: ð39Þ

Let us point out that this limit is only meaningful if applied
on the semiclassical model and not in the full quantum
regime, where the coherent state construction requires a
finite value for β. Let us now go back to our BH models,
described by the classical Hamiltonian (8), and pick the
gauge N ¼ g ¼ 1. With the procedure above we can easily
obtain the extended Hamiltonian as:

hðX;PXÞ ¼
δð2Þ
4

P2
X þ

X
QnXnδð−nÞ þ γð2Þ

4
X−2; ð40Þ

where the exponential potential has been expanded as
eQðXÞ ¼ P

QnXn. Finiteness of the coefficients imposes
β > 1, to be supplemented by conditions coming from the
potential Q. By taking the limit β → ∞ and rescaling ℏ so
that γ ≠ 0, assuming that the limit procedure and the series
expansion for the potential commute, we have:

hðX;PXÞ ¼
1

4
P2
X þ e−2QðXÞ þ γ

4
X−2; ð41Þ

where we renamed γð2Þ → γ, as our starting point, with the
equations of motion:

PX;r ¼ − 2Q0e−2Q þ γ

2
X−3; ð42aÞ

Xr ¼
1

2
PX ð42bÞ

and the constraint hðX;PXÞ ¼ 0.

IV. PHYSICS OF AFFINE BLACK HOLES

A. Thermodynamics

It is interesting to see what kind of effect the addition of
quantum dynamics can have on the thermodynamical
properties of BH solutions in the semiclassical regime.
An extremely complete description of BH thermodynamics
in the framework of dilaton gravity can be found in [26] and
we will base our analysis mainly adapting that procedure to
our effective model, referring the interested reader to that
paper for further details.

1. A summary on black hole thermodynamics

In [26] the authors consider the full 2dGDT action (1),
with Euclidean signature, and focus on BH solutions given
by (3) and (4). This induces a periodicity in the time
coordinate given by:

β̄ ¼ 4π

w0ðXÞ
����
Xh

¼ T−1; ð43Þ

where Xh is the value of the dilaton field at the horizon, T
the temperature measured by an asymptotic observer and is
also related to surface gravity. In order to build a canonical
ensemble, motivated the path integral formulation first
developed in [30], one can introduce a thermal reservoir
that would, for instance, fix the value of the dilaton charge
D at the boundary. Taking advantage of the simplifications
brought in by working in two-dimensions, one can choose
DðXÞ ¼ X, and therefore define the thermal reservoir by
having an upper bound on the dilaton X ≤ Xc, where the
subscript c indicates quantities calculated at the cavity wall.
At the same time the thermal reservoir fixes also the value
of the local temperature Tc, related to the period (43) by:

β̄c ¼ β̄
ffiffiffiffiffi
ξc

p
¼ T−1

c : ð44Þ

This restricts the number of BH solutions included in the
ensemble, but it is also possible in certain cases to take
the limit Xc → ∞ later on. The partition function for the
ensemble is built with a Euclidean path integral:

Z ¼
Z

DgDX exp½−Γ½g; X��; ð45Þ

over all solutions included in the ensemble.
In the semiclassical limit the most relevant contribution

to Z is given by the minimum of the action, which
corresponds to classical solutions, where first order varia-
tions of Γ are vanishing. If the on-shell action is finite,
assuming that the quadratic variation is positive definite,
the path integral can be approximated as:

Z ∼ exp½−Γc� × ðquadratic termsÞ; ð46Þ
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where Γc is the on-shell action and it is calculated for
solutions that fit in the cavity, i.e., Xh ≤ X ≤ Xc. In order to
ensure these conditions are satisfied it is important to
include suitable boundary terms [26,31]. It is then possible
to proceed in the explicit calculation of thermodynamical
quantities:

free energy Fc ¼ −Tc lnZ ≃ TcΓc; ð47aÞ

entropy S ¼ −
∂Fc

∂Tc
; ð47bÞ

internal energy Ec ¼ Fc þ TcS; ð47cÞ

specific heat Cc ¼ −
∂Ec

∂Tc
¼ Tc

∂S
∂Tc

: ð47dÞ

An important condition for the thermodynamic stability of
the ensemble is that the ground state, i.e., the state with
minimal Γc, is characterized by a positive specific heat
Cc > 0. Condition that has to be maintained in the limit
Xc → ∞ if we want to remove the cavity wall.

2. Thermodynamics for the effective black hole model

Let us now turn our attention to the effective BH model
described by (4b) and (7). As we mentioned before, this
model is physically equivalent to the full dilaton gravity
model, hence we can inherit the procedure described above,
with a few caveats.
The thermal reservoir is introduced by fixing an upper

value to the dilaton X ≤ Xc. The period β̄, as defined in
(43), will have to include possible corrections to the value
of the dilaton field at the horizon. By retaining first order
corrections in γ only, we can write the period for ABH as:

β̄ABH ¼ β̄ þ αγ þOðγ2Þ; ð48Þ

where α is some coefficient. At the cavity wall, on the other
hand, quantum corrections can be neglected, since the
potential term enforced by γ is suppressed. We can then
rewrite (44) as:

ðβ̄ABHÞc ¼ β̄c þ α0γ; ð49Þ

where α0 incorporates the Tolman factor
ffiffiffiffiffi
ξc

p
. As we

will see further on, explicit calculation of the factor α0 is
not necessary, as it will only contribute to second order
corrections to the free energy Fc.
Let us now look at the path integral built with the

effective action associated with (41) for the semiclassical
case with β → ∞ (a discussion on the case for finite β is in
the Appendix), restricted to the interval rh ≤ r ≤ rc, that
takes the form:

Γ ¼
Z

rc

rh

dr

�
g
N
X2
r þ Ne−2Q −

γN
4g

X−2
�
: ð50Þ

A vanishing first order variation of this action requires the
addition of a boundary counterterm Ict ¼

R
dr∂rFðXÞ. In

the gauge g ¼ N ¼ 1 it is easy to check that we need:

FðXÞ ¼ −2
Z

X
d ~X

�
e−Qð ~XÞ −

γ

4
eQð ~XÞ ~X−2

�
: ð51Þ

Since we are looking specifically at the interval rh ≤
r ≤ rc, were XðrÞ is one-to-one map to Xh ≤ X ≤ Xc,
we can replace integrals in r with integrals in X. In order to
do so we can look at the constraint equation h ¼ 0:

X2
r ¼ e−2Q −

γ

4
X−2 ð52Þ

and, by completing the square on the right-hand side and
limiting ourselves to first order corrections in γ, we can
obtain:

Xr ¼ e−Q −
γ

8
eQX−2 þOðγ2Þ; ð53Þ

which also solves the semiclassical equations of motion
(42). This solution can be inverted for a change of
variable in the integrals, resulting in the first order
approximation in γ:

dr≃ eQ
�
1 −

γ

8
e2QX−2

�
−1
dX ≃ eQ

�
1þ γ

8
e2QX−2

�
dX:

ð54Þ

Finally, we can calculate the improved action Γþ Ict
on-shell, as an integral in X, and we have:

Γc ¼
γ

4

Z
Xc

Xh

dX½eQX−2� þOðγ2Þ; ð55Þ

where only γ corrections have survived. It is now clear that
if Fc ¼ TcΓc the first order correction to β̄c ¼ T−1

c in (49)
can be neglected.
In order to calculate the thermodynamical quantities

(47), we can use the definition of Tc in (44), at fixed Xc, to
turn derivatives with respect to Tc in derivatives with
respect to Xc, as in:

∂
∂Tc

¼
�∂Tc

∂Xc

�
−1 ∂

∂Xc
: ð56Þ

We can now turn our attention to some of the most
important BH models in dilaton gravity by choosing the
specific form of the potentials Q;w, looking at how the
quantum corrections in γ (might) affect thermodynamical
properties. Let us stress that by looking at the effective
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action for X, rather than the full action (1), we are building a
fundamentally different ensemble which limits the useful-
ness of our construction to specific tasks.
Clearly, with no classical contributions in (55) and no

information on BH solutions or geometry, we cannot ensure
straightforwardly the validity of relations such as the area
law S ∼ A or the equivalence of quasilocal energy [32] with
internal energy, which would require further investigation,
going beyond the scope of this work. We will see however
that an agreement between the sign of entropy corrections
and the displacement of BH horizons is present in
the model.
Furthermore, we cannot expect to reproduce expressions

known from [26] for thermodynamical quantities, while a
certain similarity in general behavior can be obtained
because of the identical expressions for the temperature
Tc and the metric component ξ. What we can do, however,
is look at general thermodynamical features in order to
determine whether the inclusion of quantum corrections
due to affine quantization changes the physical properties
of known BH solutions. In particular we will check if any
restriction to the free parameters of the models is required
to ensure thermodynamical stability, or if any region in
parameter space that is excluded classically might become
accessible in the semiclassical regime.

B. Comparing classical and semiclassical solutions

While classical solutions are known, the full equations
of motion (42), in most cases, are not easy to handle
analytically. Additionally, first order approximations such
as (53) will fail to provide the full dynamics close to the
singularity. Therefore we can turn to numerical solutions
for the semiclassical regime. In the following we will
apply an identical procedure to a number of models of
dilaton gravity, comparing classical and semiclassical
solutions with identical initial conditions in the asymptotic
region, where the effect of the γ corrections is negligible.
A modified procedure dealing with the case of finite β is in
the Appendix. In particular we:
(1) Calculate analytically the classical solutions XðrÞ,

PXðrÞ.
(2) Fix the free parameters to suitable values.
(3) Calculate initial conditions Xðr0Þ, PXðr0Þ at r0 ≫ 0.
(4) Numerically solve the semiclassical equations of

motion (42) in r ∈ ½−r0; r0�, using the initial con-
ditions calculate above.

(5) Check that the constraint h ¼ 0 is enforced.
The different parameters, e.g., the mass M and the value of
the constant γ ∼ ℏ2 are chosen to best serve in the numerical
computations involved. In any case the constraint h is
enforced with a numerical tolerance corresponding to
jhj ≤ 10−6.
In the comparison between the classical and semiclass-

ical regimes wewill label quantities with subscripts ðCÞ and
ðAÞ respectively, when needed.

V. THERMODYNAMICS, SINGULARITY
REMOVAL, AND HORIZON CORRECTIONS

Let us now apply what developed in the previous section
to a number of models in dilaton gravity.

A. The ab-family

The ab-family encompasses a number of renowned
BH models, as the dimensional reduction of spherically
symmetric BH in dþ 1 dimensions, the Witten BH, CGHS
and many more (see [25] and references therein). It is
characterized by the potentials:

Q ¼ −a lnX w ¼ B
ðbþ 1ÞX

bþ1; ð57Þ

which give us an extended Hamiltonian in the form:

hðX;PXÞ ¼
1

4
P2
X þ X2a þ γ

4
X−2: ð58Þ

The on-shell improved action (55) that reads:

Γc ¼
γðX−a−1

h − X−a−1
c Þ

4ðaþ 1Þ ; ð59Þ

while the temperature at the cavity wall is given by:

Tc ¼
Xb
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bðbþ 1Þp

X
a
2
c

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXbþ1

c − Xbþ1
h Þ

q : ð60Þ

As we are interested in removing the bound on X and take
the limit Xc → ∞, we need to make sure that Tc stays real
and non-negative for all values of Xc, which is the case if
the sign of Bðbþ 1Þ is kept positive. We can therefore
calculate all thermodynamical quantities (47) and look at
their behavior while Xc → ∞, keeping an eye on the
specific heat. Assuming B ¼ bþ 1 for simplicity, with
no loss of generality, we can divide the ab-plane is a
number of regions with different asymptotic behavior,
summarized in Table I and visualized in Fig. 1. The region
b ≤ −1 is not physical, being characterized by an imagi-
nary value for the free energy Fc and/or the internal energy
Ec, which can only be avoided by taking Bðbþ 1Þ < 0,
contradicting the condition required for the positivity of the
temperature at the cavity wall. The same region is also
excluded in [26], as a result of thermodynamical instability.
The only additional excluded region with respect to [26] is
a < −b − 3 ∧ b > −1, characterized by a negative specific
heat, thus resulting in thermodynamical instability. This is
the only significant difference, while the rest of the plane, in
particular where renown models are located, is character-
ized by real and (mostly) finite thermodynamical quantities,
so that including affine quantization effects is generally
compatible with known results from standard 2dGDT.
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In particular the specific heat Cc is always non-negative,
approaching zero only from above in the limit Xc → ∞.
Notice also that all entropy corrections are negative, with

the exception of the line a ¼ −b − 3 ∧ b > −1, boundary of
the excluded region with negative specific heat. We will see
later on, when comparing classical and semiclassical solu-
tions, that thereseems tobeacorrespondencebetween the sign
of these corrections and the displacement of BH horizons.
Let us now look, as a way of example, at a comparison

between classical and semiclassical solutions for a number
of models within the ab-family. We expect the γ corrections
to induce the removal of singularities, at least for all cases
with a > −1, due to the form of the potentials in (58).

1. Schwarzschild BH

The Schwarzschild BH (see Fig. 2), obtained as a
dimensional reduction of 3þ 1 dimensional spherically
symmetric BH solutions, is characterized by the parameters

a ¼ 1=2, b ¼ −1=2, with B > 0 (cf. Fig. 1). Classical
solutions are defined on r ∈ R, with a curvature singularity
in r ¼ 0 and horizons in r ¼ �rhðCÞ, while ξ → −∞
when r → 0.
In the semiclassical regime the presence of γ corrections

modifies the behavior of X close to the origin, avoiding the
reaching of X ¼ 0, and determines both the removal of the
curvature singularity and a smaller extension of the black
hole itself. The metric component ξ is finite at r ¼ 0, as is
the Kretschmann scalar K ¼ R2. The local curvature is still
quite large close to the origin, with a ratio between K’s at
r ¼ 0 and at the horizon greater than 109.
The location of the horizon is also modified, with a

normalized difference rC=A ¼ rhðAÞ−rhðCÞ
rhðCÞ

∼ −10−4, which is

in agreement with the sign of the first order entropy
calculation, for which SðAÞ < 0 while SðCÞ ¼ 0.

2. Jackiw-Teitelboim BH

The Jackiw-Teitelboim model (Fig. 3) corresponds to
a ¼ 0, b ¼ 1 and its classical solutions present an horizon
at r ¼ rhðCÞ, but no curvature singularity. Quantum cor-
rections induce a rebound of XðrÞ close to r ¼ 0, so that for
negative r we now have X > 0. The horizon is also shrunk
with rC=A ∼ −10−6 with our choice of parameters, again in
agreement with entropy in the semiclassical regime.

3. Witten BH

The Witten BH model (Fig. 4) is obtained with a ¼ 1,
b ¼ 0. Classical solutions consist in X ∼ er, with an
horizon at a single r-value and a curvature singularity
located at r → −∞, where also ξ → −∞. While classically
X goes to 0 with r ≪ 0, quantum corrections induce a
bounce of XðrÞ for negative r. This corresponds to a finite
value for both ξ and K, so that the singularity is effectively
removed. The horizon is also modified, agreeing with the
sign of entropy, with again rC=A ∼ −10−6 and a second
horizon appearing on the left side of the new minimum of ξ.

4. Other models of the ab-family

The same analysis can be carried out, with the appro-
priate choice of parameters, for any point on the ab-plane.

TABLE I. Summary of asymptotic Xc → ∞ values for thermodynamical quantities for the ab-family, for different regions on the
ab-plane.

Tc Fc S Ec Cc

1) a > bþ 1 ∧ b > −1 ∞ ∞ S < 0 0 0þ
2) a ¼ bþ 1 ∧ b > −1 Tc > 0 Fc > 0 S < 0 0 0þ
3) −1 < a < bþ 1 ∧ b > −1 0 0 S < 0 0 0þ
4) a ¼ −1 ∧ b > −1 0 0 −∞ 0 Cc > 0
5) −b − 3 < a < −1 ∧ b > −1 0 0 −∞ 0 ∞
6) a ¼ −b − 3 ∧ b > −1 0 Fc > 0 S > 0 0 ∞
7) a < −b − 3 ∧ b > −1 0 ∞ ∞ ∞ −∞

b <¼ −1 Excluded by ImðFcÞ ≠ 0 and ImðEcÞ ≠ 0

S

CGHS

Im Fc 0

Cc 0
4 3 2 1 1 2 3 4

a

4

3

2

1

1

2

3

4
b

WBH

JT

FIG. 1 (color online). Regions of the ab parameter plane with
regionsof thermodynamical instability andnon-physical solutions.

AFFINE QUANTIZATION OF BLACK HOLES: … PHYSICAL REVIEW D 90, 064046 (2014)

064046-9



It leads to similar results in all the cases with a > −1,
including the CGHS model (a ¼ b ¼ 0), which exhibits a
bounce similar to what happens in the Jackiw-Teitelboim
case, with also rC=A < 0.
When a < −1 the singularity is indeed not removed, but

shifted to smaller values of r. In these cases the singularity
is usually due to the presence of a 2nth-root r1=2n, so that
the effect of the γ corrections is only moving the value of r
where the root becomes imaginary. When horizons are
present, however, they are also moved, in agreement with
the sign of entropy corrections.

B. Liouville gravity

Liouville gravity is obtained with the potentials:

Q ¼ aX wðXÞ ¼ −
2b

aþ α
exp½ðaþ αÞX�: ð61Þ

The temperature at the cavity wall is then given by:

Tc ¼ −
beðaþαÞXh

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eaXcð− 2beðaþαÞXc

aþα − 2MÞ
q ð62Þ

so that in order for Tc to be real and non-negative, we need
to have:

b < 0;

aþ α > 0:

Solutions to the classical equations of motion are given by
two branches XðrÞ ¼ a−1 ln ð�arÞ, with the appropriate
choice of sign to ensure the existence of the log. In the limit
of large Xc the leading contribution to the specific heat is
given by:

0.4 0.2 0.0 0.2 0.4
r

0.01

0.02

0.03

0.04

0.05

0.06

X r

3.998 4. 4.002
r

0.0010

0.0005

0.0005

0.0010
r

0.4 0.2 0.0 0.2 0.4
r

50

40

30

20

10

r

0.3 0.2 0.1 0.0 0.1 0.2 0.3
r

5.0 106

1.0 107

1.5 107

2.0 107

2.5 107

3.0 107
R2 r

Schwarzschild Black Hole

FIG. 2 (color online). Comparison of classical (continuous line) and semiclassical (dashed line) solutions for the Schwarzschild BH
model, for parameters γ ¼ 10−10, M ¼ 1, B ¼ 1=2, r0 ¼ 103.
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FIG. 3 (color online). Comparison of classical (continuous line) and semiclassical (dashed line) solutions for the Jackiw-Teitelboim
BH model, for parameters γ ¼ 10−4, M ¼ 40, B ¼ 1, r0 ¼ 103.
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Cc ∼
γðαXcÞ

2ð2aþ αÞ2 e
aXcX−2

c ð63Þ

so that to ensure a non-negative limit we have to exclude
the region α < 0 ∧ a > 0, which reduces the allowed
region on the aα-plane to ðα≤0∧a>−αÞ∨ðα>0∧a>0Þ.
This additional restriction is not required in the case of full

2dGDT. We are then allowed to remove the cavity wall to
infinity and calculate the other limits:

α > 0 ∧ a > 0∶ Fc → 0þ S → −∞ Ec → 0þ;

α ≤ 0 ∧ a > −α∶ Fc → ∞ S → −∞ Ec → ∞:

Let us now compare classical and semiclassical solutions
(see Fig. 5). As mentioned above classical solutions are
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FIG. 4 (color online). Comparison of classical (continuous line) and semiclassical (dashed line) solutions for the Witten BH model, for
parameters γ ¼ 10−5, M ¼ 1, B ¼ 4, r0 ¼ 10.
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FIG. 5 (color online). Comparison of classical (continuous line) and semiclassical (dashed line) solutions for Liouville gravity, for
parameters γ ¼ 10−5, M ¼ 4, a ¼ 1, α ¼ −1=2, b ¼ −1, r0 ¼ 100.
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made of two distinct branches, depending on the sign of r,
and they are overall symmetric with respect to the r ¼ 0
axis. The dilaton X diverges to −∞ when r → 0, with a
corresponding curvature singularity for α < 0 and a single
horizon at which ξðrhÞ ¼ 0. As in the case of the ab-family,
the γ corrections induce a bounce in X, which is kept
positive, and the removal of the curvature singularity, so
that K > 0 at r ¼ 0. At the location of the bounce a sharp,
but finite, curvature peak is present and, compatibly with
the sign of the entropy correction, the horizon has a smaller
extent. Similar results are obtained for α > 0, a case in
which there is no classical singularity to be removed.

C. Schwarzschild-(A)dS

Let us consider one last model in our analysis. The
Schwarzschild-(A)dS BH is obtained by fixing the
potentials to:

Q ¼
ffiffiffiffiffiffi
G4

2X

r
w ¼

ffiffiffiffiffiffi
2X
G4

s �
1þ 2G4

l2
X

�
; ð64Þ

which allow us to look at an extended Hamiltonian only
in the β → ∞ limit. The temperature is positive definite
for all values of the parameters:

Tc ¼
6G4Xh þ l2

4 23=4πG1=4
4 l2Xh

× e−
ffiffiffiffiffi
G4
2Xc

p
ðX1=2

c − X1=2
h þ 2G4ðX3=2

c − X3=2
h ÞÞ−1=2 > 0:

ð65Þ
As the explicit expressions for (47) are rather complicated,
we will look, as a way of example, at a numerical
computation of the limits Xc → ∞. For instance, with
a parameter choice of l ¼ 1, G4 ¼ 1=2, M ¼ 1 and
γ ¼ 10−10 we obtain:

Fc → 0þ S < 0 Ec → 0þ Cc → 0þ: ð66Þ
Classical solutions, with these parameters, exhibit a
curvature singularity at r ¼ 0, again removed in the

semiclassical regime (see Fig. 6), alongside a reduced size
for the BH, with rC=A ∼ −10−6.

VI. DISCUSSION

In this work we have developed an extensive analysis of
an effective description of black holes in the semiclassical
limit of affine coherent state quantization given by the weak
correspondence principle.
Starting from the general 2dGDT action, in the diagonal

gauge typical for static black holes solutions, we have built
an effective model where the space-time metric component
ξ is taken to be the known classical solution to the 2dGDT
equations of motion. This had the purpose of leaving the
notion of classical geometry of space-time untouched by
direct quantum corrections, which only appeared through
the dynamics of the remaining field, the dilaton X. An
appropriate action, inclusive of one-dimensional diffeo-
morphisms invariance, was built from the equations of
motion. The reduction to a one-dimensional one-field
system allowed us to use the affine coherent state
quantization scheme in order to obtain a semiclassical
model, inclusive of quantum corrections proportional
to ℏ2.
Our main goals were to investigate the effect of these

quantum corrections on both the thermodynamical proper-
ties of know models of dilaton gravity and the dynamics of
their solutions.
An interesting question was to see whether the semi-

classical regime would be compatible with known results
from dilaton gravity (for instance inducing thermodynam-
ical instabilities or imaginary limits) and whether the
requirement of physicality would restrict free parameters.
BH thermodynamics has been studied in the canonical

ensemble approach developed for full 2dGDT, adapted to
using our effective action in building the partition function.
A comparison with known results shows a large degree of
compatibility: excluded regions in the classical regime are
identically excluded in the semiclassical case, while only
minor additional restrictions on the free parameters are
introduced in order to ensure thermodynamical stability.
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FIG. 6 (color online). Comparison of classical (continuous line) and semiclassical (dashed line) solutions for the Schwarzschild-(A)dS
model, for parameters l ¼ 1, G4 ¼ 1=2 M ¼ 1 and γ ¼ 10−10.
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In any case no region excluded classically becomes
accessible in the semiclassical limit.
In particular the ab-family (see Fig. 1), besides the

known excluded region b < −1, requires also a > −b − 3,
condition that however does not affect any of the renown
models (such as CGHS, Witten, Jackiw-Teitelboim,
Schwarzschild BHs). Also Liouville gravity requires a
stronger restriction on one of its parameters, in any case
still allowing for both singular and nonsingular solutions.
In the case of Schwarzschild-(A)dS no restriction is
required on the free parameters (which in this instance
are Newton’s constant and the cosmological constant).
This overall compatibility is nontrivial, considering the

profound differences in the construction of the ensemble,
and could be seen as a positive sign on the viability of affine
coherent state quantization.
For a number of different parameter choices, classical

and semiclassical solutions have been compared, using
numerical methods for the latter. The introduction of
quantum corrections is indeed able to eliminate curvature
singularities, which are replaced by large but finite values
for the Kretschmann scalar K ¼ R2. Only exception are
those models in the ab-family that are plagued by high
order X−n singularities. It is not to be excluded, however,
that nonperturbative effects of the full affine coherent state
path integral might dispose of those singularities as well.
In addition, all semiclassical solutions exhibit a dis-

placed horizon with respect to corresponding classical
solutions with identical initial conditions. The sign of this
displacement is compatible with the sign of the entropy
corrections calculated in the canonical ensemble.
A clear limit of our analysis lies in the fact that we have

taken into account a very specific effective model in a
semiclassical limit and it is of course of interest, in light of
the positive results above, to relax these constraints.
We have focused on the case β → ∞, mainly motivated

by the simplified picture in which only an additional
potential term appears in the semiclassical Hamiltonian
and multiplicative factors to the classical terms are reduced
to unity. While the comparison between classical and
semiclassical solutions can be easily repeated for finite
β, leading to the same general properties for the dynamics
(singularity removal and modified horizons), it would be
interesting to further investigate the role and possible
physical relevance of the parameter β.
Furthermore we have allowed no quantum dynamics to

enter directly in the metric component ξ, relegating a
dynamical variable to a fixed function of X. Obtaining a
semiclassical extension of the full 2dGDT action, instead
of the effective model we used, would allow us to carry
on a more complete analysis of both the thermodynamics
and the solutions. A principal difficulty to this end is
given by the highly nonlinear couplings between ξ and X,
which would complicate the calculation of an extended
Hamiltonian with the methods used in this work. A simple

work around would be the restriction to those 2dGDTs
models that are dual to two decoupled Liouville fields [33].
Comparison with other quantization approaches, e.g.,

loop quantum gravity, higher spin gravity, polymer quan-
tization, would prove of sure interest. More formal exten-
sions would consider alternative choices for the fiducial
vector in the quantization procedure, as well as the
application of the coherent state path integral quantization
on the 2dGDT action.

APPENDIX: FINITE β

If we keep β finite in (40), the δ factors need to be carried
on throughout our analysis, with the corresponding lower
bounds on the value of β. In particular, starting from (40),
we can build the Lagrangian:

L ¼ gX2
r

Nδð2Þ þ NQ̆2ðXÞ − Nγ

g4
X−2; ðA1Þ

where we renamed the corrected potential he−QðXÞi ¼P
QnXnδð−nÞ → Q̆ and γð2Þ → γ. β is for now limited

to β > 1 in order to keep δð2Þ finite. Classical solutions for
X, to the first order in γ, are given by:

Xr ¼
ffiffiffiffiffiffiffiffiffi
δð2Þ

p �
Q̆ −

γ

8
Q̆−1X−2

�
þOðγ2Þ: ðA2Þ

Denoting with ˘ quantities calculated for finite β and
including the appropriate boundary counterterm the
improved action takes then the form:

Γ̆ ¼
Z

dr

�
gX2

r

Nδð2Þ þ NQ̆2ðXÞ − Nγ

g4
X−2

�

−
2ffiffiffiffiffiffiffiffiffi
δð2Þp Z

Xc

Xh

dX

�
Q̆ðXÞ − γ

4
Q̆−1X−2

�
; ðA3Þ

which on-shell is

Γ̆c ¼
γ

4
ffiffiffiffiffiffiffiffiffi
δð2Þp Z

Xc

Xh

dX½Q̆−1X−2�: ðA4Þ

Thermodynamical quantities (47) are then obtained as
before, and will include δ factors coming from Γ̆c, while
the temperature Tc does not depend on β. Fixing the form
of the potentials and calculating explicitly Q̆ðXÞ we can
look at how a finite value for β affects the thermodynamics
results of Sec. IVA.
For the ab-family we have simply Q̆ ¼ δð−aÞXa, which

gives:

Γ̆c ¼
γðX−a−1

h − X−a−1
c Þ

4
ffiffiffiffiffiffiffiffiffi
δð2Þp ðaþ 1Þδð−aÞ ¼

Γ̄cffiffiffiffiffiffiffiffiffi
δð2Þp

δð−aÞ ; ðA5Þ

with a bound β > −a=2, leading to thermodynamical
quantities which are the same as Sec. IVA times a factor
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ð ffiffiffiffiffiffiffiffiffi
δð2Þp

δð−aÞÞ−1, hence reproducing all results as far as
parameter space is concerned.
In Liouville gravity, with its classical potential

QðXÞ ¼ aX, an infinite number of δ corrections is gen-
erated in the calculation of the extended Hamiltonian,
which can be resummed and result in:

Q̆ ¼
�
aX
2β

þ 1

�
−2β

; ðA6Þ

with no further restriction on β than β > 1. The on-shell
action will read:

Γ̆c ¼ −
γΓð1 − 2βÞ
4a

ffiffiffiffiffiffiffiffiffi
δð2Þp ðaX þ 2βÞX−2

×

�
aX
2β

þ 1

�
2β

2
~F1

�
1; 2; 2 − 2β;−

2β

aX

�����Xc

Xh

; ðA7Þ

where 2
~F1 is the regularized Hypergeomtric function.

Looking at the limit for large Xc, the leading contribution
to the specific heat takes the form:

Cc ∼
−αb3γ

2ð2aþ αÞ2X2
c

ffiffiffiffiffiffiffiffiffi
δð2Þp �

aXc

2β

�
2β

; ðA8Þ

excluding the region a > 0 ∧ α < 0 as in the case for
β → ∞. For the free energy Fc we have:

Fc ∼
bγð1 − 2βÞeðaþαÞXh

8π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− 2bδð2Þ

aþα

q
Xc

�
aXc

2β

�
2β

e−
1
2
ð2aþαÞXc ; ðA9Þ

which is non-negative. In the same way, for the entropy:

S ∼
γðaXc

2β Þ2β
4

ffiffiffiffiffiffiffiffiffi
δð2Þp ð1 − 2βÞXc

< 0; ðA10Þ

and for the internal energy:

Ec ∼
γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðaþ αÞð−bÞp
4

ffiffiffi
2

p
π

ffiffiffiffiffiffiffiffiffi
δð2Þp ð2aþ αÞ

eðaþαÞXh

X2
ceð2aþ

1
2
αÞXc

�
aXc

2β

�
2β

> 0;

ðA11Þ

so that the parameter restrictions for finite β coincide with
the ones obtained in the β → ∞ limit. As mentioned earlier
the case of Schwarzschild-(A)dS is only defined for β → ∞
due to the form of its QðXÞ potential.
As for the comparison between classical and semi-

classical regimes, we need to modify the procedure
described in Sec. IV B in order to determine an optimal
value of β for the numerical solution of the equations of
motion. In particular for β → ∞ the γ correction is
negligible at r0 ≫ 0, where initial conditions are calcu-
lated, so that the initial values X0 ¼ Xðr0Þ, P0 ¼ PXðr0Þ
are solutions to both the classical and extended
Hamiltonian constraints and can be used in both cases.
For finite β, on the other hand, because of the δ’s, this
will not be true and we will have to find appropriate
initial conditions for the semiclassical case depending
on the value of β. We can then follow the modified
procedure:
(1) Calculate analytically the classical solutions

XðrÞ, PXðrÞ.
(2) Fix all the free parameters (but β) to suitable

values.
(3) Calculate initial conditions X0 ¼ Xðr0Þ, P0 ¼

PXðr0Þ at r0 ≫ 0 for classical solutions.
(4) Solve the constraint hðPX; X ¼ X0; βÞ ¼ 0 for PX,

obtaining PX ¼ P̄ðβÞ.
(5) Find the value of β for which P̄ðβ0Þ ∼ P0, thus

matching in the best possible way initial conditions
for the classical and semiclassical case.

(6) Numerically solve the semiclassical equations of
motion (42) in r ∈ ½−r0; r0�, using the initial con-
ditions X0 ¼ Xðr0Þ and P̄ðβ0Þ.

(7) Check that the constraint h ¼ 0 is enforced.
In this way it is possible to obtain the same singularity
avoidance described in Sec. V. It is worth mentioning
however that any considerations about the properties of the
solutions away from either the singularity or the asymptotic
region r0 ≫ 0 need to carefully account for the presence of
the δ corrections. These modify the behavior of the
solutions by altering the ratio between kinetic and potential
terms in the differential equations, so that features like
horizon displacement are no longer obvious in the interplay
between genuine ℏ-dependent quantum corrections and
representation related corrections.
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