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We drop the complexification procedure from the Newman-Janis algorithm and introduce more physical
arguments and symmetry properties, and we show how one can generate regular and singular rotating black
hole and non-black-hole solutions in Boyer-Lindquist coordinates. We focus on generic rotating regular
black holes and show that they are regular on the Kerr-like ring, but physical entities are undefined there.
We show that rotating regular black holes have much smaller electric charges, and, with increasing charge,
they turn into regular non-black-hole solutions well before their Kerr-Newman counterparts become naked
singularities. No causality violations occur in the region inside a rotating regular black hole. The
separability of the Hamilton-Jacobi equation for neutral particles is also carried out in the generic case, and
the innermost boundaries of circular orbits for particles are briefly discussed. Other, but special, properties
pertaining to the rotating regular counterpart of the Ayón-Beato–García regular static black hole are also
investigated.
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I. ON THE NEWMAN-JANIS ALGORITHM

In this introductory section, we comment on two steps in
the Newman-Janis algorithm (NJA) [1]. We first introduce
the following general static metric:

ds2stat ¼ GðrÞdt2 − dr2

FðrÞ −HðrÞðdθ2 þ sin2θdφ2Þ: ð1Þ

One of the ambiguous steps in the algorithm is complex-
ification of the radial coordinate r. This is the step that
follows the complex coordinate transformation:

r → rþ ia cos θ; u → u − ia cos θ; ð2Þ
where ðu; r; θ;φÞ are the advanced null coordinates. Recall
that there were already generalizations of this complex
coordinate transformation [2], but it seems that the sub-
sequent developments of the NJA and generating methods
have not made the matter of further generalizing these
transformations a concern. There are as many ways to
complexify r as one wants. Here are some examples:

r2 → ðrþ ia cos θÞðr − ia cos θÞ ¼ r2 þ a2cos2θ;

1

r
→

1

2

�
1

rþ ia cos θ
þ 1

r − ia cos θ

�
¼ r

r2 þ a2cos2θ
;

r2 → r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrþ ia cos θÞðr − ia cos θÞ

p
¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2cos2θ

p
:

ð3Þ

When a ¼ 0, each right hand side (r.h.s.) reduces to the left
hand side (l.h.s.) of the same line. Both the first and second
types of complexification in (3) are used to derive the Kerr
solution from the Schwarzschild one: If only one type of
complexification is used, the generated rotating solution

will not look like the Kerr one. This is the very ambiguity
behind nonphysical solutions [3] that cannot be written in
Boyer-Lindquist coordinates (BLCs), as shown in Ref. [4].
The failure of the last step of the NJA, which consists

in bringing the generated rotating solution written in
Eddington-Finkelstein coordinates (EFCs) to BLCs by real
coordinate transformations, is likely related to the complex-
ification procedure. We have already commented on this
point in Ref. [4] and have shown that it is not possible, in
general, to carry this last step of the NJA. In this work, we
will raise similar comments and provide another concrete
example from the literature [5].
The issue pertaining to complexification has been solved

in Ref. [6], where a generic metric formula, not appealing
to the complexification procedure, was derived to generate
imperfect fluid rotating solutions in BLCs. The metric
formula depends on a three-variable function Ψðr; θ; aÞ
whose determination depends on the physical problem at
hand; that is, it depends on the type of rotating solution one
wants to derive.Ψ generally obeys some partial differential
equation(s). In the case in which one is generally interested,
where the source term in the field equations Tμν is
interpreted as an imperfect fluid rotating about a fixed
axis, Ψ obeys two linear and nonlinear partial differential
equations [see Eqs. (15) and (18) of Ref. [6] and Eqs. (4)
and (7) Ref. [7]]. Thus, the essence of our procedure is to
reduce the task of determining the rotating counterpart of
(1) to that of fixing Ψ by solving two partial differential
equations. Applications are considered in Refs. [6,7] and in
Sec. III of this work.
In the following section, we show how one can skip the

complexification procedure and we introduce more physi-
cal arguments and symmetry properties to derive, based on
our previous works [6,7], rotating metric counterparts of
the static ones. We comment again on the last step of the
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NJA by providing examples from the literature. Application
of the rotating metric formula was considered in Refs. [6,7],
where particularly rotating wormholes were derived.
In Sec. III, we apply the rotating metric formula to derive

rotating regular black hole counterparts of static regular
ones; then, we discuss their generic physical properties in
the first part of Sec. IV. In the remaining part of the latter
section, we specialize to the rotating regular counterpart
of the Ayón-Beato–García regular static black hole
(AGRSBH) and discuss their peculiar physical properties.
We conclude in Sec. V. Two Appendixes have been added:
Appendix Awas added to check the validity of the Einstein
equations and Appendix B to derive the extremality
condition for the rotating regular counterpart of the
AGRSBH.

II. ROTATING METRICS IN BLCs

Consider the static metric (1) to which we partly apply
the NJA. After introducing the advanced null coordinates
ðu; r; θ;φÞ defined by

du ¼ dt − dr=
ffiffiffiffiffiffiffi
FG

p
;

the nonzero components of the resulting inverse metric are
of the form gμν ¼ lμnν þ lνnμ −mμm̄ν −mνm̄μ with

lμ ¼ δμr ; nμ ¼
ffiffiffiffiffiffiffiffiffiffi
F=G

p
δμu − ðF=2Þδμr ; mμ

¼
�
δμθ þ

i
sin θ

δμφ

�
=

ffiffiffiffiffiffiffi
2H

p
; ð4Þ

and lμlμ ¼ mμmμ ¼ nμnμ ¼ lμmμ ¼ nμmμ ¼ 0 and
lμnμ ¼ −mμm̄μ ¼ 1.
Next, we perform the complex transformation (2) by

which δμν transform as vectors:

δμr → δμr ; δμu → δμu;

δμθ → δμθ þ ia sin θðδμu − δμrÞ; δμφ → δμφ; ð5Þ

and we assume that fG;F;Hg transform to fA; B;Ψg:

fGðrÞ; FðrÞ; HðrÞg → fAðr; θ; aÞ; Bðr; θ; aÞ;Ψðr; θ; aÞg;
ð6Þ

where fA; B;Ψg are three-variable real functions, to be
fixed later. For the purpose of this paper, we subject them to
the following constraints:

lim
a→0

Aðr; θ; aÞ ¼ GðrÞ; lim
a→0

Bðr; θ; aÞ ¼ FðrÞ;
lim
a→0

Ψðr; θ; aÞ ¼ HðrÞ; ð7Þ

to recover (1) in the limit a → 0. For other purposes, see
Refs. [6,7]. We thus depart from the usual NJA, which fixes

the expressions of fA;B;Ψg by complexification of the
radial coordinate r. In our procedure, fA; B;Ψg will be
fixed using other criteria and physical arguments.
The effect of the transformation (2) on ðlμ; nμ; mμÞ is the

composition of the transformations (5) and (6) on δμν and on
fGðrÞ; FðrÞ; HðrÞg, respectively:

lμ ¼ δμr ; nμ ¼
ffiffiffiffiffiffiffiffiffi
B=A

p
δμu − ðB=2Þδμr ;

mμ ¼
�
δμθ þ ia sin θðδμu − δμrÞ þ i

sin θ
δμφ

�
=

ffiffiffiffiffiffiffi
2Ψ

p
: ð8Þ

This yields the transformed inverse metric

guuðr; θÞ ¼ −
a2sin2θ

Ψ
; guφðr; θÞ ¼ −

a
Ψ
;

gφφðr; θÞ ¼ −
1

Ψsin2θ
; gθθðr; θÞ ¼ −

1

Ψ
;

grrðr; θÞ ¼ −B −
a2sin2θ

Ψ
; grφðr; θÞ ¼ a

Ψ
;

gurðr; θÞ ¼
ffiffiffiffi
B
A

r
þ a2sin2θ

Ψ
; ð9Þ

and then the rotating metric in EFCs

ds2 ¼ Adu2 þ 2

ffiffiffiffi
A

pffiffiffiffi
B

p dudrþ 2asin2θ

� ffiffiffiffi
A

pffiffiffiffi
B

p − A

�
dudφ

− 2asin2θ

ffiffiffiffi
A

pffiffiffiffi
B

p drdφ −Ψdθ2

− sin2θ

�
Ψþ a2sin2θ

�
2

ffiffiffiffi
A

pffiffiffiffi
B

p − A

��
dφ2: ð10Þ

The final but crucial step is to bring (10) to BLCs by a
global coordinate transformation that is usually taken of the
form

du ¼ dtþ λðrÞdr; dφ ¼ dϕþ χðrÞdr; ð11Þ
where fλ; χg must depend on r only to ensure the
integrability of (11): It is easy to check that, in this case,
one can integrate the two equations to obtain global
coordinates uðt; rÞ and φðϕ; rÞ. As explained in Sec. I,
the usual NJA fails, in general, to bring (10) to BLCs since
in the NJA, fA;B;Ψg are fixed by the complexification of r
and there remain no free parameters or functions to act on
to achieve the transformation to BLCs.
This is no longer the case in our procedure since

fA; B;Ψg are still unknown functions and we can achieve
the transformation to BLCs. This is indeed the case; taking

λðrÞ ¼ −
ðK þ a2Þ
FH þ a2

; χðrÞ ¼ −
a

FH þ a2
; ð12Þ

where
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KðrÞ≡
ffiffiffiffiffiffiffiffiffiffi
FðrÞ
GðrÞ

s
HðrÞ; ð13Þ

the metric (10) is brought to BLCs, provided we choose

Aðr; θÞ ¼ ðFH þ a2cos2θÞΨ
ðK þ a2cos2θÞ2 ;

Bðr; θÞ ¼ FH þ a2cos2θ
Ψ

: ð14Þ

Finally, the desired form of the rotating solution in BLCs is
[6,7]

ds2 ¼ ðFH þ a2cos2θÞΨdt2

ðK þ a2cos2θÞ2 −
Ψdr2

FH þ a2

þ 2asin2θ

�
K − FH

ðK þ a2cos2θÞ2
�
Ψdtdϕ −Ψdθ2

−Ψsin2θ

�
1þ a2sin2θ

2K − FH þ a2cos2θ
ðK þ a2cos2θÞ2

�
dϕ2:

ð15Þ

This latter metric is brought to Kerr-like forms [6,7]

ds2 ¼ Ψ
ρ2

��
1 −

2f
ρ2

�
dt2 −

ρ2

Δ
dr2

þ 4afsin2θ
ρ2

dtdϕ − ρ2dθ2 −
Σsin2θ
ρ2

dϕ2

�
; ð16Þ

ds2 ¼ Ψ
ρ2

�
Δ
ρ2

ðdt − asin2θdϕÞ2 − ρ2

Δ
dr2 − ρ2dθ2

−
sin2θ
ρ2

½adt − ðK þ a2Þdϕ�2
�
; ð17Þ

on performing the following variable changes:

ρ2 ≡ K þ a2cos2θ; 2fðrÞ≡ K − FH;

ΔðrÞ≡ FH þ a2; Σ≡ ðK þ a2Þ2 − a2Δsin2θ: ð18Þ

In Eqs. (15)–(17), Ψðr; θ; aÞ remains an unknown
function. If the source term Tμν is interpreted as an
imperfect fluid rotating about the z axis, Ψ obeys the
two nonlinear and linear partial differential equations (15)
and (18) of Ref. [6] to which some particular solutions were
found in Refs. [6,7]. These equations take the following
forms:

ðK þ a2y2Þ2ð3Ψ;rΨ;y2 − 2ΨΨ;ry2Þ ¼ 3a2K;rΨ2; ð19Þ

½K;r
2 þ Kð2 − K;rrÞ − a2y2ð2þ K;rrÞ�Ψ
þ ðK þ a2y2Þð4y2Ψ;y2 − K;rΨ;rÞ ¼ 0; ð20Þ

where the indexical notation for derivatives Ψ;ry2≡∂2Ψ=∂r∂y2, K;r ≡ ∂K=∂r, etc., has been used and
y≡ cos θ.
The nonlinear differential equation (19) is just Grθ ¼ 0,

where Gμν is the Einstein tensor, and the linear differential
equation (20) ensures consistency of the field equations
Gμν ¼ Tμν with the expression of Tμν:

Tμν ¼ ϵeμt eνt þ pre
μ
reνr þ pθe

μ
θe

ν
θ þ pϕe

μ
ϕe

ν
ϕ; ð21Þ

where eμt is the four-velocity vector of the fluid, ϵ is the
density, ðpr; pθ; pϕÞ are the components of the pressure,
and the basis ðet; er; eθ; eϕÞ is dual to the 1-forms defined in
(17) [see Eqs. (16) and (17) Ref. [6]]:

ωt ≡ ffiffiffiffiffiffiffiffi
ΨΔ

p
ðdt − asin2θdϕÞ=ρ2;ωr ≡ −

ffiffiffiffi
Ψ

p
dr=

ffiffiffiffi
Δ

p
;

ωθ ≡ −
ffiffiffiffi
Ψ

p
dθ;ωϕ ≡ −

ffiffiffiffi
Ψ

p
sin θ½adt − ðK þ a2Þdϕ�=ρ2:

ð22Þ

We once more comment on the NJA by providing an
explicit example from the literature where it is not possible
to carry out the last step that consists in bringing the
rotating metric from EFCs to BLCs.
In Eqs. (20) of Ref. [5], each r.h.s. is a total differential

(exact differential), provided the functions λ and χ depend
only on r as in (11). Unfortunately, this is not the case in the
final expressions of λ and χ given in the r.h.s.’s of Eqs. (21)
of Ref. [5], which generally depend on both ðr; θÞ: Only
in the trivial case Q ¼ 0, which corresponds to the
Schwarzschild solution, do λ and χ depend only on r.
If λ and χ depend on both ðr; θÞ, then ∂λ=∂θ ≠ 0 and

∂χ=∂θ ≠ 0, so the conditions of integrability are no longer
satisfied and it is not possible to integrate Eqs. (20) of
Ref. [5] to obtain global coordinates uðt; r; θÞ and
ϕðϕ; r; θÞ. Consequently, if Q ≠ 0, the set of Eqs. (20)
of Ref. [5] does not constitute a global coordinate trans-
formation and the final metric [Eqs. (22) of Ref. [5]] is not
equivalent to the metric (19) of Ref. [5], which is given in
EFCs. Said otherwise, if Q ≠ 0, it is not possible, by a
global coordinate transformation, to bring metric (19) in
EFCs to a rotating metric in BLCs.
Other examples from the literature of such a failure to

carry out the last step of the NJA, that is, examples where
the EFC-to-BLC transformation has been carried out by
noncoordinate transformations, as in Ref. [5], are found
in Refs. [3,8,9] and are certainly due to the type(s)
of complexification used. This is a general drawback of
the NJA since it does not fix a priori the type(s) of
complexification needed to carry out the EFC-to-BLC
transformation.
Such noncoordinate transformations used by some

authors [3,5,8,9] to carry the EFC-to-BLC transformation
of the NJA could, however, be seen as an added trick to the
NJA, which is by itself a trick to obtain rotating solutions
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from static ones. But, this may lead to nonphysical
solutions as in Ref. [3] or to modified theories of general
relativity, that is, to solutions with a “set of field equations
… different from the Einstein equations …” as in Ref. [9].

III. ROTATING REGULAR BLACK HOLES

To our knowledge, all regular black holes in classical
general relativity have G ¼ F and H ¼ r2 [10–17]. In the
case G ¼ F, a general prescription for determining imper-
fect fluid rotating (about the z axis) regular black holes is
given in Sec. 3 of Ref. [6]; we outline it here.
Equation (13) implies K ¼ H ¼ r2. Now, it is easy to

check that

Ψ ¼ r2 þ a2cos2θ; ð23Þ
is one of the solutions to (19) and (20) satisfying (7), with A
and B given by (14). Using (18), with K ¼ r2, along with
(23) in (16), the regular rotating counterpart black hole of a
regular static one (G ¼ F and H ¼ r2) takes the compact
form

ds2 ¼
�
1 −

2f
ρ2

�
dt2 −

ρ2

Δ
dr2

þ 4afsin2θ
ρ2

dtdϕ − ρ2dθ2 −
Σsin2θ
ρ2

dϕ2;

ρ2 ¼ r2 þ a2cos2θ; 2f ¼ r2ð1 − FÞ;
Δ ¼ r2F þ a2 ¼ r2 − 2f þ a2;

Σ ¼ ðr2 þ a2Þ2 − a2Δsin2θ: ð24Þ

In Appendix A, we show that the rotating solution (24)
satisfies Einstein equations Gμν ¼ Tμν, where Tμν is of the
form (21).
In this paper, we will discuss the general solution (24) as

well as the regular rotating counterpart of the AGRSBH
[17]. In our notation, the AGRSBH, which was derived in
Ref. [17], takes the form

G ¼ F ¼ 1 −
2Mr2

ðr2 þQ2Þ3=2 þ
Q2r2

ðr2 þQ2Þ2 ; H ¼ r2:

ð25Þ
Its regular rotating counterpart, given by (24) and (25),
reduces to the Kerr metric if Q ¼ 0, where, in this case,
2f ¼ 2Mr, Δ ¼ r2 − 2Mrþ a2, and Σ ¼ ðr2 þ a2Þρ2þ
2Ma2rsin2θ.

IV. PHYSICAL PROPERTIES

In this section, we discuss the general properties of the
regular rotating solution (24) for any regular static black
hole F as well as its special properties for the AGRSBH,
where F is given by (25).

Since metric (24) generates all types of rotating sol-
utions, general properties of singular rotating black holes
are also investigated. However, we focus mostly on rotating
regular black holes. The first part of this section is devoted
to a general discussion, and the second one is concerned
with the rotating regular counterpart of the AGRSBH.

A. General physical properties

Notice that the only difference between Kerr’s metric and
(24) resides in the values of ðf;Δ;ΣÞ. Moreover, and this is
an important point in our method, metric (24) is a fresh
formula; that is, it applies to all static (being regular or not)
black holes of the form (1) withG ¼ F andH ¼ r2, and the
only task one has to perform is to evaluate 2f ¼ r2ð1 − FÞ,
Δ ¼ r2F þ a2, and Σ ¼ ðr2 þ a2Þ2 − a2Δ sin2 θ, knowing
F. There are no notions of complexification associated with
the different forms of F, while the application of the NJA
necessitates different ways of complexification for each
different form of F and the final rotating metric may only
be given in EFCs because of the nonexistence of coordinate
transformations bringing it to BLCs, as were the cases in
Refs. [3,5,8,9].

1. Scalar invariants and stress-energy tensor

We keep on doing generalities which apply to all rotating
regular black holes of the form (24) (other conclusions
apply also to singular solutions). Static regular black holes
have de Sitter–like behavior near r ¼ 0 [10–17]:

F ∼ 1 − Cr2 and C > 0ðr → 0Þ; ð26Þ
which results in

f ∼ Cr4ðr → 0Þ: ð27Þ
The curvature scalar R of the regular rotating solution

(24) reads

R ¼ 2ð1 − FÞ − 4rF0 − r2F00

ρ2
; ð28Þ

(here, F0 ≡ dF=dr, etc.), which is manifestly regular off the
ring ρ2 ¼ 0. Following a procedure used in Refs. [6,7], it is
easy to show that R is also regular on the ring ρ2 ¼ 0. In
fact, let C be any path in the yr plane (the y ¼ cos θ axis is
horizontal, and the r axis is vertical) through the ring
ρ2 ¼ 0; that is, C: r ¼ ahðyÞ and hð0Þ ¼ 0. Then, using
(26), we obtain

lim
y→0

R ¼ 12Ch;yð0Þ2
h;yð0Þ2 þ 1

¼ 12C
1þ g02

; ð29Þ

where g0 ≡ 1=h;yð0Þ. Thus, whatever the value of the slope
of C at y ¼ 0, h;yð0Þ, the value of the limit limy→0R is finite.
Since the limit depends on the value of h;yð0Þ, R is
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undefined; however, it is finite and regular on the ring
ρ2 ¼ 0. See case (1) of Ref. [6] for a more general
discussion.
The mathematical expression of the Kretschmann scalar

K ≡ RαβμνRαβμν is sizable, so we will not provide it here.
This scalar is regular everywhere, including the ring
ρ2 ¼ 0. On any path C: r ¼ ahðyÞ and hð0Þ ¼ 0 through
the ring ρ2 ¼ 0, we have

lim
y→0

K ¼ 24C2h;yð0Þ4
½1þ h;yð0Þ2�6

½6 − 2h;yð0Þ2 þ 11h;yð0Þ4

þ 4h;yð0Þ6 þ h;yð0Þ8� ð30Þ

¼ 24C2½1þ 4g02 þ 11g04 − 2g06 þ 6g08�
½1þ g02�6

: ð31Þ

This limit is finite for all paths C: r ¼ ahðyÞ and hð0Þ ¼ 0
through the ring ρ2 ¼ 0 but it remains undefined, for it
depends on h;yð0Þ.
The components ðϵ; pr; pθ; pϕÞ of the stress-energy

tensor (SET) Tμν are given by Eqs. (13) and (14) of
Ref. [7], taking p2 ¼ 0 (these have been evaluated in
Refs. [18,19], too):

ϵ ¼ −pr ¼
2ðrf0 − fÞ

ρ4
; pθ ¼ pϕ ¼ −pr −

f00

ρ2
; ð32Þ

(here, f0 ≡ df=dr), which, despite their appearance, have
been shown not to diverge on the ring ρ2 ¼ 0 because of de
Sitter–like behavior (26) and (27) near r ¼ 0 of the static
regular black holes [see the paragraph following Eq. (14) of
Ref. [7] and case (1) of Ref. [6] that use the same procedure
as the one by which (29), (30), and (31) were derived].
These components are, however, undefined on the ring
ρ2 ¼ 0, in that the limits limr→0;θ→π=2ðϵ; pr; pθ; pϕÞ do
not exist.
Because of the relation pr ¼ −ϵ, these solutions can also

be used as regular cores to match other rotating external
solutions [7]. Note that the NJA was first devised to
generate exterior rotating solutions but later was applied
to generate rotating interior metrics which were matched to
the exterior Kerr one [20,21].
Notice from (32) that, since f does not depend on the

rotation parameter a, ϵ has the same sign as its static
counterpart ϵstat: ϵ ¼ ðr4=ρ4Þϵstat. This remark is very
relevant for the determination of the energy conditions
of rotating regular black holes. For the rotating regular
black hole solution (24) with F given by (25), it was
reported that its static counterpart black hole satisfies the
weak energy condition [22], that is, ϵstat ≥ 0; we thus
conclude that ϵ ≥ 0. Because of de Sitter–like behavior
near r ¼ 0 of the static regular black hole, this latter
conclusion is valid for all rotating regular black holes near
r ¼ 0 where rf0 − f ≃ 3Cr4.

It is straightforward to check that the components of the
SET given by (32) approach those of the Kerr-Newman
black hole in the limit r → ∞ if F approaches the Reissner-
Nordström limit.
The function f00 is 0 only for Reissner-Nordström-like

solutions of the form F ¼ 1þ c1=rþ c2=r2. For all other
regular or singular solutions, f00 ≠ 0 and, by (32),
pθ ¼ pϕ ≠ ϵ ¼ −pr, so the fluid is never perfect.

2. Static limit: Horizons

The mass of the rotating solution, being regular or not, is
that of the static one. This is obvious from (24), for if F
admits a Taylor expansion of the form F ¼ 1 − 2M=rþ � � �
at spatial infinity, then the two metric functions gtt ¼ and
1=grr of the rotating solution (24) admit the same expan-
sion as r → ∞.
The static limit, which is the 2-surface on which the

timelike Killing vector tμ ¼ ð1; 0; 0; 0Þ becomes null,
corresponds to gttðrst; θÞ ¼ 0, leading to 2f ¼ ρ2 or simply
the following separable equation:

a2cos2θ ¼ −rst2FðrstÞ; ð33Þ

as in the Kerr and Kerr-Newman cases. Observers can
remain static only for r > rstðθÞ.
The event horizon rþ, which sets a limit for stationary

observers, and the inner apparent one r− are solutions to
grrðr�Þ ¼ 0, implying Δðr�Þ ¼ 0:

r�2Fðr�Þ þ a2 ¼ 0: ð34Þ

It is clear from these last two equations that the static limit
and event horizon intersect only at the two poles θ ¼ 0 and
θ ¼ π, where rst ¼ rþ, as in Kerr and Kerr-Newman
solutions. The resolution of (34) provides r� as functions
of the charges ðM;Q; � � �Þ, on which F depends and of a2

only, so that r� do not depend on θ.
It is well known that if Q2 < M2, a Kerr-Newman

solution may have the properties of a rotating black
hole; this happens if 0 < a2 ≤ M2 −Q2; otherwise
(a2 > M2 −Q2), the solution is a naked singularity. In
the case where Q2 ≥ M2, a Kerr-Newman solution is
always a naked singularity for all a2 > 0. As we shall
see in the next section, even in the case where Q2 < M2, it
is possible to have no rotating regular black hole for all a2

but only regular non-black-hole solutions given by (24), as
is the case shown in Fig. 1(a), which is a plot of the
extremality condition in the (a2=Q2, M2=Q2) plane. A
similar conclusion was made in Ref. [22]. If the function
F ðrÞ≡ r2Fð¼ Δ − a2Þ, which is 0 at r ¼ 0 for a static
regular black hole (respectively, constant for a singular
black hole) and F → ∞ as r → ∞, has some negative
minimum value Fmin on the range of r, then there is always
a black hole solution if
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0 < a2 ≤ jFminj; ð35Þ
and a non-black-hole solution (respectively, a naked
singularity) for

a2 > jFminj: ð36Þ
The extremality condition is

a2 ¼ jFminj; ð37Þ

which provides a relation between the charges ðM;Q; � � �Þ
and a2.

3. Causality issues

It is also well known that causality violations occur
in Kerr and Kerr-Newman black holes, as depicted in

Fig. 2(a). Causality violations and closed timelike curves
(CTCs) are possible if, in (24), gϕϕ ¼ −Σsin2θ=ρ2 > 0.
Since sin2 θ=ρ2 is not negative, for simplicity, we inves-
tigate the sign of Σ ¼ ðr2 þ a2Þ2 − a2ðr2F þ a2Þsin2θ.
Figure 2(a) is a plot of r versus sin θ, where, for a
given θ, r is a solution to Σðsin θ; rÞ ¼ 0, and Fig. 2(b)
is a plot of r2 versus sin θ, where r2 is a solution to
Σðsin θ; r2Þ ¼ 0. Causality violations occur on the right of
each plot in Fig. 2(a), where the dashed curve corresponds
to the Kerr black hole and the continuous one corresponds
to the Kerr-Newman black hole, for which CTCs exist
even for r > 0 [in contrast with the Kerr hole, where CTCs
are possible for r < 0 only, as depicted in Fig. 2(a)]. In
Fig. 2(a), the plot of Σ ¼ 0 for the rotating regular hole
(24) where F is given by (25) (the rotating regular
counterpart of the AGRSBH) is the point sin θ ¼ 1 and
r ¼ 0. Since for sin θ ¼ 0, Σ > 0, this implies that Σ ≥ 0,
at least for the values of the parameters we have chosen
M2 ¼ 16, Q2 ¼ 1, and a2 ¼ 1, corresponding, according
to Fig. 1(a), to the black hole region for the rotating
regular counterpart of the AGRSBH. This shows that
there are no causality violations for this black hole since
the sign of gϕϕ cannot go positive; that is, the Killing
vector ϕμ ¼ ð0; 0; 0; 1Þ, of norm gϕϕ, cannot become
timelike.
Let us see under which general conditions the above

conclusion remains valid. Notice that causality violations
are not expected in the region r > rþ or in the region
between the horizons, since there, Δ < 0, yielding Σ > 0
and gϕϕ < 0. Let r < r−. The condition Σ > 0 yields
ðr2 þ a2Þ2 > a2ðr2F þ a2Þsin2θ. Since Δ¼ r2Fþa2>0
for r < r−, if we can show that

ðr2 þ a2Þ2 > a2ðr2F þ a2Þ; ð38Þ

this results in Σ > 0. Simplifying (38), we bring it to

r2 − a2FðrÞ þ 2a2 > 0: ð39Þ

The condition (39) is satisfied at r ¼ 0 and r ¼ r−, where
its l.h.s. is a2 and r−2 þ ða4=r−2Þ þ 2a2, respectively.
Here, we have used Fð0Þ ¼ 1 and Δðr−Þ ¼ r−2Fðr−Þþ
a2 ¼ 0. Thus, if r ¼ ϵa or r ¼ r− − η, where ϵ is a small
positive or negative number1 and η is a small positive
number, there are no causality violations for all rotating
regular black holes.
It might be true that the condition (39) holds for all

r < r−, including negative values down to −r−. The
derivative of the l.h.s. of (39) is

2r − a2F0; ð40Þ

4 8 12
a2 Q21

2.49

8

15

M2 Q2 a

4 8 12
a2 Q2

2.51

7.5

12.5

17.5

rext
2 Q2 b

FIG. 1. (a) Using different horizontal and vertical scales, we
show in the ða2;M2Þ plane the extremality condition. Continuous
plot: Rotating regular black hole (24) with F given by (25). The
black hole region is above this curved line. The curve itself
represents an extremal black hole, and the region beneath it
represents regular non-black-hole solutions. Dashed plot: Rotat-
ing Kerr-Newman black hole. The Kerr-Newman black hole
region is above this straight line of the equation M2=Q2 ¼
a2=Q2 þ 1. Notice that the region between the two plots
corresponds to Q2 < M2, which is within the black hole region
for the Kerr-Newman solution but within the non-black-hole
region (∀a2 ≥ 0) for the rotating regular black hole (24). This is a
parametric plot of 1=ð2sÞ2 versus u2 (see Appendix B). (b) The
common radius rext2 of the merging horizons versus a2. For
a2 ¼ 0, we have rext2=Q2 ≃ 2.51155, yielding rext=jQj≃ 1.58,
as found in Ref. [17]. This is a parametric plot of t − 1 versus u2

(see Appendix B).

1This same result could be achieved setting r ¼ ϵa and
θ ¼ ðπ=2Þ þ δ, where δ is a small positive or negative number,
yielding Σ≃ a4ðϵ2 þ δ2Þ.
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which vanishes at r ¼ 0. Because of the de Sitter behavior
(26), the function F approaches 1 from below, resulting in
F0 < 0 near the origin. If F0 < 0 holds for all 0 < r < r−,
then 2r − a2F0 > 0 and the l.h.s. of (39) increases from a2

to r−2 þ ða4=r−2Þ þ 2a2; hence, no causality violations
occur for 0 < r < r−. Even if F0 < 0 fails to be true for all
0 < r < r−, the condition (39) may still hold unless F
oscillates rapidly in the region 0 < r < r−, in which case
this would lead to a nonphysical solution.

4. Angular velocities

The angular velocity Ω of the rotating hole (24) is2

Ω≡ −gtϕ=gϕϕ ¼ 2af=Σ: This is the angular velocity,
attributable to dragging effects, of freely falling particles
initially at rest at spatial infinity as they reach the point
ðr; θÞ. As r → ∞, Ω → 2Jr−3, where J ¼ Ma is the
angular momentum of the rotating hole. The angular
velocity of the horizon ΩH is taken as ΩðrþÞ. Using
ΣðrþÞ ¼ ðrþ2 þ a2Þ2 along with (34), we obtain

ΩH ¼ 2afðrþÞ
ΣðrþÞ

¼ arþ2½1 − FðrþÞ�
ðrþ2 þ a2Þ2 ¼ a

rþ2 þ a2
: ð41Þ

The four-velocity of the fluid elements is [6,7]

eμt ¼ ðr2 þ a2; 0; 0; aÞ=
ffiffiffiffiffiffiffiffi
ρ2Δ

q
: ð42Þ

This can be written in terms of the timelike tμ ¼ ð1; 0; 0; 0Þ
and spacelike ϕμ ¼ ð0; 0; 0; 1Þ Killing vectors as

eμt ¼ Nðtμ þ ωϕμÞ; ð43Þ
with N ¼ ðr2 þ a2Þ=

ffiffiffiffiffiffiffiffi
ρ2Δ

p
and ω ¼ a=ðr2 þ a2Þ being

the differentiable angular velocity of the fluid. Since the
norm of the vector tμ þ ωϕμ, 1=N2, is positive only for
Δ > 0, which corresponds to the region r > rþ, the fluid
elements follow timelike world lines only for r > rþ. As
r → rþ, ω approaches the limit a=ðrþ2 þ a2Þ that is the
largest angular velocity of the fluid elements, and this
equals the angular velocity of the event horizon (41).
So, the fluid elements are dragged with the angular
velocity ΩH as all falling objects. At the event horizon,
tμ þ ωϕμ becomes null and tangent to the horizon’s null
generators.

5. Separability of Hamilton-Jacobi equation
for neutral particles

With S and τ denoting the Hamilton’s principal function
and proper time, the Hamilton-Jacobi equation takes the
form

2S;τ ¼ gμνS;μS;νðS;μ ≡ ∂S=∂μ; etcÞ: ð44Þ

With the elements of the inverse metric of (24) given by

0.5 0.7 0.9
sin

1.9

1

0.1

r a

0.99 1
sin

0.1

0.05

0
r2 b

FIG. 2. For all the plots, we took M2 ¼ 16, Q2 ¼ 1, and
a2 ¼ 1, corresponding, according to Fig. 1(a), to the black hole
region for the Kerr, the Kerr-Newman, and the rotating regular
black hole solutions (24), with F given by (25). (a) Implicit plot
of Σðsin θ; rÞ ¼ 0, where Σ ¼ ðr2 þ a2Þ2 − a2Δsin2θ and Δ ¼
r2F þ a2, for the Kerr black hole (dashed line, F ¼ 1 − 2M=r),
the Kerr-Newman black hole (continuous line, F ¼ 1 − 2M=rþ
Q2=r2), and the rotating regular black hole solution (24), with F
given by (25) (the point sin θ ¼ 1 and r ¼ 0). Causality viola-
tions and CTCs occur on the right of each curve, where gϕϕ > 0.
The Kerr black hole has CTCs for r < 0 only while the Kerr-
Newman one has CTCs for both signs of r. For the rotating
regular black hole solution (24) with F given by (25), no causality
violations or CTCs occur, since gϕϕ < 0 [except at the point
(sin θ ¼ 1 and r ¼ 0), where Σ ¼ 0 and gϕϕ is undefined].
(b) Implicit plot of Σðsin θ; r2Þ ¼ 0 for the rotating regular black
hole solution (24), with F given by (25). The plot confirms that
solutions to Σðsin θ; r2Þ ¼ 0 for sin θ ≠ 1 are such that r2 < 0.

2In Ref. [6], Ω was unintentionally misprinted as
gθϕ ¼ Ωgθθsin2θ. This is obviously a mistake since gθϕ ≡ 0.
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gtt ¼ Σ
ρ2Δ

; gtϕ ¼ 2af
ρ2Δ

; gϕϕ ¼ −
Δ − a2sin2θ
ρ2Δsin2θ

;

grr ¼ −
Δ
ρ2

; gθθ ¼ −
1

ρ2
;

we expand the r.h.s. of (44) as3

2S;τ ¼
Σ
ρ2Δ

ðS;tÞ2 þ
4af
ρ2Δ

S;tS;ϕ −
Δ − a2sin2θ
ρ2Δsin2θ

ðS;ϕÞ2

−
Δ
ρ2

ðS;rÞ2 −
1

ρ2
ðS;θÞ2; ð45Þ

¼ ½ðr2 þ a2ÞS;t þ aS;ϕ�2
ρ2Δ

−
½asin2θS;t þ S;ϕ�2

ρ2sin2θ

−
Δ
ρ2

ðS;rÞ2 −
1

ρ2
ðS;θÞ2: ð46Þ

For neutral particles, we assume, as usual,

S ¼ ϵ

2
τ − Etþ Lϕþ SrðrÞ þ SθðθÞ; ð47Þ

where ϵ ¼ 0 for null geodesics and ϵ ¼ 1 for timelike ones,
and L and E are the conserved momentum and energy per
unit mass of the particle (the mass is defined by
pμpμ ¼ m2, where pμ is the 4-momentum of the particle).
This ansatz allows us to bring Eq. (46) to the following
form [23]:

ΔðdSr=drÞ2 − ½ðr2 þ a2ÞE − aL�2
Δ

þ ðL − aEÞ2

þ ϵr2ðdSθ=dθÞ2 þ ðL2csc2θ − a2E2 þ ϵa2Þcos2θ ¼ 0;

ð48Þ
which separates as

ΔðdSr=drÞ2 ¼ ½ðr2 þ a2ÞE − aL�2
Δ

− L − ðL − aEÞ2 − ϵr2;

ðdSθ=dθÞ2 ¼ L − ðL2csc2θ − a2E2 þ ϵa2Þcos2θ;
where L is a constant. This yields

S ¼ ϵ

2
τ − Etþ Lϕþ

Z
r

ffiffiffiffiffiffiffiffiffiffi
RðrÞp
Δ

drþ
Z

θ ffiffiffiffiffiffiffiffiffiffi
ΘðθÞ

p
dθ;

ð49Þ

where

RðrÞ≡ ½ðr2 þ a2ÞE − aL�2 − Δ½Lþ ðL − aEÞ2 þ ϵr2�;
ð50Þ

ΘðθÞ≡ L − ½L2csc2θ þ a2ðϵ − E2Þ�cos2θ: ð51Þ

Note that the only dependence on f in these last three
equations is through Δ ¼ r2 − 2f þ a2.
The basic equations are derived on setting to 0 the partial

derivatives of S, as given by Eqs. (49)–(51), with respect to
the constants ðϵ; L; E;LÞ. Skipping the details of the
calculations (similar derivations are done on p. 345 of
Ref. [23]), the basic equations of geodesic motion take the
following forms where the dot denotes the derivative with
respect to proper time τ:

ρ4 _r2 ¼ R; ρ4 _θ2 ¼ Θ;

ρ2Δ _ϕ ¼ 2aEf þ ðρ2 − 2fÞLcsc2θ;
ρ2Δ_t ¼ EΣ − 2aLf; ð52Þ

where we have used4 Σ ¼ ρ2Δþ 2fðr2 þ a2Þ in the last
equation. These basic equations are valid for any rotating
regular or singular metric (24). They generalize the basic
equations for metrics derived in Refs. [23,24].
As an application of (52) (further applications are given

in Ref. [25]), we determine the condition(s) under which
circular motion exists in the equatorial plane θ ¼ π=2. With
θ ¼ π=2, the second equation in (52) [ρ4 _θ2 ¼ Θ] reduces to
L≡ 0; then, the first one yields

r2 _r ¼ �V1=2; ð53Þ

where

Vðr; ϵ; a; L; EÞ≡RðL ¼ 0Þ ¼ ½ðr2 þ a2ÞE − aL�2
− Δ½ðL − aEÞ2 þ ϵr2�: ð54Þ

Circular orbits in the equatorial plane satisfy both
conditions

V ¼ 0 and V;r ¼ 0; ð55Þ

which can be solved for ðE;LÞ. The expression of E2 reads

E2 ¼ 8ða2 − ΔÞ2Δþ 2rða2 − ΔÞΔΔ0 − a2r2Δ02 � 2
ffiffiffi
2

p
ajΔj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2a2 − 2Δþ rΔ0Þ3

p
r2½16Δ2 þ r2Δ02 − 8Δð2a2 þ rΔ0Þ� ; ð56Þ

3The coefficient of ð∂S=∂tÞ2 in Eq. 166 of Ref. [23] should read Σ=ðρ2ΔÞ instead of Σ2=ðρ2ΔÞ.
4In Eq. 184 of Ref. [23], one should replace Σ2 by Σ.
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(here, Δ0 ≡ dΔ=dr), where we have assumed, without loss
of generality, a > 0. The upper sign in (56), and in the
following equations, corresponds to counterrotating par-
ticles, or retrograde circles, with L < 0, and the lower sign
to corotating particles, or direct circles, with L > 0.
In order for E2 to be real, the first obvious condition is

2a2 − 2Δþ rΔ0 ≥ 0: ð57Þ

Such a condition is never mentioned in the literature, most
likely because it is satisfied by astrophysical requirements
demanding r to be larger than the radius of the event horizon.
The condition is static in that it does not depend on the
rotation parameter a: With Δ ¼ r2 − 2f þ a2, it reduces to

2f − rf0 ≥ 0: ð58Þ
For the Kerr (2f ¼ 2Mr) and the Kerr-Newman (2f ¼
2Mr −Q2) solutions, (56) reduces to Mr ≥ 0 and Mr ≥
Q2 ≡Mr0, respectively, and these constraints are satisfied in
astrophysical applications. In the physical case M > 0, the
circle of radius r0 ≡Q2=M is located inside the event
horizon (M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2 − a2

p
) of the Kerr-Newman black

hole for all a, but it is outside the apparent horizon
(M −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2 − a2

p
) for sufficiently small values of a.

For a2 > Q2ðM2 −Q2Þ=M2 ≡ a02, r0 is within the apparent
horizon, too (it is obvious thatQ2 þ a02 < M2 forQ2 < M2).
Thus, in the physical case M > 0, there is no circular

equatorial motion for the Kerr black hole if r < 0 and for
the Kerr-Newman black hole if r < Q2=M. For a rotating
regular black hole, as the rotating counterpart of the
AGRSBH [given by (24) and (25)], or any rotating singular
black hole, clearly the constraint (57) is satisfied within the
event horizon rþ. That is, there exists a point r0 < rþ such
that (57) is satisfied for r ≥ r0, where r0 is a solution to
2f − rf0 ¼ 0. In fact, (57) is satisfied on the event horizon,
since there, ΔðrþÞ≡ 0 and Δ0ðrþÞ > 0 (Δ < 0 for r < rþ,
and Δ > 0 for r > rþ); thus, it is also satisfied in the
vicinity of the event horizon from within. Constraint (57) is
thus no harm for astrophysical applications.
The constraint (57) is just a necessary condition for having

circular equatorial motion. The requirement that E2 > 0
imposes other physical constraints. Rewriting E2 in the form

E2 ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x1 þ x2
ffiffiffi
d

pq
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 − x2

ffiffiffi
d

pq �
2

r2d
; ð59Þ

E2 ¼ 2x2

r2
ffiffiffi
d

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 þ x2

ffiffiffi
d

pq
∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 − x2

ffiffiffi
d

pq �
2
;

d≡ 16Δ2 þ r2Δ02 − 8Δð2a2 þ rΔ0Þ;
2x1 ≡ 8ða2 − ΔÞ2Δþ 2rða2 − ΔÞΔΔ0 − a2r2Δ02;

2x2 ≡ j2Δ2 − 2a2Δ − a2rΔ0j; ð60Þ

we see that E2 > 0 if

d > 0 and x1 > 0: ð61Þ

Note that, since x12 − x22d ¼ 8a2Δ2ð2a2 − 2Δþ rΔ0Þ3,
the constraints x1 > 0 and (57) ensure the positiveness of
x1 − x2

ffiffiffi
d

p
in (59) and (60). The expressions (59) and (60) of

E2 generalize Eq. (2.12) of Ref. [24] to all rotating regular or
singular black holes.
Clearly, the two constraints (61) are not satisfied on the

event horizon but they are manifestly satisfied outside of it
for limr→∞fd; x1g → f∞;∞g. They might be satisfied
inside the apparent horizon, too.
From now on, we restrict ourselves to the astrophysical

region that is located outside the event horizon. The
limiting case d ¼ 0 results in a circular orbit for photons,
for, in this case, the energy per unit mass generically
diverges for retrograde circles [upper sign in (59)] as well
as for direct circles [lower sign in (60)]. Thus, the largest
root rimb of

16Δ2 þ r2Δ02 − 8Δð2a2 þ rΔ0Þ ¼ 0; ð62Þ

after eliminating all common factors with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 þ x2

ffiffiffi
d

pq
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x1 − x2
ffiffiffi
d

pq
, provides the innermost circles for retrograde

or direct circular motion. For the Kerr black holes, Eq. (59)
reduces, after eliminating all common factors between
numerator and denominator, to Eq. (2.12) of Ref. [24]
and provides the innermost boundaries (imb’s) of circular
orbits for particles:

rK imb ¼ 2M

	
1þ cos

�
2

3
arccosð�a=MÞ

�

: ð63Þ

B. Special properties

We specialize to the case of the AGRSBH where F is
given by (25). Dropping the subscripts�, Eq. (34) takes the
form

r2 −
2Mr4

ðr2 þQ2Þ3=2 þ
Q2r4

ðr2 þQ2Þ2 þ a2 ¼ 0: ð64Þ

As we noticed earlier, the locations of the horizons are
functions of ðM;Q; aÞ only. Unfortunately, one cannot
solve (64) for r in terms of ðM;Q; aÞ. For Q2=M2 ≪ 1, we
obtain

r� ≃ rK� þ c�Q2;

c� ¼ 4M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p

2½a2 −MðM �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
Þ�
; cþ < 0; c− > 0;

ð65Þ
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where rK� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
are the horizons of the Kerr

black hole. If rKN� denote the corresponding horizons of
the Kerr-Newman hole

rKN� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 −Q2

p ≃ rK�∓ Q2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p ;

ð66Þ

we obtain the order relations

rK− < rKN− < r− < rþ < rKNþ < rKþ: ð67Þ

As far as the approximation, Q2=M2 ≪ 1 is valid, but this
likely extends to all values of Q2 within the limits of
nonextremality; the horizons are ever closer than they are in
Kerr or Kerr-Newman solutions.
It is also interesting to investigate the effects of nonlinear

electrodynamics on the imb’s of circular orbits for particles.
For that purpose, we have developed enough tools in the
previous section to tackle the question. We will do that in
the approximation Q2=M2 ≪ 1 and compare the imb’s for
the Kerr, the Kerr-Newman, and the rotating regular
counterpart of the AGRSBH.
Since we know the exact solutions for the imb’s for the

Kerr black hole [given by (63)], we do not need to look for
and simplify any common factor(s) between the numerator
and denominator of (59). If rKN imb and rimb denote the
imb’s for the the Kerr-Newman black hole and the rotating
regular counterpart of the AGRSBH, respectively, we look
for solutions to (62) of the forms

rKN imb ¼ rK imb þ CKNQ2; rimb ¼ rK imb þ CQ2:

ð68Þ

Knowing the functions f for the Kerr-Newman black hole
and the rotating regular counterpart of the AGRSBH

fKN ¼ Mr −
Q2

2
;

f ¼ Mr4

ðr2 þQ2Þ3=2 −
Q2r4

2ðr2 þQ2Þ2 ;

we obtain the following expressions for CKN and C:

CKN ¼ −
4a2 þ 4rK imbðrK imb − 3MÞ

3rK imbðrK imb −MÞðrK imb − 3MÞ ; ð69Þ

C ¼ −
4a2 þ ð3M=2þ 17rK imb=2ÞðrK imb − 3MÞ

3rK imbðrK imb −MÞðrK imb − 3MÞ : ð70Þ

Now, Eq. (63) yields (1) M < rK imb < 3M for retrograde
circles resulting inC > CKN > 0 and (2)3M < rK imb < 4M
for direct circles resulting inC < CKN < 0. Thus, for a given
value of a2, the effects of nonlinear electrodynamics on the

imb’s is to (1) enlarge their size for retrograde circles and
(2) reduce their size for direct circles:

retrograde motion∶ rK imb < rKN imb < rimb;

direct motion∶ rK imb > rKN imb > rimb:

The extremality condition and the common radius rext of
the merging horizons are solutions to (64) along with
∂Δ=∂r ¼ 0:

1 −
Mðr2 þ 4Q2Þr2
ðr2 þQ2Þ5=2 þ 2Q4r2

ðr2 þQ2Þ3 ¼ 0: ð71Þ

A complete derivation of the extremality condition is
provided in Appendix B. For Q2=M2 ≪ 1, the derivation
yields

M2 ≃ a2 þ 4Q2; rext ≃M þ 3Q2

2M
: ð72Þ

The same values for an extremal Kerr-Newman black hole
are M2 ¼ a2 þQ2 and rKNext ¼ M. The radius of the
extremal rotating regular black hole is 3Q2=ð2MÞ larger
than its Kerr-Newman counterpart.
For the same value of M2 − a2, ones sees that a Kerr-

Newman black hole may cumulate three more levels of the
electric charge ðM2 − a2Þ=4 than a rotating regular one can
do before the former becomes an extremal solution.
The latter conclusion extends to cases where the

assumption Q2=M2 ≪ 1 is not valid, as Fig. 1(a) depicts.
A consequence of that is to have no rotating and no
static regular black hole for Q2 < M2 but only regular non-
black-hole solutions for all values of a2 ≥ 0, as shown in
Fig. 1(a). It is clear from that figure that a horizontal line
M2=Q2 ¼ C, where C > 2.49 intersects the extremality
condition curve, of the rotating regular black hole (24) with
F given by (25), at some critical value ac2 above which the
rotating solution is no longer a black hole. As C gets closer
to 2.49, ac2 approaches 0; if rotation increases a bit (a2↑),
regular non-black-hole solutions become more favored
than rotating black holes by nonlinear electrodynamics.
Another interesting conclusion driven from Fig. 1(a) is

that the critical value ac2 for a rotating regular black hole is
smaller than that for a rotating singular one. This may
suggest the absence of superspinning regular holes.

V. CONCLUSION

We have shown through examples from the literature that
the final step in the NJA, which consists in bringing the
generated rotating solution in EFCs to BLCs by real
coordinate transformations, fails and that this is likely
related to the complexification procedure. Since the latter
procedure is, by itself, ambiguous, it seems there is no
remedy to help overcome the situation.
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In this work, we have provided a method for generating
rotating solutions in BLCs that is based partly on the NJA,
but it avoids the complexification issues and employs
physical arguments. The method applies equally to gen-
erate regular or singular rotating black hole and non-black-
hole solutions as wormholes and so on [6,7].
In this work, we have derived metric formulas in BLCs

and in Kerr-like forms to generate generic rotating regular,
as well as singular, black holes. These metrics are easy to
handle, so we could provide simple treatments pertaining to
the locations of the horizons and to the causality violations,
could evaluate the SET and the scalar invariants, could
provide the basic equation of geodesic motion for neutral
particles, and could determine analytically the extremality
condition.
We have concluded here and in Refs. [6,7] that the

generic rotating black hole and non-black-hole solutions
(24) are regular on the ring ρ2 ¼ 0, but physical entities are
undefined there.
Another interesting conclusion, confirmed in Ref. [22],

is that the rotating regular black hole, the counterpart of the
AGRSBH, has a much smaller electric charge and turns
into a regular non-black-hole solution, for yet a small
charge, well before its Kerr-Newman counterpart becomes
naked singularity. This remark extends most likely to all
rotating regular black holes that can be generated from
known static regular ones. The nonlinear electromagnetic
fields, due to the incursion of nonlinear electrodynamics in
general relativity, are strong enough to help “vanishing” the
horizons, for still small charges, well before their Kerr-
Newman counterparts can do so. Two other effects of

nonlinear electrodynamics in general relativity are the
absence of superspinning black holes and the convergence
of the imb’s of circular orbits for particles to the Kerr values
having the same value of the rotation parameter.
We have reached the conclusion that causality violations

do not occur in the region 0 ≤ r < r−, including small
negative values of r for all rotating regular black holes. By
symmetry of the static regular black holes, this conclusion
extends down to −r−.
The still remaining open issues are the determination of

the electromagnetic potential and energetics, as well as
details of geodesic motion in the geometry, of a rotating
regular black hole.

APPENDIX A: EINSTEIN EQUATIONS

The purpose of this section is to show that the general
rotating solution (24) is a solution to Einstein equations
Gμν ¼ Tμν, where Tμν is of the form (21). Consider, without
specifying the form of the function fðrÞ, the rotating
solution (24). For this solution, the basis ðet; er; eθ; eϕÞ,
dual to the 1-forms (22), reads

eμt ¼
ðr2 þ a2; 0; 0; aÞffiffiffiffiffiffiffiffi

ρ2Δ
p ; eμr ¼

ffiffiffiffi
Δ

p ð0; 1; 0; 0Þffiffiffiffiffi
ρ2

p ;

eμθ ¼
ð0; 0; 1; 0Þffiffiffiffiffi

ρ2
p ; eμϕ ¼ −

ðasin2θ; 0; 0; 1Þffiffiffiffiffi
ρ2

p
sin θ

; ðA1Þ

and the nonvanishing components of the Einstein tensor
Gμν read

Gtt ¼
4f2 þ 2r½r2 þ a2ð2 − cos2θÞ�f0 − 2f½r2 þ a2ð2 − cos2θÞ þ 2rf0� − a2sin2θρ2f00

ρ6
;

Grr ¼
2ðf − rf0Þ

ρ2Δ
; Gθθ ¼ −

2ðf − rf0Þ þ ρ2f00

ρ2
;

Gtϕ ¼ asin2θ½4fða2 þ r2 þ rf0Þ − 4f2 − ða2 þ r2Þð4rf0 − ρ6f00Þ�
ρ6

;

Gϕϕ ¼ sin2θ
ρ6

f4a2sin2θf2 − f½2ða2 þ r2Þ½r2 þ a2ð2 − cos2θÞ� þ 4a2rsin2θf0�

þ ða2 þ r2Þ½2r½r2 þ a2ð2 − cos2θÞ�f0 − ða2 þ r2Þρ2f00�g: ðA2Þ

If the solution (24) satisfies Gμν ¼ Tμν, the components of
the SET (21) are expressed in terms of Gμν as ϵ ¼ eμt eνt Gμν,
pr ¼ eμreνrGμν ¼ −grrGrr, pθ ¼ eμθe

ν
θGμν ¼ −gθθGθθ, and

pϕ ¼ eμϕe
ν
ϕGμν. Using (A1) and (A2), we arrive at (32).

APPENDIX B: EXTREMALITY CONDITION

We intend to find the extremality condition by solving
both Eqs. (64) and (71). Let

u2 ≡ a2=Q2; 2s≡ jQj=M; ðB1Þ

x2 ≡ rext2=Q2; t ¼ z2 ≡ x2 þ 1 > 1; ðB2Þ

where the variables x and s have been used in Ref. [17].
Equations (64) and (71) read, respectively,

z3

z2 − 1
−
1

s
þ 1

z
þ u2z3

ðz2 − 1Þ2 ¼ 0; ðB3Þ
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1 −
1

2s
ðz2 þ 3Þðz2 − 1Þ

z5
þ 2ðz2 − 1Þ

z6
¼ 0: ðB4Þ

Solving (B4) for s and using the result in (B3), we arrive at

s ¼ zð−3þ 2z2 þ z4Þ
2ð−2þ 2z2 þ z6Þ ; ðB5Þ

1 − 3t − 3ðu2 − 2Þt2 − ð5þ u2Þt3 þ t4 ¼ 0: ðB6Þ

Equation (B6) admits one and only one real root greater
than 1 for all u2 ≥ 0: This is the root

t ¼ 5þ u2

4
þ

ffiffiffiffiffi
W

p

2
þ 1

2

�
Z þ 29þ 111u2 þ 27u4 þ u6

4
ffiffiffiffiffi
W

p
�
1=2

;

ðB7Þ

where

U¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
428þ828u2þ963u4þ16740u6−1620u8−108u10

p
;

V¼ð36þ27u2þ144u4−18u6þ
ffiffiffi
3

p
UÞ1=3;

W¼2−u2þ3ðu2−2Þþ1

4
ð5þu2Þ2þ V

181=3

þð2
3
Þ1=3ð1−15u2þ3u4Þ

V
;

Z¼u2−2þ3ðu2−2Þþ1

2
ð5þu2Þ2− V

181=3

−
ð2
3
Þ1=3ð1−15u2þ3u4Þ

V
: ðB8Þ

With the expression of t given by (B7) and (B8), the
extremality condition M2=Q2 ¼ 1=ð2sÞ2 reads, substitut-
ing in (B5),

M2

Q2
¼ 1

t

�
t3 þ 2t − 2

t2 þ 2t − 3

�
2

: ðB9Þ

Using (B6) to eliminate all powers higher than 3, we
arrive at

M2

Q2
¼ ð84þ 97u2 þ 21u4 þ u6Þt3 þ 3ð2þ u2Þð−20þ 9u2 þ u4Þt2 þ ð56þ 38u2 þ 3u4Þt − ð19þ 13u2 þ u4Þ

ð37þ 17u2 þ u4Þt3 þ 3ð−21þ 7u2 þ u4Þt2 þ ð35þ 3u2Þt − ð9þ u2Þ : ðB10Þ

The plot of Fig. 1(a) is a parametric plot of 1=ð2sÞ2 versus u2,
and that of Fig. 1(b) is a parametric plot of t − 1 versus u2.
The limit u2 → 0 in (B10) provides the extremality

condition for the AGRSBH:

for AGRSBH;
M2

Q2
¼ 216ts2 − 112ts þ 65

85ts2 − 39ts þ 28
; ðB11Þ

where the cubic terms have been eliminated using ts3−
4ts2 þ 2t − 1 ¼ 0, to which ts is the only real solution:

ts ¼
8þ ð332 − 12

ffiffiffiffiffiffiffiffi
321

p Þ1=3 þ ð332þ 12
ffiffiffiffiffiffiffiffi
321

p Þ1=3
6

:

ðB12Þ

Numerically, the r.h.s. of (B11) is 2.48641≃ 2.49, which
is the value at which the plot of Fig. 1(a) intersects the
vertical axis, and ts ≃ 3.51155. The plot of Fig. 1(b)
intersects the vertical axis at ts − 1≃ 2.51155, yielding
rext=jQj ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

ts − 1
p ≃ 1.58, as found in Ref. [17].
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