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We propose a new antenna configuration of a torsion-bar antenna (TOBA) and study its performance.
A TOBA is a novel type of an antenna for low-frequency gravitational waves (GWs) which consists of
two bar-shaped orthogonal test masses. Previously only the rotation of the bars on the horizontal plane
had been considered as an output signal. In this paper, we introduce a new antenna configuration for a
TOBA to incorporate two additional outputs by measuring the rotation of the bars on the vertical
planes. Such a triple-output TOBA can be regarded as a network of three coincident but misaligned
interferometric detectors. The target sensitivity we consider in this paper is about 3 × 10−20 Hz−1=2 at
1 Hz. Since the triple-output TOBA is sensitive to all directions of GWs, event detection rates are
improved by a factor of 1.7. It also increases the parameter resolution drastically for short-duration
observations because the triple-output TOBA has three independent output signals and can discriminate
two polarization modes of a short-duration GW signal even with single antenna. For instance, in the
case of a 104-104 IMBH merger at 100 Mpc, the source location is typically measurable with an
accuracy of �0.01-0.1 steradians which is roughly two order of magnitude better than the conventional
single-output TOBA.
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I. INTRODUCTION

A torsion-bar antenna (TOBA) is a gravitational-wave
(GW) detector with two bar-shaped test masses which
rotate differentially by the tidal force of GWs [1–4]. The
main feature of the TOBA is that it has good sensitivity at
low frequencies around 1 Hz even on the ground because of
its low resonant frequency of the test masses in the
rotational degrees of freedom. Other ground-based detec-
tors such as LIGO [5], Virgo [6], and KAGRA [7] are
sensitive to GWs only above about 10 Hz. The test masses
of interferometers do not behave as free masses and the
seismic noise is not reduced below 10 Hz since the resonant
frequency of the pendulum mode is higher than that of
torsional mode. Though space-borne GW detectors such as
evolved Laser Interferometer Space Antenna [8] and DECi-
hertz Interferometer Gravitational wave Observatory [9] are
sensitive at low frequencies, such space missions need
several decades to be launched. TOBA is the possible way
to detect low-frequency GWs with less time and fewer costs
on the ground.
The main observational targets of a TOBA are GWs

from intermediate-mass black hole (IMBH) binaries. While
numerous evidence for the existence of stellar mass BHs

and supermassive BHs has been obtained through electro-
magnetic observations, existence of IMBHs has yet to be
confirmed clearly. Several candidates for IMBHs have been
identified as ultraluminous X-ray sources [10–12] and as
dynamics of globular clusters [13,14]. A detection of GWs
from IMBHs would elucidate their existence and would
measure their masses and their spin precisely [15]. Such
information may provide clues to the dynamics and struc-
ture of globular clusters and to the evolution of super-
massive BHs. However, because GW signals from IMBH
binaries do not last long enough for us to use the Doppler
modulation induced in the signal by the Earth’s motion and
because a conventional GW detector cannot break the
degeneracy of two independent polarization modes of the
GW for such short-duration signal, it is difficult to measure
the waveform parameters and the direction of the source
with a single detector. Precise estimation of the direction of
the GW sources may enable us to perform complementary
observations with electromagnetic waves which provide us
more detailed information on IMBHs.
In this paper, we propose a new observational con-

figuration for a TOBA to improve the measurement
accuracies of waveform parameters and event detection
rates. We can obtain three independent output signals by
monitoring not only the horizontal rotation of the test
masses, but also their vertical rotations. Since these three
signals have different responses to GWs in such a way
that they compensate for their insensitive directions to
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GWs each other, the detection volume is enlarged and
therefore event detection rates are improved. Furthermore,
the waveform parameters can be determined with a single
TOBA even though the observation time is shorter than a
day. It will enable us to derive more information about
GW sources with less detectors.
The rest of this paper is composed as follows. We present

the details of our antenna configuration and the antenna
pattern functions in Sec. II. In Sec. III, we show the
accuracy of the parameter estimation evaluated by the
Fisher analysis for both monochromatic sources and binary
coalescences. Summary and conclusions are presented
in Sec. IV.

II. NEW ANTENNA CONFIGURATION

A. Setup

ATOBA is a low-frequency GW antenna which consists
of two orthogonal bar-shaped test masses. Each bar is
supported at its center, and mirrors are attached to the both
ends of each bar. When a GW passes through the antenna,
the bars rotate differentially around z-axis as shown in
Fig. 1. The GW signal is encoded in the angular motions
which can be measured by the optical path difference in a
laser interferometer as will be explained below. In the
previous configuration, only the rotation angles on the xy
plane, θ1 and θ2 had been considered as output signals [1].
In this paper, we develop the antenna configuration by
considering the ϕ1 and ϕ2 degrees of freedom without
changing the previous setup drastically.
In the presence of a GW signal hij, the bars are subjected

to the tidal force of GWs and rotate differentially. They
work as test masses for GW detection above the resonant
frequency. The horizontal angular motion, θ1, of the test

mass 1 from the original position obeys the equation of
motion [1]:

Iθ̈1ðtÞ þ γθ _θ1ðtÞ þ κθθ1ðtÞ ¼
1

4
ḧijq

ij
θ1
; ð1Þ

where I; γθ; κθ, and qijθ1 are the moment of inertia, dis-
sipation coefficient and spring constant in the rotational
degree of freedom, and the dynamic quadrupole moment of
the horizontal rotational mode [16], respectively. We
assume that each bar-shaped test mass is suspended by
two wires at its center. The two test masses should be
installed adjacent to each other as close as possible in order
to reject the common-mode noise while they do not touch
each other. As shown in Fig. 2, the test mass 1 has two
holes at its center for the suspension wires of the test mass
2. This setup makes it possible for the centers of the two test
masses to be positioned at the same point on the xy plane,
so that the common-mode noise rejection is effective. Then,
the spring constant κθ is derived by κθ ¼ mga2=l, where g is
the gravity acceleration, a is the distance between the two
holes, and l is the length of the suspension wires. ATOBA
is sensitive to GWs above the resonant frequency fθ ¼ffiffiffiffiffiffiffiffiffi
κθ=I

p
=2π for the θ degree of freedom. Figure 2 shows

how to extract GW signals from angular motions of the
bars. For instance, in the left panel in Fig. 2, an input laser
beam is split into two orthogonal beams by a beam splitter,
and after going back and forth in two Fabry-Perot cavities
placed at the end of each bar the two beams are recombined
at the beam splitter. Temporal change of difference in the
cavity arm lengths due to the passage of a GW is measured
by a photo-detector placed in the direction away from the
laser which is not shown in Fig. 2.
Meanwhile, the angular motion in the vertical plane ϕ1

obeys the equation of motion

Iϕ̈1ðtÞ þ γϕ _ϕ1ðtÞ þ κϕϕ1ðtÞ ¼
1

4
ḧijq

ij
ϕ1
: ð2Þ

The notation is basically the same as above. It means that
the GW signals also appear in the rotation angle ϕ1. In this
case, the spring constant for the ϕ degree of freedom κϕ is
written as

κϕ ¼ mgd; ð3Þ

where d is the vertical distance between the center of
mass of the test mass and the midpoint of the two
suspension points. Therefore, the resonant frequency fϕ0 ¼ffiffiffiffiffiffiffiffiffi
κϕ=I

p
=2π will be below 10 mHz when the center of mass

is adjusted so that d ≤ 3 mm. The estimated sensitivity
obtained by monitoring ϕ would be basically the same as θ
except the suspension thermal noise when the configuration
of the sensors are the same. The suspension thermal noise
of the ϕ directions would be larger by a factor of
fϕ0=fθ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qθ=Qϕ

p
, where Qi is the quality factor of the

Test mass 1

θθ
1 Test mass 2

θ
2

Φ

Θ
mirrors for 
Fabry-Perot cavities

FIG. 1 (color online). Schematic picture of TOBA in the proper
antenna frame. The test masses rotate in the horizontal plane
(θ1 and θ2) and in the vertical planes (ϕ1 and ϕ2) due to the tidal
force of GWs.

EDA et al. PHYSICAL REVIEW D 90, 064039 (2014)

064039-2



fibers in the direction of i. However, the value of Qϕ is
difficult to estimate theoretically and should be investigated
experimentally because it is considered to largely depend
on the suspension system such as wire clamps. Thus, we
assume that the noise levels including the thermal noise for
the θ and ϕ degrees of freedom are the same in this paper,
so that the strain sensitivities involved with θ and ϕ are
assumed to be the same.
The same equations of motion are applied to the test mass

2. Considering θ2 ¼ −θ1 [1], we obtain three independent
output signals, sI ¼ θ1 − θ2, sII ¼ ϕ1, and sIII ¼ ϕ2. In the
following, the output obtained from θ1 − θ2;ϕ1, and ϕ2 are
referred to as the output I, II, and III, respectively. The
expected sensitivity curve for the output I with the param-
eters in Table I is represented in Fig. 3.

B. Antenna response

The response of the antenna to the incident GW depends
on its relative position and orientation to the GW source.
Such geometrical information is encoded in antenna
pattern functions Fþ and F× which correspond to the
two independent GW polarizations. Using Fþ and F×, the
GW signal hðtÞ in the antenna output is expressed by

hðtÞ ¼ FþðtÞhþðtÞ þ F×ðtÞh×ðtÞ: ð4Þ

Let us introduce two coordinate systems, a proper antenna
frame ðx; y; zÞ such that the two bars are aligned with the
x-axis and the y-axis as illustrated in Fig. 1 and a wave-
coming frame ðx0; y0; z0Þ such that the direction of GW
propagation is along the z0-axis. The GW waveform hðtÞ in
the proper antenna frame can be related to the waveform
h0ðtÞ in the wave-coming frame by

hðtÞ ¼ MðtÞh0ðtÞMðtÞT ð5Þ

where M is the 3-dimensional transformation matrix and
MT denotes the transpose of the matrix M.
As discussed in the previous subsection, the two

orthogonal bars are twisted differentially by the tidal
force from the incoming GW. When the tidal force
produces the small rotation of the bar on the x-axis toward
the y-direction, the resulting GW signal is expressed by
hijnixn

j
y. Similarly, the GW signals hI; hII, and hIII of the

three outputs obtained from θ1 − θ2;ϕ1 and ϕ2 in Fig. 1 are
expressed by

hI ¼
1

2
ðnixnjy þ niyn

j
xÞhij ¼ nixn

j
yhij; ð6aÞ

hII ¼
1

2
nixn

j
zhij; ð6bÞ

hIII ¼
1

2
niyn

j
zhij ð6cÞ

where nx; ny, and nz are the unit vectors pointing toward the
x; y and z-directions, respectively in the proper antenna
frame. hI; hII, and hIII can be decomposed into the sum of
the two independent polarization hþ and h× as in Eq. (4).
Combining Eqs. (5)–(6c), we can find the explicit expres-
sions for the antenna pattern functions.
When the signal duration is so short that the relative

motion of the antenna with respect to the sources is
negligible, Fþ and F× can be regarded as constants. In
this case, the pattern functions are given by

Fþ
I ¼ −

1þ cos2Θ
2

sin 2Φ cosΨþ cosΘ cos 2Φ sin 2Ψ;

ð7aÞ

FIG. 2 (color online). This is the example of experimental configuration of two test masses. In the right panel, the test mass 2 is not
shown for convenience. Each test mass is suspended by two wires. The test mass 1 has two holes with a distance a for the suspension
wires of the test mass 2. The angular fluctuations of test masses are read by Fabry-Perot Michelson interferometers. Note that this setup
is not fixed and should be discussed further in the process of the development.
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F×
I ¼ cosΘ cos 2Φ cos 2Ψþ 1þ cos2Θ

2
sin 2Φ sin 2Ψ;

ð7bÞ

Fþ
II ¼

1

4
sin 2Θ sinΦ cos 2Ψ −

1

2
sinΘ cosΦ sin 2Ψ; ð7cÞ

F×
II ¼ −

1

2
sinΘ cosΦ cos 2Ψþ 1

4
sin 2Θ sinΦ sin 2Ψ; ð7dÞ

Fþ
III ¼

1

4
sin 2Θ cosΦ cos 2Ψþ 1

2
sinΘ sinΦ sin 2Ψ; ð7eÞ

F×
III ¼

1

2
sinΘ sinΦ cos 2Ψ −

1

4
sin 2Θ cosΦ sin 2Ψ ð7fÞ

where Ψ is the GW polarization angle. The direction of the
incoming GW is assumed to be n ¼ −ðsinΘ sinΦ;
sinΘ cosΦ; cosΘÞ in the proper antenna frame. The
antenna responses of the single-output TOBA shown in
Eqs. (7a) and (7b) are basically equivalent to that of an
interferometric detector.
For long-duration signals, the antenna and the source

cannot be treated as at rest with respect to each other
because of the Earth’s rotation and revolution. So Θ and Φ
in Eqs. (7a)–(7f) are not constant any longer. These relative
motions induce the amplitude-modulation and phase-
modulation of the signal. To take into account these effects,
we follow the formulation presented by Jaranowski et al.
[17,18] and obtain the following expressions for the
antenna pattern functions.

Fþ
NðtÞ ¼ aNðtÞ cos 2ψ þ bNðtÞ sin 2ψ ; ð8aÞ

FIG. 3 (color online). The estimated sensitivity curve of 10-m
scaled TOBA.

FIG. 4 (color online). Square root of the antenna power patterns
ffiffiffiffiffiffi
PN

p
for the single-output TOBA (left panel) and the triple-output

TOBA (right panel). The antennas are assumed to be located at the TAMA300’s site in Japan (35° 400 3600 N, 139° 320 1000 E).
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F×
NðtÞ ¼ bNðtÞ cos 2ψ − aNðtÞ sin 2ψ ;
N ¼ I; II; III: ð8bÞ

Explicit expressions for the modulation amplitudes aNðtÞ
and bNðtÞ are given in Appendix A. The antenna pattern
functions shown in Eqs. (8a), (8b), (A1a)–(A1f) contain the
unknown parameters α; δ;ψ and the known parameters
λ; γ;Ωr;ϕr. The direction of the incident GW is specified
by two parameters α and δ which are called right ascension
and declination, respectively. The angle ψ denotes the GW
polarization angle. The antenna on the Earth is located at
the longitude λ and the latitude ϕr þΩrt where Ωr is the
angular speed of the Earth and ϕr is the initial phase
position. The antenna orientation γ is the angle between the
local East direction and the bisector of the antenna.

C. Detection volume

The new configuration presented in subsection II A
enhances the detection volume

VN ¼
Z

dΩ
Z

RNðα;δÞ

0

r2dr; ð9Þ

which represents the region enclosed by its reach in any
direction [19] with

RNðα; δÞ ¼
D
ρmin

½PNðα; δÞ�1=2: ð10Þ

Here D is the distance to which the antenna can observe
GWs by a single signal with a unit signal-to-noise ratio
(SNR), ρmin is the minimum value of the SNR above which
we can regard that the GW signal is detected, and
PNðα; δÞ ¼

P
NðFþ2

N þ F×2
N Þ is the antenna pattern power

function depicted in Fig. 4. In our case, the summation is
taken over the three outputs I, II, and III. Figure 4 indicates
that the triple-output TOBA has no blind direction and that
its sensitivity is much more uniform than the conventional
single-output TOBA.
When we take ρmin ¼ D ¼ 1 and assume that the

sensitivity of the three signals are the same for convenience,
then V1 ¼ 1.2 with the single signal, and V3 ¼ 2.0 with the
three signals. When we obtain three signals with the same
sensitivity, the detection volume will be about 1.7 times
larger than the single output configuration.

III. PARAMETER RESOLUTION

In the following, we study how accurately we could
measure the source location using a single and a network of
triple-output TOBAs and also examine the measurement
errors of the other waveform parameters. For this purpose
we consider two nominal sources, monochromatic sources
and IMBH binary coalescences. First, we examine the
monochromatic source case for a fixed SNR in order to

reveal how the new configuration of the antenna improves
the parameter resolution apart from the improved SNR.
This examination gives an insight into the result of the
IMBH mergers case. Then, we move on to discussions
about IMBH mergers at a fixed distance, which are more
realistic targets of a TOBA.

A. Fisher analysis

Before proceeding with calculations, we provide a
brief review of the Fisher analysis to evaluate parameter
estimation errors for a network of Na antennas each of
which has triple outputs (see [20–22] for more details).
Each output sNðtÞ is assumed to be written as a sum of the
noise nNðtÞ in the Nth output and the GW signal hNðtÞ,
sNðtÞ ¼ hNðtÞ þ nNðtÞ. If the noise is stationary, the
correlation between the Fourier components of the noise
can be expressed by

h ~nNðfÞ ~n�Mðf0Þi ¼
1

2
δðf − f0ÞSnðfÞNM ð11Þ

where h� � �i denotes the ensemble average and SnðfÞ
is a one-sided power spectral density matrix of the
antenna network. It is convenient to introduce a noise-
weighted inner product between two No-dimensional
vector functions f ðtÞ and gðtÞ,

ðf jgÞ ¼ 4Re
XNo

N;M¼1

Z
∞

0

df
~fNðfÞ~g�MðfÞ
SnðfÞNM

ð12Þ

where Re denotes the real part and No is the number of the
total outputs of the network. Using this inner product, the
SNR for the GW signal hðtÞ can be written as

S
N

¼ ðhjhÞ1=2: ð13Þ

We assume that the GW signal hðtÞ is characterized by a
collection of unknown parameters λ ¼ fλ1;…; λng. When
the noise is Gaussian in addition to stationary, the statistical
errors caused by the randomness of the antenna noises are
estimated by

hΔλiΔλji ¼ ðΓ−1Þij ð14Þ

for large S=N. The matrix Γij is referred to as the Fisher
information matrix defined by

Γij ¼
�∂h
∂λi

���� ∂h∂λj
�
: ð15Þ

To estimate the angular resolution of the antennas, we use
the error in solid angle defined by
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ΔΩ≡ 2πj sin δj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔα2ihΔδ2i − hΔαΔδi2

q
: ð16Þ

Throughout this paper, we assume that the noises of each
output are uncorrelated with each other and that the form of
their spectral densities are the same. In this case, the
spectrum matrix SnðfÞ has only diagonal elements all of
which can be written with the same function SnðfÞ.
In practice, it is necessary to reveal and solve some

technical issues in actual antennas. For example, the loss
angle of the suspension wire has to be investigated in the ϕ
direction. Though we assumed that the sensitivities of all
three signals are the same, the sensitivities should be
different because of the suspension thermal noise in sII
and sIII which is considered to be larger than that in sI as
discussed in subsection II A.
Also, Newtonian noise would be one of the largest

problems for low-frequency GW detection on the ground.
Newtonian noise is the noise due to fluctuations in the local
Newtonian gravitational field around the test masses which
result from ambient density fluctuations in the ground and
the atmosphere and from moving objects and humans near
the test masses [23–25]. Newtonian noise has yet to be
detected experimentally but would affect the sensitivity of a
TOBA below f ¼ 0.1 Hz [1]. We have to subtract the
Newtonian noise, for example, using seismic sensor arrays
to prevent the degradation of the SNR [26,27].

B. Monochromatic sources

1. GW waveform

We consider monochromatic GW with a frequency f0
which can be written as

hþðtÞ ¼ Aþ cos ð2πf0tÞ; ð17aÞ

h×ðtÞ ¼ A× sin ð2πf0tÞ ð17bÞ

where Aþ and A× are the amplitudes of the two independent
polarizations. When the source is a Newtonian circular
binary composed of two point masses, the amplitudes are
given by

Aþ ¼ 4GμωsR2

c4r
1þ cos2ι

2
; ð18aÞ

A× ¼ 4GμωsR2

c4r
cos ι ð18bÞ

where ι, μ, R, ωs and r is the inclination, the reduced mass,
the orbital radius, the orbital frequency and the distance to
the source, respectively (see e.g. [28]).
For monochromatic GW sources, the relative motion of

the antenna with respect to them causes the Doppler shift
which induces the time-dependence in the observed fre-
quency. In order to correct the Doppler effect, we adopt the
solar system barycenter (SSB) as the reference point where
the time t is measured. The Doppler correction is given
by the derivative of the Römer time delay which is defined
as the delay between the arrival times of the antenna and the
SSB;

Δt ¼ n0 · rd
c

ð19Þ

where rdðtÞ is the relative position vector pointing from the
SSB to the antenna and n0 is the unit vector pointing from
the SSB to the GW source. The inner product rd · n0 is
written as

n0 · rd ¼ RES½cos α cos δ cos ðϕo þ ΩotÞ þ ðcos ε sin α cos δþ sin ε sin δÞ sin ðϕo þΩotÞ�
þ RE½sin λ sin δþ cos λ cos δ cos ðα − ϕr −ΩrtÞ� ð20Þ

where RES is the distance between the SSB and the center
of the Earth, RE is the Earth’s radius, Ωo is the angular
speed of the Earth’s revolution around the Sun, ϕo is the
initial phase which defines the Earth’s position at t ¼ 0 and
ε is the Earth’s axial tilt [18]. Here we neglect the Einstein
time delay and the Shapiro time delay because these effects
are unobservable at low-frequencies less than 1 Hz.
Combining Eqs. (4), (17a), (17b), and (19), we find the

antenna response of the Nth output to a monochromatic
source as

hNðtÞ ¼ ANðtÞ cos ½ΦNðtÞ� ð21Þ

where the suffix “N” stands for the Nth output and the
function ANðtÞ; QNðtÞ, and ΦNðtÞ are given as follows.

ANðtÞ ¼ AQNðtÞ; ð22aÞ

QNðtÞ ¼
��

1þ cos2ι
2

�
2

Fþ2
N ðtÞ þ cos2ιF×2

N ðtÞ
�
1=2

; ð22bÞ

ΦNðtÞ ¼ 2πf0tþ φ0 þ φp;NðtÞ þ φDðtÞ; ð22cÞ

φp;NðtÞ ¼ arctan

�
−

2 cos ι
1þ cos2ι

F×
NðtÞ

Fþ
NðtÞ

�
; ð22dÞ
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φDðtÞ ¼ 2πf0
n0 · rdðtÞ

c
ð22eÞ

where A is the overall amplitude and φ0 is a constant
reference phase. The phase shift φDðtÞwhich appears in the
GW phase ΦðtÞ is called the Doppler phase because it
comes from the Doppler correction (19). The phase shift
φp;NðtÞ is the polarization phase which depends on the
angular pattern functions FþðtÞ and F×ðtÞ.

2. Parameter resolution

The GW signal from the monochromatic source
Eqs. (21)–(22e) is characterized by the seven waveform
parameters, the overall amplitude, A, the GW frequency,
f0, the reference phase, φ0, the sky position of the source, α
and δ, the polarization angle, ψ , the inclination, ι. Before
proceeding we simplify the task of integration in the Fisher
matrix (15). The time scale of change inΦNðtÞ is of the order
of f0. Meanwhile, the temporal change in ANðtÞ is mainly
caused by the Earth’s rotation. So the amplitude ANðtÞ varies
slowly with time in comparison with the phaseΦNðtÞ and the
inequality f0 ≫ jdAN=dtj=AN holds. This leads to

�
S
N

�
2

≅
1

Snðf0Þ
X
N

Z
Tobs

0

dtANðtÞ2; ð23aÞ

Γij ≅
1

Snðf0Þ
X
N

Z
Tobs

0

dt½∂iANðtÞ∂jANðtÞ

þ ANðtÞ2∂iΦNðtÞ∂jΦNðtÞ� ð23bÞ

from Eqs. (13) and (15) where the rapidly oscillating terms in
the integrand such as cosΦNðtÞ and sinΦNðtÞ are discarded
andTobs denotes the observation time [29,30]. Observing that
Snðf0Þ in Eq. (23b) can be eliminated by Eq. (23a), the
measurement errors can be expressed in terms of S=N which
is normalized by S=N ¼ 10 in this section. Note that the
measurement errors are independent of the form of SnðfÞ.
Making the substitution of Eqs. (22a)–(22e) into Eq. (23b)
produces the values of the Fisher matrix elements Γij. Using
Eq. (14), we obtain the measurement errors.
Figure 5 shows the angular resolution for a monochro-

matic source with a frequency f0 ¼ 1 Hz using a single
antenna located at the TAMA300’s site in Japan. This result
is normalized by S=N ¼ 10 with parameters ϕr ¼ ϕo ¼ 0,
α ¼ δ ¼ ι ¼ ψ ¼ 1.0 radians. The two curves, the dashed
line and the solid line correspond to the antennas which
have one output and three outputs, respectively. As can be
seen in Fig. 5, there is no difference between two curves for
Tobs > 1 day because the angular resolution is mainly
determined by the Doppler phase φD. When Tobs > 1
day, the error ΔΩ drops with the observation time for
Tobs > 105 seconds and approaches to the diffraction-
limited accuracy [31]. This feature can be traced to the
Doppler shift caused by the revolution around the Sun. The

three-output antenna can be treated as the same way as the
one-output antenna for such a long-duration signals with the
fixed S=N. The difference between two curves appears in
the short-duration signals such as Tobs < 1 day. The errors
of the sky position for the one-output antenna decrease with
time for Tobs ≳ 104 seconds due to the Doppler phase
caused by the Earth’s rotation. However, the one-output
antenna cannot determine the source position for Tobs ≲ 104

seconds at all. On the other hand, the angular resolution for
the three-output antenna is of the order of 0.1 steradians and
remains approximately constant regardless of the observa-
tion time less than 1 day. This feature can be traced to the
polarization phase φp;N . For the three-output antenna, the
two independent polarization modes, plus mode and cross
mode can be discriminated because the three independent
signals can be obtained even with a single antenna. The
degeneracy of the two polarization modes is resolved by the
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FIG. 5. Angular resolution ΔΩ vs the observation time Tobs for
monochromatic sources with f0 ¼ 1 Hz using a single antenna.
We take the initial position and orientation of the antenna and the
source position to be ϕr ¼ ϕo ¼ 0, α ¼ δ ¼ ι ¼ ψ ¼ 1.0 radians.
GW signals are normalized by S=N ¼ 10. The solid line and the
dashed line correspond to a triple-output TOBA and a one-output
TOBA, respectively.
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FIG. 6. Angular resolution ΔΩ vs the observation time Tobs for
monochromatic sources with f0 ¼ 1 Hz using three antennas.
We take the initial position and orientation of the antenna and the
source position to be ϕo ¼ 0, α ¼ δ ¼ ι ¼ ψ ¼ 1.0 radians. GW
signals are normalized by S=N ¼ 10. The solid line and the
dashed line correspond to a triple-output TOBA and a one-output
TOBA, respectively.
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three-output antenna unlike the one-output antenna. Thus,
the angular resolution of the three-output antenna for short-
duration signals is much better than that of the one-output
antenna thanks to the information on the polarization. Note
that a mirror-image ambiguity remains in the location on the
sky with a single antenna observation. Two or more
antennas are required for resolving this ambiguity.
Figure 6 shows the angular resolution for the mono-

chromatic source with the frequency f0 ¼ 1.0 Hz using a
network of three antennas. This result is normalized by
S=N ¼ 10. Each antenna is located at the site of TAMA300
(Japan), LIGO-Hanford (US), and Virgo (Italy). The two
curves, the dashed line and the solid line correspond to the
antennas which have one output and three outputs, respec-
tively. As can be seen in Fig. 6, the two curves coincide with
each other for long-duration signals. This behavior is the
same as the case for the observationswith a single antenna for

Tobs > 1 day. On the other hand, the accuracy of the source
location for a network of one-output antennas is constant and
of the order of 0.1 steradians below Tobs ∼ 104 seconds
because it is mainly determined by the polarization phase
φp;N . It should be noted that the angular resolution of a
network of ground-based laser interferometers which are
sensitive to an audio frequency signal is determined by the
error of the delays of the arrival time [32]. It is roughly
estimated by the geometrical formula derived by Wen and
Chen [33]

ΔΩ ¼ 0.25

�
10 Hz
f0

�
2
�
3 × 1013 m2

A

��
0.5
cos χ

��
10

S=N

�
2

×

�ðS=NÞ1ðS=NÞ2ðS=NÞ3
3

ffiffiffi
3

p ðS=NÞ3
�

−1
ð24Þ

TABLE I. Parameters of TOBA used for the estimated sensitivity curve shown in Fig. 3.

Test mass Material Aluminum
Length of the bar 10 [m]
Diameter of the bar 0.6 [m]

Mass (m) 7400 [kg]
Moment of inertia (I) 6.4 × 104 [Nm s2]

Loss angle 10−7

Suspension Distance between the two suspension points (a) 5 [cm]
Length of the suspension wires (l) 3 [m]

Dissipation coefficient (γθ) 1.0 × 10−7

Fabry-Perot laser interferometric sensor Wave length 1064 [nm]
Power 10 [W]
Finesse 100

TABLE II. Angular resolution for monochromatic sources with frequency f0 using the single triple-output TOBA
for 1-hour observation. The result is normalized by S=N ¼ 10. ðS=NÞI denotes the SNR of the output I. We take the
value of the initial position and orientation of the antenna to be ϕr ¼ ϕo ¼ 0 radians.

f0 [Hz] α [rad] δ [rad] ι [rad] ψ [rad] A ðS=NÞI ΔΩ [sr]

1.0 1.0 1.0 0.45 1.0 7.60 × 10−21 8.90 0.332
0.5 −1.0 0.45 0.0 9.76 × 10−21 6.82 0.184
1.0 1.0 1.0 1.0 1.24 × 10−20 8.73 0.292
0.5 −1.0 1.0 0.0 1.45 × 10−20 7.07 0.187
1.0 1.0 1.5 1.0 3.69 × 10−20 4.82 0.206
0.5 −1.0 1.5 0.0 2.43 × 10−20 8.09 0.365

0.1 1.0 1.0 0.45 1.0 3.87 × 10−20 8.90 0.332
0.5 −1.0 0.45 0.0 4.97 × 10−20 6.82 0.184
1.0 1.0 1.0 1.0 6.29 × 10−20 8.73 0.292
0.5 −1.0 1.0 0.0 7.52 × 10−20 7.07 0.187
1.0 1.0 1.5 1.0 1.88 × 10−19 4.82 0.206
0.5 −1.0 1.5 0.0 1.24 × 10−19 8.09 0.365

0.01 1.0 1.0 0.45 1.0 3.44 × 10−18 8.90 0.332
0.5 −1.0 0.45 0.0 4.42 × 10−18 6.82 0.184
1.0 1.0 1.0 1.0 5.60 × 10−18 8.73 0.292
0.5 −1.0 1.0 0.0 6.67 × 10−18 7.07 0.187
1.0 1.0 1.5 1.0 1.67 × 10−17 4.82 0.206
0.5 −1.0 1.5 0.0 1.10 × 10−17 8.09 0.365
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where f0 is the GW frequency, A is the area formed by the
network of the three antennas, S=N is the total SNR, ðS=NÞi
is the SNR achievable with the ith antenna alone, and χ is the
angle between the normal to the plane defined by the
antennas and the direction of GW propagation. The value
3 × 1013 m2 corresponds to the area formed by the TAMA-
LIGO-Virgo network. This formula proportional to 1=f20
does not work when applied to a low frequency source
because the directional derivatives of the pattern functions
such as ∂Fþ=∂α are neglected in the derivation of Eq. (24)
[33]. When the source location is identified using the
network of the TOBAs which are sensitive to a sub-audio
frequency signal, the polarization phases φp;N but not the

Doppler phase φD play a key role in its angular resolution.
The difference between two curves in Fig. 6 comes from the
number of the independent outputs in each antenna.
Table II lists the angular resolution for the various

frequencies and angular parameters. The results in
Table II indicates the angular resolution for short-duration
signals is independent of the GW frequency f0 because it is
determined by φp;NðtÞ which does not depend on f0.
The measurement errors of the other waveform param-

eters ΔA;Δf0;Δψ and Δι for the monochromatic wave
with f0 ¼ 1 Hz are described in Fig. 7. These results are
also normalized by S=N ¼ 10. The behavior of the curves
in Fig. 7 can essentially be explained in the same way as we
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FIG. 7. Parameter accuracies for the monochromatic source with frequency f0 ¼ 1 Hz are plotted vs observation time Tobs. The left
and right column correspond to a single antenna case and a three antenna network case, respectively. All results are normalized by
S=N ¼ 10. The initial position and orientation of the antenna at the TAMA300’s site and the angular parameters are assume to be
ϕr ¼ ϕo ¼ 0, α ¼ δ ¼ ι ¼ ψ ¼ 1.0.
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discussed above. For short-duration signals with the obser-
vation time less than 104 seconds, the errors are determined
by the polarization phase φp;N for both a single and a
network of triple-output antennas. When Tobs > 104 sec-
onds oscillating parts appear in Fig. 7 due to the phase-
modulation induced by the Earth’s spin. The triple outputs
improve the parameter accuracies of the short-duration
signals drastically for the single antenna case and improve
them by several factors for the three antenna network case.

C. IMBH-IMBH binary coalescence

1. GW waveform

In this section, we consider a coalescing binary system
composed of two point masses with m1 and m2 as a GW
source. Unlike the monochromatic sources we discussed in
the previous section, the orbital radius shrinks with time
and the orbital frequency increases accordingly because of
the GW radiation. In this case, the parameter accuracies
depend on the form of the noise spectral density of the
antenna SnðfÞ. As a signal model from the binary coa-
lescing, we adopt the restricted post-Newtonian waveform
with the 1.5 PN phase in which the amplitude is retained up
to the Newtonian order:

~hNðfÞ ¼ AQNðt�Þf−7=6e−iðφp;Nðt�ÞþφDðt�ÞÞeiΨðfÞ; ð25aÞ

A≡
ffiffiffiffiffi
5

24

r
1

π2=3
c
r

�
GMc

c3

�
5=6

; ð25bÞ

ΨðfÞ ¼ 2πftc −
π

4
− ϕc − ~ΦðfÞ; ð25cÞ

~ΦðfÞ ¼ −
3

4

�
GMc

c3
8πf

�
−5=3

×

�
1þ 20

9

�
743

336
þ 11

4
η

�
x − 16πx3=2

�
; ð25dÞ

t�ðfÞ ¼ tc − 5

�
GMc

c3

�
−5=3

ð8πfÞ−8=3

×

�
1þ 4

3

�
743

336
þ 11

4
η

�
x −

32

5
πx3=2

�
ð25eÞ

where r, tc, and ϕc are the distance to the source, the time
and the phase at the coalescence, respectively (see e.g.
[28]). The mass Mc ≡ ðm1m2Þ3=5ðm1 þm2Þ−1=5 and the
mass ratio η≡m1m2=ðm1 þm2Þ2 are called a chirp mass
and a symmetric mass ratio respectively, and a PN variable

TABLE III. Angular resolution for IMBH-IMBH binary coalescence signals from a distance of 100 Mpc using the single antenna on
the TAMA300’s site. ðS=NÞI denotes the SNR of the output I defined by (6a). S=N denotes the total SNR of the single antenna.

m1

[M⊙]
m2

[M⊙]
α

[rad]
δ

[rad]
ι

[rad]
ψ

[rad] ðS=NÞI S=N
ΔΩI
[sr]

ΔΩ
[sr] Δ lnAI Δ lnA

ΔιI
[rad]

Δι
[rad]

Δψ I
[rad]

Δψ
[rad]

104 104 1.0 1.0 1.0 1.0 29.9 35.3 4.02 0.0253 1.76 0.165 0.976 0.132 1.67 0.172
2.0 −1.0 0.5 3.0 46.1 54.3 2.70 0.0207 3.75 0.631 7.44 1.25 0.833 2.60
1.0 −1.5 0.5 4.0 40.1 50.6 23.2 0.258 3.97 0.697 8.05 1.38 13.6 2.38

−3.0 0.5 1.0 0.0 25.0 32.2 0.765 0.0265 2.17 0.246 1.92 0.178 2.16 0.198
3.0 1.5 1.0 2.0 23.4 31.9 47.2 0.348 1.40 0.166 1.00 0.143 12.3 1.11

−1.0 1.0 0.5 6.0 48.6 55.8 2.90 0.0188 3.94 0.652 7.60 1.23 13.4 2.52
−2.0 −0.5 1.0 5.0 26.8 34.4 1.47 0.0757 2.13 0.261 1.39 0.252 1.39 0.409
All-sky average 1.0 1.0 25.9 33.2 6.82 0.0674 1.46 0.216 1.30 0.181 2.61 0.285

104 105 1.0 1.0 1.0 1.0 10.3 12.3 4.18 0.180 1.80 0.414 1.04 0.339 1.67 0.448
2.0 −1.0 0.5 3.0 16.4 19.2 2.93 0.127 3.79 1.54 7.49 3.03 14.4 6.36
1.0 −1.5 0.5 4.0 14.1 17.8 24.8 1.58 4.08 1.70 8.24 3.38 14.2 5.69

−3.0 0.5 1.0 0.0 8.77 11.4 0.846 0.170 2.30 0.566 2.04 0.424 2.18 0.518
3.0 1.5 1.0 2.0 8.21 11.2 49.9 2.35 1.47 0.444 1.08 0.370 12.4 2.78

−1.0 1.0 0.5 6.0 17.3 19.7 3.12 0.120 4.10 1.61 7.92 3.05 13.8 6.28
−2.0 −0.5 1.0 5.0 9.11 11.9 1.58 0.311 2.32 0.551 1.52 0.519 1.49 0.790
All-sky average 1.0 1.0 9.12 11.7 7.26 0.383 1.54 0.490 1.37 0.416 2.73 0.673

105 105 1.0 1.0 1.0 1.0 13.4 16.0 4.11 0.113 1.75 0.336 1.00 0.273 0.448 0.358
2.0 −1.0 0.5 3.0 21.1 24.8 2.82 0.0841 3.72 1.26 7.35 2.49 6.36 5.21
1.0 −1.5 0.5 4.0 18.2 23.0 24.2 1.05 3.97 1.40 8.02 2.77 5.69 4.70

−3.0 0.5 1.0 0.0 11.3 14.7 0.804 0.112 2.28 0.475 2.02 0.352 0.518 0.415
3.0 1.5 1.0 2.0 10.6 14.4 48.1 1.51 1.39 0.352 1.03 0.297 2.78 2.26

−1.0 1.0 0.5 6.0 22.2 25.4 2.99 0.0785 3.91 1.32 7.57 2.48 6.28 5.11
−2.0 −0.5 1.0 5.0 11.9 15.5 1.55 0.238 2.19 0.475 1.43 0.451 0.790 0.703
All-sky average 1.0 1.0 11.8 15.1 7.05 0.258 1.50 0.406 1.34 0.344 2.68 0.553
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x≡ ½πGðm1 þm2Þf=c3�2=3 was introduced. We cut off the
GW signal at fmax ≡ c3=6

ffiffiffi
6

p
πGðm1 þm2Þ beyond which

the circular orbit is not stable any longer and the two point
masses plunge toward each other. So we set ~hðfÞ ¼ 0 for
f > fmax in Eq. (25a).

2. Parameter resolution

We analyze the angular resolution for the coalescing
IMBH binary signal using Eqs. (25a)–(25e). The GW
signal is described by eight waveform parameters, the
overall amplitude, A, the coalescence time, tc, the coa-
lescence phase, ϕc, the sky position of the source, α and δ,
the polarization angle, ψ , the inclination, ι, and the chirp
mass,Mc. Substitution of Eq. (25a) into Eq. (15) yields the
values of Fisher matrix elements. From Eq. (14) we get the
accuracies of the waveform parameters.
We present a representative examples of our result in

Table III and IV where source parameters are chosen
randomly. We set the coalescence binary at 100 Mpc
and the initial position of the antenna located at the
TAMA300’s site to be ϕr ¼ ϕo ¼ 0. Here, we do not
assume the fixed SNR and neglect the effect of the
expansion of the Universe and the higher order terms in
the post-Newtonian expansion. However, the angular

resolution ΔΩ we calculate in this paper is expected to
be accurate because the angular resolution is accumulated
at the inspiral phase long before the final plunge.
The S=N and the angular resolution ΔΩ for the single

antenna case (the three antenna network case) are listed in
Table III (Table IV). The result of the single antenna case
listed in Table III shows that the triple-output antenna
improves the S=N by a factor of about 1.2 in comparison
with the one-output antenna. The same can be said of the
three antenna network listed in Table IV. This factor can be
simply explained by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 þ ð1=2Þ2 þ ð1=2Þ2

p
≅ 1.22 from

Eqs. (6a)–(6c). As can be seen in Table III, the angular
resolution of the single three-output antenna ΔΩ ranges
from 10−2 to 1 steradians. It is roughly an order of
magnitude better than that of the one-output antenna.
This is because the angular resolution for short-duration
signals such as signals from coalescing binaries is mainly
determined by the polarization phase φp;NðtÞ but not the
Doppler phase φDðtÞ as we discussed in the previous
section where the monochromatic source was investigated.
Since the two polarization modes (plus and cross modes)
are degenerate in the single antenna which has the only one
output, it is hard to locate the GW sources for short-
duration signals. However, the single three-output antenna

TABLE IV. Angular resolution for IMBH-IMBH binary coalescence signals from a distance of 100 Mpc using the network of three
antennas located on the site of TAMA300, LIGO-Hanford, and Virgo. ðS=NÞ1 denotes the total SNR of the network of the three antenna
each of which has the only output I. S=N denotes the total SNR of the three antenna network.

m1

[M⊙]
m2

[M⊙]
α

[rad]
δ

[rad]
ι

[rad]
ψ

[rad] ðS=NÞ1 S=N
ΔΩ1

[sr]
ΔΩ
[sr] Δ lnA1 Δ lnA

Δι1
[rad]

Δι
[rad]

Δψ1

[rad]
Δψ
[rad]

104 104 1.0 1.0 1.0 1.0 48.5 59.2 0.0165 0.00514 0.122 0.0613 0.0852 0.0460 0.696 0.0524
2.0 −1.0 0.5 3.0 76.7 89.9 0.00404 0.00187 0.399 0.270 0.777 0.524 1.64 1.10
1.0 −1.5 0.5 4.0 78.5 93.0 0.0373 0.0212 0.305 0.204 0.578 0.401 1.24 0.819

−3.0 0.5 1.0 0.0 47.9 59.9 0.00232 0.00181 0.0639 0.0514 0.0579 0.0467 0.0729 0.0610
3.0 1.5 1.0 2.0 54.3 64.1 0.0831 0.0440 0.0716 0.0500 0.0767 0.0511 0.462 0.336

−1.0 1.0 0.5 6.0 77.3 90.5 0.00536 0.00209 0.426 0.267 0.797 0.502 1.65 1.04
−2.0 −0.5 1.0 5.0 44.3 56.9 0.00456 0.00210 0.114 0.0653 0.0891 0.0520 0.129 0.0724

All-sky average 1.0 1.0 49.1 59.3 0.0248 0.00744 0.131 0.0645 0.114 0.0555 0.177 0.0931

104 105 1.0 1.0 1.0 1.0 17.0 20.8 0.106 0.0393 0.311 0.170 0.219 0.128 0.201 0.153
2.0 −1.0 0.5 3.0 27.0 31.6 0.0302 0.0146 1.05 0.734 2.04 1.42 4.21 2.93
1.0 −1.5 0.5 4.0 27.5 32.6 0.276 0.166 0.824 0.584 1.56 1.11 3.24 2.21

−3.0 0.5 1.0 0.0 16.8 21.0 0.0203 0.0155 0.182 0.147 0.165 0.134 0.211 0.177
3.0 1.5 1.0 2.0 19.1 22.5 0.601 0.343 0.192 0.139 0.208 0.143 1.24 0.935

−1.0 1.0 0.5 6.0 27.2 31.8 0.0386 0.0163 1.08 0.711 2.03 1.35 4.26 2.81
−2.0 −0.5 1.0 5.0 15.6 20.0 0.0366 0.0172 0.307 0.181 0.242 0.145 0.337 0.201

All-sky average 1.0 1.0 17.2 20.8 0.133 0.0571 0.305 0.178 0.267 0.153 0.425 0.258

105 105 1.0 1.0 1.0 1.0 22.0 26.9 0.0691 0.0241 0.250 0.133 0.76 0.100 0.155 0.117
2.0 −1.0 0.5 3.0 34.9 40.8 0.0187 0.00890 0.840 0.579 1.63 1.12 3.39 2.33
1.0 −1.5 0.5 4.0 35.6 42.1 0.171 0.101 0.652 0.456 1.24 0.870 2.58 1.74

−3.0 0.5 1.0 0.0 21.7 27.2 0.0119 0.00912 0.141 0.114 0.127 0.103 0.162 0.136
3.0 1.5 1.0 2.0 24.7 29.1 0.376 0.209 0.152 0.109 0.164 0.111 0.979 0.730

−1.0 1.0 0.5 6.0 35.1 41.1 0.0242 0.00991 0.875 0.515 1.64 1.07 3.41 2.21
−2.0 −0.5 1.0 5.0 20.1 25.8 0.0221 0.00103 0.243 0.142 0.191 0.113 0.270 0.157

All-sky average 1.0 1.0 22.3 26.9 0.0890 0.0350 0.251 0.139 0.220 0.120 0.347 0.202

IMPROVING PARAMETER ESTIMATION ACCURACY WITH … PHYSICAL REVIEW D 90, 064039 (2014)

064039-11



can identify the source location to some degree because the
degeneracy of the two polarization modes is resolved.
Table IV shows that the angular resolution of the network
of three-output antennas ranges roughly from 0.1 to 10−3

steradians. It is a factor of about 2 better than that of the
one-output antenna network. This improvement is accom-
plished mainly by increasing S=N which comes from the
triple outputs. The measurement errors of the other wave-
form parameters such as ΔA=A are also improved by
several factors due to the additional outputs.

IV. CONCLUSION

In this paper we have presented a new GW antenna
configuration with a triple-output TOBA and investigated
its performance. Previously a single-output TOBA which
monitors the angular motions caused by GWs only on the
horizontal plane had been presented. We have developed
the antenna configuration by adding two other outputs
which are given by the angular motions on the vertical
planes. Thus the gravitational wave signals can be readout
from the small rotation of the bars on the x-y, y-z, and z-x
planes as can be seen in Fig. 1.
We derive the antenna pattern functions of the triple-

output TOBA including the effect of the Earth’s motion and
obtain Eqs. (8a) and (8b). The antenna pattern power is
depicted in Fig. 4, which shows the triple-output TOBA has
no blind direction and is sensitive to GWs from all
directions. Its detection event rates is better than the
single-output configuration by a factor of about 1.7.
We also analyze the accuracies of waveform parameters,

focusing on the accuracy of the source location on the sky,
for the two nominal sources, monochromatic sources and
binary coalescences. For long-duration signals, the triple-
output TOBA can be treated as the same way as the
conventional single-output TOBA apart from the improved
SNR, as expected. So the advantage of the triple outputs is
merely the accumulation of the SNR. On the other hand,
since the triple-output TOBA can break the degeneracy of
two polarization modes from short-duration signals even
with a single antenna, it improves the parameter estimation
errors drastically compared with the single-output TOBA.

Thus, the detection method using a triple-output TOBAwe
proposed would be a powerful tool to search for short-
duration signals such as a coalescing binary.
For future work, it would be interesting to investigate the

potential of triple-output TOBAs for testing gravitational
theories with GWs. Generally, alternative theories of
gravity allow GWs to have more independent polarization
modes up to six [34]. While several conventional inter-
ferometric detectors are required to separate a mixture of
polarization modes of a GW in detector outputs, triple-
output TOBAs may be able to put constraints on the
nontensorial modes with less antennas because three
independent signals can be extracted from each TOBA.
In addition, this work is considered to be applicable not

only for the GW detection but also for a prompt earthquake
detection [35]. Current earthquake early warning systems
(EEWS) make use of a seismic pressure wave, called a
P-wave, caused by an earthquake which travels within the
Earth with a velocity of a few km=s. Gravity perturbations
are also induced by the earthquake during the fault rupture
and propagate at the speed of light 3 × 105 km=s. Such
gravity signals can be detected by a TOBA before the
arrival of the seismic motion at the EEWS. Therefore, a
network of triple-output TOBAs would enable us to locate
the origin of the earthquake and to estimate the earthquake
intensity much earlier than the conventional EEWS.
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APPENDIX: MODULATION AMPLITUDES

In this appendix, we give the explicit expressions for the
modulation amplitudes which appear in Eqs. (8a) and (8b)
as follows.

aIðtÞ ¼
3

4
cos 2γcos2δcos2λþ 1

16
cos 2γð3 − cos 2δÞð3 − cos 2λÞ cos ½2ðα − ϕr − ΩrtÞ�

þ 1

4
cos 2γ sin 2λ sin 2δ cos ðα − ϕr −ΩrtÞ þ

1

2
sin 2γ cos λ sin 2δ sin ðα − ϕr − ΩrtÞ

þ 1

4
sin 2γð3 − cos 2δÞ sin λ sin ½2ðα − ϕr − ΩrtÞ�; ðA1aÞ

bIðtÞ ¼ − sin 2γ cos δ cos λ cos ðα − ϕr − ΩrtÞ − sin 2γ sin δ sin λ cos ½2ðα − ϕr − ΩrtÞ�

þ 1

2
cos 2γ cos δ sin 2λ sin ðα − ϕr −ΩrtÞ þ

1

4
cos 2γð3 − cos 2λÞ sin δ sin ½2ðα − ϕr −ΩrtÞ�; ðA1bÞ
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aIIðtÞ ¼
1

2
sin δ cos δ sin

�
γ þ π

4

�
sin λ sin ðα − ϕr −ΩrtÞ −

1

4
cos

�
γ þ π

4

�
cos 2λ cos ðα − ϕr −ΩrtÞ sin 2δ

þ 1

16
cos

�
γ þ π

4

�
cos 2δð3þ cos ½2ðα − ϕr −ΩrtÞ�Þ sin 2λþ

3

8
cos

�
γ þ π

4

�
sin 2λsin2ðα − ϕr −ΩrtÞ

−
1

8
ð3 − cos δÞ cos λ sin

�
γ þ π

4

�
sin ½2ðα − ϕr −ΩrtÞ�; ðA1cÞ

bIIðtÞ ¼ −
1

2
cos δ cos ðα − ϕr −ΩrtÞ sin

�
γ þ π

4

�
sin λ −

1

2
cos δ cos

�
γ þ π

4

�
cos 2λ sin ðα − ϕr − ΩrtÞ

þ 1

2
sin δ cos λ cos ½2ðα − ϕr −ΩrtÞ� sin

�
γ þ π

4

�
−
1

4
sin δ cos

�
γ þ π

4

�
sin 2λ sin ½2ðα − ϕr − ΩrtÞ�; ðA1dÞ

aIIIðtÞ ¼ −
3

8
cos2δ sin

�
γ þ π

4

�
sin 2λþ 1

4
sin 2δ cos 2λ cos ðα − ϕr −ΩrtÞ sin

�
γ þ π

4

�

þ 1

4
sin 2δ sin λ sin ðα − ϕr − ΩrtÞ cos

�
γ þ π

4

�
þ 1

8
ð3 − cos 2δÞ cos λ cos ½2ðα − ϕr − ΩrtÞ� sin

�
γ þ π

4

�
sin λ

−
1

8
ð3 − cos 2δÞ cos λ cos

�
γ þ π

4

�
sin ½2ðα − ϕr −ΩrtÞ�; ðA1eÞ

bIIIðtÞ ¼ −
1

2
cos

�
γ þ π

4

�
cos δ cos ðα − ϕr −ΩrtÞ sin λþ

1

2
cos δ cos 2λ sin

�
γ þ π

4

�
sin ðα − ϕr − ΩrtÞ

þ 1

2
cos

�
γ þ π

4

�
cos λ cos ½2ðα − ϕr −ΩrtÞ� sin δþ

1

2
cos δ cos 2λ sin

�
γ þ π

4

�
sin ðα − ϕr − ΩrtÞ

þ 1

4
sin

�
γ þ π

4

�
sin δ sin 2λ sin ½2ðα − ϕr −ΩrtÞ� ðA1fÞ

where α and δ specify the sky position of the GW sources and are called right ascension and declination, respectively.
λ; γ;Ωr, and ϕr are the latitude of the antenna position, the angle between the local East direction and the bisector of the
antenna, the angular speed of the Earth, and the initial phase which defines the antenna position on the Earth at t ¼ 0,
respectively.
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