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We examine the accretion process onto the black hole with a string cloud background, where the horizon
of the black hole has an enlarged radius rH ¼ 2M=ð1 − αÞ, due to the string cloud parameter α (0 ≤ α < 1).
The problem of stationary, spherically symmetric accretion of a polytropic fluid is analyzed to obtain an
analytic solution for such a perturbation. Generalized expressions for the accretion rate _M, critical radius rs,
and other flow parameters are found. The accretion rate _M is an explicit function of the black hole massM,
as well as the gas boundary conditions and the string cloud parameter α. We also find the gas compression
ratios and temperature profiles below the accretion radius and at the event horizon. It is shown that the mass
accretion rate, for both the relativistic and the nonrelativistic fluid by a black hole in the string cloud model,
increases with increase in α.

DOI: 10.1103/PhysRevD.90.064037 PACS numbers: 04.40.Dg, 95.30.Sf, 04.50.Gh

I. INTRODUCTION

Black holes are amongst the most striking predictions of
Einstein’s theory of general relativity. One of the most
important effects of the black hole is its tendency to accrete,
and hence several aspects of the spherical accretion onto the
black hole have been actively investigated in detail over
the past four decades (see [1] for a review). Accretion is
the term used by astrophysicists to describe the inflow of
matter towards a central gravitating object or towards the
center of the mass of an extended system. It may be pointed
out that accretion of matter onto black holes is one of the
most promising ideas explaining the highly luminous active
galactic nuclei and quasars. The first study of spherical
accretion onto compact objects dates back more than
40 years in the seminal paper due to Bondi [2]. In this
classic work, the hydrodynamics of polytropic flow is
studied within the Newtonian framework, and it is found
that either a settling or transonic solution is mathematically
possible for the gas accreting onto compact objects. Note
that the accretion rate is highest for the transonic solution.
The relativistic version of the same problem was solved by
Michel [3] 20 years later. Michel [3] investigated the steady
state spherically symmetric flow of a test gas onto a
Schwarzschild black hole in the framework of general
relativity. He showed that accretion onto the black hole
should be transonic. Michel’s relativistic results attracted
several researchers [4,5]. Spherical accretion and winds in
the context of general relativity have also been analyzed
using equations of state other than the polytrope. Other
extensive studies include the calculation of the frequency

and luminosity spectra [6], the influence of an interstellar
magnetic field in ionized gases [7], and the changes in
accreting processes when the black hole rotates [8]. Several
radiative processes have been included by Blumenthal and
Mathews [9], and Brinkmann [10]. In addition Malec [11]
considered general relativistic spherical accretion with and
without backreaction, and showed that relativistic effects
increase mass accretion when backreaction is absent.
Accretion of a perfect fluid with a general equation of
state onto a Schwarzschild black hole has been investigated
in [12,13], and a similar analysis for a charged black hole
has been done in [14]. Accretion processes related to a
charged black hole were analyzed in [3] and investigated
further in [15–18]. The main aim of these studies is to
obtain the net energy output emitted by infalling gas with
application of black hole accretion to several classes of
astrophysical sources. It is understood that accretion onto a
black hole might be an important source of radiant energy.
This may be related to the accretion rate _M, and we may
expect that an increase in _M should lead to an increase in
the luminosity [6]. In this paper, we consider the steady
state spherical accretion onto a black hole that has a cloud
of strings in the background. We thereby generalize the
previous work of Michel [3]. It may be noted that the study
of Einstein’s equations coupled with a string cloud may be
very important as the relativistic strings at a classical level
can be used to construct applicable models [19]. Also, the
Universe can be represented as a collection of extended
(nonpoint) objects and one-dimensional strings are the
most popular candidate for such fundamental objects.
Hence the study of the gravitational effects of matter, in
the form of clouds of both cosmic and fundamental strings,
has generated considerable attention [20].
Cosmic strings are a generic outcome of symmetry-

breaking phase transitions in the early Universe [21], and
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further motivation comes from a potential role in large scale
structure formation [22]. Strings may have been present in
the early Universe, and they play a role in the seeding of
density inhomogeneities [23]. The magnitude of such
strings is determined by the dimensionless parameter

Gμ
c2

¼
�

η

mPl

�
2

;

where η is the energy scale of string and mPl ¼
ffiffiffiffiffiffiffiffiffiffiffi
hc=G

p
is

the Planck mass. For the Nambu-Goto string model, using
the Planck data, it has been shown that a constraint on the
string tension of Gμ

c2 < 1.5 × 10−7 at 95 percent confidence

that can be improved to Gμ
c2 < 1.3 × 10−7 on inclusion of

high-l CMB data [24].
It may be also pointed out that strings have become a

very important ingredient in many physical theories, and
the idea of strings is fundamental in superstring theories
[25]. The apparent relationship between counting string
states and the entropy of the black hole horizon [26,27]
suggests an association of strings with black holes.
Furthermore the intense level of activity in string theory
has lead to the idea that many of the classic vacuum
scenarios, such as the static Schwarzschild point black hole,
may have atmospheres composed of a fluid or field of
strings [28]. Many authors have found exact black hole
solutions with string cloud backgrounds, for instance, in
general relativity [19,29], in Einstein-Gauss-Bonnet mod-
els [30], and in Lovelock gravity [31], thereby generalizing
the pioneering work of Letelier [19] who modified the
Schwarzschild black hole for the string cloud model.
Glass and Krisch [32] pointed out that allowing the
Schwarzschild mass parameter to be a function of radial
position creates an atmosphere with a string fluid stress-
energy tensor around a static, spherically symmetric object.
Interestingly, it turns out that the mass accretion rate _M

increases with the string cloud as a background in com-
parison to the standard black hole. Also note that the mass
accretion rate is affected by the presence of higher
dimensions [33].
The paper is organized as follows: In Sec. II we review

the action, the energy momentum tensor for a cloud of
strings, and the corresponding black hole solution. In
Sec. III the analytic general relativistic accretion onto a
Schwarzschild black hole is appropriately generalized to
model spherical steady state accretion onto a black hole
surrounded by a cloud of strings. We calculate how the
presence of a string cloud would affect the mass accretion
rate _M of a gas onto a black hole. We also determine
analytic corrections to the critical radius, the critical fluid
velocity and the sound speed, and subsequently to the mass
accretion rate. We then obtain expressions for the asymp-
totic behavior of the fluid density and the temperature near
the event horizon in Sec. IV. Finally we conclude in Sec. V.

We use the following values for the physical constants for
numerical computations and plots: c ¼ 3.00 × 1010 cm s−1,
G¼ 6.674×10−8 cm3g−1 s−2, kB¼ 1.380×10−16 ergK−1,
M ¼ M⊙ ¼ 1.989 × 1033 g, mb ¼ mp ¼ 1.67 × 10−24 g,
n∞ ¼ 1 cm−3, T∞ ¼ 104 K.

II. SCHWARZSCHILD BLACKHOLE IN A STRING
CLOUD BACKGROUND

In this model, we assume a spherically symmetric metric,
and steady state flow onto a nonrotating black hole of mass
M at rest. Recall that the nonrelativistic model was
discussed by Bondi [2], and the standard four-dimensional
general relativistic version was developed by Michel [3].
The known analytic relativistic accretion solution onto
the Schwarzschild black hole by Michel [3] is generalized
by considering a cloud of strings in the background. To
achieve this, we first briefly review the theory on a cloud of
strings (see [19] for further details) and the corresponding
modified Schwarzschild black hole.
The Nambu-Goto action of a string evolving in space-

time is given by

IS ¼
Z
Σ
Ldλ0dλ1; L ¼ mðΓÞ−1=2;

where m is a positive constant that characterizes each
string, ðλ0; λ1Þ is a parametrization of the world sheet Σ
with λ0 and λ1 being timelike and spacelike parameters
[20], and Γ is the determinant of the induced metric on the
string world sheet Σ given by

Γab ¼ gμν
∂xμ
∂λa

∂xν
∂λb ; ð1Þ

and Γ ¼ det Γab. Associated with the string world sheet we
have the bivector of the form

Σμν ¼ ϵab
∂xμ
∂λa

∂xν
∂λb ; ð2Þ

where ϵab denotes the two-dimensional Levi-Civita tensor
given by ϵ01 ¼ −ϵ10 ¼ 1. Within this setup, the Lagrangian
density becomes

L ¼ m

�
−
1

2
ΣμνΣμν

�
1=2

:

Further, since Tμν ¼ 2∂L=∂gμν, we obtain the energy
momentum tensor for one string as

Tμν ¼ mΣμρΣρ
ν=ð−ΓÞ1=2: ð3Þ

Hence, the energy momentum tensor for a cloud of string is

Tμν ¼ ρΣμσΣσ
ν=ð−ΓÞ1=2; ð4Þ
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where ρ is the proper density of a string cloud. The quantity
ρðΓÞ−1=2 is the gauge invariant quantity called the gauge-
invariant density.
The general solution of Einstein’s equations for a string

cloud in four dimensions takes the form

ds2 ¼ −
�
1 −

2M
r

− α

�
dt2 þ

�
1 −

2M
r

− α

�
−1
dr2

þ r2ðdθ2 þ sin2θdϕ2Þ; ð5Þ

where we have set G ¼ c ¼ 1 in this paper. Here M arises
as an integration constant which is identified as the black
hole mass and is not a function of α. The event horizon for
the metric (5) has radius

rH ¼ 2M
1 − α

; α ≠ 1: ð6Þ

In the limit α → 0, we recover the Schwarzschild radius,
and close to unity the event horizon radius tends to infinity.
In general the string cloud parameter α ≠ 1. We note that
the case of static spherical symmetry restricts the value of
the gauge-invariant density to ρð−ΓÞ1=2 ¼ α=r2 [19], and
thereby α is a positive constant. However, for the realistic
model under consideration here the string cloud parameter
is restricted to 0 < α < 1. On the other hand, the cloud of
strings alone (M ¼ 0) does not have a horizon; it generates
only a naked singularity at r ¼ 0. This solution was first
obtained by Letelier [19] and the metric represents the
black hole spacetime associated with a spherical mass M
centered at the origin of the system of coordinates,
surrounded by a spherical cloud of strings. Furthermore
it can be interpreted as the metric associated with a
global monopole. In the string cloud background, the
Schwarzschild radius of the black hole is displaced by
the factor ð1 − αÞ−1.

III. GENERAL EQUATIONS FOR SPHERICAL
ACCRETION

We now present the basic relations in spherical sym-
metry with accreting matter, and describe the flow of gas
into the modified Schwarzschild black hole (5). Also we
probe how the string cloud background affects the accretion
rate _M, the asymptotic compression ratio, and the temper-
ature profiles. We consider the steady state radial inflow of
gas onto a central mass M by following the approach of
Michel [3] and Shapiro [5]. The gas is approximated as a
perfect fluid described by the energy momentum tensor

Tμν ¼ ðρþ pÞuμuν þ pgμν; ð7Þ

where ρ and p are the fluid proper energy density and
pressure respectively, and

uμ ¼ dxμ

ds
ð8Þ

is the fluid 4-velocity which obeys the normalization
condition uμuμ ¼ −1. We also define the proper baryon
number density n, and the baryon number flux Jμ ¼ nuμ.
All these quantities are measured in the local inertial rest
frame of the fluid. The spacetime curvature is dominated by
the compact object and we ignore the self-gravity of the
fluid. The accretion process is based on two important
conservation laws. First, if no particles are created or
destroyed then particle number is conserved and

∇μJμ ¼ ∇μðnuμÞ ¼ 0: ð9Þ

Second, the conservation law is that of energy momentum
which is governed by

∇μT
μ
ν ¼ 0: ð10Þ

The non-null components of the 4-velocity are u0 ¼ dt=ds
and vðrÞ ¼ u1 ¼ dr=ds. Since uμuμ ¼ −1, and the velocity
components vanish for μ > 1, we have

u0 ¼
�
v2 þ 1 − 2M

r − α

ð1 − 2M
r − αÞ2

�
1=2

: ð11Þ

Equation (9) can be written as

1

r2
d
dr

ðr2nvÞ ¼ 0: ð12Þ

Our assumptions of spherical symmetry and steady state
flow make (10) comparatively easier to tackle. The ν ¼ 0
component is

1

r2
d
dr

�
r2ðρþ pÞv

�
1 −

2M
r

− αþ v2
�

1=2
�
¼ 0: ð13Þ

The ν ¼ 1 component can be simplified to

v
dv
dr

¼ −
dp
dr

�
1 − 2M

r − αþ v2

ρþ p

�
−
M
r2

: ð14Þ

The above equations are a generalization of the results
obtained for the standard Schwarzschild black hole [3,5].

A. Accretion onto a black hole

The accretion of matter onto black holes remains a
classic problem of contemporary astrophysics, as it does on
the related problems of active galactic nuclei and quasars,
the mechanism of jets, and the nature of certain galactic x-
ray source. Let us consider spherical steady state accretion
onto a Schwarzschild black hole of mass M in a string
cloud background to obtain the mass accretion rate from a
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qualitative analysis of (12) and (14). For an adiabatic fluid
there is no entropy production and the conservation of
mass energy is governed by

Tds ¼ 0 ¼ d

�
ρ

n

�
þ pd

�
1

n

�
; ð15Þ

which may be put in the form

dρ
dn

¼ ρþ p
n

: ð16Þ

We define the adiabatic sound speed a via [5]

a2 ≡ dp
dρ

¼ dp
dn

n
ρþ p

; ð17Þ

and we have used Eq. (16). Using (17), the baryon and
momentum conservation equations can be written as

v0

v
þ n0

n
þ 2

r
¼ 0; ð18Þ

vv0 þ a2
�
1 −

2M
r

− αþ v2
�
n0

n
þM

r2
¼ 0; ð19Þ

with p0 ¼ ðdp=dnÞn0 where a dash ð 0Þ denotes a derivative
with respect to r. With the help of the above equations, we
obtain the system

v0 ¼ N1

N
;

n0 ¼ −
N2

N
; ð20Þ

where

N1 ¼
1

n

��
1 −

2M
r

− αþ v2
�
2a2

r
−
M
r2

�
; ð21aÞ

N2 ¼
1

v

�
2v2

r
−
M
r2

�
; ð21bÞ

N ¼ v2 − ð1 − 2M
r − αþ v2Þa2
vn

: ð21cÞ

In the stationary accretion of gas onto the black hole, the
amount of infalling matter per unit time _M, and other
parameters are determined by the gas properties and the
gravitational field at large distances. For large r, the flow
is subsonic i.e., v < a and since the sound speed must be
subluminal, i.e., a < 1, we have v2 ≪ 1. The denominator
(21b) is therefore

N ≈
v2 − a2ð1 − αÞ

vn
; ð22Þ

and so N < 0 as r → ∞ if we demand v2 < a2ð1 − αÞ.
At the event horizon rH ¼ 2M=ð1 − αÞ, and we have

N ¼ vð1 − a2Þ
n

: ð23Þ

Under the causality constraint a2 < 1, we have N > 0.
Therefore N should pass through a critical point rs where it
goes to zero. As the flow is assumed to be smooth
everywhere, so N1 and N2 should also vanish at rs, i.e.,
to avoid discontinuities in the flow, we must have N ¼
N1 ¼ N2 ¼ 0 at the radius rs. This is nothing but the so-
called sonic condition. Hence, the flow must pass through a
critical point outside the event horizon, i.e., rH < rs < ∞.
At the critical point the system (21) satisfies the condition

v2s ¼
a2sð1 − αÞ
1þ 3a2s

¼ M
2rs

; ð24Þ

where vs ≡ vðrsÞ and as ≡ aðrsÞ. The quantities with a
subscript s are defined at the critical point or the sonic
points of the flow. It can be clearly seen that the critical
velocity in this model is modified by the factor ð1 − αÞ, and
the physically acceptable solution v2s > 0 is ensured
since 0 ≤ α < 0.
To calculate the mass accretion rate, we integrate (12)

over a four-dimensional volume and multiply by mb, the
mass of each baryon, to obtain

_M ¼ 4πr2mbnv; ð25Þ

where _M is an integration constant, independent of r,
having dimensions of mass per unit time. It is similar to
the Schwarzschild case. Equations (12) and (13) can be
combined to yield

�
ρþ p
n

�
2
�
1 −

2M
r

− αþ v2
�

¼
�
ρ∞ þ p∞

n∞

�
2

; ð26Þ

which is the modified relativistic Bernoulli equation for
the steady state accretion onto black holes surrounded by a
cloud of strings. Equations (25) and (26) are the basic
equations that characterize accretion onto a black hole with
parameter α where we have ignored the backreaction of
matter. In the limit α ¼ 0, our results reduce to those
obtained in [3,5] for the standard Schwarzschild black hole.

B. The polytropic solution

In order to calculate _M explicitly and all the fundamental
characteristics of the flow, (25) and (26) must be supple-
mented with an equation of state which is a relation that
characterizes the state of matter of the gas. Following Bondi
[2] and Michel [3], we introduce a polytropic equation of
state
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p ¼ Knγ; ð27Þ

where K and the adiabatic index γ are constants. On
inserting (27) into the energy equation (15) and integrating,
we obtain

ρ ¼ K
γ − 1

nγ þmbn; ð28Þ

where mb is an integration constant obtained by matching
with the total energy density equation ρ ¼ mbnþ U, where
mbn is the rest-mass energy density of the baryons andU is
the internal energy density. Equations (27) and (28) give

γKnγ−1 ¼ a2mb

ð1 − a2
γ−1Þ

: ð29Þ

Using (28) and (29) we can easily rewrite the Bernoulli
equation (26) as

�
1þ a2

γ − 1 − a2

�
2
�
1 −

2M
r

− αþ v2
�

¼
�
1þ a2∞

γ − 1 − a2∞

�
2

: ð30Þ

At the critical radius rs, using the relation (24) and inverting
the above equation, we get

ð1þ 3a2sÞ
�
1 −

a2s
γ − 1

�
2

¼
�
1 −

a2∞
γ − 1

�
2

: ð31Þ

It must be noted that, in general, the Bernoulli equation is
modified due to a string cloud background. However at the
critical radius, the form remains unchanged from the
Schwarzschild case [5].
For large but finite values of r, i.e., r ≥ rs the baryons

will be nonrelativistic, i.e., T ≪ mc2=k ¼ 1013K for neu-
tral hydrogen. In this regime we should have a ≤ as ≪ 1.
Expanding (31) up to second order in as and a∞, we obtain

a2s ≈
2

5 − 3γ
a2∞; γ ≠

5

3
;

≈
2

3
a∞; γ ¼ 5

3
: ð32Þ

We thus obtain the critical radius rs in terms of the black
hole mass M and the boundary condition a∞ from (24)
and (32):

rs ≈
5 − 3γ

4

M
a2∞ð1 − αÞ ; γ ≠

5

3

≈
3

4

M
a∞ð1 − αÞ ; γ ¼ 5

3
: ð33Þ

Also, for a2=ðγ − 1Þ ≪ 1, we get from (29)

n
n∞

≈
�

a
a∞

�
2=ðγ−1Þ

: ð34Þ

We are now in a position to evaluate the accretion rate _M.
Since _M is independent of r, (25) must also hold for r ¼ rs.
We use the critical point to determine the Bondi accretion
rate _M ¼ 4πr2smbnsvs. By virtue of Eqs. (24), (32), (33),
and (34) the accretion rate becomes

_M ¼ 4π

ð1 − αÞ3=2 λsM
2mbn∞a−3∞ ; ð35Þ

where we have defined the dimensionless accretion
eigenvalue

λs ¼
�
1

2

�ðγþ1Þ=2ðγ−1Þ�5 − 3γ

4

�
−ð5−3γÞ=2ðγ−1Þ

: ð36Þ

From (35), it is evident that the mass accretion in a string
cloud background is increased by the factor ð1 − αÞ−3=2,
which may result in a more luminous source. However, the
accretion rate still scales as _M ∼M2 which is similar to that
of the Newtonian model [2] as well as the relativistic case
[3,5]. In the limiting case α ¼ 0, we obtain the well-known
relations derived in [3,5] for the Schwarzschild black hole.
In Fig. 1, we have plotted the logarithm of the accretion rate
_M against the string cloud parameter α for various poly-
tropic indices γ. Here _M is calculated in ergs/sec. We see
that _M increases rapidly with increasing α (0 ≤ α < 1), and
interestingly _M → ∞ as α → 1.

C. Some numerical results

The radial motion of the relativistic fluid accreting onto
the black hole in a strings cloud background is governed
by (12) and (30). These equations are difficult to solve
analytically and we solve them numerically as in Ref. [14].
We consider only the case of the relativistic fluid with γ ¼ 4

3
to study the radial velocity of the flow. Following [14], we
introduce dimensionless variables, the radial distance in
terms of the gravitational radius (x ¼ ðr=2MÞ) and the
particle number density with respect to its value at infinity
(y ¼ n=n∞). Now considering a ≪ 1, Eq. (30) can be
rewritten, in terms of a new variable, as

�
1þ a2∞

γ − 1
yγ−1

�
2
�
1 −

1 − α

x
− αþ v2

�

¼
�
1þ a2∞

γ − 1

�
2

: ð37Þ

On the other hand, using the same notation, the baryon
conservation equation (12) can be recast as
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yv ¼
�
xs
x

�
2

a∞

�
2

5 − 3γ

�
γþ1=2ðγ−1Þ

ð1 − αÞ1=2; ð38Þ

where the constant of integration is calculated by applying
baryon conservation at the critical point. Observe that (37)
and (38) are corrected equations for the string cloud model
and when α → 0 we recover the familiar model of Michel
[3]. Clearly, Eqs. (37) and (38) form a nonlinear system of
algebraic equations which is solved numerically for the
fluid velocity v given in terms of the velocity of light

and y. The parameters defining the flow are the sound
velocity at infinity a∞, the adiabatic coefficient γ and the
string cloud parameter α. The velocity profile of the flow
as a function of the dimensionless variable x for different
values of the parameter α is plotted in Fig. 2. The solution
is obtained by assuming an asymptotic temperature
at infinity of 10−9mpc2=kB for the relativistic case, i.e.,
γ ¼ 4

3
.

The event horizons for the model are located at
x ¼ 1=ð1 − αÞ, and hence the event horizon varies with

FIG. 2 (color online). The radial velocity profile (v) for a relativistic fluid γ ¼ 4=3 accreting onto the black hole as a function of the
dimensionless radius x ¼ ðr=2MÞ for different values of the string cloud parameter α.

4
3
5
3

0.0 0.2 0.4 0.6 0.8 1.0

11.0

11.5

12.0

12.5

13.0

13.5

14.0

Log M Log M
.
.

1.1
1.3
1.5

0.0 0.2 0.4 0.6 0.8 1.0

11.5

12.0

12.5

13.0

13.5

14.0

14.5

FIG. 1. Plots showing the logarithm of the accretion rate _M as a function of α for different values of γ.
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α. Interestingly a string cloud in the background makes a
profound influence on the radial velocity, and the result is
strikingly different from the Schwarzschild case (α ¼ 0). In
the familiar Schwarzschild case (α ¼ 0, Fig. 2), we note
that the flow speed of the accreting gas crosses the event
horizon at the speed of light. This feature is consistent with
the treatment of de Freitas [14] who considered relativistic
accretion onto a charged black hole. The critical radius is
far away from the event horizon (xc ¼ 1.25 × 108) where
the flow velocity is much less the value at the event horizon.
To conserve space we have plotted velocity profile for
γ ¼ 4=3, as the radial velocity v for other values of γ have
similar profiles. The velocity profiles are plotted for some
specific values of string cloud parameter α ¼ 0, 0.2, 0.4,
0.6, 0.75 and 0.8, respectively for which the event horizons
are located at r ¼ 1, 1.25, 1.67, 2.5, 4 and 5. It is clear from
Fig. 2, the fluid always crosses the event horizon with the
velocity of light for all values of α.
We have also plotted the compression ratio y as a

function of radial coordinate for a relativistic accreting
gas with γ ¼ 4

3
in Fig. 3 for different values of string cloud

parameter, more specifically for α ¼ 0, 0.2, 0.4, 0.6, 0.75
and 0.8. This graph shows that the compression factor
profiles also affected by a change in the strings cloud
parameter α is in contrast to the analogous compression
factor of an accreting charged black hole [14]. The
compression ratio for black hole in string cloud background
increases with increase in α. In general, it may attain the
value of the order of 1014–1016.

IV. ASYMPTOTIC BEHAVIOR

In the last section, we found that the accretion rate at
some sonic point r ¼ rs far away from event horizon, i.e.,
rs ≫ 2M is not influenced by nonlinear gravity. Next we
estimate the flow characteristics for rH < r ≪ rs and at the
event horizon r ¼ rH.

A. Sub-Bondi radius rH < r ≪ rs
At distances below the Bondi radius the gas is supersonic

so that v > a when rH < r ≪ rs. From (30) we find the
upper bound on the radial dependence of the gas velocity

v2 ≈
2M
r

; γ ≠
5

3
: ð39Þ

We can now estimate the gas compression on these scales.
With the help of (25), (35) and (39) we obtain

nðrÞ
n∞

≈
λsffiffiffi

2
p ð1 − αÞ2

�
M
a2∞r

�
3=2

: ð40Þ

For a Maxwell-Boltzmann gas, p ¼ nkBT, we generate the
adiabatic temperature profile

TðrÞ
T∞

¼
�
nðrÞ
n∞

�
γ−1

≈
�

λsffiffiffi
2

p ð1 − αÞ2
�

M
a2∞r

�
3=2

�
γ−1

; ð41Þ

using (27) and (40).

FIG. 3 (color online). The compression factor (y) for a relativistic fluid γ ¼ 4=3 accreting onto the black hole as a function of the
dimensionless radius x ¼ ðr=2MÞ for different values of the string cloud parameter α.
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B. Event horizon

At the event horizon we have r ¼ rH ¼ 2M=ð1 − αÞ. As
the flow is supersonic since we are well below the Bondi
radius, it is reasonable to assume that the fluid velocity is
approximated by v2 ≈ 2M

r . At rH, v
2
H ≡ v2ðrHÞ ≈ 1 − α, i.e.,

the flow speed at the horizon is always less than the speed
of light. Therefore, using the fact M=rH ¼ ð1 − αÞ=2, we
obtain the gas compression at the event horizon from (40):

nH
n∞

≈
λs

4ð1 − αÞ1=2
�

c
a∞

�
3

: ð42Þ

Again assuming the presence of a Maxwell-Boltzmann gas,
p ¼ nkBT, we find the adiabatic temperature profile at the
event horizon using (41) and the horizon assumption:

TH

T∞
≈
�

λs
4ð1 − αÞ1=2

�
c
a∞

�
3
�
γ−1

; ð43Þ

where, following [5], we have reintroduced the speed of
light c in the above expressions. The limit α → 0 in the
above equation gives us the corresponding result of
accretion of the fluid onto the Schwarzschild black hole [5].

V. CONCLUSIONS

Historically the accretion problem with a polytropic
equation of state was addressed by Bondi [2]. He showed
that subsonic flow far from a black hole will inevitably
become supersonic, and that the requirement of a smooth
traversal of the sonic surface uniquely specifies the accre-
tion rate as a function of two thermodynamic variables,
namely the density and temperature of the gas at infinity.
The relativistic version of the same problem was solved by
Michel [3] 20 years later, after the discovery of celestial
x-ray sources. He showed that accretion onto the black hole
should be transonic. Accretion onto compact objects such
as black holes and neutron stars is the most efficient method
of releasing energy; up to 40 percent of the rest-mass
energy of the matter accreting on the black hole is liberated.
Recent developments in the theory of accretion are sig-
nificant steps toward understanding various astronomical

sources that are believed to be powered by the accretion
onto black holes. Spherical accretion onto a black hole is
generally specified by the mass accretion rate _M which is a
key parameter, and there is evidence that a higher accretion
rate can provide higher luminosity values. In view of this,
we analyzed the steady state and spherical accretion of a
fluid onto the Schwarzschild black hole in a string cloud
background. We determined exact expressions for the
mass accretion rate at the critical radius. It turns out that
this quantity is modified so that _M ≈M2=ð1 − αÞ3=2 with
rs ≈M=ð1 − αÞ. Thus the accretion rate by the black hole
in a string cloud background is higher than that for a
Schwarzschild black hole. Thus the parameter α can be
introduced in the problem of accretion onto black hole to
extend the work of Michel [3], and this quantity determines
the accretion rate and other flow parameters. In principle,
the accretion rate and other parameters still have same
characteristics as in the Schwarzschild black hole; in this
sense we may conclude that the familiar steady state
spherical accretion solution onto the Schwarzschild black
hole is stable. In the limit α → 0, our results reduce exactly
to those obtained in [3,5] for the standard Schwarzschild
black hole.
We can attempt to work out the effect of string cloud

background on the luminosity, the frequency spectrum and
the energy conversion efficiency of the accretion flow. It is
possible to deviate from spherical symmetry, e.g., include
rotation, which may lead to a higher accretion rate. These
and other related issues are currently under investigation.
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