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We investigate the motion of spinning test bodies in General Relativity. By means of a multipolar
approximation method for extended test bodies we derive the equations of motion and classify the orbital
motion of pole-dipole test bodies in the equatorial plane of the Kerr geometry. An exact expression for the
periastron shift of a spinning test body is given. Implications of test body spin corrections are studied and
compared with the results obtained by means of other approximation schemes.

DOI: 10.1103/PhysRevD.90.064035

I. INTRODUCTION

Extreme mass ratios in astrophysical situations, for
example as found in the Galactic center, allow for an
approximate analytic description of the motion in certain
parameter regimes. The steadily improving observational
situation of the Galactic center [1-3] may soon enable us to
test different competing theoretical approaches to model
the motion of astrophysical objects in the theory of General
Relativity.

In this work we study the motion of extended spinning
test bodies in a Kerr background. Our starting point is an
explicit velocity formula based on the multipolar descrip-
tion [4—8] of pole-dipole test bodies, with the help of which
we classify the orbital motion in the equatorial plane of a
Kerr black hole for aligned and anti-aligned test body spin.
An exact expression for the periastron shift is given and
compared with corresponding post-Newtonian results. We
provide an estimate of the test body spin corrections for
orbits around the black hole in the Galactic center.

The structure of the paper is as follows. In Sec. II we
provide the equations of motion for spinning test bodies
and derive a general formula which relates the momentum
and the velocity of the test body. The motion of spinning
test bodies is then studied in a Kerr background in Sec. III.
These equations of motion are of a mathematical structure
which allows for an analytic solution [9,10] and a system-
atic classification of different orbit types in Sec. IV. In
Sec. V a general formula for the periastron shift is given and
compared to corresponding post-Newtonian results. Our
conclusions are drawn in Sec. VI. In Appendixes A and B
we provide some supplementary material and a summary of
our conventions.
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II. EQUATIONS OF MOTION OF
SPINNING TEST BODIES

The equations of motion of spinning extended test bodies
up to the pole-dipole order have been derived in several
works [4-8,11] by means of different multipolar approxi-
mation techniques and are given by the following set of
equations:

Dp 1 X
L=~ Rupequ’ S, 1
ds 2 abed ( )
Dsab
— 2 playbl. 2
= pu (2)

Here u“:=dY?/ds denotes the 4-velocity of the body
along its world line (normalized to u“u, = 1), p* the
momentum, §* = —§"* the spin, £ the covariant deriva-
tive along u?, and R,,.; is the Riemannian curvature.
Equation (2) implies that the momentum is given by

ab

ds

Pl = mu +——uy, (3)

where m := p,u“. Note that in order to close the system of
equations (1)—(2) a supplementary condition has to be
imposed.

A. Conserved quantities
If & is a Killing vector, i.e. V(,&,) = 0, then the quantity,

1
Ef = paéa + Esabvagbv (4)

is conserved (see e.g. [11,12] for a derivation).

Other conserved quantities depend on the supplementary
condition. In the pole-dipole case, the spin length S
given by
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1
§? = 5848 (5)

is conserved for the two well-known supplementary
conditions of Tulczyjew,

pasab =0, (6)
and Frenkel,
u,S% = 0. (7)

Apart from m one may define a mass m by m? := p“p,.
In the pole-dipole case m is conserved if one chooses
Tulczyjew’s spin supplementary condition (6). However,
for the Frenkel condition (7) the mass m is conserved in the
pole-dipole case.

B. Velocity-momentum relation

For either of the two supplementary conditions (6) or (7)
the following relation, see [13] for a derivation, between the
velocity and the momentum holds,

6)v(7) . 28“°S“Rypeh o
a — a , 8
u P + 4m2 + SCdSechdef V4 ( )
where
m 1 D
Na — a _ Z(§ab . 9
V4 m2 p mz ds ( pb) ( )

From the velocity formula (8) and the normalization
condition u,u® =1, we obtain—for the Tulczyjew
condition—(6) an explicit expression for the mass m of
the following form,

[38)

(10)

3
I
= |\§

where we introduced auxiliary quantities,
/’tz = mz +A%SabSCdRcdbepesanghRghﬂpiv (11)

2
B 4m2 + SabSCdRcdab .

A, (12)

In flat spacetime we have m = u = m. Resubstituting (10)
back into (8), we obtain an expression for the velocity,

ut C Ky ph, (13)

1
K% == (8 — A15%S"Rpeca). (14)
U
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as a function of the momentum, the mass m, and the spin,
ie. u® = u(m, p®, S, Rypea)-

C. Nonlinear dynamics of spin

For the Tulczyjew condition (6) we define the spin vector
S% as

1

S = abcd S ,
2m \/_—gg PpOcd
1
S = ——_pabcd)y g 15
= (15)
Here £%“? is the totally antisymmetric Levi-Civita symbol;

the only nontrivial component is equal €'?3 =1. It is
straightforward to derive the equation of motion for the
vector of spin:

DS p“p, DS

. 16
ds m? ds (16)

By construction, we have the orthogonality
PaS* =0, (17)

and noticing that §**S, = 0 from (15), we use (13) and (14)
to verify another orthogonality property,

u,S* = 0. (18)
Substituting the velocity-momentum relation (13) and (14)

into (1) and (16), we derive the closed system of dynamical
equations for the momentum and spin vectors,

Dp“ 1 e c

ds - EK aRebcdpr d’ (19)
Ds* papb e cd Qf

ds - —2—’/”2]( fRebcdS S . (20)

Contracting (16) or (20) with S,, we verify that the length
of the spin vector is constant by making use of (17). From
(15) we find

1
SuS* = =5 SuS" = =5, (21)

where we recall the definition of the spin length (5). The
vector of spin is therefore spacelike.

The dynamical equations (19) and (20) are highly
nonlinear in spin. Indeed, the right-hand sides of these
equations contain
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a 1 a a ptlpc C c
K b _;|:5[7_2A1<5C_ mz >(525d+s Sd)
k n k Qn
pp" SS
X{Rdb—"_debn(?_ 5 )H (22)

Furthermore, we explicitly have
p? = m? + 4A3[S*(RypS")?
1
——5 (8*Rupp*p® — Rycpap® p?S°S9)?
m

+ (SzRah - RaebeeSf)pb(SzRac - RakcnSkSn)pc]’

(23)

1
A_ = 2[m2 - RacbaiSaprcpd/m2
1

— Ryp(S9SP + g**S?/2 + p“p®/m?)]. (24)

Here R, is the Ricci tensor.

The analysis of the nonlinear system (19) and (20) is a
complicated problem, in general. A perturbation scheme
was developed in [14—17] to deal with the full nonlinear
system. In this approach, one linearizes the equations of
motion to obtain

Dp 1
4~ —R bged, 25
ds 2 abedP ( )
DS
~ 0 26
ds ’ (26)

and the solution of the full system is then constructed as a
series in the powers of spin S, which is used as a
perturbation parameter. In the linearized case, we again
have m = y = m and hence p* ~ mu®. It is worthwhile to
note that the Gravity Probe B experiment [18,19] is actually
based on the linearized equations of motion (25) and (26).

In this paper, we analyze the complete nonlinear equa-
tions of motion without using approximations and pertur-
bation theory.

III. EQUATIONS OF MOTION IN A KERR
BACKGROUND

In the following, we are going to study test bodies
endowed with spin in the gravitational field of a rotating
source described by the Kerr metric. This problem was
investigated in the past for the Tulczyjew supplementary
condition (see [17,20], e.g.), as well as for the Frenkel
condition [21,22]. In view of the complexity of the
problem, the solution in most cases was obtained numeri-
cally and/or approximately with the help of perturbation
theory.

Here we will specialize to the integrable case for which
we obtain an exact and analytical result. The full nonlinear
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equations of motion are considered, no linearization
or other approximation is made. Since the Kerr metric
satisfies the vacuum Einstein field equation, R, = 0, the
formulas (22)—(24) become significantly simpler.

A. The Kerr metric

In Boyer-Lindquist coordinates (t,r,6,¢), the Kerr
metric takes the form

2M 4aMrsin®0 2
ds2—<1— zr)dt2+7a S drdg-ar
P p A

dg?,  (27)

2a>Mrsin2@
— p?d6? —sin®0 <r2 +a*+ %)

where M is the mass parameter, a the Kerr parameter, and
A:=r?=2Mr+ a2, (28)
p? = r? + a*cos?0. (29)

The Kerr metric allows for two Killing vector fields given
by

&4 = 67, &t = 6. (30)
E J

Furthermore, we have
/=g = +/—det(g,,) = p*siné. (31)

B. Equatorial orbits for polar spin

Let us assume that the spin vector of a test body has only
one, namely polar, component:

s = 8059, (32)

In view of the orthogonality relations (17) and (18) the

polar ansatz (32) yields
p? =0, u? = 0. (33)

Recalling u’ = df/ds, we thus conclude that the polar

angle is fixed, @ = const. Therefore, we can focus on
equatorial orbits, i.e.

0= 5 (34)

The consistency of the equatorial setup (32)—(34) was
analyzed earlier in [23]. It is worthwhile to note that the
assumption (32) on the equatorial plane means that the spin
of a test body is aligned with the spin of the Kerr source.
Let us now turn to the integration of the equations of
motion (19) and (20). The polar ansatz (32) and its
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corollary (33) leave us with the four unknowns
{p',p", p?, 5%}, which should be determined from the
equations of motion. Fortunately, we have exactly four
integrals of motion and we can find the nontrivial compo-
nents of the vectors of momentum and spin from the
following set of equations,

$2 = —S,89, (35)

m? = p,p*, (36)
abced

E= Pa <5a 2€ \/—Sb céd) (37)
abed

(g =nVy)

in terms of the mass m, the spin length S, the energy E, and
the angular momentum J.

From the length conservation of spin (35), we immedi-
ately find $% =S/ \/=9Jge- For completeness we can use
(15) to write down the nontrivial components of the spin
tensor in the equatorial plane:

Srt:_% S(ﬁt:% S(/Jr:_%‘

39
mr mr mr (39)
The algebraic system (37) and (38) can be solved for the
momentum components p, and p,, in terms of the constants
of motion:

E—Y5 (] - aE)

pt = MS? ) (40)
1 _ﬂ273
—J - [aE(l _z—M) J]
Py = — MS? (41)

mZ r3

The remaining component p, is obtained from (36).

C. Orbital equation of motion

With the help of (13), (22)—(24), (40), and (41) we can
derive explicit expressions for the velocity components in
terms of the constants of motion and the parameters of the
test body, ie. u® =u’(m,S,E,J,a,M). From this we
derive an explicit expression for u’/u?,

dr AP +8§%) /-
=P “2)

where we introduced the dimensionless quantities,
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J

J=—",
mM

~i
I
Ql

Tl
I

[es]]
I
|§‘ “ §| Q

BFlm |~

and

Py=(E*=1)P+2F +(a*(E*=1)— (SE-J)*)7®
+2((SE-J)*+S(S—EJ)+aE(aE+3SE-2]))P
4827 4+-2aS(J*—ESJ+a*E* + E*Sa—-2aJ] E+Sa)r

+82((@E-J)*-8*)r> +28*F—a>S*, (44)
0= (J-SE)

+(SE +aE-J)(27° + 8(a+28)7 - 457 +3a>5%F)

+S3a(aE-J), (45)

with A = 7 — 27 + a@>. In the following all quantities with
a bar are always dimensionless.

D. Integration

The equation of motion (42) can be integrated analyti-
cally in a parametric form. First we notice that the
corresponding integral equation,

r r
S A 46
o / A PP (40

contains on the right-hand side a hyperelliptic integral of
genus three and the third kind. The corresponding problem
for genus two was recently solved analytically [24] in a
parametric form by introducing a new affine parameter 4,
which may be considered as an analogue of the Mino time
[25]. Together with the analytic solution of integral
equations involving hyperelliptic integrals of genus three
and the first kind [9], the solution 7(4) and ¢(4) can be
found analytically. However, we will not elaborate this here
but rather focus on the related classification of the orbits,
and on the periastron shift in Sec. V.

IV. CLASSIFICATION OF ORBITAL MOTION

We will now analyze the orbital motion in the considered
setting of equatorial motion with aligned spin. Observe that
the substitutions (@, J,S) — (-a,—J,-S) and (E,J) —
( —E,—J ) only change the sign of the equation of motion,
W - —dr Therefore this only reverses the direction but
leaves the type of orbit unchanged, so we choose a > 0
and E > 0.

064035-4



MOTION OF SPINNING TEST BODIES IN KERR SPACETIME

A. Circular motion

From Eq. (42) it can be inferred that the expression under
the square root given by (44) has to be positive to get
physical meaningful results. Only if P, > 0 motion is
possible for the given parameters of the spacetime and
the particle. The points P; = 0 define the turning points of

|

/7
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the motion. Coinciding turning points correspond to
circular orbits and are given by double zeros of P,

. dp;

P ==
dr

0. (47)

Solving this two conditions for E and J yields

Eip34= iﬂ?—:‘_/_{Va(Ra + A[U2(9a%8* + 6572(52 + 27)a + F(47 + 137352 — 854))]2) 2, (48)
_ 1 _ _ _ _ _ _ _ o
I\234 = =5 {(378° + 37" (2E* — 1)S)a® + (8° 4 P (E? — 37 + 6)5* 4 379 (FE* + F — 2 + 4E%)§?
+ P (2E? = 1))a* + (P (F — 4)8° — P (3P E* — 9E* — 47 — 47E? + 4)83 + (8FE? — 57 + 8)S)a — 7S¢
—7QF=3)F+TE> = 4)5* + 7 (P +9 = TF + 37E?)S? — F1O(=37E? + PE?> + 47 — 4 — 12)}, (49)

Vi =—68F(5* 4 2i)A

a+((3r—4)8* + 7 (67 — 19)8? — 47%)a* + 7(2F — 3)28* + # (47> — 277 + 36)S? + ¥ (7 — 3)?,

(50)

R, = —185°a°r* + (386 + 3(37 — 4)F5* + 185%7%)a* + (8728° — 27 (277 — 67)8° — 27%(97 — 19)8)a’
+ (57(F —2)8° + 74 (157 + 87 — 707)§* + 7/ (127 4 30 — 377)§* — 27'°(37 — 5)) @
— (4P (P + 5 —47)8° + 27%(=T777 + 1472 4 94) 8 + 27 (117% — 417 + 40)S)a
+27%(3 = 27)8% + (87 — 5672 4 1457 — 126)7°8* + (87 — 657% + 1607 — 126)735% 4 271 (7 - 3)(F — 2)%,  (51)

If in addition to the conditions (47) also ‘ﬂer < 0 holds,
then the circular orbit is stable against radial perturbations.
The radius of the innermost stable circular orbit (ISCO)

with d[;;ﬁ = 0 is of particular importance as it marks the

a=0.1

U, = 657a” + (S* + 127352 — 3745% + 27%)a — S72(45°7 — 7 — 95?).

(52)

|

transition from bound motion to infalling orbits. In Fig. 1
the radius of the innermost radially stable circular orbit is
plotted as a function of the spin S for fixed values of the
Kerr rotation parameter a. Note that in general radially

hll

FIG. 1 (color online).

Radius of the innermost radially stable circular orbit as a function of the spin S for different values of the Kerr

parameter @. The blue solid lines correspond to prograde orbits @ J > 0 and the red dashed lines to retrograde orbits & J < 0. The event

horizon is indicated by the black dotted line.
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stable orbits may still be unstable against perturbations in
the O-direction. Suzuki and Maeda [26] have shown that
radially stable circular orbits become unstable in the 6
direction for large positive spin values S > 0.9, but they
only considered prograde motion (a J > 0). However, from
Fig. 1 we infer that radially stable retrograde circular orbits
with negative spins may come closer to the horizon than the
corresponding prograde orbits (see also [27]). Therefore, it
would be interesting to analyze whether the same insta-
bilities as reported in [26] also appear for retrograde orbits
with negative spins.

B. General orbits

For given values of the parameters of the spacetime and
the particle all possible types of motion are given by the
regions where P; > 0, which can be directly inferred from
the number of turning points P, = 0 and the asymptotic
behaviour of P, at infinity. If we continuously vary the
values of the parameters, the number of turning points
changes at that set of parameters which correspond to

|
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double zeros, and which are given by (48) and (49). The
asymptotic behaviour of P, changes at E> = 1. Therefore,
we may already infer all possible types of orbits from the
analysis above. In Fig. 2, orbit types in parameter space are
shown for fixed @ and S. Note that we only consider orbits
which start at a radius 7> 7, =1+ +V1—a* (motion
outside the horizons).

C. Schwarzschild spacetime

In Schwarzschild spacetime (a = 0) the quotient of the
velocity components simplifies to

i (P4 8Py (53)
dp (P -282)(J-SE)’

With a = 0 the polynomial in (44) does not reduce its
degree, but 7 = 0 is always a zero. The conditions (47) for
a = 0 are solved by

El,2.3,4 =+

1
\/i[\"/a:o(iea:o +7(F-2) \/U§ZOF(4?6 + 13728% — 85‘4))}2

, (54)

V2PV

S0+ 7P (2r = 3)(FE? + 7 —4)8* — (2 4+ 3FE? — T + 9)8? + P (P (E* — 1) = 3FE* + 4(F — 1))

J1,2,3,4 =

PEU,,

. (55)

Note that (S, E) — (=S, —E) does not change the equation of motion, so we may choose E > 0. Also (E,J) — (=E,—J)

dr
> dd

dr.

only changes the sign —

Therefore, this only reverses the direction but leaves the type of orbit unchanged, hence

we choose J > 0. In Fig. 3 orbit types in parameter space are shown for fixed S.

a=0.1, $=0.5 @=0.9, $=0.5 @=0.9, S=4
10 1 10 1 10 A
B,F B,F B
J * B.F
5 5 5
B.B
7 0 B, F, 7 o] B, F, 7 0 / F,
B*Bﬂ
B.B
-51 % -51 B*Bﬂ -5
B,F B,F B, B,F
-10 T T v -10 v v -10 v v v
0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5
E E E

FIG. 2 (color online).

Orbit types in parameter space for Kerr spacetime. The blue and black lines divide the plot in different regions of

orbit types. Here, B denotes a bound and F a flyby orbit. A star indicates that the particle crosses the horizon. If more than one type of

orbit is possible, the initial conditions determine the actual orbit.

On the blue lines the orbits are circular and the dots indicate the

innermost radially stable circular orbit. Only on the blue line approaching E = 1 the circular orbits are radially stable. (Note that here
only 7 > 7, is considered; there are also combinations of £ and J where circular orbits between 7 = 0 and 7 = 7_ are possible.)
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$=05 S=4 S=-4

101 10 1 10 1
B,F

81 8 g

6 B, 6 B,F 61 B, B,F

7 7 T
4 B.B 4 41
2 F, 2 2 F,
F, B*B4
0 . 0 0 .
0 0.5 115 2 2.5 15 2 2.5 0 0.5 115 2 2.5

E E E

FIG. 3 (color online).

Orbit types in parameter space for Schwarzschild spacetime. The blue and black lines divide the plot in four

regions of different orbit types. Here, B denotes a bound and F a flyby orbit. A star indicates that the particle crosses the horizon. If more
than one type of orbit is possible, the initial conditions determine the actual orbit. On the blue lines the orbits are circular and the dot
indicates the innermost circular orbit which is stable in the radial direction. Only on the blue line from the dot approaching E = 1 the

circular orbits are radially stable.

V. PERIASTRON SHIFT

Let us consider the bound orbit of a spinning particle in
the equatorial plane with turning points 7, < 7. In this case
P; has at least four real zeros 7| < 7, < 73 < 74 with 73 =
7p and 74 = 7,. The periastron shift Aw = 2z(K — 1) is
then given by the difference of the periodicity of the radial
motion 7(¢) and 2z, i.e.

l/ra f o
K=- dr, 56
Jr, \/P_a (36)
where f = G fm
Let us Wnte P,=(E* =18, (F—7) where 7| <
'<l_’4€RWith 7’3 _p 4 = 7' and r5,.. ?SEC If
we introduce a new variable z by 7 = % + 7 the

expression (56) transforms to
(ia — 71 )2
7y (1= B) T (7 = 7) (7 = 71) (7 = T)
B,
/ Yo Cid +Z/ 1 Tob2

V=TI (1= 1i2)

where the constants C;, B ; are the coefficients of a partial

fraction expansion of f(7(z))/(¥(z) —F;)?, which are

given in Appendix B, together with the characteristics

K =

dz, (57)

b;. The parameter 1= (Iy,...,15) is defined as

(58)

~i
il

(a_

_p)(7i+3 —-7)

li: — — — 3
(rp_rl)(ra_ri+3)

i=2...5 (59

The expression (57) can now be rewritten in terms of
Lauricella’s hypergeometric Fp, function, which is given in
terms of a power series and can be calculated quite easily,
see Appendix B for details,

K = (7‘21_7”1)2
VU= BT = 77y = 71) (7 = 7o)
3C, (5 .-\ C . (3~ -
[?FD(§7ﬁ73’l>+7FD<§’/72’1)
N 5
+COFD<2,ﬂ,1,1>+;BjFD(2,/;*,1,1;;>],
(60)
where f = (f,...f5) with p;=1/2 for all j,
F = Br..Bs. 1), and [ = (I, ... Is, b)).

For §=0 expression (60) reduces to the known exact
expressions for the periastron shift of equatorial motion of a
spinless test body in Kerr spacetime. For S = 0 we see that
five zeros of P, coincide, 7/, =0 = 7; for 5 <i <8, and,
therefore, the expressions (59) vanish. In addition, C; = 0,
i=0,1, 2, and B; =B, =Bs=0 for S=0. Then
Fp(.p1, ;) =2M(b;, V) /7, j =1, 2, where II is
the complete elliptic integral of the third kind, and we find

2
K(G =0 Z: \/28Hb],\/_) (61)

1 - )p(’”a—”z)‘
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If in addition @ = 0 we find B, =0, B; = J, and b; =0
which gives

where KC(v/1}) = I1(0, v/1;) is the complete elliptic integral
of the first kind.

For spinning black hole binaries in quasicircular orbits
the post-Newtonian expansion of the periastron precession
was determined in [28], see also [29]. In [28] the test
particle limit in the pole-dipole-quadrupole approximation
[their Eq. (24)] was considered, which reads for the
periastron shift,

— e _2 — O
K= 1_g+8a:|;68_3a +6as
r r2
_ o e
J188, 0as s, 0(32)} L (63)

_5 - _
r2 r 3 r2

7.2

1

Our expression (60) for 7, = 7, reduces to
K(F,=7y) =Co+ Y _B,;. (64)

A comparison of these expressions is visualized in Fig. 4.
In the region of large r, where the post-Newtonian
approximation is valid, the two expressions coincide very
well. For smaller values of r, say around r = 500M in
Fig. 4, the approximate formula (63) works still quite well
for vanishing spin but shows already quite significant
deviations for larger values of S. Here the quadratic effects
of the spin, which are neglected in (63), apparently become
already important, at least in combination with the post-
Newtonian approximation.

Let us apply the exact expression (60) to a stellar orbit
around Sagittarius A*, the massive black hole at the center
of our Galaxy, to get an impression about the magnitude of
the spin effects. We consider here SO-2 which has well
known orbital parameters and a very short orbital period.
From [1] we take the eccentricity eg, = 0.88, the semi-
major axis dg, = 0.123 mas, the mass of the black hole as
Mgy =4.31x 10°Mg,, and its distance as Rgy; = 8.33 kpc.
With Mg, ~ 1476.9 m we derive from this the normalized
peri- and apastron of SO-2 as

7y R 4527 x 103, (65)
Fp & 2.89 x 10°. (66)
If we assume that SO-2 moves in the equatorial plane of a

Kerr black hole we may use (60) to derive the relativistic
periastron precession including the effect of a possible spin

PHYSICAL REVIEW D 90, 064035 (2014)

1.5 1

0.5 1

1.10°8 K

-0.5 1
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FIG. 4 (color online). Comparison of post-Newtonian and exact
expression for the periastron shift of quasicircular orbits. Here the
difference K (multiplied by 10°), i.e. the exact expression (64)
minus the post-Newtonian expression (63), is shown as a function
of the radius r of the quasicircular orbit (# in units of M). We
chose the spin of the Kerr black hole as @ = 0.9. The black solid
line corresponds to a spin zero test particle, the blue long dashed
line to S = 0.1, the red short dashed line to S = 0.2, the green
dash dotted line to S = —0.1, and the orange dotted line to
S =-0.2.
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T 001
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S
FIG.5. The relativistic periastron shift of a spinning SO-2 in the

equatorial plane of a Kerr black hole with rotation @ = 0.95. Here
the difference between the periastron shift of a non-spinning
SO-2 in a prograde orbit, denoted by Awyg, and the periastron
shift including the spin, denoted by Awgyy, is shown in 1073 rad
as a function of the dimensionless spin S.
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of SO-2. The usual post-Newtonian formula for the
relativistic precession per orbital period is

6”MBH
dsy (1 = e5,)

This value is in good agreement with (60) for @ = 0 and
S=0,Aw(a=0,5=0)— Awpy ~3 x 107 rad [remember
Aw=27(K—1)]. If we assume a black hole spin of @=0.95
and a non-spinning SO-2 in a prograde orbit we get a
correction of Aw(@=0.95,5=0)—Awpy~—5.94x 10 rad.
In Fig. 5 we see the effect of a non vanishing spin of
SO-2 as compared to the case of S = 0. For large SO-2
spins the correction is nearly of the same order as the
correction due to the black hole spin, approximately
F4.65 x 107 radians per orbital period for § = +1.
For a comparison of Newtonian and post-Newtonian
contributions see also [30].

Awpy = ~347x 103 rad~ 11.9.  (67)

VI. CONCLUSIONS

In this paper we derived an explicit velocity formula
for particles in the equatorial plane of a Kerr black hole
with spin aligned or anti-aligned with the rotation of the
black hole. We classified the radial motion of such particles
outside the horizons and also plotted the location of the
innermost radially stable circular orbit. From Fig. 1 it can
be inferred that not only prograde orbits but for large
negative spins also retrograde orbits may come very close
to the outer black hole horizon. It would be interesting to
analyze whether such retrograde orbits also become unsta-
ble in the #-direction as shown for prograde orbits in [26].

We then used the explicit velocity formula to derive an
exact expression for the periastron shift of a spinning
particle. A comparison with a post-Newtonian expression
for quasicircular orbits up to first order in the spin given in
[28] showed that the quadratic spin contributions should be
included before adding even higher order post-Newtonian
terms to this expression. In order to get an idea about the
magnitude of spin corrections to the periastron shift we
considered as an example the orbit of SO-2 around the
Galactic center black hole. Assuming prograde equatorial
motion and an (anti-)aligned spin of SO-2 we found that the
corrections due to a spinning SO-2 may become nearly as
large as the corrections due to the spin of the black hole.
Therefore, this effect may become relevant for tests of
General Relativity in the vicinity of the central black hole
using stellar orbits.

ACKNOWLEDGMENTS

This work was supported by the Deutsche
Forschungsgemeinschaft (DFG) through the grants LA-
905/8-1/2 (D.P.), DI-527/6-1 (1.S.), and the research train-
ing group “Models of Gravity” (E.H.). We would like to
thank V. Perlick and B. Mashhoon for fruitful discussions.

PHYSICAL REVIEW D 90, 064035 (2014)
APPENDIX A: CONVENTIONS AND SYMBOLS

The dimensions of the different quantities appearing
throughout the work are displayed in Table I. We set ¢ = 1,
the dimension of the gravitational constant then becomes
[G] = m/kg. Table II contains a list with the most impor-
tant symbols used throughout the text. Latin indices denote
four-dimensional indices and run from a =0, ..., 3, the
signature is (+,—,—,—).

APPENDIX B: LAURICELLA’S F;, FUNCTION

The four functions F4, Fp, F¢, and Fp of Lauricella are
hypergeometric functions of multiple variables generaliz-
ing the hypergeometric functions of Gauss and Appell.
They were introduced in 1893 [31] and given as a
hypergeometric series

oL @B
Fp(a.p.y.%) = ;—m g

(B1)
where 7 is a multi-index, |x, | < 1 for all n, and (-) is the
Pochhammer symbol. Here [i| =_,1,, 1! =[],.!, and
(B): = [ 1(B,),,- The function F, can be extended to other

values of X by analytic continuation. It can also be rewritten
as a simple series which is much more convenient for
computations [32],

TABLE I. Dimensions of the quantities.

Dimension (SI) Symbol

Geometrical quantities

1 Gabs /=G> 83 €204, 0, ¢, dO, dp

m s, Y4 t,r, dt, dr, p, A, M, a, ry,

MBH’ MSum RBH

m72 Rabcd

[Ec] kg™ ¢

Matter quantities

1 u’, K, esy, dsp

kg m, m, pa3 E

kgm Sab o ga g

rad Aa), ACUPN

Auxiliary quantities

1 i)a7 P[n Q, VZ]’ RZJ’ U(_l, 7'] ,,,,, 8 2,
Co...2» Bi..s bi.ss L B 7 L L,

kg H

kg™ Ay

Operators and functions

1 Fp, T 1L, K

m—l aa, vi’ % e
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- o © a m
Pl ) =1+) (3" (B2
m=1 m
where
A =S By
7!

”’f X (B3)

I
M
::1

{meN”|ij7m J=1

In this paper the Fj, function is used because it can be
represented in an integral form

2 I'(y)
(@) (y - )

1
X / ta—l(]
0

e [0 = x,0)Prat

(B4)

for Re(y) > Re(a) > 0, where I' denotes the gamma
function. It is a generalization of the Jacobian elliptic
integrals, e.g. 7Fp(1/2,1/2,1,k*) = 2K (k), where K is
the complete elliptic integral of the first kind.

The constants appearing in front of Fj, in (60) are due to
a partial fraction decomposition of f(7(z))/(F(z) — 7,)?
and given by

_ a(;'a - 71)
2A(71)* (@ 4 Ty (Fy = 2) 4 (Fy = 7))
+[(2] —ES—4(J —E8)F)ry —

B],2 =

—~

1- r4

(_ -
—I—Z}’i(?l - 1) -+ rirl +2r1 —2) + 7 (j—ES)(4+ 7'1)6_13 —2;‘{’(}_’1 —I—8)Eri_c_l
473]a* — F(2T = 3ES)raa + P (8E — T 8)ry] (B5)

+ [(12E7 —J S)ry + 8EF —4J ST +

B, ={S8*b(aE+SE-J)(F,— 1) (7, — 4
X [(Fy = Fp + bj(Fy = 71))28% + 71 (7 (F,
X [(Fy = 7,)? 71 (108* —
+ (Fp = 71)2((F2 + 37,7 + 67])5* —

/(8 + RV, -7

P
16527 + 7%) + (Fa — 7)) (Fp — 71 )F1 (5(Fy + 37)S*

73 (77, + 67,7 + 377)8% + rarl)bz]
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TABLE II. Directory of symbols.

Symbol Explanation
Geometrical quantities

Gab Metric

V=9 Determinant of the metric
op Kronecker symbol
& Killing vector
t,r,0, ¢ Coordinates

s Proper time

Y World line

Raped Curvature

M, a Kerr (mass, parameter)
T, T (outer, inner) horizon
Mgy, Msun Mass (black hole, Sun)
Rgn Distance to black hole

Matter quantities

<
Q

m

IS

Y mS 3

ab, a S
,J
?P

A Aa)pN

N%?I m

esa, dsy
Operators and functions

Velocity
Mass (Frenkel, Tulczyjew)
Generalized momentum

General conserved quantity

Spin (tensor, vector, length)

Energy, angular momentum

Apastron, periastron

Periastron advance (dimensionless,

in rad, in PN-approximation)
SO-2 eccentricity, semimajor axis

abcd
D 173:2)
0, V;, &=
=
Fp
r
K, 1

Permutation symbol
(Partial, covariant, total) derivative
Dimensionless quantity
Lauricella function
Gamma function
Complete elliptic integrals

(first and third kind)

[(J=SE)a’ —2E(ry + 47, —2)a°

— 475 (57, + 37)8? + 27,7)b;

(B6)

where j =3, 4, 5 and ry = 1 & V1 — &> are the horizons, and the characteristics b; are solutions of the equations

064035-10



MOTION OF SPINNING TEST BODIES IN KERR SPACETIME PHYSICAL REVIEW D 90, 064035 (2014)

0= 2(?a - ?p)(_p - ?1)(_2 - Fa - 71 + 7'1’7a)bj + (?p - 71)2A<?a)b? + (?a - ’_ﬁp)zﬁ(?l)’ (B7)
for j=1,2 and
0= (Fy —Fp+ b;(Fy — 71))*S* + (F1(Fa — ) + bjFa(Fy — 71))°. (B8)

for j = 3, 4, 5. Furthermore we have

(?a_?p)?l o B . i
C, == 3ES? 3 ES2(1+3 _337 73372
2= )& 4 P Fam PRy =7y D00 1+ (B4 370) = 3577 4 ER)Sa
(3T + SPEr(4 = 37) + ST 7 = 2ER)a + 13 (7, — 2)(7 = 252)(J - ES)], (B9)
1 -
Ch == = 3ES2 S4 157.7 _7—2 _6—2 S2 —6/=2 3_2 g -
’ A(?1)3<S2+;:1%) (fa—rl) [ (ra ( rarl ra r]) ‘I’rl(ra —|— }"1 rarl))a
+ (74ES< 6 (45}’1 + 3) ?34 —+ 3(1 — 37-1)7.?5'2 + F?) _ 9Fa32j7411(5§2 _ 7?)

ES)(3725* = 31 82(772 + 677) + 378(72 + 37})))a®
+ (FLE((272 + 97,72 — 1272 — 67,7 )S® — 373 (187} — 457,77 — 3872 + 967,F| + 217,72 — 4872)S*
+ 37 (372 + 127, — 167, — 97, F) + 977)S? + 27 (372 + 7} — 3F,71)) — I SF.(S* + 7))@
+ {E(8F,7} + 73 + 37273 — 67,7 — 157 72 + 272 = 37})S7 — JF| (=67, F| + 272 + 8F, 7% + 3772 — 37 — 1272)8°
— 3EF (27727} — 45772 + 6F,F1 + 217} — 272 — 37F} — 53F, 75 + 907,77)S°
+ 3J7 (277 72 + 217 — 4872 + 967, 7| — 537,77 — 3872)8* + 378 (673 + 372 + 7,7 — 127, + 167,)S?
- 31_57”?(67’ 7= 67"‘1‘ — 272 + 1717? + 37,72 + 372 r +7 r1 — 187 rl)S3
- Er1(3rl + 67277 — 171 37,72 + 67,7 — 272 — 8F rl)S + Jr O(67,72 — 672 — 272 + 37’;5 — 87,72 + 6F,7,) }a*
+ {EF(—67} 4 47,7 + 456r Tt — 428277 — 126577 — 21684 + 108527} — 504547, 7 + 552547, 7}
+ 144827, 78 — 96877, 7] — 12F2F] — 687 — 2727|0 + 1286? o7+ 135847, 7 — 6354727
- 27S2r 1+ 9S2r2r8 +278%F 10 + 1277 _11 54S4rT + 956rar% + 24S6r§ + 246.5'4rar1 - 383’67%?1
+ 198547 — 28885472F;) + JS(S2 +7) (—6?;% + 67,7y = 273 + 37 75 + 7)) }a’
+ {Ef%(6fa?1 — OF, 7} + 2472 = 21772 + 7} + 37 + 4F; 4 67217 — 677)87 — JF (=227 7% + 2472 + 4F,Fy
| + 6727} — 67,77)8® — 3EF (177} + 1897, 7 — 45F, 7} — 186F,F — 997 72 + 967 + 247277 — 47,
— 757’? + 781"1)55 + 3]?1( 45rar1 987,72 + 72r1 + 24rar1 72rl — 18477, + 9672 + 17}"1 + 186?a?%)S
+ 3EF) (=307, — 337} + 4 4 2777 + 307, + 107} — 97,7} + 372)S® — 3J7] (272 — 327, + 367, — 3677
+ 307,71 + 107 — 97,7%)8? — EF{! (=37 + 1272 — F{ — 157,72 4 671 4 37271 — 4F — 6F, 7| + 97, 71)S
+ TP (=T = 14777 + 3737 + 127, — 47,7y + 6F,77)}a’
+ {7} (4712 + 27,12 + 365%72F] + 120527 + 1445*F — 72577} + 504547, 7, — 3605*7,Ff — 144827, 7
+ 72827, 7] + 952r 18S4r8 + 2867, 73 AT T 8;’2r1 + 4S6r3 - 12S6r 7 — 264547, r6 + 126S4r r1
+ 608%7, 7] — 18827278 — 5452710 — 127, 71! + 108847 — 18567277 — 21847270 + 45547, 7] + 38°727;
- 9827, F0 + 332f§r1 —165°72 252S4r2r4 + 368%727, — 204547 + 192S4r 2P E — 13T S(2F, — 37,7
+75 31 +4-67)(S* + )’ }a
— (71 —2)*(—7aF] + 9877} — 9827, F] — 188*F, + 45547, 7} — 24573 F +28°7)(J — ES)), (B10)
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Fi + 67, F1) — 6J77,5% + EF (975 + 27, + 2F, — 3F,71)8? + 3J 7 (7, — 371)S + EF§(F, + 7)) Sa*
— S4(9F, + F = 6F,F1)) =T S(S* + B2 (Fy + 7))@
(277 + 7 = 197, + 8F, 7 —4)8° = 2J (7] = F| = 9F, + 47, 71)S* + 2E7 (1175 — 177, + 117, = 77,7y = 4)$
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+ (ES*(F, +
+ (EF (7§ (37, — 71) + (972 = 207, + 127, — 37,7, )73 S?
+ (E
—2J7(
+ (E7 (
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