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Shortly after its birth in a gravitational collapse, a protoneutron star enters in a phase of quasistationary
evolution characterized by large gradients of the thermodynamical variables and intense neutrino emission.
In a few tens of seconds, the gradients smooth out while the star contracts and cools down, until it becomes
a neutron star. In this paper we study this phase of the protoneutron star life including rotation, and
employing finite-temperature equations of state. We model the evolution of the rotation rate, and determine
the relevant quantities characterizing the star. Our results show that an isolated neutron star cannot reach, at
the end of the evolution, the maximum values of mass and rotation rate allowed by the zero-temperature
equation of state. Moreover, a mature neutron star evolved in isolation cannot rotate too rapidly, even if it is
born from a protoneutron star rotating at the mass-shedding limit. We also show that the I-Love-Q relations
are violated in the first second of life, but they are satisfied as soon as the entropy gradients smooth out.

DOI: 10.1103/PhysRevD.90.064026 PACS numbers: 04.40.Dg, 97.60.Jd, 04.25.Nx

I. INTRODUCTION

Soon after its birth in a gravitational collapse, a proto-
neutron star (PNS) is a hot and rapidly evolving object.
The initial evolution, which lasts tens to a few hundreds
of milliseconds, is characterized by strong instabilities of
different nature. Then the PNS life becomes less hectic, and
the star slowly evolves over time scales of the order of days
to several thousand years, to reach the state of a mature,
cold neutron star (NS).
The parameters of a newborn PNS carry the imprint of

the supernova explosion mechanism, which is still quite
poorly understood. For instance, it is presently not clear
how fast a PNS can initially rotate, information which is
instrumental in order to model the subsequent evolution of
young pulsars.
To study this problem, two main approaches have been

followed in the literature. The first is based on modeling
the stellar evolution of the massive progenitor (typically
M ∼ 10–30M⊙) [1], and on numerical simulations of the
collapse and of the supernova explosion. These simulations
are performed either in Newtonian theory [2] or in full
general relativity [3–5], and extend up to ∼100–1000 ms
after the bounce. These studies indicate that, at this stage,
the minimum rotation period of a PNS should range from
few to ∼10milliseconds. However, after the bounce several
processes and instabilities are likely to spin down the PNS

(see, e.g., [3,6] and references therein). These will be
briefly discussed below.
A second approach is based on astrophysical observa-

tions of young pulsars [7,8]. In these works, the initial spin
rate is inferred from the spin rates of observed pulsars,
assuming that the star spins down according to the standard
magnetodipole rule, and that no other dissipative mecha-
nisms are effective. In [8] the authors, extending the work
of [7], found that the initial spin period of a set of 30 young
pulsars has a roughly flat distribution, from∼10 ms to some
hundreds of ms, with most of the pulsars having periods
≳100 ms. This approach is appropriate to trace back the
rotation rate up to some “initial” time when the star became
a neutron star and dynamical processes were no longer
effective. Thus, the two approaches cover two nonoverlap-
ping parts of the stellar evolution.
However, something very interesting happens in between:

after the turbulent phase which characterizes the first few
hundreds of milliseconds after the bounce, the star under-
goes a more quiet, “quasistationary” phase, which can
be described as a sequence of equilibrium configurations
[9–12]. Themainmacroscopic phenomenawhich character-
ize this part of the stellar life are the contracting from an
initial 30–40 km radius to a final radius of 10–15 km, the star
cooling, and the smoothing of the intense temperature-
entropy gradients in the interior. To set an approximate time
scale, we can say that this phase starts ∼200–500 ms after
bounce and lasts for about 1 min. Neutrino processes are
obviously very important during this time [9].
As the star contracts and cools down, its rotation rate

changes. Therefore, modeling this part of the PNS life is
important for understanding how to match the results of
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the studies on stellar evolution and supernova explosion
with the rotation rates of young pulsars observed today.
We shall indicate the three main phases of the stellar

evolution as phase 1, involving collapse and postbounce up
to a few hundred milliseconds; phase 2, when the evolution
is quasistationary; and phase 3 when, having reached
approximately its final radius, the star quietly cools down,
and its spin rate decreases due to magnetodipole emission
and possibly secular instabilities.
In this paper we are interested in modeling phase 2.

Before going into the details of the modeling we would like
to briefly discuss whether the numerous phenomena and
instabilities, which can be active during the stellar evolu-
tion, may affect phase 2.

(i) Dynamical instabilities (e.g., bar mode, magneto-
hydrodynamical) act on a time scale of the order of
the rotation period (for a detailed discussion, see
[6,13,14]). They can only set in when the rotation
period is very close to the mass-shedding limit
(∼1–10 ms); therefore, they are expected to be
suppressed before phase 2 sets in.

(ii) Secular instabilities (e.g., r-mode, f-mode insta-
bilities) act on time scales ranging from ∼1 s to
several years; they become effective at temperatures
T ≲ 1010 K, typically reached after the first minute
of life of the PNS [13–15]. In phase 2, the star is
too hot (T ≳ 1011 K) for secular instabilities to be
effective (at least, excluding the case of quark stars
or stars having exotic matter in the core).

(iii) Neutrinos carry away a significant part of the total
mass (up to ∼20%) [9] and of the PNS angular
momentum (up to ∼40% [16]). Neutrino processes
are most effective in phase 1, during which most of
the mass and angular momentum losses occur, but
they may not be negligible in phase 2. This point will
be further discussed in the following.

(iv) Strong magnetic winds may significantly spin down
a rapidly rotating PNS, for surface fields as high as
∼1015–1016 G [1,6].

(v) It has recently been suggested [17] that due to the
standing accretion shock instability (SASI), accretion
ofmatter surrounding the PNS during the first second
after the bounce can significantly spin up the PNS.
However, subsequent, more accurate numerical sim-
ulations found that this process is not effective [18].

The above-listed processes are not fully understood; how-
ever, based on current literature, we shall assume that they
are not effective in phase 2, i.e., between t ∼ 0.2–0.5 s and
t ∼ 1 min after bounce, with the only exception of mass
and angular momentum losses through neutrino emission.
We will not include in our study the effects of extremely
strong magnetic fields.
In the literature, several fully nonlinear and approximate

numerical codes have been developed to find the structure
of mature neutron stars, at the end of thermodynamical

evolution. However, very few simulations have been
performed to simulate a hot, rapidly rotating PNS. Fully
numerical simulations have been performed in [19,20],
assuming an isentropic or isothermal profile for the hot
core, and in [21], employing a set of profiles previously
obtained in [9] for a nonrotating PNS. In a series of
papers published in the late 1960s, J. B. Hartle developed a
perturbative approach which allows us to expand Einstein’s
equations for the structure of a rotating star at different
orders in the angular velocity. The equations were derived
assuming a barotropic equation of state (EoS), appropriate
for describing a cold, old neutron star. Since we are
interested in hot, newly born protoneutron stars, in this
paper we generalize this approach to that case, at third order
in the rotation rate, and solve the equations numerically
using some equations of state which have been proposed in
the literature to describe hot protoneutron stars.
We will compute the mass, radius, moment of inertia,

and quadrupole moment for stellar sequences having fixed
baryonic mass and varying angular velocity up to mass
shedding.
In addition, we shall determine the evolution of the PNS

rotation rate, while it cools and contracts during phase 2,
under the assumption that the angular momentum decreases
due to neutrino emission; we shall employ the heuristic
formula proposed in [16] to describe the angular momen-
tum carried away by neutrinos.
In recent years some universal relations have been shown

to exist, which link the moment of inertia, the tidal deform-
ability and the spin-induced quadrupole moment of mature
neutron stars [22–27]. They are named “I-Love-Q” relations,
and have been tested for cold equations of state (T ≲ 109 K).
In the last section of this paper, we will assess the range of
validity of the I-Love-Q relations when applied to newly
born, hot protoneutron stars.

II. PERTURBATIVE APPROACH TO ROTATING
STARS EXTENDED TO NONBAROTROPIC

EQUATIONS OF STATE

According to the perturbative approach introduced
by Hartle [28], the metric describing a rotating star can
be found by perturbing the spherical nonrotating metric in
powers of the angular velocity Ω, expanded in Legendre
polynomials. The resulting metric up to third order terms
in Ω is

ds2 ¼ −eνðrÞ½1þ 2h0ðrÞ þ 2h2ðrÞP2ðμÞ�dt2

þ eλðrÞ
�
1þ 2m0ðrÞ þ 2m2ðrÞP2ðμÞ

r − 2MðrÞ
�
dr2

þ r2½1þ 2k2ðrÞP2ðμÞ�
× ½dθ2 þ sin2θfdϕ − ½ωðrÞ þ w1ðrÞ
þ w3ðrÞP0

3ðμÞ�dtg2�; ð1Þ
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where μ ¼ cos θ and PnðμÞ is the Legendre polynomial of
order n, the prime denoting the derivative with respect to μ.
The functions ν, M, and λ are those commonly used to
describe the nonrotating stars in the Tolman-Oppenheimer-
Volkoff (TOV) equations. The function ω is of order Ω and
is responsible for the dragging of inertial frames; it also
determines the lowest order contribution to the star angular
momentum. The functions h0, m0 and h2, m2, k2 are all of
order Ω2, the former giving rise to spherical expansion, the
latter to quadrupolar deformation. Finally, the functions w1,
w3 are of order Ω3 and are involved in corrections to the
angular momentum as well as to the frame-dragging and
mass-shedding limit (see [29] for details).
The energy-momentum tensor of the matter composing

the star is

Tμν ¼ ðE þ PÞuμuν þ Pgμν ð2Þ
where calligraphic, capital letters denote thermodynamical
quantities (energy density and pressure) in the rotating
configuration; uμ are the components of the 4-velocity of
the fluid; and gμν is the metric.
Due to rotation, an element of fluid located at a given

ðr; θÞ in the nonrotating star is displaced to

r̄ ¼ rþ ξðr; θÞ; ð3Þ
where

ξðr; θÞ ¼ ξ0ðrÞ þ ξ2ðrÞP2ðμÞ þOðΩ4Þ ð4Þ
is the Lagrangian displacement, and both ξ0 and ξ2 are
of order Ω2. As a consequence of this displacement, all
thermodynamical variables experience a local change
which is found, following Hartle [[28], Eq. (71)], by setting
to zero the Lagrangian variation of the considered quantity.
For instance, for the pressure,

ΔP ¼ δPþ dP
dr

δr ¼ 0 → δPðr; θÞ ¼ −
dP
dr

ξðr; θÞ: ð5Þ

Consequently, we can write

δPðr; θÞ ¼ ½ϵðrÞ þ PðrÞ�½δp0ðrÞ þ δp2ðrÞP2ðμÞ�; ð6Þ
where ϵ and P are energy density and pressure computed by
the TOV equations, and

δp0;2 ¼ −ξ0;2
�

1

ϵþ P
dP
dr

�
; ð7Þ

and similarly for the Eulerian change of the energy density.
It should be noted that, if the equation of state is barotropic
ϵ ¼ ϵðPÞ, this change can be written as

δϵ ¼ −
dϵ
dr

ξðr; θÞ

¼ dϵ
dP

½ϵðrÞ þ PðrÞ�½δp0ðrÞ þ δp2ðrÞP2ðμÞ�; ð8Þ

where dϵ
dP ¼ ðdϵ=drÞ=ðdP=drÞ. However, since we are

interested in generalizing Hartle’s equations to the non-
barotropic case, when ϵ ¼ ϵðp; s; YiÞ, where s is the
entropy per baryon and Yi is the number fraction of
the ith specie, we do not introduce the total derivative dϵ

dP
in the expression of the mass-energy density perturbation
δϵ, as in Eq. (8). We simply write

δϵ ¼ dϵ
dr

=
dP
dr

ðϵðrÞ þ PðrÞÞ½δp0ðrÞ þ δp2ðrÞP2ðμÞ�: ð9Þ

We remark that in the case of a nonbarotropic EoS, in
order to compute the mass-energy density ϵ and the total
radial derivative dϵ

dr for an assigned value of pressure, the
entropy and the number fraction profiles, sðPÞ, YiðPÞ, must
be specified.
Solving Einstein’s equations is equivalent to solving a set

of differential equations for all the perturbation functions
defined above. These equations are summarized in the
appendix of [29]. In the nonbarotropic case, there are only
two differences with respect of the original derivation of
[28,30]. The first is that, as discussed above, dϵ=dP should
be meant as a shorthand for dϵ

dr =
dP
dr. Secondly, in [28]

equations

d
dr

�
δp0 þ h0 −

χ2r3

3ðr − 2MÞ
�

¼ 0 ð10Þ

δp2 þ h2 −
χ2r3

3ðr − 2MÞ ¼ 0 ð11Þ

are obtained by exploiting a first integral of Einstein’s
equations,

const ¼ E þ P
ut

exp

�
−
Z

dE
E þ P

�
: ð12Þ

To our knowledge, no such first integral exists in the
nonbarotropic case. However, Eqs. (10) and (11) are still
valid since they can be shown to follow from the divergence
equation Tμν

;ν ¼ 0.

III. TESTS OF HARTLE'S PROCEDURE VERSUS
FULLY RELATIVISTIC SIMULATIONS

In order to establish to what extent Hartle’s procedure
gives an accurate description of a rotating star, we have
used five barotropic equations of state appropriate to
describe mature neutron stars, named A, AU, APR, O,
and G240 (see the Appendix for details), whose mass-
radius relations are shown in Fig. 1. The reason why we
choose these equations of state is that they span a large
range of stellar compactness. Tests of Hartle’s procedure
for cold NSs have been done in several papers in the past
to establish the relevance of terms of order nþ 1 in the
rotation rate with respect to those of order n [29], or to
compare the results of the numerical integration of Hartle’s
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equations with those of fully relativistic, nonlinear codes
[31–33]. Since we are interested in constructing sequences
of newly born, rotating protoneutron stars, which are less
dense than the cold NSs which form at the end of the
evolution, we want to understand in particular how the
accuracy of Hartle’s procedure depends on the stellar
compactness. Therefore, we have compared the results
we obtain by integrating Hartle’s equations for stars with
fixed baryonic mass and different equations of state with
those we find using the open source code RNS [34], which
integrates the fully nonlinear equations of stellar structure.
We would like to stress that this test is possible only for
cold equations of state, since fully nonlinear codes for
rapidly rotating, hot protoneutron stars are not publicly
available. The quantities we compare are the mass, radius,
and moment of inertia. We do not compare the quadrupole
moment, because the computation of this quantity in the
public version of RNS is affected by a systematic error [35].
Details on this comparison are given in the Appendix; here
we summarize the results.
It is known that the mass-shedding rotation rate νms is

systematically overestimated by the perturbative approach
[29]. Therefore, we extend the comparison up to νms
evaluated by the RNS code, and normalize the rotation rate
to that value. We choose two values of the baryonic mass,
Mb ¼ 1.55M⊙ and Mb ¼ 2.2M⊙. For Mb ¼ 1.55M⊙ we
consider the equations of state A, APR, and G240, whereas
for Mb ¼ 2.2M⊙ we consider the equations of state AU,
APR, and O since the maximum mass of A and G240 is
smaller than this value.
The results of the Hartle-versus-RNS comparison are

given in Fig. 9 and in Table VII of the Appendix. These
show that the two approaches produce values of the mass,
equatorial radius (circumferential), and moment of inertia
in good agreement (relative difference ≲5% for rotation
rates up to 0.8 of the mass-shedding limit), quite inde-
pendently of the stellar compactness, and the EoS. This

gives a strong indication for the reliability of Hartle’s
procedure when applied to hot and less dense stars, which is
the case we are interested in.
In the next sections we shall apply Hartle’s procedure to

study the structure of newly born, rotating protoneutron
stars. We shall extend our calculations up to the mass-
shedding limit, keeping in mind the limitations on the
accuracy discussed above.

IV. MODELS OF EVOLVING PNS

Numerical simulations of the early evolution of newly
born protoneutron stars have shown that a few tenths
of seconds after the bounce which follows a supernova
explosion the evolution of the star can be considered as
“quasistationary”; i.e., it can be described by a sequence of
equilibrium configurations [9–12]. The main feature of this
quasistationary phase is that, starting from an initial con-
figuration characterized by a low-entropy core and a high-
entropy envelope, due to neutrino processes the entropy
gradient gradually smooths out, while the star progressively
cools down, and eventually the overall entropy decreases.
To study how the structure of an evolving PNS depends

on the rotation rate, we use two sets of nonbarotropic,
hot stellar models, based on two different equations of state
of baryonic matter. The first is a sequence of mass-energy,
pressure, lepton fraction, and entropy profiles (“profiles” in
short), indicated as GM3NQ to hereafter, based on an
equation of state obtained within a finite-temperature, field-
theoretical model solved at the mean field level [9–11].
These profiles were found by solving the relativistic
equations of neutrino transport and nucleon-meson cou-
pling, assuming a spherical spacetime background, and a
NS baryonic mass Mb ¼ 1.6M⊙, during the first minute of
the stellar life. Thus, this is a true evolutionary sequence,
and it refers to a unique baryonic mass. These models have
been used to compute how the oscillation frequencies
change as the star cools and contracts in [36] (Model A),
[37], and in [38] to study how thermal diffusion affects the
oscillation frequencies.
The second set of nonbarotropic, hot profiles we shall

use, tagged as BS, are based on a microscopic EoS obtained
within the Brueckner-Hartree-Fock nuclear many-body
approach extended to the finite-temperature regime within
the Bloch–De Dominicis formalism (see [39–42] and
references therein for explicit details). These models can
be used to “mimic” a PNS evolution, since each profile is
characterized by an entropy gradient which reproduces the
main features of the quasistationary evolution described
above. Thus, even though they are not obtained as a result of
a dynamical simulation, they can be considered as snapshots
of different stages of the evolution. The BS profiles are
specified by three parameters: the entropy per baryon in
the core sc, the entropy per baryon in the envelope se, and
the leptonic fraction Ye, which is assumed to be constant
throughout the star. In the following, we will identify the
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FIG. 1 (color online). Mass-radius diagram for the cold
equations of state used to test Hartle’s procedure versus RNS
code results.
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BSprofiles with a particular choice of these three parameters
with the label SscSse-Ye, as in [42]. We will use an
additional profile at zero temperature, which will be tagged
as T0.
It should be stressed that the BS profiles can be used to

generate rotating stellar models using Hartle’s procedure
because for each value of the rotation rate we can change
the value of the central energy density and find stellar
configurations with assigned baryonic mass. This is not
possible with the profiles GM3NQ, since they correspond
to a fixed value of the baryonic mass and of the central
energy density.
The BS profiles will be used in the next two sections to

study how the structure of a protoneutron star changes as
a function of the rotation rate. The evolutionary sequence
GM3NQ will be used in Sec. VI to test the I-Love-Q
relations.

V. HOT AND YOUNG NEUTRON STARS

In order to study the behavior of the relevant parameters
of evolving protoneutron stars as a function of the rotation
rate, it is useful to know their values for the nonrotating
configurations having the same baryonic mass. In Table I
we tabulate the gravitational mass, the radius, and the
moment of inertia for a star with baryonic mass Mb ¼
1.6M⊙ belonging to the profiles GM3NQ and BS. As
explained in Sec. IV, GM3NQ describes a true evolutionary
sequence of a protoneutron star, and in the first column we
give the time after collapse at which each quasistationary
configuration has been computed (see [9] and [36] for
details).
The sequence BS mimics the evolution of a star with

entropy gradients similar to those of the GM3NQ sequence.
These profiles are labeled as S1S5-032, S2S4-032,
S1S2-023, and T0, where the first two numbers in each
label indicate the entropy per baryon, respectively, in the
core and in the envelope, and the last number is the lepton
fraction. Thus, for instance, S1S5-032 corresponds to the
largest entropy gradient between core and envelope, and a
lepton fraction Yl ¼ 0.32. T0 is the zero-temperature end

point of the BS sequence. A comparison of the entropy
profile, mass, and radius of these configurations with those
of the GM3NQ sequence indicates that the S1S5-032
protoneutron star is similar to that of the GM3NQ sequence
corresponding to t ¼ 0.5 s.
In Fig. 2 we show the energy density and the entropy

profiles inside the stars belonging to the two families.
As in Table I, in Table II we show the stellar parameters

of stars belonging to the BS sequence with Mb ¼ 1.8M⊙
and Mb ¼ 2.0M⊙.

A. Mass-shedding limit

As we know, Hartle’s procedure overestimates the mass-
shedding frequency [29]. To compute this quantity we shall
use a different approach, based on fully relativistic simu-
lations. In [43], using the RNS code a fit has been proposed,

νmsðHzÞ ¼ 45862

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M0=M⊙

ðR0=1 kmÞ3
s

− 189; ð13Þ

which relates νms to the mass M0 and the radius R0 of the
nonrotating star. According to [43], Eq. (13) estimates νms,
independently of the EoS, with errors not larger than ∼2%.
The fit (13) has been obtained by fixing the central density
and finding the maximum rotation rate as a function of the
gravitational mass and radius given by the TOV equations.
Since we are interested in studying fixed baryonic mass
sequences, to use this fit we proceed as follows (see Fig. 3).
We choose a value of Mb and find the corresponding TOV-
central density ϵ0. Then we increase the rotation rate
by a small amount reaching, say, Ω1, and find the mass
and radius corresponding to the same Mb using Hartle’s
procedure. The central density of this configuration, ϵ1, is
smaller than ϵ0. The mass and radius M0 and R0 computed
with TOV for that central density are then inserted into
the fit (13) to find the corresponding mass-shedding limit.
If this value is larger than Ω1, we proceed further by
increasing the rotation rate by another small step, keeping
Mb fixed, and iterate the procedure. If it is smaller than Ω1,
we stop and say that this is the mass-shedding limit of our

TABLE I. We compare some relevant parameters of the nonrotating configurations belonging to two models of
evolving protoneutron stars with the same baryonic mass: GM3NQ and BS. GM3NQ describes a true evolutionary
sequence of a protoneutron star, whereas the sequence BS mimics the evolution of a star with an EoS different from
GM3NQ, and similar entropy gradients. For both sequences we tabulate the gravitational mass, the radius, the
moment of inertia (normalized to I� ¼ 1045 g × cm2), and mass-shedding frequency evaluated using the fit (13).

Mb ¼ 1.6M⊙
GM3NQ M=M⊙ R (km) I=I� νms (Hz) BS M=M⊙ R (km) I=I� νms (Hz)

t ¼ 0.2 s 1.58 34.35 5.33 97 � � � � � � � � � � � � � � �
t ¼ 0.5 s 1.56 23.78 3.75 306 S1S5-032 1.50 24.35 1.84 256
t ¼ 2 s 1.53 15.78 2.44 718 S2S4-032 1.51 19.51 1.83 420
t ¼ 5 s 1.50 13.61 2.00 931 S1S2-023 1.49 14.02 1.45 790
t ¼ 20 s 1.47 12.91 1.76 1010 T0 1.43 11.80 1.41 1060

ROTATING PROTONEUTRON STARS: SPIN EVOLUTION, … PHYSICAL REVIEW D 90, 064026 (2014)

064026-5



rotating sequence with fixed baryonic mass. The accuracy
of our iterative procedure (using Broyden’s method) is of
the order of 10−5, which is smaller than the estimated
accuracy of the fit.
The values of νms evaluated with this procedure for the

sequences GM3NQ and BS are given in the last columns

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  5  10  15  20  25  30  35

ε/
ε*

r (km)

GM3NQ profiles

0.2
0.5

2
5

20

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  5  10  15  20  25

ε/
ε*

r (km)

BS profiles

S1S5-032
S2S4-032
S1S2-023

T0

 0

 1

 2

 3

 4

 5

 6

 0  5  10  15  20  25  30  35

s

r (km)

0.2
0.5

2
5

20

 0

 1

 2

 3

 4

 5

 6

 0  5  10  15  20  25

s

r (km)

S1S5-032
S2S4-032
S1S2-023

FIG. 2 (color online). The energy density and entropy per baryon versus radial distance are plotted for the two families of hot stars
GM3NQ (left) and BS (right). The energy density (upper panel) is normalized to the value ϵ� ¼ 1015 g=cm3. All plots refer to a
nonrotating star with baryonic mass Mb ¼ 1.6M⊙.

TABLE II. Parameters of the nonrotating stellar models BS,
tabulated as in Table I, for baryonic mass Mb ¼ 1.8M⊙ and
Mb ¼ 2.0M⊙.

EoS M=M⊙ R (km) I=I� νms (Hz)

Mb ¼ 1.8M⊙
S1S5-032 1.65 19.38 1.80 456
S2S4-032 1.67 16.84 1.87 596
S1S2-023 1.65 13.11 1.60 938
T0 1.59 11.62 1.59 1150

Mb ¼ 2.0M⊙
S1S5-032 1.79 16.41 1.85 658
S2S4-032 1.82 14.80 1.93 784
S1S2-023 1.80 12.20 1.72 1100
T0 1.74 11.37 1.76 1240
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FIG. 3 (color online). This figure shows, for the profile T0, how
we compute the mass-shedding limit using the fit (13). The thin,
blue lines are sequences of stellar models with fixed central
energy density ϵc and increasing rotation rate, from zero (where
the blue lines intersect the TOV, zero rotation, green line) up to
mass shedding given by Eq. (13), represented by the bold, yellow
line. The thick, nearly horizontal red line is a sequence at fixed
baryonic mass (Mb ¼ 2.0M⊙) and increasing rotation rate. The
mass-shedding frequency is given by the intersection of this line
with the bold, yellow line.
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of Tables I and II. It is interesting to note that the mass-
shedding frequencies of the initial configuration of each
sequence are quite low and increase as the star cools down
and contracts.

B. Rotating configurations

Starting from the nonrotating configurations belonging
to the BS sequence, we can now construct models of
rotating protoneutron stars. We choose a value of the
baryonic mass and, keeping this value fixed, we use
Hartle’s procedure to find how the gravitational mass,
the circumferential equatorial radius, the moment of inertia,
and the quadrupole moment change as functions of the
rotation rate. The results are shown in Fig. 4 for a star with
Mb ¼ 1.6M⊙. For each profile of the BS sequence, the
values of these quantities are plotted up to the correspond-
ing mass-shedding limit νms evaluated using the fit (13) and
given in the last column of Table I. The behavior ofM, Req,
I, Q is similar to that of the cold stars shown in Fig. 9 (see
the Appendix), and all quantities increase with rotation.
However, there is a very interesting difference. The

mass-shedding frequency of cold stars, for instance
those considered in the Appendix, varies in the range
∼ð800–1350Þ Hz for a star with Mb ¼ 1.55M⊙, i.e., by
less than a factor 2 depending on the EoS. Conversely for
the hot BS sequence it varies in a much broader range,
being νms ¼ 256 Hz for the “initial” configuration S1S5-
032 and νms ¼ 1060 Hz for the “final” configuration T0
(see Table I). This means that this protoneutron star cannot
enter the quasistationary regime being very rapidly rotating,
and that it can reach larger rotation rates only at subsequent
times, as it contracts and cools down.
Rotation rates of newly born protoneutron stars can be

larger if the baryonic mass is larger because νms increases
with Mb, as shown in Table II. In this case, the behavior of
the relevant quantities is similar to that shown in Fig. 4
for Mb ¼ 1.6M⊙.

1. Mass-radius relation

Using the BS profiles we can construct the mass-radius
diagram for rotating protoneutron stars. In Fig. 5 we show
this diagram from the hottest, youngest configurations
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FIG. 4 (color online). The mass, equatorial radius, moment of inertia, and quadrupole moment of a star evolving according to the
sequence of profiles BS shown in Fig. 2 are plotted as functions of the rotation rate. For each profile, the end point is the mass-shedding
limit evaluated using the fit (13). All plots refer to a star with baryonic mass Mb ¼ 1.6M⊙. Moreover, I� ¼ 1045 g × cm2 and
Q� ¼ 1044 g × cm2.
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(high entropy gradient S1S5-032) to the coldest, oldest
one (T0). For each profile, the thin, inclined lines indicate
sequences at fixed central energy density. Each of these
lines ends at the mass-shedding frequency evaluated with
the fit (13). The bold, nearly horizontal lines are the
sequences at fixed baryonic mass, with values Mb ¼
1.6; 1.8; 2.0; 2.2 M⊙.
As an example, let us consider the Mb ¼ 1.6M⊙ star

with the S1S5-032 profile. This initial PNS configuration is
a point on the lowest red bold line in Fig. 5, and its location
on this line depends on the PNS angular velocity. We
indicate the initial configuration with a 1 on the figure. As
the star cools down, it is constrained to evolve, keeping the
baryonic mass fixed; therefore, it will jump toward the left
of the figure, reaching point 2 of the lowest bold line of the
S2S4-032 profile (in this example we keep the angular
momentum fixed as well). Then it will move to point 3 of
the S1S2-023 profile and finally to point 4 of the cold, final
T0 profile, always following the lowest bold lines. Thus,
Fig. 5 can be understood as a “temporal” diagram. At the
end of the evolution, the gravitational mass is smaller than
that at the beginning. Since the maximum baryonic mass
of the S1S5-032 profile is smaller than that of the final
T0 profile, even if the initial mass of the star is close to the
maximummass allowed by the S1S5-032 profile, at the end
of the quasistationary evolution it will have a gravitational
mass smaller than the maximum mass allowed by the
T0 profile.
We expect this feature to be independent of the particular

evolutionary model we consider.
Thus, the maximum mass observed for an isolated

neutron star is not constrained by the actual (cold) profile,
but by the profile it had at the early stage of its life.
An interesting consequence of this result is the follow-

ing. When the gravitational mass of a NS is known from

astrophysical observations, the equations of state which
predict a maximum mass larger than this value are
considered compatible with the observation, while the
others are ruled out [44]. However, our results show that
this “compatibility test” is a necessary, but not sufficient
condition: indeed, the final NS mass is the result of the
evolution of a hot PNS, and the cold equations of state
which should be “admitted” are those which result from an
evolutionary sequence compatible with the observed mass.

2. Spin frequency change during
the quasistationary evolution

We shall now consider a PNS with assigned baryonic
mass and initial rotation rate νin. This star has the BS profile
S1S5-032, which we consider as a model for a PNS at
approximately 0.5 s from bounce. We want to compute how
the spin frequency changes as the star evolves along the BS
sequence, assuming either that angular momentum is
conserved, or that a fraction of the angular momentum
is lost due to neutrino emission. To model this second case,
we use the empirical formula given in [16] (see also
references therein):

Jfin
Jin

¼
�
Mfin

Min

�
2.55

; ð14Þ

where Jin;Min and Jfin;Mfin are the initial and final values
of the angular momentum and of the star’s gravitational
mass. In our case, the final mass is that corresponding to the
profile T0. The exponent of the mass ratio in Eq. (14) takes
into account the shape and structure of the star as well as
neutrino efficiency in removing angular momentum. The
value 2.55 results from the most extreme case, when the
angular momentum loss due to neutrinos is maximum.
We shall make the calculations for three values of the

baryonic mass (kept fixed along the sequence) Mb ¼
1.6; 1.8; 2.0 M⊙, and for four values of the initial rotation
rate, νin ¼ ð0.25; 0.5; 0.75; 1Þνms.
In Table III we show the results.
As an example, let us consider a PNS withMb ¼ 1.6M⊙

which, a few hundreds of ms after bounce, has the profile
S1S5-032. The mass-shedding frequency for this profile
is νms ¼ 256 Hz, and we assume that the star has initial
rotation rate νin ¼ 0.25νms ¼ 64 Hz. The angular momen-
tum of this configuration is J ¼ 0.184 km2; the gravita-
tional mass is Min ¼ 1.50M⊙ (see Table I).
Using Hartle’s procedure we evaluate the rotation rate

that this star reaches at the end of the quasistationary
evolution, when it has the profile T0, i.e., zero temperature,
smaller radius, and moment of inertia, the same baryonic
mass and smaller gravitational mass due to neutrino
emission (Mfin ¼ 1.43M⊙). If we impose that the angular
momentum is conserved, from Table III we see that the
final rotation rate will be νfin ¼ 83.8 Hz, corresponding to
0.079 times the mass-shedding limit for the T0 profile,
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FIG. 5 (color online). Mass-radius diagram for four equations
of state of the BS set. We have considered angular frequencies
from 0 Hz up to the mass-shedding limit. Thick lines represent
sequences at fixed baryonic masses Mb ¼ ½1.6; 1.8; 2.0; 2.2�M⊙
(see text).
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which is νms ¼ 1060 Hz. If, conversely, we assume that the
angular momentum changes according to Eq. (14), the final
spin frequency will be lower, νfin ¼ 74.9 Hz, correspond-
ing to ∼0.071 of the mass-shedding limit.
Thus, if the star is born with a rotation rate which is about

one fourth of the mass-shedding limit, its rotation speed
will remain slow even at the end, when the mass-shedding
limit would, in principle, allow for larger rates.
If the star starts with a larger rotation rate, say, at the

mass-shedding limit, at the end of the evolution its
frequency will be larger, νfin ¼ 345 Hz, or νfin ¼ 310 Hz
accounting for neutrino losses, but always smaller than the
final mass-shedding limit. These considerations hold also
for stars with larger baryonic mass.
Last but not least, the sequences we have considered

show that the ratio ν=νms, even if large at the beginning of
the evolution (large entropy gradient), constantly decreases
as one goes along the cooling of the star. Thus, mature NSs
evolved in isolation cannot rotate too rapidly, even if they
are born from a PNS rotating at the mass-shedding limit.1

We have further explored the entire range of initial spin
rate, from zero to the mass-shedding limit, computing the

corresponding final spin frequency, for different values of
the baryonic mass. In Fig. 6 we plot the relative difference
ðνfin − νinÞ=νin, for the considered values of the baryonic
mass, as a function of νin. We see that for the lightest
star the change reaches ∼35% without including neutrino
emission, and ∼25% with neutrino emission, whereas for
the heaviest star the percent change does not exceed ∼5%.
In this case it should be noted that the change may be
negative for small values of νin, showing that stellar

TABLE III. Values of the spin frequency that a star, with a fixed baryonic mass and an initial rotation rate νin,
reaches at the end of the quasistationary evolution, assuming that the angular momentum is conserved or that it
changes due to neutrino emission. J is given in km2, frequencies are in Hz. The initial values refer to a protoneutron
star modeled with the profile S1S5-032, the final ones refer to the cold star with profile T0. Barred frequencies are
normalized to the mass-shedding frequency of the initial and final profiles.

J conserved Neutrino losses

ν̄in νin Jin ν̄fin νfin Jfin ν̄fin νfin Jfin

Mb ¼ 1.6M⊙ ðMin ¼ 1.50M⊙;Mfin ¼ 1.43M⊙Þ
0.25 64.0 0.184 0.079 83.8 0.184 0.071 74.9 0.164
0.50 128 0.371 0.159 169 0.371 0.142 151 0.332
0.75 192 0.566 0.241 255 0.566 0.216 229 0.507
1.00 256 0.773 0.325 345 0.773 0.292 310 0.691

Mb ¼ 1.8M⊙ ðMin ¼ 1.65M⊙;Mfin ¼ 1.59M⊙Þ
0.25 114 0.321 0.112 129 0.321 0.102 118 0.293
0.50 228 0.651 0.226 260 0.651 0.206 237 0.593
0.75 342 0.997 0.341 392 0.997 0.312 359 0.908
1.00 456 1.37 0.461 530 1.37 0.423 486 1.25

Mb ¼ 2.0M⊙ ðMin ¼ 1.79M⊙;Mfin ¼ 1.74M⊙Þ
0.25 165 0.478 0.140 173 0.478 0.129 160 0.440
0.50 329 0.968 0.281 348 0.968 0.259 321 0.892
0.75 494 1.49 0.423 524 1.49 0.392 486 1.37
1.00 658 2.07 0.569 706 2.07 0.530 657 1.91

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0  100  200  300  400  500  600

(ν
f -

 ν
i) 

/ ν
i

νi (Hz)

Mb = 1.6 M

Mb = 1.8 M

Mb = 2.0 M

FIG. 6 (color online). We show the relative difference between
the initial and final spin frequency, as a function of the initial spin
rate, spanning the range from zero to the mass-shedding limit.
The results are shown for three values of the baryonic mass;
continuous lines refer to an evolution which assumes angular
momentum conservation, and dashed lines to neutrino emission.

1We would like to remind the reader that from a naive point of
view, a spherical Newtonian fluid ball has angular momentum
IΩ ∝ MR2Ω and mass-shedding limit ∝ M1=2R−3=2. A factor 2
of decrease in radius would lead to an increase of a factor 4 in Ω
and of a factor

ffiffiffi
8

p
∼ 3 in the mass-shedding limit, thus allowing

the final configuration to be close to the mass-shedding limit if
the initial one was.
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contraction due to the cooling, and neutrino emission could
be competitive in some regime. This last result is EoS
dependent, but still provides a proof of concept.
It should also be recalled that, as shown in Sec. III and in

the Appendix, values of frequency too close to the mass-
shedding limit are associated to larger errors on the various
quantities, which for the moment of inertia can reach∼11%;
however, the errors rapidly decrease for lower rotation rates.
The early evolution of a PNS has also been studied in

[45], using a mean field EoS [based on a chiral SUð3Þ
description of baryons] and assuming isentropic or iso-
thermal profiles. They compute the maximum mass and
the mass-shedding frequency for different values of entropy
and temperature, assuming constant baryonic mass and
constant angular momentum. This is different from what
we do, since they do not compute the evolution of the
gravitational mass and of the rotation rate.
There is another process which may subtract angular

momentum to the PNS, if this is born with a certain degree
of asymmetry: gravitational wave (GW) emission. If the
PNS has a quadrupole ellipticity ϵ and rotates about an axis
misaligned with the symmetry axis by an angle α, it emits
GWs with luminosity LGW ∼ G

c5
Ω6ϵ2I2sin2αð16cos2αþ

sin2αÞ < G
c5
Ω6ϵ2I2 [46]. However, the spin-down induced

by GWs during the quasistationary evolution is negligible
with respect to the spin-up due to contraction. A simple
estimate shows that δΩΩ ∼ − LGWδt

IΩ2 − δI
2I; assuming for instance

ϵ ∼ 10−4 (see, e.g., [47]), I ∼ 1045 g × cm2, Ω ∼ 1 kHz
kHz, and considering that in a time scale δt ∼ 20 s the
moment of inertia is reduced by a factor ∼2, the GW
contribution to the spin-down is ∼106 smaller than that due
to contraction. During the first few hundreds of millisec-
onds after bounce, the GW signal is expected to be
dominated by processes associated to neutrino emission,
magnetorotational processes, SASI, dynamical instabilities,
etc. [4,48,49]. However, we have just shown that when the
evolution becomes quasistationary the signal could be
dominated by the spin-up due to contraction. Thus in this
phase, which would last for about a minute, the signal
would be “chirplike,” and this feature may be searched for
in the postprocessing of the data associated to a GW signal
from a supernova with appropriate data analysis techniques.
Finally, we would like to mention that in our study we

did not include the effect of differential rotation, which may
be present in the very early stages of the PNS evolution.
This effect will be studied in a separate paper.

VI. I-LOVE-Q RELATIONS FOR HOT
AND YOUNG NEUTRONS STARS

As discussed in the Introduction, it has recently been
found that the moment of inertia (I), the tidal deformability
(λ), and the spin-induced quadrupole moment (Q) of
isolated and binary neutron stars are related by universal
relations which are independent of the star’s internal

composition [22–26] (further universal relations have been
studied in [50–53]).
Until now, such I-Love-Q relations have been tested only

for cold equations of state. In [22,23] two finite-temperature
equations of state are also employed, LS220 and Shen.
However, they are treated as barotropic, assuming a uniform
temperature of T ≃ 109 K and no neutrinos: they describe
the star more than 1 min after the bounce.
In this section, we will assess the range of validity of the

universal relations for newly born stars, in which an entropy
gradient between the core and the envelope is still present.
Before discussing our results, we shall briefly retrace

the main steps needed to find the relativistic Love numbers.
Let us consider a static, spherically symmetric star placed
in a static, external, quadrupolar tidal field Cij. This field
induces a perturbation on the star structure. To linear order,
the tidal deformability λ connects the star-induced quadru-
pole moment Qij with the external tidal field,

Qij ¼ −λCij; ð15Þ
and it is related to the dimensionless Love number

k2 ¼
3

2

λ

R5
: ð16Þ

Both the star’s quadrupole moment and the tidal field are
defined in terms of an asymptotic expansion of the metric at
large distance from the star, which can be computed by
considering linear static perturbations expanded in spheri-
cal harmonics. The full metric is given by

gαβ ¼ gð0Þαβ þ hαβ; ð17Þ
where gð0Þαβ describes the geometry of the static star, and hαβ
is the metric perturbation:

hαβ ¼ diag½−eνðrÞH0ðrÞ; eλðrÞH2ðrÞ; r2KðrÞ;
r2 sin θKðrÞ�Y2mðθ;ϕÞ: ð18Þ

νðrÞ and λðrÞ are the zero order components of the metric
tensor. Einstein’s equations written for the metric Eq. (17)
give a constraint, H0 ¼ −H2 ¼ H, and a relation between
HðrÞ and KðrÞ. Furthermore, they lead to a second order
differential equation for HðrÞ. We refer the reader to [54]
for details. The Love number is finally obtained as

k2 ¼
8C5

5
ð1 − 2CÞ2½2þ 2Cðy − 1Þ − y�f2C½6 − 3y

þ3Cð5y − 8Þ� þ 4C3½13 − 11yþ Cð3y − 2Þ
þ2C2ð1þ yÞ� þ 3ð1 − 2CÞ2½2 − y

þ2Cðy − 1Þ ln ð1 − 2CÞ�g−1; ð19Þ

where C ¼ M=R is the neutron star compactness
and y ¼ H0ðRÞR=HðRÞ.
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We will now compare the numerical data obtained by
computing the I-λ-Q trio for NSs described by the profiles
GM3NQ (see Sec. IV), with the relations originally found
in [22,23]. We remind the reader that the GM3NQ profiles
describe the evolution of a hot protoneutron star with
baryonic mass Mb ¼ 1.6M⊙ during the first minute of life
after the gravitational collapse.
The fits have the following functional form:

ln y ¼ aþ b ln xþ cðln xÞ2 þ dðln xÞ3 þ eðln xÞ4 ð20Þ

where ða; b; c; d; eÞ are fitting coefficients listed in Table IV.
Equation (20) is defined in terms of the normalized variables
ðĪ; Q̄; λ̄Þ, where Ī ¼ I=M3, λ̄ ¼ λ=M5, and Q̄ ¼ QðM=J2Þ,
M being the neutron star’s gravitational mass and J its
angular momentum. We have computed Ī, λ̄, and Q̄ for the
GM3NQ protoneutron star at different stages of evolution,
i.e., at t ¼ ð0.2; 0.3; 0.5; 1; 2; 5; 20Þ s after birth. The cor-
responding values are shown in Table V.
In order to determine the accuracy within which the

I-Love-Q relations would describe the features of a newly
born neutron star, we have computed the relative errors
ΔI=Īfit ¼ jĪ − Īfitj=Īfit and ΔQ=Q̄fit ¼ jQ̄ − Q̄fitj=Q̄fit,
between our numerical data, and those obtained by using
the fit (20).
The results are summarized in the three panels of Fig. 7,

which clearly show that the I-Love-Q relations lose their
validity in the very early stages after the star’s birth, with
discrepancies between the analytic fit and the numerical

values which can be as high as ∼30% at t ¼ 0.2 s, for the
Ī-Q̄ pair (middle panel in Fig. 7).
However, the relative errors rapidly decrease as time

increases: after 1 s, the relative difference between our
moment of inertia and the fit Ī-λ̄ is 1.6%, that with respect
to the fit Ī-Q̄ is 6.7%, and the relative difference between
our quadrupole moment with respect to the fit Q̄-λ̄ is 4.8%.
After 2 s, these errors reduce to < 1%, 2.2%, and 2.0%,
respectively. It it interesting to analyze these results in
terms of the entropy gradient inside the star at different
times. In each plot of Fig. 5 we have included the plot of the

TABLE IV. Best-fit coefficients of Eq. (20) for the I-Love-Q
relations [22].

y x a b c d e

Ī λ̄ 1.47 0.0817 0.0149 0.000287 −3.64 × 10−5

Ī Q̄ 1.35 0.697 −0.143 0.0994 −1.24 × 10−2

Q̄ λ̄ 0.194 0.0936 0.0474 −0.00421 1.23 × 10−4

TABLE V. Parameters of the NS models with baryonic mass
Mb ¼ 1.6M⊙ built with the GM3NQ EoS. In the first column we
show the time after the star’s birth. In the remaining columns we
list the gravitational mass M, the radius at spherical equilibrium,
the quadrupole moment Q̄, the moment of inertia Ī, and the tidal
deformability λ̄.

t (s) MðM⊙Þ R (km) Q̄ Ī λ̄

0.2 1.58 34.39 18.86 31.32 12999.60
0.3 1.57 28.98 15.23 26.83 7374.64
0.5 1.56 23.79 12.04 22.59 3630.51
1 1.55 19.38 9.40 18.70 1914.93
2 1.53 15.76 7.39 15.58 945.85
5 1.50 13.61 6.20 13.56 564.98
20 1.47 12.91 5.80 12.83 458.91
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FIG. 7 (color online). We show the relative differences
jĪ − Īfitj=Īfit and jQ̄ − Q̄fitj=Q̄fit obtained by testing the universal
relations (20) against the numerical data computed using the
GM3NQ equations of state, at different times (in seconds) after
the birth of the protoneutron star. In the inset we also show, for
some of the considered configurations, the entropy per baryon as
function of the star’s radius.
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entropy per baryon as a function of the distance from the
center of the star (normalized to the radius R), for some of
the considered configurations. This shows that the largest
relative errors correspond to the higher entropy gradients
inside the star (blue and red curves), which develop after its
birth and smooth down during the following evolution.
Thus, the time interval during which the I-Love-Q relations
are accurate depends on how fast the star reaches the quiet
state of a neutron star.
It has recently been suggested [55] that the I-Love-Q

relations become less accurate when the ellipticity of the
isodensity contours has a large gradient inside the star.
In Fig. 8 we show the behavior of the ellipticity e of the
isodensity contours [see Eq. (25c) of [56]], normalized to
the star’s rotation rate, for the GM3NQ quasistationary
sequence withMb ¼ 1.6M⊙ considered in this section. We
see that in the first second after bounce, when the I-Love-Q
relations are violated, the ellipticity exhibits significant
variations throughout the star (≳200%). At later times,
when the entropy profiles smooth out and the I-Love-Q
relations are satisfied, the ellipticity profiles are nearly
constant. This supports the suggestion of [55] that the
validity of the I-Love-Q relations is associated with the
self-similar isodensity condition.

VII. CONCLUDING REMARKS

In this paper we have studied how rotation affects the
quasistationary evolution of newly born protoneutron stars.
We have used Hartle’s perturbative approach at third order
in the angular velocity, which we have extended to describe
warm stars, with nonbarotropic equations of state. Hartle’s
equations have been integrated to show how the rotation rate
of a PNSwith fixed baryonicmass changes during the evolu-
tion, taking into account neutrino losses in a heuristic way.

To model the PNS we have used an EoS obtained within
the nuclear many-body theory extended to finite temperature
[39–42], and a sequence of entropy and energy density
profiles which mimics the stellar interior of a PNS. This
is supposed to evolve from a few tenths of a second after
bounce [temperature ∼30–40 MeV (∼5 × 1011 K), radius
∼30km, strongentropygradients], to the followingminute(s)
during which gradients are smoothed out, temperature
decreases to a few MeV, and radius decreases to 10–15 km.
The EoS and profiles we have used are constructed,

having as a reference the quasistationary evolution profiles
obtained in [9], by solving Boltzman’s equation and
using an EoS obtained within a finite-temperature, field-
theoretical model solved at the mean field level. To our
knowledge, the stellar models given in [9] are the only
example of the quasistationary evolution of a nonrotating
PNS available in the literature (we also mention the
numerical simulations of [57,58], which employ equations
of state very similar to those used in [9], and find similar
results). Unfortunately we could not use these models to
study how they change with rotation, because they are
given for fixed values of the central energy density, whereas
to generate a rotating star with fixed baryonic mass, we
need to change it. However, we believe that the results we
obtain in this paper with the BS sequence give interesting
indications on the quasistationary evolution of a rotating,
hot PNS, provided no instability is present (see discussion
in Sec. I), and show a methodology which could be used
with other stellar models of evolving PNS, when available.
Our main results are the following:
(i) As a PNS cools down, the maximum mass allowed

by the EoS and by the chosen entropy profiles
increases, and the maximum rotation rate (mass-
shedding limit) increases as well.

(ii) A cold neutron star cannot have the maximum mass
allowed by the final zero temperature EoS, unless
the evolutionary path of the hot PNS from which it
has evolved is allowed to do so. It is commonly
believed that an equation of state is able to describe a
NS interior if the maximum mass it predicts is larger
than the maximum mass observed in neutron stars.
However, our results show that this should be
considered as a necessary, but not sufficient con-
dition. This means that a full understanding of
NS structure cannot overlook the history of these
objects.

(iii) An isolated neutron star, even when born rotating
near the mass-shedding limit, cannot have a rotation
rate close to the mass-shedding limit associated to
the cold EoS which characterizes its interior (see
Table III and Fig. 6).

(iv) If an isolated NS is found to be rapidly rotating,
Table III indicates that its mass must be high.

(v) I-Love-Q relations are no longer valid for very hot
neutron stars, but become valid all the same a few
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seconds after the bounce. Indeed our results show
that such relations strongly depend on the entropy
profile developing inside the star, and that their
universality character is recovered as soon as entropy
gradients smooth out during the evolution.

This work should (and will) be extended in many ways to
include more realistic physics (e.g., differential rotation,
magnetic fields, dynamical neutrino leakage, etc.) and a
more accurate description of the PNS evolution.

ACKNOWLEDGMENTS

We would like to thank Fiorella Burgio, Hans-Joseph
Schultze, and José Pons for kindly allowing us to use the
profiles describing the early evolution of a protoneutron
star. We also thank Morgane Fortin and Georgios Pappas
for useful comments and discussions. This work was
partially supported by “NewCompStar” (COST Action
MP1304).

APPENDIX

In this appendix we compare some relevant stellar
quantities computed by integrating Hartle’s equations at
third order in Ω (Hartle’s results to hereafter), with those
computed by using the fully relativistic code RNS (RNS
results to hereafter). In particular, we compute the mass,
radius and moment of inertia.
A few words about the equations of state we use for this

comparison:
(i) A: EoS obtained in [59] using many-body theory,

and named EoS A in [60]. Matter is composed
of neutrons only. Interactions include a Reid soft
core adapted to nuclear matter. The many-body
Schrödinger equation is solved with a variational
approach, applied to the correlation function.

(ii) AU: EoS named AV14þ UVII in [61], matched
to Negele and Vautherin [62] at low densities. Based
on variational methods with correlation operators
on a Hamiltonian featuring the Argonne v14 two-
nucleon potential with the Urbana VII three-nucleon
potential.

(iii) APR: EoS obtained in [63] using many-body theory.
Matter is composed of protons, neutrons, electrons,

and muons. Interactions are described by the
Argonne v18 two-nucleon potential and the Urbana
VII three-nucleon potential, including relativistic
corrections arising from the boost to a frame in

TABLE VI. Parameters of the nonrotating stellar configurations
which we use to compare the results of the perturbative approach
to those of fully relativistic calculations. ρ̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
.

G240 APR A O APR AU

Mb 1.55M⊙ 2.2M⊙
M=M⊙ 1.41 1.39 1.36 1.91 1.87 1.85
R (km) 12.84 11.33 9.61 12.74 11.05 10.25
ρ̄ (km−1) 0.031 0.038 0.048 0.037 0.045 0.050
M=R 0.16 0.18 0.21 0.22 0.25 0.27
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FIG. 9 (color online). We plot the mass, equatorial radius, and
moment of inertia (normalized to I� ¼ 1045 g × cm2), as a
function of the rotation rate normalized to the mass-shedding
frequency. Solid and dashed lines indicate data computed by
integrating Hartle’s equations and using the RNS code, respec-
tively. All data refer to a baryonic mass Mb ¼ 1.55M⊙ and the
equations of state A, APR, and G240. In the lower part of each
panel, we show the relative difference between the data computed
using the two approaches.
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which the total momentum of the interacting pair is
nonvanishing.

(iv) O: EoS obtained in [64] and named as O in [60].
Matter is composed of neutrons, protons, and hyper-
ons. Interactions are nonperturbative; it is a phe-
nomenological approximation to relativistic meson
exchange. The many-body theory is based on
relativistic finite density Green’s functions.

(v) G240: Obtained in [65,66]. Matter composition
includes leptons and the complete octet of baryons
(nucleons, Σ0;�, Λ0, and Ξ�). Hadron dynamics is
described in terms of exchange of one scalar and two
vector mesons. The EoS is obtained within the mean
field approximation.

The stellar parameters of the nonrotating configurations
are given in Table VI. The results of the Hartle-versus-RNS
comparison are given in Fig. 9 and in Table VII. In the three
panels of Fig. 9, we compare mass, equatorial radius, and
moment of inertia computed by integrating Hartle’s equa-
tions (solid lines) and using the RNS code (dashed lines).
All quantities are plotted versus the rotation rate normalized
to the mass-shedding limit rate (computed with RNS), and
are given for a star with baryonic mass Mb ¼ 1.55M⊙ and
equations of state, A, APR, and G240. In the lower part of
each panel we also show the percent difference between
Hartle’s and RNS results.
In Table VII we tabulate M, Req, I for two values of the

baryonic mass Mb ¼ ð1.55; 2.2ÞM⊙ and two values of the
rotation rate, ν ¼ ð0.6; 0.8Þνms. The superscripts “Har” and
“rns” indicate that the values have been obtained using the

Hartle procedure and the RNS code, respectively. For each
quantity we also provide the relative difference between the
two approaches. In addition, we show the average density,ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

eq

q
, and the compactness M=Req of the star.

Figure 9 and Table VII show that the relative difference
between Hartle’s and RNS results is

(i) less than 1% for the gravitational mass for rotation
rates ≲0.9νms, where νms is the mass-shedding
rotation rate evaluated with RNS, for all considered
equations of state;

(ii) less than 3% for the equatorial radius up to ≲0.8νms;
(iii) less than 5% for the moment of inertia up

to ≲0.8νms;
We have checked that our results are independent of the

resolution. Doubling the number of grid points, all com-
puted values change by less than 0.5%.
A similar comparison between perturbative and fully non-

linear codes has been done in [33], by using Hartle’s
procedure at second order in the rotation rate and the RNS
code. They were focused on the evaluation of the innermost
stable circular orbit and of the quadrupole moment which,
however,was affectedby theRNSerrormentioned inSec. III.
We also mention that in [53] Hartle’s perturbative

approach has been extended up to fourth order in the rotation
rate, increasing the agreement with fully relativistic compu-
tations. However, a comparison with their results is not
straightforward, because they are focused on the determi-
nation of universal relations for higher order multipole
moments, and this is beyond the scope of this paper.

TABLE VII. In this table we compare the values of the average density ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

eq

q
, compactness M=Req, equatorial radius Req, and

moment of inertia I (normalized to I� ¼ 1045 g × cm2), found using Hartle’s procedure and the RNS code. Data refer to two values of
the baryonic mass, Mb ¼ 1.55; 2.2M⊙, and different equations of state appropriate to describe cold stars with that mass. For each
quantity we also show the relative difference between RNS and Hartle’s results. The comparison is done for two values of the rotation
rate, i.e., ν=νms ¼ 0.6 and ν=νms ¼ 0.8.

Mb ¼ 1.55M⊙ Mb ¼ 2.2M⊙
G240 APR A G240 APR A O APR AU O APR AU

ν=νms 0.6 0.8 0.6 0.8
ν (Hz) 500 653 810 670 871 1080 650 793 900 860 1057 1200
νms (Hz) 833 1089 1350 833 1089 1350 1069 1321 1495 1069 1321 1495ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M=R3
eq

q
(km−1) 0.029 0.035 0.045 0.027 0.032 0.042 0.035 0.042 0.048 0.033 0.039 0.045

M=Req 0.15 0.17 0.20 0.15 0.16 0.20 0.21 0.24 0.26 0.21 0.23 0.25
MHar=M⊙ 1.42 1.39 1.37 1.42 1.40 1.38 1.92 1.89 1.86 1.93 1.90 1.87
Mrns=M⊙ 1.43 1.40 1.38 1.43 1.41 1.39 1.94 1.90 1.87 1.95 1.92 1.89
Δ (%) 1 1 1 1 1 1 1 1 1 1 1 1
RHar
eq (km) 13.57 11.85 10.06 14.20 12.29 10.45 13.32 11.53 10.67 13.81 11.96 11.05

Rrns
eq (km) 13.63 11.93 10.13 14.60 12.63 10.74 13.42 11.60 10.74 14.17 12.25 11.32

Δ (%) < 1 1 1 3 3 3 1 1 1 3 2 2
IHar=I� 1.66 1.37 1.03 1.78 1.43 1.09 2.70 2.08 1.85 2.83 2.18 1.93
Irns=I� 1.69 1.40 1.05 1.87 1.51 1.14 2.76 2.12 1.88 2.99 2.28 2.03
Δ (%) 2 2 2 5 5 4 2 2 2 5 4 5
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