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Charged dilatonic black rings and black saturns and their thermodynamics
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In this paper charged black rings and black saturns are constructed in Einstein-Maxwell-dilaton theory in
five dimensions. The neutral black ring and black saturn solutions are embedded in six dimensions and
boosted with respect to the time coordinate and the added sixth dimension. Then the charged solutions are
obtained by a Kaluza-Klein reduction. The influence of the charge is studied by analyzing the physical
properties and the phase diagram. The different dilatonic solutions are compared and their thermodynamic

stability is considered.
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I. INTRODUCTION

A promising development in the search for a quantum
theory of gravity is string theory, which needs more than
four dimensions for its internal consistency. This resulted in
wide interest in higher-dimensional solutions including
higher-dimensional black holes (see e.g., [1]). Myers and
Perry found the higher-dimensional version of the Kerr
black hole [2] and also supposed the existence of black
holes in higher dimensions with a nonspherical horizon
topology. A solution with horizon topology S' x §2, a black
ring, was discovered by Emparan and Reall [3]. This
showed that the uniqueness theorem does not hold in
higher dimensions.

Since then a variety of black ring solutions has been
found, e.g., a black ring with two angular momenta [4], a
charged black ring [5], and a supersymmetric black ring
[6,7]. Also composite black objects are possible: a black
saturn, a spherical black hole surrounded by a black ring
[8], systems of multiple black rings [9—11], or black saturns
with multiple rings.

In the static case, magnetic [12] and electric charge [13]
have been added to the black saturn solution. The mag-
netized black saturn is balanced, but the electrically
charged black saturn exhibits either a conical or a naked
singularity.

When gravity is coupled to a Maxwell field and a
dilaton field, charged dilatonic black hole solutions emerge.
In the case of Kaluza-Klein coupling the solutions can be
obtained by adding a spatial dimension and performing a
boost. A dimensional reduction then leads to the charged
dilatonic black hole solutions (compare [14-24]).

This method was applied to the Schwarzschild spacetime
[16] to find the static electrically charged Einstein-Mawell-
dilaton black hole and to the Kerr spacetime [20,22] to find
the corresponding rotating charged dilatonic black hole. In
[23] a rotating dyonic black hole in Kaluza-Klein theory
was presented. There two boosts and a rotation were
applied to the solution to obtain a rotating electrically
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and magnetically charged black hole in Einstein-Mawell-
dilaton theory.

Also in higher dimensions rotating Einstein-Mawell-
dilaton black holes were found [24] by boosting the higher-
dimensional Myers-Perry solution.

In five dimensions Einstein-Mawell-dilaton black rings
were constructed. The static charged dilatonic black ring
was obtained for arbitrary values of the dilaton coupling
constant [25] and additionally a rotating charged dilatonic
black ring was found in the case of Kaluza-Klein coupling
[25,26]. In the Kaluza-Klein case also general black ring
solutions were constructed: A three-charge black ring [27]
and a black ring with two angular momenta, electric
charge and magnetic charge [28,29]. Furthermore dila-
tonic solutions with dipole charges have been obtained,
namely a dipole black ring [30], a black saturn with a
dipole ring [31], and a solution describing two con-
centric rotating dipole black rings [32]. Numerically also
a seven-dimensional dilatonic black ring was found [33].

In this paper we will first give a brief review of the
rotating charged dilatonic black ring and then we will
construct the charged dilatonic black saturn solution, using
the method of boosting the seed solution and then perform-
ing a dimensional reduction. The influence of the dilaton on
the black ring and black saturn spacetime is studied by
analyzing the physical properties and the phase diagram.
With increasing charge, the dilatonic solutions need less
angular momentum and less horizon area to be balanced.
Furthermore, the thermodynamic stability is discussed. The
isothermal moment of inertia and specific heat at constant
angular momentum of the dilatonic black ring and black
saturn cannot be positive at the same time. Therefore the
charged dilatonic black ring and black saturn are not
thermodynamically stable.

II. GENERATING CHARGED DILATONIC
BLACK OBJECTS

Let us first briefly recall the method and the extraction of
the physical properties.

© 2014 American Physical Society
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To generate a Kaluza-Klein black hole, the metric of a
neutral black object is used as a seed metric. Since we want
to construct a five-dimensional object, we take the five-
dimensional seed metric and embed it in a six-dimensional
spacetime with an extra coordinate U,

dsZ = ds? + dU™. (1)

The six-dimensional metric is boosted in the #-U plane with
the matrix

_ <cosh(/)’)
sinh(p)

This boosted metric is still a solution of the (six-dimensional)
vacuum Einstein equations. A five-dimensional solution in
the Einstein-Maxwell-dilaton theory can be obtained by
comparing the boosted metric to the Kaluza-Klein para-
metrization of a six-dimensional metric, which reads

sinh(f
cosh((ﬂ)) ) ’ (2)

dsg gk = e**Pg,, dxtdx” + e %®(dU 4+ A,dx*)%,  (3)

where a = -1~ From the comparison of the transformed ds?
and ds? g one can read off the metric components g,,,
the Maxwell potential A, and the dilaton function &
corresponding to the new five-dimensional charged
dilatonic black hole.

The action in five-dimensional Einstein-Maxwell-dilaton
theory is

1 | 1
S = d5 “g|R—-P P+ —— 72h<I>F F ),
167zG/ v g( 2w 4 T )
(4)

where the dilaton coupling constant has the Kaluza-Klein
value & = 2. The obtained charged dilatonic metric fulfils
the Einstein equations,

G,, = 81GT,, (5)
with
1 A
le = 8ﬂ<1>8y(13 — zgﬂya}v@a o

1
+ eizh‘b <FW1F£ - 4g/wF/16FM—> ’ (6)

the Maxwell equations,
V(e ) =0, )

and the dilaton equation,
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V= L, P (8)

Regarding the physical properties, one can easily find
relations between the physical quantities of the charged
dilatonic black hole and its uncharged seed metric. In the
following the physical quantities of the dilatonic black hole
will be denoted with an index # and the quantities of the
seed metric with an index O.

The (ADM) mass M, the angular momentum J, the
electric charge Q, the magnetic moment M, and the dilaton
charge X can be read off from the metric functions at
infinity. In spheroidal coordinates (r,#) the asymptotic
expansion (r — oo) of the metric functions yields ([24,34])

8GM 1
gt,z—l—k?ﬁ, 9)
4GJ sin(0)?
G N T 19)
4GQ
A r—F, 11
g 1)
4G M sin(6)?
A, ~— 5 (12)
T r
4GZ
dr—7, (13)
ar

assuming the black object is five-dimensional and rotates in
y-direction. The physical quantities can now be found by
comparing (9)—(13) to the solution in the limit r — oo.
Then the following relations between the quantities of
the charged and the uncharged black object can be found:

Mg = (% sinh(B)? + 1)M0, (14)
Jy = cosh(8)Jy, (15)

0 = %sinh(f) cosh(8) M. (16)
M = sinh(8)J, (17)
T=— (i) v sinh ()2 M. (18)

Then the charges fulfill the relation [23,24]

0 2

. 19
M—¥es /6 1)

The area of the horizon is
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A, = / Jdet(ds? ) dydgdz, (20)

using the canonical coordinates of [34]. ds% describes the
metric at the horizon. Here one gets the relation

AP = cosh(p)AY,. (21)

The Hawking temperature can be calculated via the surface
gravity

Ty=3, (22)
where
R=—J(VENE) (@)
The Killing vector field is
&=0,+Q0,. (24)

The relation between the horizon angular velocity of the
dilatonic black hole and the horizon angular velocity of the
seed metric is

1
Q= Q.
P~ cosh(p) °

(25)
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Considering the Hawking temperature a similar relation
exists:

ﬂ _ 1
Th = o) T (26)

The horizon electrostatic potential,

inh
\I/el = fﬂAﬂ‘horizon - % ’ (27)

depends only on the boost parameter f, for the metrics
considered in this paper.

III. THE ROTATING CHARGED DILATONIC
BLACK RING

The rotating charged dilatonic black ring was con-
structed in [25,27] and analyzed in [35] within the
quasilocal formalism, but so far its thermodynamical
stability was not considered.

A. The solution

Taking the neutral rotating black ring metric of [3]
(or more precisely, in the form presented in [27]) as seeds, a
charged dilatonic rotating black ring can be constructed
with the method described above. The metric in ring
coordinates is

a5 = V(32 0 [+ (RV A cosh(8)) (1 -+ y)y

F(y)
+ Vi(x,y)1/3 TEE [—F(X) (G(y)dl//2 +
where R is a scaling parameter,
F(&)=1-2¢, (29)
G()=(1-)(1-w0) (30)
and
Vj(x,y) = cosh()* — sinh(ﬁ)z%. (31)

The coordinate ranges are —1 <x <1 and —o0 <
y < —1, 77! <y < co. The parameters v and A vary in
0 <v < 4 < 1. The static charged dilatonic black ring can
be obtained by setting v = 0.

Mdy2> + F(y)? (L

2 G(x) 2
G0y Gt “ﬂ’ (28)

F(x)

|
The nonvanishing parts of the vector potential are

4 - Sinh(p) cosh(B)(F(y) — F(x))

t cosh(ﬁ)zF(y) _ sinh(ﬂ)zF(x) ’ (32)
_ sinh(B)F(x)RVAu(1 +y) (33)
V" sinh(p)*F(x) — cosh(B)?F(y)’
and the dilaton function is
% o F()
b= —?ln <cosh(ﬂ)2 — sinh(p)? m) (34)
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B. Physical quantities and phase diagram

The physical quantities are

1 v
@= Rcosh(p) \/ A(1+4)

(35)

T 2
:342 ’1((11:”’1)) <1 +§sinh(ﬂ)2>, (36)

7R V(1 + )

1= eosh(p) 5O (37)
0 =R sinn(p)comp) L EA oy

M= —g—lgsinh(ﬂ)% (39)

Ay = 87°R3 cosh() Wﬂ‘fg)(‘l ”_)(yl) =4
" coslll(ﬂ) 47R : ;(: —)’ “2)
=

From (42) it can be seen that the only extremal (7 = 0)
black ring solution is v = 1. This choice of v corresponds to
a naked singularity [27].

In general the charged dilatonic black ring exhibits a
conical singularity, which can be placed either at x = —1 or

11
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A

(a)

FIG. 1 (color online).
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x = +1. The excess or deficit angle can be computed in
ring coordinates as

A¢8x\/9¢¢

gxx (44)

6:271'—'

x==%1

In the following the conical singularity is chosen to be at

_ —n_ J1H
x = +1, so that A¢p = 27>~ and

B (I =v)V1i+4
5= 2;:(1 e +u)ﬂ)' (45)

The charge parameter $ does not influence the conical
singularity. In order for the black ring to be balanced
(6 = 0), the rotation parameters v and A have to fulfil the
condition

2v

1= 46
1412 (46)

The sign of the mechanical moment of inertia / divides
the charged dilatonic black ring solution into a fat branch
(I > 0) and a thin branch (I <0). Keeping M and o
constant the mechanical moment of inertia is defined by

1 0Q

109 2G(1 —v)(1 +v)?
I 0J|ys Rimcosh(B)(1+2)>°Bv+1i—v)

. (47)

In a fixed Q ensemble Eq. (47) gives the same result as in a
fixed ¥, ensemble. The sign of [ is not influenced by the
charge parameter f and the scaling parameter R.

Figure 1 shows the sign of the conical deficit/excess
angle (a) and the sign of the mechanical moment of inertia
(b) in the A-v parameter space.

For convenience the following scaled quantities are
introduced:

11

0 0.2 0.4 0.6 0.8 1
A

(b)

Parameter space of the rotating charged dilatonic black ring. (a) Sign of §. The solution contains a conical deficit

(blue area) or conical excess (green area). The balanced solutions (# = 0) are on the black curve in between the blue and green area.
(b) Sign of the mechanical moment of inertia. / > 0 in the green and / < 0 in the blue area. On the dashed curve the black ring is

balanced (f = 0).
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FIG. 2 (color online).

Versus g.
3 3 Ay
SRR . S 48
i 16\/;(GM)3/2 (
277 J?
o __ 2t J 4
RV IETVER (49)
Y
32
r= T”\/GMTH. (51)

The scaled charge depends only on # and there is an
upper limit ¢ =1 (and a lower limit ¢ = —1) for the
charge. The phase diagram of a rotating charged dilatonic
black ring is shown in Fig. 2, the left picture (a) shows how
the ay-j* diagram changes for different values of 8 and the
right picture (b) shows a three-dimensional ay-j>-g dia-
gram. As f§ and accordingly ¢ grows, the curve in the phase
diagram gets shifted to lower aj and j>. The charge comes
with an additional force which helps to stabilize the black

(a)

FIG. 3 (color online).
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(b)

Phase diagram of the charged dilatonic black ring. (a) aj versus j2 for different values of . (b) ay versus j2

ring. So when the charge is increased less angular momen-
tum is needed to keep the black ring balanced.

Figure 3(a) shows j-g plots for different values of the
parameter v, in the extremal case v = 1 the solution is a
naked singularity. As for spherical dilatonic black holes
[24], the j-q plots form a cusp at j = 0.

In Fig. 3(b) ay-q diagrams are depicted. The left picture
shows diagrams for different values of the parameter v. ay
reaches its highest value for a given ¢ if v = 0.5, this is also
the point where j? reaches its lowest value. If v = 1, the
horizon area vanishes.

The temperature of the charged dilatonic black ring
versus the parameter v and the temperature versus the
horizon area and the charge can be seen in Fig. 4. The
charge has only small influence on the temperature.

C. Thermodynamical stability

In a (stationary and asymptotically flat) spacetime that
contains a conical singularity, the first law of thermody-
namics gets an extra term AdP (see [36,37]). P is the

19
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q —v=02
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0 0.2 0.4 0.6 0.8 1

ay

(b)

J-q diagrams and ay-q diagrams of the charged dilatonic black ring. (a) j-g-diagram for different values of the

parameter v. (b) ay-g-diagram for different values of the parameter v.
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FIG. 4 (color online).
(b) Temperature versus ay Versus g.

pressure caused by the conical singularity and A/ Ty is the
area spanned by the conical singularity.

For the charged dilatonic spacetimes considered in this
paper, the first law is

dM = TydS + QdJ + ¥,dO — AdP. (52)
The parameter A for the charged dilatonic black ring is

VI+2(1=2)32

1—v

A = zR?

(53)

To analyze the thermodynamical stability two quantities are
considered (compare [37]), the specific heat at constant
angular momentum

|

2722 R? cosh(B)VA(1 + A) (A — v)*?[6 cosh(B)2A(lv — A+ v — 1) + 22(1 = 3v) +2(Av + 1 —v)]
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(b)

Temperature diagrams of the charged dilatonic black ring. (a) Temperature versus v for different values of f.

oS
C/=Typ— 54
J H AT l, 4 (54)
and the isothermal moment of inertia
oJ
€=—= . (55)
0Q Ty A

To ensure thermodynamical stability both quantities need to
be positive.

In a fixed Q ensemble the specific heat and the
isothermal moment of inertia read

C, = 56
TG = 1)[2cosh(B)2A(A? + 144y — 1302 + A — 20— 1) — 2(1* — 120 — 3) — 1220(1 + 1) + 87 (56)
aR* cosh(B)?A(1 + A)?
€ =
2G(1 + )’ [24cosh(B2(A— D)(v— 1) + 23 — 1) — 21]
x [2Acosh(f)*(—A? — 144w + 1307 + 2u+ A+ 1) + 2 (1 + 120+ 3) — 120(1 +v) + 817, (57)
and in a fixed ¥, ensemble the two quantities are
¢ _ 2R cosh(B)VA(1 +2) (A= 1) 2230 = 5) + 244w = 2) — 2] (58)
L GWA = D[R 160 — 1) + 2A(=TiA + 4v — 1) — 8]

aR* cosh(B)?A(1 + A)3[A2(1 — 16v — 1?) + 2A(Tv* — 4v + 1) + 817 (59)

€= .

In the fixed ¥ ensemble the sign of C; and € is the same
for # # 0 and f = 0, whereas in the fixed Q ensemble, the
charge parameter f influences the sign of C; and e.
Nevertheless for all # the charged dilatonic black ring is

2G(1+ v [A2(1+v) +2A(1 —v) — 24

not thermodynamically stable, since C; and e cannot be

positive at the same time.

Figures 5 and 6 show C; and ¢ for different values of f in
the fixed Q ensemble (the plots for = 0 also correspond
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1 1

FIG. 5 (color online).
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1

Sign of the specific heat at constant angular momentum of the rotating charged dilatonic black ring in the fixed Q

ensemble. C; is positive in the green area and negative in the blue area. The balanced solutions can be found along the dashed curve.

@p=00b) =10 F=5.

o
=)
N
N
=
o
o
=)
3
—

FIG. 6 (color online).

Sign of theisothermal moment of inertia of the rotating charged dilatonic black ring in the fixed Q ensemble. e is positive in

the green area and negative in the blue area. The balanced solutions can be found along the dashed curve. (a) f = 0, (b) f# = 0.8, (¢c) f = 1.5.

to the fixed ¥ ensemble, since both ensembles are equal
at f=0).

IV. THE CHARGED DILATONIC BLACK SATURN
A. The solution

The black saturn solution was found by Elvang and
Figueras in 2007 [8]. The solution describes a spherical
black hole (%) surrounded by a black ring (S' x 5?). If one
takes the metric of [8] as seeds and applies the above
methods, one gets the metric of a charged dilatonic black
saturn. In canonical coordinates, the metric is given by

2_ ~2/3 H, @y, .
ds*>=—=V(p.2) dt+cosh(f) +q |dy
H, H,

G
-|-Vﬂ(p,z)1/3Hx{k2P(dp2+d12) +—ydy/2+@d¢2},
H, H,
(60)

where

H
Vs(p.z) = cosh(p)? — H—ysinh(ﬂ)2. (61)
X
The nonvanishing parts of the vector potential are
sinh(f3) cosh(p)(H, — H )
t = B - 2 ’ (62)
cosh(f)*H, — sinh(f3)°H,
sinh(f)(w,, + qH,) (63)

v sinh(f)2H, — cosh(f)*H,

and the dilaton function is
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O = —\/Téln (cosh(ﬁ)2 — sinh(p)? %) (64)

The metric funtions are
Gx :p2 Ha P
H3Hs
G, — s
Hy

X

H,=F Y M+ M| + 3M, + cicaM3 + c3ciMy),

2
H, = F15 (Moﬂ— M, L — 2,

/44 H2 Hik2

w, = (c1R,

F\/_

F = pyps(py

where

My = popi3 (s
M, = i pouspiapsp® (i — Ha)* (o — Ha)* (1
My = popspapsp® (1 — H2)* (1
My = 2y popspaps (i — s) (i
My = i popdpi (s

and

PP+ (z—a) —(z—a),

Hi =
R =\/p* + (z—a;)%.

The constants a; with i = 1,...,5 correspond to the rod
endpoints of the solution and can be transferred into three
dimensionless parameters,

Aip — a4 .
Ki:+T, i=1,...3, (65)

using a scale parameter L with L?> = a, — a; [8], where the
k; are ordered in the following way,

0SK3SK2<K]S1. (66)
Analogously the coordinate z can be scaled

—a
L*

7= (67)

and a new dimensionless parameter ¢, = ﬁ can be

introduced. The parameters and the coordinate 7 were
scaled in order to simplify the expressions of the physical
quantities.

MOMI — Csz\/MoMz + C%Csz\/M1M4 — CIC%Rl

P = (u3pg + ) (urps + p?) (paps + p*)
— u3)*(uy — 1a)*(P* + papt3) (P* + pops) (07 + pipaa) (P* + pops)

X (p* + papts) (0* + papis) HP +47),

— p3)* (4o — ) (P + papi)* (0 + japes)* (p
— )2 (P* + Hapt3)?,
— u3)*(p* + upa)* (p7 + popts)?,
— ps) (2 — ) (P* + i) (p?
—us)2(p* + mip2)* (p* + popis)?

B2 4 cresMs + c2M4—>
p? I

M;yM,),

>+ papz)?

+ 13) (P + pipa) (P* + pops) (p* + pops),

The parameter ¢, is fixed at

2K'1K'2

c| = 68
el =1y (68)
in order to remove singularities at p = 0, Z = 0 resulting
from the construction of the black saturn in [8].

To ensure the asymptotic flatness of the solution, the

parameters ¢ and k have to be chosen as

5 _
g=1,"2_2 (69)
k3 1+ K20y

1
= 7
T (70)

B. Physical quantities and phase diagram

To calculate the mass, charge, magnetic moment, angular
momentum and dilaton charge of the charged dilatonic
black saturn the asymptotic coordinates of [8] are used:

1
p:Erzsin26 (71)

1
z=5 72 cos 26. (72)
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The physical quantities can be obtained by taking the limit » — co. The (ADM) mass, charge, magnetic moment, angular

momentum and dilaton charge of the charged dilatonic black saturn are

3L k3(1 — Ky + K2) — 2K2K3(Ky — K2)Cp + Ka[Ky — Kok (1 + Ky — K2)] T3
4G K3[1 +K252]2 ’

M= (% sinh(B)? + 1)

L3 1 K _
J = cosh(p) E \/2’(12’(3{"% — Caks[(k) — k) (1 — Ky + &3) + Ko (1 — K3)]

?K:;[l +K252
+ E3Kak3[ (k) — K2) (k1 — K3) + K1 (1 4 k1 — ko — K3)] — E3K K2 [Ky — Kok3 (2 + K1 — K2 — K3)] },
L2

0= Z—Gsinh(ﬂ) cosh(f3) ot

(1 — k1 4+ Kk2) — 2K9K3 (K1 — K2) T + Ka [k — Kok3 (1 + Ky — K3)]E3
K3[1 + k2]

El

M*”—LBSinh(ﬂ) ! 2 {K3 = cars[ (k) = 12) (1 = Ky 4 K3) + Ko (1 — K3)]
G PV 2wk Y : 3

K31 + K28,

+ E3Kaks (k) — k) (k) — K3) + K1 (14 k) — Ky — K3)] — E3K KKy — Kok3 (2 + K — Kk — K3)]

> =

_al? \ﬁsmh(ﬁ) k3(1 — Ky + &) — 2i0k3 (K — K2) T + Ko [y — Kok3 (1 4 K1 — k)]
2G 3 K3[1 +K'2€'2]2 '

The horizon area is computed for each horizon separately:

ABH = 41372 cosh(p)

2(1 — k)3 (1 +%C§>
(1 —x2)(1 —x3) (1 + K,8,)? ’

26 (13 — K3)° <1 — (kK1 —K2)Er + %ﬁ_ﬁ)i’%)

ABR — 41372 cosh
! /) (1+x,82)°

Ky (kp —K3)(1 = K3)

(73)

(74)

(75)

(76)

(77)

(78)

(79)

The horizon area of the whole black object is Ay = ABH + ABR. From this one gets the entropy of the charged dilatonic

A
black saturn S = =

The Hawking temperatures of the spherical black hole and the black ring are

TBH _ 1 (1 —xy)(1 —k3) (1 +K,8,)°
H " 2Lz cosh(p) 2(1 — k) 1+ K1K2(1<—1'<2)(1)—’<3) 3 '
K3{1—=Ky
TBR _ 1 Kl(l_K3>(K1_K3>< (1 +K,8,)° )
f 2Ln COSh(ﬂ) 2K2(K2 - K3) 1-— (K'l — K'Q)Ez + 7’(11(2%_’(3) E‘%

The horizon angular velocities are

- 1 ks (ks(1—xp) =& (1 — k) (1 —K3)y
P = L cosh(p) (L4 x:8) 2K, <K3(1 — k1) +xia (1 —xo)(1 —K3)Z’§>’

1 _ K1K3 K3 —K2(1 —K3)E'2
Q = 1 - .
or L cosh(p) (14 rat2) 2K, (K3 —ie3(ky = K2)E + Kk (1 — K3)E3

064022-9
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It is interesting to see how the total charge is divided 1 9400
between the spherical black hole and the black ring. Each 0;= 162G / e2h® \/% (90y0,Ay — Gy 0,A,)
charge can be computed separately using a Gaul} integral, H; g
x dydgdz. (85)

1
b [ e, 4
Qi 167rG[11.e s (84)

where H; is the black hole or black ring horizon and F =
dA. In terms of the metric components this can be written as
|

So the individual charges of the spherical part and the ring
part of the dilatonic black saturn are

7L k3(1 — k1) 4 k1K (1 — Kk2) (1 — K3)E3
2G K'3(1 +Z‘2K2)

Opu = ) (86)

Oue — ﬂ_Lsz[l — (1 = K)o ][k3 — Kk3(Kk = K2) T + KK (1 = K3) 3]
BR 2G K'3(1 +E’2K‘2)2

. (87)

The two charges sum up to the total ADM charge Q.
Additionally there is a relation between the charges Q; and
the Komar masses of the sphere (M§™) and the ring (MER) of
the uncharged black saturn (see [8] for the Komar masses),

Optt = %sinh(/}) cosh(B)MEH, (88)
Qe = 2 sinh() cosh(§) ME®. (89)

1. Balance and thermodynamical equilibrium

Next we check the ¢ and y rod for conical singularities.
In canonical coordinates the deficit or excess angle of a
conical singularity is [compare Eq. (44)]

B)
5= 21— Aglim 2V — 27— Aglim [ (90)
=0 /Gy P=0 N P Gpp

where n = ¢,y and An is the period of the angular
coordinate ¢ or y. For a balanced black saturn 6 =0
holds, so that the period of an angular coordinate is (see
also [8,34])

2
An = 2alim 4 [2-222. (91)
P=0 N Gy
The charged dilatonic black saturn has a semi-infinite y-
rod at Z € [1, o] and a semi-infinite ¢-rod at 7 € [—o0, k3].
These rods fix the periods to be Ay = A¢ = 27z to ensure
asymptotic flatness (for the rod structure of a black saturn
see [8]). Using Eq. (90) on both rods, each time one gets the

jo1] = L/

which 1is

condition
from Eq. (68).

already known

[

If this condition holds, there is still a conical singularity
left sitting between the black ring and the S* black hole in
the equatorial plane. By requiring A¢ = 2z on the finite
¢-rod at 7 € [k,,k;] this conical singularity disappears.
Here Eq. (90) gives

1 K| — Ky

NG ED S

2 —1|. (92)

The conditions for balanced solutions are the same for
the charged dilatonic and the neutral black saturn.

Since the black saturn consists of two black objects, one
has to consider under which circumstances the solution is in
thermodynamical equilibrium. Clearly, in equilibrium the
Hawking temperature of both objects has to be the same. In
addition both objects should have the same angular velocity
(see [37,38]) and the same horizon electrostatic potential.
The latter is already fulfilled, so one just needs to consider

Qpy = Qpg, (93)
TBH — TBR. (94)
Equation (93) leads to
- K3(1—xp)

=, 95
Kkiky (1 —k3) ©5)

and together with (94) one finds

1—
K3 = K| -+ M . (96)
-k —K

If (92) is not imposed the conical singularity in thermo-
dynamical equilibrium is
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FIG. 7 (color online).
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(b)

Parameter space of the charged dilatonic black saturn. In the colored region the solution is in thermodynamical

equilibrium. (a) Sign of d. The solution contains a conical deficit (blue area) or conical excess (green area). The balanced solutions
(6 = 0) are on the black curve in between the blue and green area. (b) Sign of the mechanical moment of inertia. / > 0 in the green and
I < 0 in then blue area. On the dashed curve the black saturn is balanced (6 = 0).

=27 _ K2(1 —K2)2
0=2 <1 (Kl_KZ)(K1+K2—1)
X K2
\/KI[K1K2(K1 +Ky — 1)2]>' (97)

Here the relations for the charged dilatonic black saturn and
the relations for the neutral black saturn are the same (see
[37]). As in [37] Fig. 7 shows the parameter space of the
charged dilatonic black saturn. In the colored region the
charged dilatonic black saturn is in thermodynamical
equilibrium. The sign of § can be seen in Fig. 7(a). On
the black curve, the solution is balanced. On the left of the
black curve the solution has a conical deficit (6 < 0), while
on the right side it has a conical excess (6 > 0).

0.8
0.7 1
0.6

0.5 A

031 1.

0.2

0.1 A

FIG. 8 (color online).
Versus q.

The sign of the mechanical moment of inertia is depicted
in Fig. 7(b). I > 0 corresponds to the fat branch of the
solutions and / < 0 corresponds to the thin branch. Here
the balanced solutions can be found along the dashed curve.

If all the conditions for balance and thermodynamical
equilibrium are fulfilled at the same time, this leaves one
free parameter plus the charge parameter .

2. Phase diagram

Here the conditions for balance and thermodynamical
equilibrium are imposed, so that x, and f are the only free
parameters.

The phase diagram of a rotating charged dilatonic black
saturn is shown in Fig. 8, the left picture shows how the
ay-j* diagram changes for different values of # and the

\

N
N

(b)

Phase diagram of the charged dilatonic black saturn. (a) ay versus j? for different values of f. (b) aj versus j>

064022-11
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right picture shows a three-dimensional ay-j>-g diagram.
As f and accordingly ¢ grows, the curve in the phase
diagram gets shifted to lower aj; and j2. The charge comes
with an additional force which helps to stabilize the black
saturn. So when the charge is increased less angular
momentum is needed to keep the black saturn balanced.

As before scaled quantities are used [see Eqs. (48)—(51)].
The scaled charge depends only on f# and has the upper
limit ¢ = 1 (and the lower limit ¢ = —1).

Figure 9(a) shows j-g plots for different values of the
parameter k,. In the extremal case x, = 1 the solution is a
naked singularity. As before the j-g plots form a cusp at
j =0. The j-q diagrams of the charged dilatonic black
saturn are similar to those of the charged dilatonic black
ring, in fact they are exactly the same in the extremal cases
v =1 and x, = 1, respectively.

ay-q diagrams for different values of the parameter x,
are depicted in Fig. 9(b). ay reaches its highest value for a
given ¢ if k, ~ 0.657549, this is also the point where ;>
reaches its lowest value. If x, =1, the horizon area

0.8

0.6

X, - 03
K, =04 a
x, = 0.657549 0.4

2
K, =1

0.2

PHYSICAL REVIEW D 90, 064022 (2014)

vanishes. 9(c) shows a comparison of the ay-qg diagrams
of the charged dilatonic black ring and the charged
dilatonic black saturn, the parameters v and x, are chosen
in such a way that ay is maximal for each gq.

The temperature of the charged dilatonic black saturn
versus the parameter x, and the temperature versus the
horizon area and the charge can be seen in Fig. 10. The
charge has only small influence on the temperature.

C. Thermodynamical stability

To determine the thermodynamical stability of the
charged dilatonic black saturn, the specific heat at con-
stant angular momentum C; and the isothermal moment
of inertia € are calculated as discussed in Sec. III C. Due
to their enormous size, the exact formulas are not
displayed here.

The results are similar to those of the charged
dilatonic black ring. In the fixed W, ensemble the sign
of C; and ¢ is the same for # # 0 and = 0, whereas in the
fixed Q ensemble, the charge parameter S influences

— — black ring
black saturn

0.5 1

FIG. 9 (color online).

©

Jj-q diagrams and ay-gq diagrams of the charged dilatonic black saturn and a comparison to the charged dilatonic

black ring. (a) j-g-diagram for different values of the parameter x,. (b) ay-g-diagram for different values of the parameter .
(c) Comparison of the ay-g-diagrams. Case k, =~ 0.657549 for the charged dilatonic black saturn and v = 0.5 for the charged dilatonic
black ring: For a given ¢, ay has its maximal value (and j> its minimal value).

FIG. 10 (color online).
(b) Temperature versus ay versus q.

L “\\ \\\\\\\
e

(b)

Temperature diagrams of charged the dilatonic black ring. (a) Temperature versus k, for different values of
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Sign of the specific heat at constant angular momentum of the charged dilatonic black saturn in the fixed Q

ensemble. C; is positive in the green area and negative in the blue area. The balanced solutions can be found along the dashed curve.

@ f=0,Mb)f=11(c)p=5.

0.8

0.6

0.4

0.2

FIG. 12 (color online). Sign of the isothermal moment of inertia of the charged dilatonic black saturn in the fixed Q ensemble. € is
positive in the green area and negative in the blue area. The balanced solutions can be found along the dashed curve. (a) # =0,

(b) =05, () f= 1.

the sign of C; and e. As in the black ring case for
all g the charged dilatonic black saturn is not thermody-
namically stable, since C; and e cannot be positive at the
same time.

Figures 11 and 12 show C; and e for different values
of f in the fixed Q ensemble (the plots for f = 0 also
correspond to the fixed ¥ ensemble, since both ensembles
are equal at = 0).

V. CONCLUSION

In this paper charged black rings and charged black
saturns were constructed in five-dimensional Einstein-
Maxwell-dilation theory with the Kaluza-Klein value of
the dilaton coupling constant. The charged solutions have
the same excess/deficit angle é and the same mechanical
moment of inertia as their neutral counterparts. The

physical quantities of the charged solutions were calculated
and related to the quantities of the corresponding neutral
objects. It was shown, that the curve in the phase
diagram of a charged dilatonic black ring or black saturn
gets shifted to lower ay and j* as the charge parameter /3 is
increased.

Concerning the thermodynamical stability, the specific
heat at constant angular momentum and the isothermal
moment of inertia were considered. Both quantities have to
be positive at the same time to ensure thermodynamical
stability, but neither the charged dilatonic black ring nor the
charged dilatonic black saturn are thermodynamically
stable. Note that the neutral black ring and black saturn
are also not thermodynamically stable [37].

For future work it would be interesting to construct
charged dilatonic black rings and black saturns with
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FIG. 13 (color online). Comparison of the blackfold approximation of the charged black ring with the analytic solution of the charged
black ring and black saturn. In the ultraspinning limit the blackfold approximation of the black ring agrees well with the analytic black
ring solution and also with the black saturn solution. (a) Scaled electromagnetic term of the Smarr formula as a function of the scaled
charge. The red dots correspond to the blackfold approximation of a charged black ring. The blue line corresponds to the analytic
solution of a charged black ring/saturn. (b) Scaled horizon area term of the Smarr formula as a function of the scaled charge. The red dots
correspond to the black-fold approximation of a charged black ring. The blue lines correspond to the analytic solution of a charged black
ring. The ultraspinning limit is reached for v — 0. (c) Scaled angular momentum term of the Smarr formula as a function of the scaled
charge. The red dots correspond to the blackfold approximation of a charged black ring. The blue lines correspond to the analytic
solution of a charged black ring. The ultraspinning limit is reached for v — 0. (d) Scaled horizon area term of the Smarr formula
as a function of the scaled charge. The red dots correspond to the blackfold approximation of a charged black ring. The blue lines
corre- spond to the analytic solution of a charged black saturn. The ultraspinning limit is reached for x, — 0. (e) Scaled angular
momentum term of the Smarr formula as a function of the scaled charge. The red dots correspond to the blackfold approximation of a
charged black ring. The blue lines correspond to the analytic solution of a charged black saturn. The ultraspinning limit is reached for
Ky — 0.
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arbitrary values of the dilaton coupling contant, including
the pure Einstein-Maxwell case, where the coupling con-
stant vanishes. Subsequently, one would investigate their
thermodynamic stability.

Since currently no analytical methods are available to
obtain such more general charged solutions in closed form,
one might resort to a combination of perturbative methods
and numerical methods, to obtain a rather complete picture
for such solutions. In the thin ring limit, where one has
widely separate scales in the problem, the blackfold
approach represents an excellent approximate method to
study the properties of such solutions in five and more
dimensions [39—43]. In [42] it was shown that the blackfold
construction correctly reproduces all physical properties of
the rotating charged dilatonic black ring. Interestingly the
blackfold construction of a charged black ring also agrees
very well with the charged black saturn in the ultraspinning
limit. In a way this was expected since as j is increased
more mass is carried by the ring part of the black saturn and

PHYSICAL REVIEW D 90, 064022 (2014)

less by the central black hole, so that the ay-j curve of the
black saturn asymptotes the black ring curve in the phase
diagram. Figure 13 shows a comparison of the blackfold
approximation of the charged black ring with the analytic
solution of the charged black ring and black saturn. The
different (scaled) terms of the Smarr formula are plotted
against the scaled charge g = %

In contrast, when the scales involved make the blackfold
approach inappropriate, such as in the fat black ring regime,
numerical methods can yield important new insights into
the phase diagram of such higher-dimensional black
objects [44—46].
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