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Motivated by an improved multiwavelength observational coverage of the transient sky, we investigate
the importance of relativistic effects in disruptions of stars by nonspinning black holes (BHs). This paper
focuses on calculating the ballistic rate of return of debris to the BH as this rate is commonly assumed to be
proportional to the light curve of the event. We simulate the disruption of a low mass main sequence star by
BHs of varying masses (105; 106; 107M⊙) and of a white dwarf by a 105M⊙ BH. Based on the orbital
energy as well as angular momentum of the debris, we infer the orbital distribution and estimate the return
rate of the debris following the disruption. We find two signatures of relativistic disruptions: a gradual rise
as well as a delayed peak in the return rate curves relative to their Newtonian analogs. Assuming that the
return rates are proportional to the light curves, we find that relativistic effects are in principle measurable
given the cadence and sensitivity of the current transient sky surveys. Accordingly, using a simple model of
a relativistic encounter with a Newtonian parametric fit of the peak leads to an overestimate in the BH mass
by a factor of ∼few × 0.1 and ∼few in the case of the main sequence star and white dwarf tidal disruptions,
respectively.
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I. INTRODUCTION

In a tidal disruption event, a star on a marginally bound
orbit disrupts as it reaches a limiting distance of closest
approach known as the tidal radius. After disruption one
fraction of stellar debris is launched towards the black hole
(BH) and remains bound to it, while the remaining fraction
is launched away from the BH and unbound. Bound debris
forms an accretion disk around the BH and generates the
key signature of these events: the tidal disruption flare.
Early theoretical models of tidal disruptions predict that
the accretion rate onto the BH and consequently the tidal
disruption flare, decays with a characteristic time depend-
ence ∝ t−5=3 [1–3]. This prediction led to the first detec-
tions of tidal disruption candidates in the UVand soft x-ray
band [4–10] and has been used as a diagnostic for the
presence of massive BHs in previously inactive galaxies
ever since.
The success of the early theory of tidal disruptions is

remarkable, especially given that predictions of the light
curve properties are based on the Keplerian return rate
of the debris and do not account for the complexities of
accretion and radiative processes. Furthermore, subsequent
studies have found deviations from the t−5=3 falloff for
different stellar structure of disrupted stars [11,12]. It has

been shown for partially disrupted stars (i.e., close encoun-
ters with the BH just outside the tidal radius) that the
presence of a self-gravitating remnant core modifies the
dynamics of the debris and hence, the accretion rate onto
the BH [12]. In this scenario, the released debris elements
are deflected from orbits that they would otherwise have
in the absence of self-gravitating remnant, resulting in a
slope different from t−5=3. Similarly, a different dependence
is expected for stars disrupted on bound (as opposed to
marginally bound, parabolic) orbits [13,14].
An additional layer of complexity in linking the calcu-

lated return rate of debris to the observed light curves stems
from the fact that the majority of tidal disruption events
are expected to result in super-Eddington accretion rates. If
these high accretion rates give rise to super-Eddington
luminosities, then radiative feedback is also expected to
affect the appearance of the tidal disruption light curves
[15–19]. Finally, disruptive encounters that occur very
close to BHs are subject to relativistic effects, leaving an
intriguing possibility that information about the spacetime
of a BH is imprinted in the light curve [20–22].
Given the large number of physical processes that play

a role in tidal disruption events, it was somewhat fortunate
that the early observational campaigns, which relied on a
relatively sparse sampling of the light curves, were immune
to this level of complexity. Improved multiwavelength
observational coverage of the transient sky with GALEX,
Swift, Pan-STARRS1, PTF, CRTS, ASAS-SN in the
present, and eROSITA, LSST in the future (and the
proposed mission ISS-Lobster), are opening a window to
study tidal disruption events in unprecedented detail
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[23–33]. For the first time high cadence observations in
principle permit the measurement of relativistic effects
in the light curves of tidal disruptions. This possibility
motivates our work on stellar disruptions in the relativistic
regime.
In this paper, we investigate the relativistic effects in

the return rate of the debris for disruptive encounters
between main sequence (MS) stars and BHs of mass
105; 106; 107M⊙. MS-BH encounters are expected to
dominate the detection rates and given a large sample of
tidal disruption event candidates in the near future, the
likelihood of observing relativistic encounters is also higher
for this class of events. We also investigate partially
disruptive, relativistic encounters between a white dwarf
(WD) and a 105M⊙ intermediate mass black hole (IMBH)
with periastrons very close to the BH. They are important
because, if detected, they will uncover the otherwise hidden
IMBH population [34–36].
In this paper, we use a hydrodynamics code coupled

with self-gravity as well as a general relativistic treatment
of the tidal interaction to study the disruption process in
the frame of the star [37]. We also develop a series
transformation to map quantities in the local frame to the
black hole frame. This allows us to characterize the
evolution in the distribution of orbital energy and angular
momentum of the disrupted star and obtain the ballistic
debris return rate onto the BH. We find that relativistic
effects are significant and in principle measurable,
assuming that the ballistic return rate is proportional to
the light curve.
The remainder of this paper is organized as follows: in

Sec. II we introduce the parameters of the model and in
Sec. III present the method for mapping the debris in the
frame of the star and the BH frame. We present the results
of the simulations in Sec. IV, discuss their implications in
Sec. V and conclude in Sec. VI.

II. PARAMETERS OF THE MODEL

Consider a star of mass M� and radius R� in an orbit
about a BH of mass M and define the mass ratio as
μ≡M�=M. We characterize the strength of the tidal
encounter with a parameter η, which compares the hydro-
dynamical stellar time scale t� ¼ ðR3�=GM�Þ1=2 to the
orbital time scale tp ¼ ðR3

p=GMÞ1=2 at periastron Rp,

η≡ tp=t� ¼
�
R3
p

GM
GM�
R3�

�
1=2

ð2:1Þ

[38]. Disruption occurs for η ¼ 1 at the tidal radius
RT ≡ R�μ−1=3. The ratio of stellar radius to periastron in
terms of these parameters is R�=Rp ¼ μ1=3η−2=3. Each
encounter can also be characterized by a penetration factor
β ¼ RT=Rp ¼ η−2=3. For β > 1, periastron is less than the
tidal radius and the orbital time scale tp is smaller than the
hydrodynamical stellar time scale t�.

The variation in the specific orbital energy of the released
gas depends on the change in the Newtonian BH potential
ΦðrÞ ¼ −GM=r across the diameter of the star at the tidal
radius [1,39]. For a fluid element with orbital velocity ~V,
the specific orbital energy is ϵN ¼ 1

2
V2 þ ΦðrÞ. The spread

in ϵN across a stationary star in the gravitational potential is
ΔϵN ¼ ΦðRT − R�Þ − ΦðRT þ R�Þ. Expanding this differ-
ence to first order one gets the Newtonian spread in specific
energy across the stellar radius at the tidal radius,

ΔϵN ¼ GM
RT

R�
RT

: ð2:2Þ

For full disruptions, the kinetic energy of the expanding
debris is much larger than the adiabatically decreasing
internal energy and diminishing self-gravitational energy.
By neglecting the self-gravity of the star in this limit, it can
be shown that the debris most tightly bound to the BH has
orbital energy ΔϵN. This approximation is valid for deeply
penetrating encounters β ≫ 1 (η ≪ 1), where self-gravity
is negligible compared to the specific orbital energy at
periastron [39]. Thus, for full disruptions, it is reasonable
to approximate a “flat” distribution in mass and energy of
dM=dϵ≃M�=2ΔϵN for the debris [3]. Assuming that
the debris is locked into Keplerian trajectories after dis-
ruption, the semi-major axis of the most tightly bound
debris is am ¼ GM=ð2ΔϵNÞ ¼ R2

p=ð2R�Þ with a minimum

Keplerian return period of Pm ¼ ðπ= ffiffiffiffiffiffiffiffiffiffiffi
2GM

p ÞR3
pR

−3=2
� . The

rate at which each debris element returns to its individual
periastron after one orbit is

_M ¼ dM
dϵ

dϵ
dt

¼ 1

3

M�
Pm

�
t
Pm

�
−5=3

; ð2:3Þ

where the rate of change of specific orbital energy is
dϵ=dt ¼ ð1=3Þð2πGMÞ2=3t−5=3. Equation (2.3) shows the
canonical form of the rate at which bound debris returns to
the BH after one orbit [1–3]. The luminosity L of the flare
associated with the accretion disk that forms from the
debris is commonly assumed to be proportional to _M as
L ∝ _Mc2 (although, see Sec. I for discussion of difficulty in
linking the debris return rate to the observed luminosity).

III. NUMERICAL METHOD

The disruption is simulated in a local moving frame
known as Fermi normal coordinates (FNC), which follows
the star along a parabolic orbit in the known spacetime of a
Schwarzschild BH [37]. The central feature of this method
is the use of a relativistic tidal field in the vicinity of the
trajectory. In the FNC coordinates the tidal field is given by
an expansion of the BH spacetime that includes quadrupole
and higher multipole moments and relativistic corrections.
This approach allows a Newtonian treatment of the self-
gravity and hydrodynamics of the star while accounting for
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relativistic effects inherent to the BH field. The numerical
code, described in [37], provides a high resolution shock
capturing calculation of the star as it approaches periastron
and follows the debris several dynamical time scales after
the tidal accelerations diminish. Quantities in the BH frame
are then obtained from the local frame by series trans-
formations given below. In our study, we use the sign
conventions and notation of [40], geometrical units in
which c ¼ G ¼ 1, and scale all dimensional quantities in
the simulations relative to the BH mass M. We use Greek
indices to label the four-dimensional coordinates and
components of tensors of the BH spacetime, latin indices
for the FNC frame, and reserve i; j; k; l for FNC spatial
coordinates.

A. Frame trajectory and tidal potential

For Newtonian encounters, the frame is evolved along a
parametrized parabolic orbit given in [41]. We use a tidal
potential derived from the multipole expansion of the
Newtonian gravitational potential ΦðrÞ for the BH. The
local frame is located at a distance ~R0 from the BH.
The expansion of Φ at a distance ~x from the origin of the
local frame is

Φ ¼ −
GM
R0

þ GM
R2
0

~x · ~nþ 1

2
Cijxixj þ

1

6
Cijkxixjxk

þ 1

24
Cijklxixjxkxl þ � � � ; ð3:1Þ

where ~n ¼ ~x=R0, with tidal tensor definitions Cij ≡
ð∂i∂jΦÞ0 (quadrupole), Cijk ≡ ð∂i∂j∂kΦÞ0 (octupole),
Cijkl ≡ ð∂i∂j∂k∂lΦÞ0 (hexadecapole), etc., which depend
on the evolution of the local frame center along the
trajectory. The gravitational acceleration due to the BH
in this local frame is ∂iΦ, where the first term is the frame
acceleration and subsequent terms are the tidal acceler-
ations. The tidal potential is then defined as

Φtidal ¼
1

2
Cijxixj þ

1

6
Cijkxixjxk þ

1

24
Cijklxixjxkxl þ � � � :

ð3:2Þ
We apply only the tidal accelerations ∂iΦtidal to the self-
gravitating star in the local frame. For relativistic encoun-
ters, the frame is evolved along a trajectory in the

Schwarzschild spacetime with parametrization given in
[42]. We use a tidal potential as in Eq. (3.2), derived from
the formalism of [37,43], with tidal tensors Cij ≡ R0i0j,
Cijk ≡ R0ðij0jj;kÞ, and Cijkl ≡ R0ðij0jj;klÞ defined by the FNC
Riemann tensor Rabcd and its derivatives with respect to
FNC spatial coordinates.

B. Validity of the FNC approximation

In the following, we show the validity of the FNC
approximation gab of the BH spacetime gμν for all encoun-
ters in this paper (listed below in Table I) [37]. In order for
this approximation to be valid the size of the computational
domain must be smaller than the characteristic length scale
of the tidal field, which is smallest at periastron Rp. In this
study, the extent of the computational domain is L ¼ 16R�
and we have L=Rp ≪ 1 for all encounters. The correction
due to the motion of the BH (relative error of ∼μ, where the
largest mass ratio is μ ∼ 10−5) is neglected. We account for
the error in neglecting terms higher than the hexadecapole
term in the metric expansion as well as the gravitomagnetic
term. We consider stars that have stellar post-Newtonian
(PN) velocity scale ε2 ¼ GM�=ðc2R�Þ ≪ 1. Comparing
the leading neglected term higher than the hexadecapole
with the Newtonian quadrupole, which is the dominant
force term, we obtain a fractional error in neglecting higher
order quartic tidal terms at a stellar radius R� from the
origin of the FNC frame,

Equartic ≃ M
R3
p
R2� ¼ ε2η−2: ð3:3Þ

We consider the error in neglecting the gravitomagnetic
potential by comparing the leading term in g0m multiplied
by the maximum break-up velocity for the star ε with the
size of the Newtonian quadrupole and obtain

EGM;max ≃ ε2μ−1=3η−1=3: ð3:4Þ

We find that the fractional error in neglecting terms above
the hexadecapole term is at most Equartic ∼ 10−5 for main
sequence stars and white dwarfs. The fractional error in
neglecting the gravitomagnetic term is at most EGM;max ∼
10−4 for the main sequence star models and ∼10−3 for the
white dwarf model. Given the low level of error associated
with the higher order terms in the FNC expansion, we

TABLE I. Parameters of initial polytropic models (n ¼ 1.5, γ ¼ 5=3) for a low mass main sequence star (MS1, MS2, MS3:M� ¼ M⊙,
R� ¼ R⊙) and a white dwarf (WD: M� ¼ 0.6M⊙, R� ¼ 1.51 × 10−2R⊙). Note R� ¼ μ1=3η−2=3Rp.

Label η β M½M⊙� Rp½M� Rp[cm] l0½M� l0½cm2 s−1� tp½M� tp[s] Pm½M� Pm[s]

MS1 1.0 1.0 1.0eþ 05 2.2eþ 02 3.2eþ 12 21.0 (20.9) 9.3eþ 21 3.2eþ 03 1.6eþ 03 2.3eþ 06 1.1eþ 06
MS2 1.0 1.0 1.0eþ 06 4.7eþ 01 6.7eþ 12 9.9 (9.71) 4.4eþ 22 3.2eþ 02 1.6eþ 03 7.2eþ 05 3.5eþ 06
MS3 1.0 1.0 1.0eþ 07 1.0eþ 01 1.5eþ 13 5.0 (4.51) 2.2eþ 23 3.2eþ 01 1.6eþ 03 2.3eþ 05 1.1eþ 07
WD5 1.44 0.784 1.0eþ 05 5.0 7.4eþ 10 4.1 (3.16) 1.8eþ 21 1.1eþ 01 5.5eþ 00 1.5eþ 04 7.2eþ 03
WD6 1.89 0.654 1.0eþ 05 6.0 8.9eþ 10 4.2 (3.46) 1.9eþ 21 1.5eþ 01 7.2eþ 00 2.5eþ 04 1.2eþ 04
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assume that they can be safely neglected for all parameter
choices in this study.

C. Transformation from local to BH frame

We transform quantities calculated in the local frame
to the black hole frame in order to obtain the orbital
parameters of the debris. For the Newtonian case, this is a
straightforward Galilean transformation. For the relativistic
case, quantities corresponding to an event xa ¼ ðτ; xiÞ in
the FNC frame are transformed to the BH frame at
coordinate location Xμ by series expansion about the origin
of the local moving frame, Xμ

ð0Þ. This is possible because

the positions and velocities of the fluid elements in the local
frame are smaller than the position and motion of the frame
with respect to the BH. For the fluid velocities considered
in this paper, we include more terms in the expansion than
[37]. For the coordinate transformation, we form a Taylor
expansion in the spatial coordinates xi,

Xμðτ; xiÞ ¼ Xμ
ð0ÞðτÞ þ λi

μxi þ 1

2
σij

μxixj

þ 1

6
κijkxixjxk þ � � � ; ð3:5Þ

where the coefficients λiμ, σijμ, and κijk
μ are evaluated at

Xμ
ð0Þ. For the velocity transformation, we expand about the

frame center in both spatial coordinates xi and velocities
vi. We write the four-velocity in the BH frame as Uμ ¼
dXμ=dτ ¼ ð∂Xμ=∂τÞu0 þ ð∂Xμ=∂xiÞui, where in the FNC
frame the four-velocity reduces to u0 ≃ 1þOðε2Þ and
ui ¼ vi þOðε3Þ in neglecting corrections at or below the
size of the stellar PN order ε2. Expanding Xμ, we have

Uμðτ; xi; viÞ ¼ Uμ
ð0Þ þ

�
d
dτ

λi
μ

�
xi þ 1

2

�
d
dτ

σij
μ

�
xixj

þ 1

6

�
d
dτ

κijk
μ

�
xixjxkλiμvi þ σij

μvixj

þ 1

2
κijk

μvixjxk þ � � � ; ð3:6Þ

with coefficients evaluated at Xμ
ð0Þ. We have that λiμ is the

FNC tetrad [37] and obtain σij
μ and κijk

μ in terms of the
connection coefficients Γμ

αβ of the BH spacetime in
Appendix A. For the encounters in this paper, higher order
terms (than those mentioned above) in the expansion are
smaller than the overall relative error in the numerical
method, E ≲ 10−3 (see Sec. III B), and are neglected. Using
the position Xμ and velocity Uμ of a debris element in the
BH frame, we calculate the orbital parameters represented
by specific orbital energy ϵ and specific orbital angular
momentum l (or alternatively periastron distance Rp and
eccentricity e). We outline this calculation in Appendix B.

IV. RESULTS

A. Initial setup

In this paper, we consider n ¼ 3=2 polytropes with
γ ¼ 5=3 adiabatic index for modeling a low mass main
sequence star (MS1, MS2, MS3:M� ¼ M⊙, R� ¼ R⊙) and
a white dwarf (WD5, WD6: M� ¼ 0.6M⊙, R� ¼
1.51 × 10−2R⊙). We simulate ∼20tp before and ∼40tp
after periastron passage. In Table I, we give the parameters
for the initial models simulated in this paper in units of
geometrized BH mass M and CGS units. We give encoun-
ter strength η in Eq. (2.1), the corresponding penetration
factor β, mass of the BH M, periastron Rp, relativistic
specific angular momentum of the frame trajectory
(Newtonian quantity in parentheses) l0, orbital time scale
at periastron tp, and estimated Keplerian return period of
the most bound debris Pm in Eq. (2.3).
The star is centered in a computational domain of length

L ¼ 16R� in order to follow the evolution of the remnant
core and tidal debris streams as the stellar fluid expands in
the encounter. Each simulation is modeled using a uniform
grid with a resolution of 32 zones per stellar radius R�. The
numerical accuracy in computing the energy and angular
momentum deposited onto the star with this code at
different resolutions is discussed in [37]. In particular,
convergence is shown in simulations of tidally transferred
energy (Fig. 6) with angular momentum conservation
(Fig. 15). Resolution higher than 32 zones per radius is
necessary for weak tidal encounters η ¼ 4. For encounters
with greater energy and angular momentum transfer η≳ 2,
convergence is achieved with lower levels of resolution.
In this paper, we model encounters of strength η ∼ 1, at the
threshold of disruption.

B. Orbital dynamics of the debris

Orbital dynamics of the debris in the BH frame is
characterized by ϵ and l. The left and center panel of
Fig. 1 show the normalized change in specific orbital
energy ϵ and angular momentum l of the debris, respec-
tively, at 1.5tp after periastron passage. We normalize the
distribution in specific orbital energy as δϵ̄ ¼ ðϵ − ϵ0Þ=jϵj,
where ϵ0 ¼ 0 (or ϵ0 ¼ 1 for the relativistic case) is the
specific orbital energy of the trajectory of the frame.
Similarly, the normalized distribution in specific angular
momentum is calculated as δl̄ ¼ ðl − l0Þ=l0, where l0 is
the specific orbital angular momentum of the initial
trajectory of the frame. The left and center panel of
Fig. 1 show that the tidal lobe bound to the BH has less
angular momentum than the initial trajectory as well as a
gradient in the distribution of angular momentum. This
implies that the expanding debris will eventually occupy a
range of orbits with different semi-major axes and
eccentricities.
The right panel of Fig. 1 is a contour plot of the Mach

numberM ¼ j~vj=cs for the locally defined fluid velocity ~v
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and sound speed cs. The remnant core of the star is
subsonic M < 1 and the two tidal debris streams are
supersonic, in agreement with the findings of [44]. We track
the tidal lobes as they escape the domain and include the
supersonic material (which is no longer causally connected
to the remnant core hydrodynamically) in our estimate of
the orbital parameters of the debris.

C. Distribution of specific orbital energy
and angular momentum

We construct the maps of the distribution of ϵ and l of
the debris for all tidal encounters studied in this paper and
investigate their evolution with BHmass and stellar type. In

Fig. 2, ϵ and l are given at the end of Newtonian and
relativistic simulations of models MS1, MS2, and MS3.
The contour levels indicate the enclosed fraction of the
debris mass, ΔM=M�. In this figure, the change in specific
orbital energy is normalized by the Newtonian spread in
energy ΔϵN in Eq. (2.2) and the normalized change
in specific orbital angular momentum is the same as
Fig. 1. In Fig. 2, the spread in l decreases with the BH
mass for both the Newtonian and relativistic simulations.
The spread in ϵ is similar for both and larger than 2ΔϵN ,
indicating a full disruption of the star.
Comparing the Newtonian and relativistic simulations in

Fig. 2, we find a further decrease in the width of the l
distribution for relativistic cases relative to their Newtonian

FIG. 2 (color online). Distribution of specific orbital energy and angular momentum of the debris at the end of the encounter for
Newtonian and relativistic models MS1, MS2, and MS3. Color indicates the stellar mass fraction enclosed in every contour level.

FIG. 1 (color online). Normalized distribution of the specific orbital energy ϵ (left), specific orbital angular momentum l (middle), and
the Mach number M (right panel) of the debris at 1.5tp after the periastron passage for relativistic model MS3. The density contours
(black lines) are of log10ðρ=ρcÞ, ranging from −5 to 0 in steps of 0.5, where ρc is the initial central density of the star. Arrow indicates the
direction from the BH to the star.
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counterparts. This effect is even more pronounced in
models WD6 and WD5, shown in the bottom rows of
Fig. 3. The narrowing of the angular momentum distribu-
tion in relativistic simulations for models MS3, WD5 and
WD6 indicates that in these simulations debris is confined
to a narrower range of eccentric orbits. Since only the ϵ < 0
branch remains bound to the BH, for which δl̄≲ 0, it
follows that all bound orbits will be highly eccentric
relative to the initial orbit of the incoming star and that
the Newtonian simulations give rise to more eccentric
debris orbits than relativistic ones. As relativistic simula-
tions are similar to their Newtonian equivalents in every
aspect except in the relativistic treatment of the tidal
interaction with the BH, it follows that this effect is purely
relativistic.
In Fig. 3, we show the evolution of the ϵ − l distribution

with time for WD6 andWD5 (nominally η ¼ 1.89 and 1.44
encounters, respectively) at the beginning of the encounter
(top row), periastron (middle row), and the end of the
encounter (bottom row). For both the Newtonian and
relativistic simulations, the distribution in ϵ and l initially
broadens as the star passes through periastron.
In Newtonian simulations, the distribution in energy

after periastron passage evolves to become more “vertical.”
This is an indication of the diminishing tidal accelerations

and increasing significance of the self-gravity of the stellar
remnant, which in this case was not fully disrupted as it
continues to recede from the BH. This effect is also seen
in simulations of disruptions by [11–13] and is manifested
as a central spike in their one-dimensional plots of the
distribution of mass and energy dM=dϵ. Note that similar
one-dimensional distributions can be obtained from our
ϵ − l maps by summing along the angular momentum
(vertical) axis.
After periastron passage, the distribution in orbital

energy of the debris is wider in relativistic simulations.
Unlike in the Newtonian simulations, the spread in energy
at periastron in relativistic simulations indicates full dis-
ruption. This is consistent with findings of [20,44], who
note that differences between the relativistic and Newtonian
tidal tensor imply that the relativistic tidal interactions are
more disruptive.
An additional feature of the ϵ − lmaps, noticeable in the

most relativistic encounter WD5 (Fig. 3), is that the
symmetry in the distribution of the debris breaks down
after periastron passage (bottom right panel). Specifically,
the tidal lobe bound to the BH evolves to be less strongly
bound than it would otherwise be if the symmetry in the
distribution was preserved as in the WD6 model. We show
this to be a consequence of apsidal precession in the next

FIG. 3 (color online). Distribution of specific orbital energy and angular momentum of the debris for Newtonian and relativistic model
WD6 (left) and model WD5 (right) at different points in the encounter: initially (top row), periastron (middle row), end of encounter
(bottom row).
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section, where we describe the dynamics of the debris
streams in the black hole frame.
Using the orbital parameters of the debris calculated

from the maps of ϵ and l (shown in Figs. 2 and 3), we
construct ballistic debris elements from a collection of fluid
elements that share similar values in ϵ and l. We then
propagate them ballistically in time according to the
procedures for the Newtonian and Schwarzschild space-
times described in Appendix B.

D. Whirling debris streams in the black hole frame

In this section, we report a mixing of bound and unbound
streams for the most relativistic encounter WD5. In a
Newtonian simulation, the debris streams should be distinct
(opposite sides of the remnant core) with roughly 50% of
the debris bound to the black hole. For the relativistic WD5
encounter, we find that 45% of the debris is bound to the
black hole. In Fig. 4, we show the evolution of the ballistic
debris elements in the relativistic run WD5. We also denote
the location of a test particle that follows the initial orbit
of the star. In this plot, the black debris stream represents
material bound to the BH while the red debris stream is
unbound. In this encounter the apsidal precession shapes
the distribution of the debris and the result is a whirling,

crescent shaped tidal tail where bound and unbound
material overlap and mix. The same effects are present
in the run WD6 to a lesser extent. This distribution and
mixing of the bound and unbound debris share resemblance
with the relativistic MS-BH disruptions by [45] as well as
neutron star-BH disruptions by [46–50]. They indicate that
the orbital precession is likely to lead to orbit intersection
and collisions of fluid elements as they pass through the
periastron. This differs from the Newtonian encounters,
where the initial orbital trajectory clearly delineates the
bound and unbound debris streams. We caution that we
evolve the debris ballistically and therefore do not account
for hydrodynamic interactions and self-gravity. This
approximation ceases to be valid once the orbits of the
fluid elements intersect. Therefore, a full hydrodynamic
treatment is necessary in order to follow the evolution of the
debris accretion disk.

E. Apsidal advance in the debris orbits

In order to investigate the relativistic effects which result
in an apsidal advance of the debris orbits, we map the
periastron locations of the debris in azimuthal angle (ϕp)
and radius (Rp) for both Newtonian and relativistic sim-
ulations (Fig. 5). Both sets of simulations show that the

FIG. 4 (color online). Debris streams in the BH frame for relativistic model WD5. Black (red) color marks a portion of the debris
stream bound (unbound) to the BH. Note that the streams are overlapping with 45% of the debris bound to the black hole. Star marker
follows the initial trajectory of the star.
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debris returns to the periastron radii that are slightly smaller
than that of the original orbit (indicated by the vertical red
line). They however exhibit different behaviors when it
comes to the distribution of the debris in the azimu-
thal angle.
In Newtonian simulations, following the disruption, the

bulk of the debris returns to the periastron in≲2π azimuthal
rotation relative to the initial periastron located at π=2. This
can be understood in terms of the tidal interaction between
a star and a BH. If the disruption of a star occurred
instantaneously at periastron, the debris would return to this
point on the orbit in a full 2π azimuthal rotation. In reality
however, the star is starting to be tidally deformed and spun
up before it reaches periastron and consequently, its fluid
elements start acquiring a range of values in angular
momentum. The effect of azimuthal offset in Newtonian
simulations decreases with the BH mass; it is strongest
in the MS1 and weakest in the MS3 run (see Fig. 6 for
illustration of the periastron locations for the bulk of the
stellar debris in different simulations). Note that this is
consistent with the narrowing in the angular momentum
distribution of the debris with the BH mass shown in Fig. 2.
In relativistic simulations the debris exhibits a positive

shift in azimuthal angle relative to the Newtonian analogs
which arises after > 2π azimuthal rotation due to the
apsidal advance of the orbit (Fig. 6). We compare the
shifts measured from the MS1, MS2, and MS3 models with
the orbital post-Newtonian (1PN) correction for apsidal
advance,

ΔϕPN
p ¼ 6π

GM
c2p

; ð4:1Þ

[51] where p ¼ Rpð1þ eÞ ∼ 2Rp. From Fig. 5 we inspect
the approximate periastron radii occupied by the bulk of the

stellar debris (contours at the level ΔM=M� ∼ 10−1) in
Newtonian simulations MS1, MS2, and MS3 as Rp∼
208M; 46M; 10M, respectively. For these values of peri-
astron radii the 1PN correction estimates apsidal advance of
ΔϕPN

p ∼ 0.014π; 0.065π; 0.300π. This is consistent with the
shift measured between the debris in the Newtonian and
relativistic simulations of 0.014π for MS1 (from 0.492π to
0.506π), 0.068π for MS2 (from 0.497π to 0.565π) and
0.396π for MS3 (from 0.498π to 0.894π). In comparing the
Newtonian and relativistic result, we note a departure from
the orbital 1PN correction for the apsidal advance of the

FIG. 5 (color online). Periastron location of the debris for Newtonian and relativistic simulations MS1, MS2, and MS3. Periastron
location of the initial orbit is indicated by the cross hairs.

FIG. 6 (color online). Illustration of azimuthal locations of
periastrons for orbits of bound debris elements after disruption
(not to scale). In Newtonian simulations debris arrives to
periastrons with the offset of ≲2π in azimuth (dotted line)
relative to the periastron of the initial orbit (solid). In relativistic
simulations debris arrives to periastrons with the offset of> 2π in
azimuth due to the apsidal advance of the orbit (dashed). The
initial orbit is counterclockwise.
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bulk of debris as well as differences in the shape of the
distribution for increasingly relativistic encounters. This
indicates that the combined effects of the tide and star’s
trajectory contribute significantly to the apsidal advance in
the relativistic encounters as well.

F. Relativistic effects in the return rate of debris

To calculate the rate of return of debris to the new
periastrons, we construct a histogram in arrival time. In
Fig. 7, we show the return rates for models MS1, MS2,
MS3, and WD5 in units of _MEdd, where the Eddington
luminosity is LEdd ¼ 1.3 × 1038 erg s−1ðM=M⊙Þ and
_MEdd ¼ LEdd=ð0.1c2Þ [52]. We compare results of
Newtonian and relativistic simulations with fits based on
Newtonian simulations by [12] (solid black line). In the left
panel, we consider MS1, MS2, and MS3 encounters at the
threshold of disruption (η ¼ 1) and compare with β ¼ 1 fits
for disruption by 105; 106; 107M⊙ BH. In the right panel,
we consider a partial disruption of a white dwarf at
η ¼ 1.44; β ¼ 0.784 and compare it with a β ¼ 0.8 fit.
The return rate curves in all cases exhibit characteristic

features similar to previous works that include a rise to the
peak followed by a power law falloff. Closer inspection and
comparison with the fits of [12] also reveal differences,
which are somewhat visually attenuated due to the nature
of the log-log plot. Newtonian rates exhibit a slight earlier
rise than the fits (GR13) while relativistic rates show a
more gradual rise to the peak. We interpret the differences
between the Newtonian and relativistic rates as the result of
the apsidal advance of the debris orbits from a combination
of effects discussed in Sec. IV E.
We note that once debris leaves the computational

domain, we are unable to account for the combined
gravitational and hydrodynamical interaction with what
remains in the computational domain. While this is the
case, we note that this interaction between the streams and
the core affects the least bound debris (which show up at

later times in the return rate) more than the debris that is
initially and supersonically stripped from the star close to
periastron (which show up at early times in the return rate).
We are also unable to account for the self-gravity of the
tidal streams themselves. Nevertheless, we compare our
estimate of the return rate with [12], who simulate the
interaction between the core and the streams until the
energy distribution reaches fixed values. The differences in
Fig. 7 between our Newtonian simulations and those by
[12] reflect the differences in how the orbital parameters
of the debris are obtained from simulation as well as the
evolution of the ballistic debris orbits. We note that these
are small in comparison to the differences between the
relativistic and Newtonian simulations.
For all simulations we measure the peak accretion rate

( _Mpeak), the time when it occurs (tpeak), as well as the
power-law falloff (nN∞) and find that the values from our
Newtonian simulations match well with the predictions of
[12]. With the exception of the MS1 run, where relativistic
effects are negligible, all other relativistic simulations
exhibit noticeable differences with respect to their
Newtonian counterparts. These are listed in Table II which
in addition to already mentioned parameters shows the
time for the return rate to reach the Eddington limit tEdd and
the shift in peak time Δtdelay between the Newtonian and
relativistic simulations in days.
Table II and the right panel of Fig. 7 show that the return

rate in relativistic simulation WD5, where apsidal advance
is more severe, is suppressed by a factor of ∼3 relative to
the Newtonian rate. Along similar lines, the return rate
curve in relativistic simulations is broadened and the
occurrence of the peak in the return rate delayed. We
attribute this delay to the apsidal advance of the orbits and
the property of relativistic encounters to confine the energy
and angular momentum distribution of the debris to a
relatively narrow range of values. For example, we measure
Δtdelay for the MS2 and MS3 models of about 6 and 23

FIG. 7 (color online). Rates of return of the debris to periastrons as a function of time for MS1, MS2, MS3 (left) and WD models
(right). Rates from Newtonian (red crosses) and relativistic simulations (green circles) are compared with parametric fits from [12] (solid
black line).
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days, respectively. For the WD5 and WD6 models, which
play out on much shorter time scales, the delays are only
about ∼0.03–0.04 days. In the next section we discuss
implications of the relativistic effects in the return rate
curves in the context of observations and estimates of the
BH mass.

V. DISCUSSION

Our simulations show that relativistic effects manifest in
the return rate of the debris in two ways: they are noticeable
in a more gradual rise of the return rate curve to the peak as
well as in the delay of the peak rate relative to the Newtonian
simulations. As expected, the magnitude of these effects
increases for encounters that occur closer to the BH and
while they are negligible in the MS1 model, they are present
in MS2 and MS3 and fairly pronounced in the WD
encounters. As relativistic effects are expected to affect
the dynamics of the debris in these types of encounters, a
pertinent question is can they be detected in observations?
In the previous section we quantify the importance of

relativistic effects by calculating the “lead time” of the
relativistic curves before the peak and the time delay of the
peak relative to the Newtonian ones. Specifically, we
measure the delay in the peak of the return rate of about
6 days and 23 days for encounters MS2 and MS3,
respectively (Table II). In comparison, the typical cadence
of images and photometry taken as a part of the Pan-
STARRS1 Medium-Deep Field survey is every 3 nights
[53]. Thus, these effects are in principle measurable with
the current transient sky surveys if the ballistic return rate
of the debris is proportional to the event light curve. This is
an intriguing possibility, especially for the MS2 class of
events, which have been considered numerous times in
the literature as conventional Newtonian encounters. The
relativistic effects in the return rate curve for WD encoun-
ters are even more severe, but may be difficult to measure
with current surveys given the short time scale on which
these events play out (< 1 day).
One important factor that prevents a simple interpreta-

tion of the return rates of the debris in terms of the observed
light curves is the super-Eddington nature of the return
rates. Namely, if simulated return rates (which determine
the supply rate of the gas) are translated into the accretion

rates onto the BH, they correspond to super-Eddington
accretion rates. If these in turn power super-Eddington
luminosities even for a brief period of time, radiative
feedback is likely to strongly affect the dynamics of the
accreting debris. That is, once the luminosity of the central
source exceeds the Eddington limit, the portion of the light
curve above this threshold (Fig. 7) will be shaped by the
response of the debris to radiation pressure. As our
simulations do not account for interactions of matter and
radiation, we cannot determine whether signatures of
relativistic effects will be preserved above this threshold.
We note that relativistic features in the early, sub-

Eddington phase of evolution may still be preserved. In
the early times of the rate, the relativistic curves have
shallower slopes than the Newtonian counterparts. It is an
interesting situation if an observed light curve from a
relativistic encounter was unknowingly modeled by a light
curve calculated from Newtonian simulations. In this case,
the peaks of the two curves may be arbitrarily shifted along
the time axis until they overlap but the slopes in the portion
of the curves leading to the peak would be discrepant. We
indeed find an indication of this behavior in the light curve of
a tidal disruption event PS1-10jh for which the early rise in
the light curve has been observed in the optical band with
Pan-STARRS1 (see Fig. 2 in [28]). The exact nature of this
tidal disruption event has been disputed and two different
explanations have been offered in the literature. One group
of authors, including the authors of this paper, suggests that
this is a tidal disruption of a helium WD by a ∼106M⊙ BH
[28,54], while the other explains it in terms of the disruption
of a main sequence star by a ∼107M⊙ BH [55]. Both are in
agreement that the encounter is likely to be relativistic. The
case of PS1-10jh is interesting but unlikely to be constrained
by further observations because the unique spectral and
photometric features that can be used to infer its nature have
faded out of sight. Thus, the only remaining prospect to
understand this object may be through careful modeling of
its relativistic light curve, which we defer to future work.
Given a possibility that relativistic features in the light

curve of PS1-10jh have already been detected, it is of
interest to consider what kind of biases can be introduced to
interpretation of tidal disruption events if parametric fits
based on Newtonian simulations are used to model light
curves from relativistic encounters. We address this issue

TABLE II. Comparison of Newtonian and relativistic simulations. Peak return rate ( _Mpeak), time when _M ¼ _MEdd (tEdd), time when
_M ¼ _Mpeak (tpeak), delay in peak time (Δtdelay ¼ tRpeak − tNpeak), power law index for the return rate from relativistic simulations (nR∞), and
estimated BH mass (Mest).

Label _MN
peak½ _MEdd� _MR

peak½ _MEdd� tNEdd[days] tREdd[days] tNpeak[days] tRpeak[days] Δtdelay[days] nR∞ Mest½M⊙�
MS1 2.1eþ 03 2.2eþ 03 7.1 7.6 1.9eþ 01 1.9eþ 01 0.0 −1.64 1.00eþ 05
MS2 6.9eþ 01 7.0eþ 01 2.6eþ 01 2.8eþ 01 5.9eþ 01 6.5eþ 01 5.7 −1.66 1.17eþ 06
MS3 2.2 1.8 1.2eþ 02 1.4eþ 02 1.9eþ 02 2.1eþ 02 2.3eþ 01 −1.66 1.26eþ 07
WD5 2.9eþ 05 8.9eþ 04 2.3e − 02 1.8e − 02 5.9e − 02 8.8e − 02 2.8e − 02 −1.61 3.10eþ 05
WD6 1.1eþ 05 2.9eþ 05 2.9e − 02 2.9e − 02 6.3e − 02 1.0e − 01 3.7e − 02 −1.73 3.06eþ 05
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by applying a simple model of the return rate curves from
our relativistic simulations by Newtonian fits by [12]. We
line up the relativistic and Newtonian curves in such way
that their peaks overlap, as it would be the case with a
majority of routines used to fit the observed data. Assuming
a known structure of the disrupted star, the timing and
magnitude of the peak are directly determined by the mass
of the BH and strength of the encounter. Solving for these
properties in practice allows an inference of the BH mass
from tidal disruption events. Therefore, our simple model-
ing procedure provides estimates for the BH masses which
we show in the last column of Table II as Mest. Except for
the MS1 run which does not exhibit significant relativistic
effects, we find that a simple model of relativistic encoun-
ters with Newtonian parametric fit of the peak time leads to
an overestimate of the BH mass by tens of percent in the
case of disruptions of main sequence stars and a factor of
few for WD disruptions. We nevertheless caution that more
robust estimates of the BH mass require the development of
proper data analysis tools, a worthwhile task that is out of
the scope of this paper.
Given the increasing quality and detailed observational

coverage of tidal disruption events a question of how debris
circularizes to form an accretion disk becomes ever more
pressing. In this paper we show that evolution in angular
momentum is as important as the evolution in orbital
energy of the debris and that the first step towards
reconstruction of the debris orbits can be made only if
both are known. An important consequence of this is shown
in Fig. 4 where both bound and unbound fluid elements
mix as they approach their periastrons. As this likely leads
to orbit crossing and collisions, it has important implica-
tions for the evolution of debris disks. While we obtain
the orbital map of the debris in the frame of the BH by
propagating fluid elements semianalytically from the final
snapshot of the simulation forward in time, this approach
does not account for the effects of (magneto)hydrodynam-
ics, self-gravity, or radiation transport. It thus does not
provide a final answer about how debris disks evolve but it
makes a point that angular momentum distribution as well
as relativistic effects are likely to play an important role.

VI. CONCLUSIONS

In this paper, we used a suite of Newtonian and relativistic
simulations of tidal disruption encounters of MS and WD
stars with BHs to investigate relativistic effects in the
dynamics of debris. We developed a local-to-BH frame
transformation in order to calculate the orbital parameters of
the debris and used these to infer the return rate of the debris
as a function of time. We evaluate the relativistic effects in
the orbital energy and angular momentum of the debris as a
function of BH mass and stellar type. Severe relativistic
effects lead to the mixing and collision of fluid elements that
are both bound and unbound to the BH underlining the need
for a full hydrodynamic treatment to accurately capture the

evolution of debris accretion disks. The two most pro-
nounced signatures of relativistic effects in the return rate of
the debris to periastron are the gradual rise and offset in the
peak of the curve relative to the Newtonian predictions.
These are significant enough in the encounters of MS stars
and BHs that they can in principle be measured by the
current synoptic sky surveys, assuming that the return rate is
proportional to the event light curve. Furthermore, with this
assumption, if the tidal disruption light curve from a
relativistic encounter is simply modeled with a Newtonian
parametric fit of the peak time, this can lead to an
overestimate in the BH mass by a factor of ∼few × 0.1
and ∼few for disruptions of the MS stars and WDs,
respectively.
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APPENDIX A: EXPANSION COEFFICIENTS IN
FNC-TO-BH FRAME TRANSFORMATION

The expansion coefficients σijμ and κijk
μ in Eq. (3.5) and

Eq. (3.6) are obtained by the following procedure [56]. The
FNC frame center at Xμ

ð0Þ is located on a timelike geodesic G
parametrized by proper time τ in the BH frame. The relation
between the Fermi normal coordinates and the tetrad on G
may be expressed as the evaluation at s ¼ 1 of the solution
XμðsÞ of the initial value problem for a geodesic,

d2Xμ

ds2
þ Γμ

αβ
dXα

ds
dXβ

ds
¼ 0;

Xμð0Þ ¼ Xμ
ð0Þ;

dXμ

ds
ð0Þ ¼ xiλiμðτÞ; ðA1Þ

for spatial components i ¼ 1; 2; 3. From the initial con-
ditions, we express the expansion for XμðsÞ as

XμðsÞ ¼ Xμ
ð0Þ þ saμ1 þ

1

2
s2aμ2 þ

1

6
s3aμ3 þ � � � ; ðA2Þ

where aμ1 ¼ λi
μxi and a2, a3, a4, and a5 are to be

determined, and the connection coefficients are

Γμ
αβðXμðsÞÞ ¼ Γμ

αβj0þΓμ
αβ;γj0ðXγðsÞ−Xγ

0Þ

þ 1

2
Γμ

αβ;γδj0ðXγðsÞ−Xγ
0ÞðXδðsÞ−Xδ

0Þþ � � � ;
ðA3Þ
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with evaluations at Xμ
ð0Þ. Substituting Eq. (A2) and Eq. (A3)

into the geodesic equation (A1) and comparing terms at each
power of s, we have

σij
μ ¼ −Γμ

αβj0λiαλjβ
κijk

μ ¼ ð2Γν
αβΓμ

νγ − Γμ
αβ;γÞj0λiαλjβλkγ: ðA4Þ

APPENDIX B: ORBITAL PARAMETERS
OF THE DEBRIS

1. Newtonian gravitational potential

We consider the dynamics of the stellar debris in a
Newtonian gravitational potential described by time t and
spatial coordinates Xi ¼ fr; θ;ϕg and velocities Vi ¼
dXi=dt ¼ _Xi. For a general orbit in a Newtonian gravita-
tional potential ΦN ¼ −M=r (in geometrized units), an
equation relating the specific orbital energy ϵ and angular
momentum l is given by

ϵ ¼ −
M
r
þ 1

2

�
_r2 þ l2 þQ

r2

�
; ðB1Þ

where l ¼ r2 sin2 θ _ϕ and Q ¼ l2 cot2 θ þ r4 _θ2 [41]. We
parametrize the orbit in terms of the semilatus rectum p
and eccentricity e with definitions for the turning points at
periastron Rp and apastron Ra,

Rp ¼ pM
1þ e

; Ra ¼
pM
1 − e

: ðB2Þ

Substituting Eq. (B2) into Eq. (B1) at _r ¼ 0, we relate the
specific orbital energy and angular momentum with the
semilatus rectum and eccentricity,

jϵj ¼ Mð1 − e2Þ
2p

; l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pM −Q

p
ðB3Þ

or

pM ¼ ðl2 þQÞ; eM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 2ϵðl2 þQÞ

q
: ðB4Þ

Note that the semimajor axis a is related to these quantities
by a ¼ ðRp þ RaÞ=2 ¼ p=ð1 − e2Þ ¼ M=ð2jϵjÞ.
The time evolution along the orbit is obtained by

rewriting Eq. (B1) as

dt
dr

¼
ffiffiffiffiffi
a
M

r
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2e2 − ðr − aÞ2
p : ðB5Þ

We introduce a radial phase angle ξ ¼ ½0; 2π� to para-
metrize the orbit [41],

r ¼ að1 − e cos ξÞ: ðB6Þ

Substituting Eq. (B6) into Eq. (B5), we have a regularized
equation for the time evolution,

dt
dξ

¼
ffiffiffiffiffi
a3

M

r
ð1 − e cos ξÞ: ðB7Þ

We regularize the first-order equation of motion in θ [from
Q in Eq. (B1)] in a similar manner to [57], by defining
Z ¼ cos2 θ and introducing a phase φ ¼ ½0; 2π� such
that Z ¼ Z0 cos2 φ. Turning points in θ occur at Z0 ¼
Q=ðQþ l2Þ, where θ� ¼ cos−1ð� ffiffiffiffiffiffi

Z0

p Þ. We then have a
first-order equation for φ,

dφ
dt

¼ 1

r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q − ZðQþ l2Þ

Z0 − Z

s
; ðB8Þ

which parametrizes motion in θ ¼ cos−1ðcosφ= ffiffiffiffiffiffi
Z0

p Þ.
Motion in ϕ is obtained in a straightforward manner by
integrating the first-order equation from l in Eq. (B1).

2. Schwarzschild spacetime

We consider the dynamics of the stellar debris in the
spacetime of a Schwarzschild BH described by coordinates
Xμ ¼ ðt; r; θ;ϕÞ, parametrized by proper time τ, and four-
velocity Uμ ¼ dXμ=dτ ¼ _Xμ. A relation for general orbits
on Schwarzschild is given by

ϵ2 ¼ _r2 þ f

�
1þ l2 þQ

r2

�
; ðB9Þ

in terms of the specific orbital energy ϵ ¼ f_t, specific
angular momentum l ¼ r2 sin2 θ _ϕ, and Carter constant
Q ¼ l2 cot2 θ þ r4 _θ2, where f ¼ 1 − 2M=r [40].
Substituting Eq. (B2) into (B9), we relate the specific

orbital energy and angular momentum with the semilatus
rectum and eccentricity,

ϵ2 ¼ ðp − 2 − 2eÞðp − 2þ 2eÞ
pðp − 3 − e2Þ ;

l2 ¼ p2M2

p − 3 − e2
−Q: ðB10Þ

Instead of inverting (B10) to obtain relations for fe; pg in
terms of given quantities fϵ;lg, we make use of the third
root of the effective potential [42],

r3 ¼
2Mp
p − 4

: ðB11Þ

Given fϵ;lg, we numerically solve for this root with a
Newton-Raphson method [58] within the interval
f1.0M; 4.0Mg to obtain p from Eq. (B11). Using
Eq. (B10), we obtain e and then Rp and Ra from Eq. (B2).
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The orbital radius of the geodesic is parametrized by the
radial phase angle χ,

rðχÞ ¼ pM
1þ e cos χ

: ðB12Þ

The evolution along the orbit in Schwarzschild time is
given by [42]

dt
dχ

¼ p2M
ðp − 2 − 2e cos χÞð1þ e cos χÞ2

×

� ðp − 2Þ2 − 4e2

p − 6 − 2e cos χ

�
1=2

: ðB13Þ

Motion in θ and ϕ is obtained similarly to the
Newtonian case.
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